EP1954852A1 - Cvd-reaktor mit auswechselbarer prozesskammerdecke - Google Patents

Cvd-reaktor mit auswechselbarer prozesskammerdecke

Info

Publication number
EP1954852A1
EP1954852A1 EP06819598A EP06819598A EP1954852A1 EP 1954852 A1 EP1954852 A1 EP 1954852A1 EP 06819598 A EP06819598 A EP 06819598A EP 06819598 A EP06819598 A EP 06819598A EP 1954852 A1 EP1954852 A1 EP 1954852A1
Authority
EP
European Patent Office
Prior art keywords
process chamber
ceiling
ceiling plate
reactor housing
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06819598A
Other languages
English (en)
French (fr)
Inventor
Johannes KÄPPELER
Walter Franken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP1954852A1 publication Critical patent/EP1954852A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas

Definitions

  • the invention relates to a device for depositing at least one layer on at least one substrate with a process chamber arranged in a reactor housing, which has a process chamber bottom formed by a substrate holder, a process chamber ceiling opposite this and a gas inlet element for admitting a process gas containing layer-forming components, the process chamber Process chamber ceiling has a ceiling panel arranged below a ceiling panel support, which essentially extends over the entire horizontal surface extent of the substrate holder.
  • Such a device is known from DE 102 11 442 A1.
  • This device is used to deposit layers on substrate surfaces, the substrates resting in a process chamber on a substrate holder which is heated from below.
  • the ceiling of the process chamber is formed by the lower wall of a gas inlet element which has a large number of gas outlet openings opening into the process chamber.
  • a diffuser plate which forms the actual ceiling of the process chamber, extends below the underside of this gas inlet element.
  • a CVD reactor is also known from DE 103 20 597 A1.
  • the substrates rest on a substrate holder which forms the process chamber floor and is heated from below.
  • a process gas component is additionally introduced into the process chamber through a central opening in the substrate holder, ie from below.
  • DE 4037580 describes a dusting device.
  • a device is provided there for changing a target.
  • the target is directed towards ner area extension shifted into an exchange chamber.
  • means are provided to displace the target transversely to this direction.
  • EP 0869199 describes a process chamber that can be closed by a plate valve. If the plate valve is closed, the ceiling of the process chamber can be opened to remove a target located there.
  • a cluster tool is known from US 5769952, which comprises a plurality of process chambers.
  • One of the process chambers has an opening through which a substrate can be introduced into the process chamber.
  • the substrate is held with a border.
  • JP 05195218 A describes a sputtering device in which the ceiling is provided with a protective plate.
  • JP 07228970 A also describes a sputtering device in which a target can be exchanged.
  • JP 05230625 A describes a device for depositing thin layers in a vacuum chamber.
  • the layer material is removed from a target using a laser beam.
  • the latter can be removed from the vacuum chamber through a vacuum lock.
  • DE 102004045046 A1 describes a method and a device for applying an electrically conductive transparent coating to a substrate.
  • US 6321680 B2 describes a CVD device in which layer deposition is supported by a plasma. The substrates are combined in a magazine, which can be brought into the deposition chamber by a manipulator.
  • the invention has for its object to improve the device mentioned operationally.
  • the gas inlet element arranged in the lateral center of the process chamber is fed through an opening in the substrate holder.
  • All process gases can be introduced into the process chamber from below.
  • the gas inlet element projects through the opening of the substrate holder.
  • two different process gases are introduced into the process chamber, a first process gas being an organometallic compound and a second process gas being a metal hydride, so that depending on the choice of
  • Process gases mixed crystals of the third and fifth or the second and sixth main group can be separated.
  • the releasable assignment of the ceiling tile to the ceiling tile support is important.
  • the ceiling panel can be attached to the ceiling panel support with suitable hooks or quick-release fasteners.
  • the reactor housing also has a lateral opening through which the ceiling plate can be replaced.
  • the ceiling tile support can be cooled. While the ceiling tile support consists of a metal, the ceiling tile itself can consist of graphite or preferably quartz or sapphire.
  • the exchange of the ceiling plate is facilitated by the fact that the ceiling plate extends essentially without interruption over the entire cross-sectional extent of the underside of the ceiling plate carrier, so that There is a free space between the ceiling plate and the end face of the gas inlet element.
  • the ceiling plate carrier can be displaced vertically. It can be lowered from a process position to a ceiling plate replacement position. In this ceiling panel replacement position, the ceiling panel support is located approximately in the middle of the side opening, i.e. below its upper edge, so that a robot arm can reach into the process chamber in order to grip the ceiling panel and remove it from the process chamber and replace it with a new one.
  • the quick-release fasteners with which the ceiling panel is attached to the ceiling panel support are released.
  • the substrate holder In the process position, which can also correspond to a loading and unloading position, the substrate holder can be accessed in a known manner with a robot arm.
  • the substrates arranged there can be removed and exchanged for substrates to be coated.
  • the substrate holder preferably has an annular shape.
  • Several substrates are arranged in a ring on the periphery around the gas inlet element.
  • the substrate holder is driven in rotation from below, for which purpose the gas inlet element forms a hollow shaft which can be driven in rotation.
  • a plurality of gas supply channels can be arranged in the hollow shaft in order to transport the process gases to the gas outlet openings from which the process gases emerge in the horizontal direction.
  • the gas outlet openings preferably extend one above the other in the circumferential direction.
  • the openings are thus in the area of a cylindrical surface.
  • the substrate holder is heated from below.
  • not only the ceiling tile support can be moved vertically together with the ceiling tile, but also the substrate holder arrangement including the gas inlet element.
  • the side opening can be closed gas-tight by means of a gate.
  • the ceiling plate support preferably hangs on the ceiling of the reactor housing. ses. The suspension is able to lower the ceiling tile support. A coolant can flow through the holder.
  • the invention also relates to a method for depositing at least one layer on at least one substrate in a previously described process chamber. It is essential that after each process step the ceiling tiles, on which an undesired deposition has taken place, are removed from the process chamber.
  • the robot arm that removes the ceiling panel from the process chamber first brings this ceiling panel into a storage cassette in order to store it temporarily.
  • a cleaned ceiling plate is then removed from an etching chamber, which is likewise arranged outside the reactor housing, and introduced into the process chamber. There it is then attached under the ceiling tile support.
  • the etching chamber is a hermetically sealed reaction chamber in which a dry etching process can take place, for example by introducing gaseous HCl.
  • the introduced HCl etches off a parasitic metal coating from the ceiling plate.
  • the ceiling plate cleaned in this way can remain in the etched chamber in the cleaned state until it is needed. If the etching step is shorter than the process step carried out parallel to the etching step in the reactor, the cleaned ceiling plate can be stored there under a protective gas atmosphere. However, it is also possible to first bring the parasitically coated ceiling panel into the etching chamber and then to store the cleaned ceiling panels in a cassette.
  • the bracket with which the ceiling plate is attached to the ceiling support preferably engages on the edge of the ceiling plate.
  • the holder can engage under the essentially circular ceiling plate, each with a hook-shaped extension, at several, in particular three, locations arranged in a uniform angular distribution.
  • the brackets can be formed by rods which protrude from above through the process chamber ceiling and extend in the vertical direction. are available. The rods can also be rotated to bring the hook-shaped extensions under the edge of the ceiling plate or to release the ceiling plate for removal.
  • FIG. 1 shows the cross section of a reactor housing with the details necessary for explaining the inventive concept in a process position which also corresponds to a loading and unloading position
  • FIG. 2 is an illustration of FIG. 1 in a ceiling panel replacement position
  • Fig. 3 is a schematic representation of a device consisting of reactor housing 1, etching chamber 22 and cassette 21.
  • the reactor housing 1 consists of a metal housing which is gas-tight to the environment.
  • the ceiling of the reactor housing 1 can be removed for maintenance purposes.
  • a ceiling plate support 5 is attached to the ceiling of the reactor housing 1.
  • brackets 18, 19 are used, which at the same time serve as supply or discharge of a coolant in order to cool the ceiling panel support 5.
  • the ceiling panel support 5 has a coolant chamber 16.
  • the brackets 18, 19 are designed such that the vertical distance of the ceiling plate support 5 from the ceiling of the reactor housing 1 can be varied.
  • the supply line 18 or discharge line 19 for the coolant can be telescopic, for example.
  • the underside of the ceiling panel support 5 forms a substantially circular disk-shaped flat contact surface for a ceiling panel 6.
  • the ceiling tile support 5 is made of a metal, for example aluminum or stainless steel.
  • the ceiling panel 6 has essentially the same contour as the underside of the ceiling panel support 5.
  • the ceiling plate 6 of the exemplary embodiment extending uninterruptedly over the entire surface of the underside of the ceiling plate support. There are therefore no openings in the ceiling plate 6. Also, no components of the reactor protrude through the ceiling plate 6.
  • the ceiling plate 6 is, however, attached to the ceiling plate support 5 with detachable brackets.
  • the holding means can be formed by hooks. However, it is also conceivable to connect the ceiling panel 6 to the ceiling panel support 5 by means of a bayonet catch.
  • the process chamber 3 extends below the ceiling plate 6, so that the ceiling plate 6 forms the ceiling thereof.
  • the process chamber 3 also has a rotationally symmetrical design.
  • a gas inlet element 7 with which the process gases can be introduced into the process chamber 3.
  • the essentially cylindrical gas inlet element 7 projects through a central opening 8 of a substrate holder 4 from below.
  • the cover plate 6 consists of an essentially thermally and electrically insulating material, for example quartz or sapphire
  • the substrate holder 4 preferably consists of graphite.
  • the ceiling plate 6 can also consist of graphite.
  • the annular disk-shaped substrate holder 4 has a plurality of pockets arranged in the circumferential direction.
  • pockets are open at the top and have a pot-shaped shape.
  • pockets are circular disc-shaped susceptors 15, which can rotate in the pockets on a gas rotary bearing.
  • a substrate 2 to be coated is located on each of the susceptors 15.
  • a heating spiral 11 is located below the substrate holder 4. This can be a resistance heating. However, it is preferably an RF transmitter coil that induces eddy currents in the electrically conductive substrate holder 4, which lead to the heating of the substrate holder 4.
  • the gas inlet member 7 is formed by a hollow shaft 12.
  • This hollow shaft 12 can protrude through the bottom of the reactor housing 1.
  • the hollow shaft 12 is preferably driven in rotation.
  • the hollow shaft 12 carries the substrate holder 4, so that the rotational movement of the hollow shaft 12 is transmitted to the substrate holder 4.
  • the gas forming the above-described gas rotary bearing can be fed through the hollow shaft 12.
  • the process gas which is a hydride of an element of III. or IL main group on the one hand and around an organometallic compound of an element of V. or VI. Main group, on the other hand, can act. Both the hydride and the organometallic compound are introduced into the process chamber together with a carrier gas. Separate flow channels 13, 14 are used for this purpose.
  • the hydride which can be AsH 3 , PH 3 or NH 3 , is passed through a central flow channel 14 into the area under the end plate 7 ′ of the gas inlet element 7. There the initially vertical flow of the process gas is diverted into a horizontal flow.
  • the process gas flows in the radial direction from outlet openings 14 ', which extends over a circumferential surface zone into the process chamber 3. Below the outlet opening 14' of the flow channel 14, there is an outlet opening 13 'for the metal-organic connection which is in the form of a cylinder jacket.
  • This outlet opening 13 ' from which the organometallic compound flows out together with the carrier gas carrying it in the horizontal direction, forms the end of a flow channel 13, through which the organometallic compound is likewise fed through the underside of the reactor housing 1.
  • the lower gas outlet opening 13 ′ extends directly above the surface of the substrate holder 4 facing the process chamber 3.
  • the outlet opening 14 ′ opens into the process chamber 3 below the axial center of the process chamber 3.
  • the ceiling panel support 5 it is not only possible to lower the ceiling panel support 5 together with the ceiling panel 6 releasably attached to its underside in the direction of the arrow labeled A in FIG. 1.
  • the surface of the substrate holder 4 facing the process chamber 3 lies in the access area through the lateral opening 9 of the reactor housing 1.
  • the surface of the substrate holder 4 facing the process chamber 3 is here above the height of the lower edge of the Opening 9 and below the upper edge of opening 9. If the gate 17 which closes the opening 9 in a gas-tight manner, a robot arm can reach into the process chamber 3 in order to remove the coated substrates 2 and exchange them for substrates 2 to be coated.
  • the substrate holder 4 is always rotated through a corresponding circumferential angle.
  • the ceiling tile is exchanged between individual coating processes in order to clean the ceiling tile. Since the ceiling panels in the process have a considerably lower temperature than the substrate holder 4, a parasitic coating of the ceiling panel 6 cannot be avoided. Such a parasitic coating of the ceiling plate 6 generally leads to disadvantages because material particles deposited on the surface of the ceiling plate 6 can form and can fall down onto the substrates. By regularly changing the ceiling plate 6, the mass of the material deposited there is kept within tolerable limits.
  • the ceiling plate support 5 can be rigidly connected to the substrate holder 4 via suitable rigid connections, in particular arranged outside the process chamber 3. With this arrangement, ceiling tile support 5 and substrate holder 4 do not need to be driven separately in the vertical direction.
  • the vertical drive can then engage, for example, in the hollow shaft 12 which is led out of the reactor housing 1 through a bottom opening.
  • the rotary drive can also act on this hollow axis 12 in order to drive the substrate holder 4 around its own axis during the deposition process. However, it is also possible to accommodate the rotary drive and / or the vertical drive within the reactor housing 1.
  • the reference numeral 20 designates swivel hooks which can be rotated from the outside. These Swivel hooks reach under the ceiling plate 6 with a hook extension in order to hold it firmly on the ceiling plate holder.
  • FIG. 3 shows, roughly schematically, an overall device with a reactor housing 1, an etching chamber 22 and a cassette 21. Between these three chambers 1, 21 and 22 there is a multi-articulated robot arm 23 1 Retract the process chamber 3 shown.
  • the gripper then lies in the free space 10 below the ceiling plate 6.
  • the gripper can then be displaced vertically upwards until it comes into contact with the system on the ceiling plate 6.
  • the swivel hook 20 is rotated so that the ceiling plate 6 is free.
  • the ceiling plate is removed from the ceiling plate support 5 by vertically lowering the gripper.
  • the gripper then leaves the process chamber 3 together with the cover plate 6 and places the cover plate in a cassette 21.
  • the gripping arm 23 has subsequently removed a cleaned ceiling plate 6 from an etching chamber 22, it brings it into the process chamber 3, where it is attached to the ceiling plate support 5 by means of the swivel hook 20.
  • the swivel hook 20 has a bend at its end which projects into the process chamber 10. This angled portion can engage underneath the ceiling plate 6, which has an essentially circular disk shape. Three or more swivel hooks can be provided, each of which protrude into the interior of the reactor through openings in the reactor housing. The swivel hooks 20 can not only be rotated in order to bring the holding projections into the base position. The swivel hooks 20 can also shift in the vertical direction if it is necessary to lower the ceiling plate 6.
  • the etching chamber 22 is a reaction vessel hermetically sealed off from the outside world. It can be tempered. It can be brought to a process temperature with suitable heating elements, at which a dry etching process can take place within the etching chamber 22.
  • an etchable gas is introduced into the etching chamber 22. It can be dry HCl.
  • an inert gas can also be introduced into the etching chamber 22 in order to purge the etching chamber 22.
  • the cleaned ceiling plate 6 can also remain under this protective gas atmosphere within the etching chamber 22 until it is removed there with the reactor arm 23 in order to be inserted into the reactor housing after the gate 17 has been opened in the manner described above.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Abscheiden mindestens einer Schicht auf mindestens einem Substrat (2) mit einer in einem Reaktorgehäuse (1) angeordneten Prozesskammer, die einen von einem Substrathalter (4) gebildeten Prozesskammerboden, eine diesem gegenüberliegende Prozesskammerdecke (5, 6) und ein Gaseinlassorgan (7) zum Einlassen eines schichtbildende Komponenten enthaltenen Prozessgases aufweist, wobei die Prozesskammerdecke (5, 6) eine unterhalb eines Deckenplattenträgers (5) angeordnete Deckenplatte (6) aufweist, die sich im Wesentlichen über die gesamte Horizontalflächenerstreckung des Substrathalters (4) erstreckt. Um die eingangs genannte Vorrichtung betriebstechnisch zu verbessern, wird vorgeschlagen, dass das im lateralen Zentrum der Prozesskammer (3) angeordnete Gaseinlassorgan (7) durch eine Öffnung des Substrathalters (4) gespeist wird und die lösbar dem Deckenträger (5) zugeordnete Deckenplatte (6) durch eine seitliche Öffnung (9) des Reaktorgehäuses (1) austauschbar ist.

Description

CVD-Reaktor mit auswechselbarer Prozesskammerdecke
Die Erfindung betrifft eine Vorrichtung zum Abscheiden mindestens einer Schicht auf mindestens einem Substrat mit einer in einem Reaktorgehäuse an- geordneten Prozesskammer, die einen von einem Substrathalter gebildeten Prozesskammerboden, eine diesem gegenüberliegende Prozesskammerdecke und ein Gaseinlassorgan zum Einlassen eines schichtbildende Komponenten enthaltenen Prozessgases aufweist, wobei die Prozesskammerdecke eine unterhalb eines Deckenplattenträgers angeordnete Deckenplatte aufweist, die sich im Wesentlichen über die gesamte Horizontalflächenerstreckung des Substrathalters erstreckt.
Eine derartige Vorrichtung ist aus der DE 102 11 442 Al bekannt. Diese Vorrichtung dient dem Abscheiden von Schichten auf Substratoberflächen, wobei die Substrate in einer Prozesskammer auf einem Substrathalter aufliegen, der von unten beheizt wird. Die Decke der Prozesskammer wird von der Unterwandung eines Gaseinlassorgans ausgebildet, welches eine Vielzahl in die Prozesskammer mündende Gasaustrittsöffnungen aufweist. Unterhalb der Unterseite dieses Gaseinlassorgans erstreckt sich eine Diffuserplatte, die die eigentliche Decke der Prozesskammer ausbildet.
Aus der DE 103 20 597 Al ist ebenfalls ein CVD-Reaktor vorbekannt. Auch hier liegen die Substrate auf einem den Prozesskammerboden bildenden Substrathalter auf, der von unten beheizt ist. Anders als bei dem zuvor erörterten CVD- Reaktor wird hier zusätzlich eine Prozessgaskomponente durch eine zentrale Öffnung des Substrathalters, also von unten her, in die Prozesskammer eingeleitet.
Die DE 4037580 beschreibt eine Aufstäubvorrichtung. Dort ist eine Einrichtung vorgesehen, um ein Target zu wechseln. Das Target wird dabei in Richtung sei- ner Flächenerstreckung in eine Wechselkammer verschoben. Zusätzlich sind Mittel vorgesehen, um das Target quer zu dieser Richtung zu verlagern.
Die EP 0869199 beschreibt eine über ein Plattenventil verschließbare Prozess- kammer. Ist das Plattenventil geschlossen, so kann die Decke der Prozesskammer geöffnet werden, um ein dort angeordnetes Target zu entfernen.
Aus der US 5769952 ist ein Cluster tool bekannt, welches eine Mehrzahl von Prozesskammer umf asst. Eine der Prozesskammern besitzt eine Öffnung, durch welche ein Substrat in die Prozesskammer eingebracht werden kann. Das Substrat wird mit einer Randumfassung gehalten.
Die JP 05195218 A beschreibt eine Sputtereinrichtung, bei der die Decke mit einer Schutzplatte versehen ist.
Die JP 07228970 A beschreibt ebenfalls eine Sputtereinrichtung, bei der ein Target ausgetauscht werden kann.
Die JP 05230625 A beschreibt eine Vorrichtung zum Abscheiden dünner Schich- ten in einer Vakuumkammer. Das Schichtmaterial wird mittels Laserstrahl von einem Target entfernt. Letzteres kann durch eine Vakuumschleuse aus der Vakuumkammer entnommen werden.
Die DE 102004035335 Al beschreibt eine reinraumfähige Beschichtungsanlage. Dort sollen in einer Vakuumkammer glasartige, glaskeramische und/ oder keramische Schichten auf Substrate abgeschieden werden.
Die DE 102004045046 Al beschreibt ein Verfahren und eine Vorrichtung zum Aufbringen einer elektrisch leitfähigen transparenten Beschichtung auf ein Sub- strat. Die US 6321680 B2 beschreibt eine CVD- Vorrichtung, bei die Schichtabschei- dung durch ein Plasma unterstützt wird. Die Substrate sind in einem Magazin zusammengefasst, welches von einem Manipulator in die Depositionskammer gebracht werden kann.
Der Erfindung liegt die Aufgabe zugrunde, die eingangs genannte Vorrichtung betriebstechnisch zu verbessern.
Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung, wobei jeder der Ansprüche eine eigenständige Lösung der Aufgabe darstellt und jeder Anspruch mit jedem anderen Anspruch kombinierbar ist.
Erfindungsgemäß ist zunächst und im Wesentlichen vorgesehen, dass das im lateralen Zentrum der Prozesskammer angeordnete Gaseinlassorgan durch eine Öffnung des Substrathalters gespeist wird. Dabei können sämtliche Prozessgase von unten in die Prozesskammer eingeleitet werden. Hierzu ist es von Vorteil, wenn das Gaseinlassorgan die Öffnung des Substrathalters durchragt. Es werden insbesondere zwei verschiedene Prozessgase in die Prozesskammer eingeleitet, wobei ein erstes Prozessgas eine metallorganische Verbindung und ein zweites Prozessgas ein Metallhydrid ist, so dass abhängig von der Wahl der
Prozessgase Mischkristalle der dritten und fünften bzw. der zweiten und sechsten Hauptgruppe abgeschieden werden können. Von Bedeutung ist die lösbare Zuordnung der Deckenplatte zu dem Deckenplattenträger. Die Deckenplatte kann mit geeigneten Haken oder Schnellverschlüssen an dem Deckenplatten- träger befestigt sein. Das Reaktorgehäuse weist zudem eine seitliche Öffnung auf, durch welche die Deckenplatte austauschbar ist. Der Deckenplattenträger kann gekühlt sein. Während der Deckenplattenträger aus einem Metall besteht, kann die Deckenplatte selbst aus Graphit oder bevorzugt Quarz oder Saphir bestehen. Der Austausch der Deckenplatte wird dadurch erleichtert, dass sich die Deckenplatte im Wesentlichen unterbrechungsfrei über die gesamte Querschnittserstreckung der Unterseite des Deckenplattenträgers erstreckt, so dass zwischen der Deckenplatte und der Stirnseite des Gaseinlassorgans ein Freiraum verbleibt. Um die Öffnung zum Austausch der Deckenplatte möglichst klein zu halten bzw. diese Öffnung auch verwenden zu können, um den Substrathalter mit Substraten zu be- bzw. entladen, kann es vorgesehen sein, dass der Deckenplattenträger vertikal verlagerbar ist. Er kann von einer Prozessstellung herabgesenkt werden in eine Deckenplatteaustauschstellung. In dieser Deckenplattenaustauschstellung liegt der Deckenplattenträger etwa mittig der seitlichen Öffnung, also unterhalb deren Oberkante, so dass ein Roboterarm in die Prozesskammer eingreifen kann, um die Deckenplatte zu greifen und aus der Prozesskammer zu entfernen und gegen eine neue auszutauschen. Dabei werden die Schnellverschlüsse, mit denen die Deckenplatte am Deckenplattenträger befestigt ist, gelöst. In der Prozessstellung, die auch einer Be- und Entladestellung entsprechen kann, kann in bekannter Weise mit einem Roboterarm auf den Substrathalter zugegriffen werden. Die dort angeordneten Substrate können entfernt werden und gegen zu beschichtende Substrate ausgetauscht werden. Der Substrathalter hat vorzugsweise eine kreisringförmige Gestalt. Auf der Peripherie um das Gaseinlassorgan sind ringförmig mehrere Substrate angeordnet. Der Substrathalter wird von unten her drehangetrieben, wozu das Gaseinlassorgan eine Hohlwelle ausbildet, die drehangetrieben werden kann. In der Hohlwelle können eine Vielzahl von Gaszuleitungskanälen angeordnet sein, um die Prozessgase zu den Gasaustrittsöffnungen zu transportieren, aus denen die Prozessgase in Horizontalrichtung austreten. Die Gasauslassöffnungen erstrecken sich bevorzugt übereinanderliegend in Umf angsrichtung. Die Öffnungen liegen damit im Bereich einer Zylindermantelfläche. Der Substrat- halter wird von unten beheizt. Hierzu befindet sich innerhalb des Reaktorgehäuses eine Hochfrequenzheizspirale. In einer bevorzugten Ausgestaltung ist nicht nur der Deckenplattenträger zusammen mit der Deckenplatte vertikal verlagerbar, sondern auch die Substrathalteranordnung inklusive Gaseinlassorgan. Die seitliche Öffnung kann mittelst eines Tores gasdicht verschlossen sein. Der Deckenplattenträger hängt vorzugsweise an der Decke des Reaktorgehäu- ses. Die Aufhängung ist in der Lage, den Deckenplattenträger abzusenken. Durch die Halterung kann eine Kühlflüssigkeit fließen.
Die Erfindung betrifft darüber hinaus ein Verfahren zum Abscheiden mindes- tens einer Schicht auf mindestens einem Substrat in einer zuvor beschriebenen Prozesskammer. Wesentlich ist dabei, dass nach jedem Prozessschritt die Deckenplatten, an welcher eine nicht gewünschte Deposition stattgefunden hat, aus der Prozesskammer entfernt wird. Der die Deckenplatte aus der Prozesskammer entfernende Roboterarm bringt diese Deckenplatte zunächst in eine Lagerkassette, um sie zwischenzulagern. Sodann wird aus einer Ätzkammer, die ebenfalls außerhalb des Reaktorgehäuses angeordnet ist, eine gereinigte Deckenplatte entnommen und in die Prozesskammer eingebracht. Dort wird sie dann unter dem Deckenplattenträger befestigt. Die Ätzkammer ist eine hermetisch geschlossene Reaktionskammer, in der ein Trockenätzprozess, beispiels- weise durch Einleiten von gasförmigem HCl, stattfinden kann. Bei den entsprechenden Prozesstemperaturen wird durch das eingeleitete HCl eine parasitäre Metallbeschichtung von der Deckenplatte abgeätzt. Die so gereinigte Deckenplatte kann in der Ätzkammer in gereinigtem Zustand verbleiben, bis sie gebraucht wird. Wenn der Ätzschritt kürzer ist als der parallel zum Ätzschritt durchgeführte Prozessschritt im Reaktor, kann die gereinigte Deckenplatte dort unter einer Schutzgasatmosphäre gelagert werden. Es ist aber auch möglich, die parasitär beschichtete Deckenplatte zunächst in die Ätzkammer hineinzubringen und dann die gereinigten Deckenplatten in einer Kassette zwischenzulagern.
Die Halterung, mit der die Deckenplatte am Deckenträger befestigt ist, greift bevorzugt am Rand der Deckenplatte an. Dabei kann die Halterung an mehreren, insbesondere drei in gleichmäßiger Winkelverteilung angeordneten Stellen die im Wesentlichen kreisrunde Deckenplatte mit jeweils einem hakenförmigen Fortsatz untergreifen. Die Halterungen können von Stäben gebildet sein, die von oben durch die Prozesskammerdecke ragen und in Vertikalrichtung verla- gerbar sind. Die Stäbe können zudem gedreht werden, um die hakenförmigen Fortsätze unter den Rand der Deckenplatte zu bringen, bzw. um die Deckenplatte zur Entnahme freizugeben.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand beigefügter Zeichnungen erläutert. Es zeigen:
Fig. 1 den Querschnitt eines Reaktorgehäuses mit den zur Erläuterung des Erfindungsgedankens notwendigen Details in einer Prozessstellung, die auch einer Be- und Entladestellung entspricht,
Fig. 2 eine Darstellung gemäß Fig. 1 in einer Deckenplattenaustauschstellung und
Fig. 3 eine schematische Darstellung einer aus Reaktorgehäuse 1, Ätzkammer 22 und Kassette 21 bestehende Vorrichtung.
Das Reaktorgehäuse 1 besteht aus einem Metallgehäuse, welches gegenüber der Umgebung gasdicht ist. Zu Wartungszwecken kann die Decke des Reaktorge- häuses 1 abgenommen werden. An der Decke des Reaktorgehäuses 1 ist ein Deckenplattenträger 5 befestigt. Hierzu dienen Halterungen 18, 19, die gleichzeitig als Zuleitung bzw. Ableitung eines Kühlmittels dienen, um den Deckenplattenträger 5 zu kühlen. Hierzu besitzt der Deckenplattenträger 5 eine Kühlmittelkammer 16.
Die Halterungen 18, 19 sind so ausgebildet, dass der vertikale Abstand des Deckenplattenträgers 5 von der Decke des Reaktorgehäuses 1 variierbar ist. Die Zuleitung 18 bzw. Ableitung 19 für die Kühlflüssigkeit kann bspw. teleskopier- bar sein. Der Deckenplattenträger 5 bildet mit seiner Unterseite eine im Wesentlichen kreisscheibenförmige ebene Anlagefläche für eine Deckenplatte 6 aus. Der Deckenplattenträger 5 ist aus einem Metall, bspw. Aluminium oder Edelstahl gefertigt. Die Deckenplatte 6 besitzt im Wesentlichen dieselbe Umrisskontur wie die Unterseite des Deckenplattenträgers 5.
Auch sie hat die Form einer Kreisscheibe, wobei sich die Deckenplatte 6 des Ausführungsbeispiels unterbrechungsfrei über die gesamte Fläche der Decken- plattenträgerunterseite erstreckt. Es sind also keinerlei Öffnungen in der De- ckenplatte 6 vorgesehen. Auch durchragen keine Bestandteile des Reaktors die Deckenplatte 6. Die Deckenplatte 6 ist aber mit lösbaren Halterungen am Deckenplattenträger 5 befestigt. Die Haltemittel können von Haken ausgebildet sein. Es ist aber auch denkbar, die Deckenplatte 6 im Wege eines Bajonettverschlusses mit dem Deckenplattenträger 5 zu verbinden.
Unterhalb der Deckenplatte 6 erstreckt sich die Prozesskammer 3, so dass die Deckenplatte 6 deren Decke ausbildet. Auch die Prozesskammer 3 besitzt eine rotations symmetrische Gestaltung. Im Zentrum der Prozesskammer 3 befindet sich ein Gaseinlassorgan 7, mit welchem die Prozessgase in die Prozesskammer 3 eingeleitet werden können. Das im Wesentlichen zylinderförmige Gaseinlassorgan 7 durchragt dabei von unten eine zentrale Öffnung 8 eines Substrathalters 4. Während die Deckenplatte 6 aus einem im Wesentlichen thermisch und elektrisch isolierenden Material, bspw. Quarz oder Saphir besteht, besteht der Substrathalter 4 bevorzugt aus Graphit. Grundsätzlich kann die Deckenplatte 6 aber auch aus Graphit bestehen. Der kreisringscheibenförmige Substrathalter 4 besitzt eine Vielzahl in Umfangsrichtung angeordneter Taschen. Diese Taschen sind nach oben hin offen und haben eine topfförmige Gestalt. In diesen Taschen liegen kreisscheibenförmige Suszeptoren 15 ein, die sich in den Taschen auf einem Gasdrehlager drehen können. Auf jedem der Suszeptoren 15 befindet sich ein zu beschichtendes Substrat 2. Unterhalb des Substrathalters 4 befindet sich eine Heizspirale 11. Es kann sich hierbei um eine Widerstandsheizung handeln. Bevorzugt handelt es sich aber um eine HF-Sendespule, die in dem elektrisch leitenden Substrathalter 4 Wirbelströme induziert, die zur Erwärmung des Substrathalters 4 führen.
Das Gaseinlassorgan 7 wird von einer Hohlwelle 12 gebildet. Diese Hohlwelle 12 kann den Boden des Reaktorgehäuses 1 durchragen. Die Hohlwelle 12 ist bevorzugt drehangetrieben. Die Hohlwelle 12 trägt den Substrathalter 4, so dass sich die Drehbewegung der Hohlwelle 12 auf den Substrathalter 4 überträgt. Durch die Hohlwelle 12 kann das das oben beschriebene Gasdrehlager ausbildende Gas eingespeist werden. Durch die Hohlwelle 12 wird auch das Prozessgas eingeleitet, bei dem es sich um ein Hydrid eines Elements der III. oder IL Hauptgruppe einerseits und um eine metallorganische Verbindung eines Elements der V. oder VI. Hauptgruppe andererseits handeln kann. Sowohl das Hydrid als auch die metallorganische Verbindung werden zusammen mit einem Trägergas in die Prozesskammer eingeleitet. Hierzu dienen voneinander getrennte Strömungskanäle 13, 14. Durch einen zentralen Strömungskanal 14 wird das Hydrid, bei dem es sich um AsH3, PH3 oder NH3 handeln kann, bis in den Bereich unter der Stirnplatte 7' des Gaseinlassorgans 7 geleitet. Dort wird die zunächst vertikale Strömung des Prozessgases in eine Horizontalströmung umgeleitet. Das Prozessgas strömt in Radialrichtung aus Austrittsöffnungen 14', die sich über eine Mantelflächenumfangszone erstreckt in die Prozesskammer 3. Unterhalb der Austrittsöffnung 14' des Strömungskanals 14 erstreckt sich eine ebensolche, zylindermantelförmige Austrittsöffnung 13' für die metallorga- nische Verbindung. Diese Austritts Öffnung 13', aus der die metallorganische Verbindung zusammen mit dem sie tragenden Trägergases in Horizontalrichtung ausströmt, bildet das Ende eines Strömungskanals 13, durch welches die metallorganische Verbindung ebenfalls durch die Unterseite des Reaktorgehäuses 1 eingespeist wird. Die untere Gasaustrittsöffnung 13' erstreckt sich direkt oberhalb der zur Prozesskammer 3 weisenden Oberfläche des Substrathalters 4. Unterhalb der axialen Mitte der Prozesskammer 3 mündet die Austrittsöffnung 14' in die Prozesskammer 3.
Beim Ausführungsbeispiel lässt sich nicht nur der Deckenplattenträger 5 zu- sammen mit der an seiner Unterseite lösbar befestigten Deckenplatte 6 in Richtung des in der Fig. 1 mit A bezeichneten Pfeils absenken. Beim Ausführungsbeispiel ist es auch möglich, die gesamte Substrathalteranordnung bestehend aus dem Substrathalter 4 und des ihn tragenden Gaseinlassorgans 7 sowie die darunter liegende Heizspirale 11 in Richtung des mit B bezeichneten Pfeils ab- senken.
Auf diese Weise lässt sich die gesamte Prozesskammer 3 fahrstuhlartig verlagern.
In der Fig. 1 ist eine Be- und Entladestellung dargestellt. In dieser Vertikallage der Prozesskammer und insbesondere des Substrathalters 4 liegt die zur Prozesskammer 3 weisende Oberfläche des Substrathalters 4 im Zugangsbereich durch die seitliche Öffnung 9 des Reaktorgehäuses 1. Die zur Prozesskammer 3 weisende Oberfläche des Substrathalters 4 liegt hier oberhalb der Höhe der Un- terkante der Öffnung 9 und unterhalb der Oberkante der Öffnung 9. Wird das die Öffnung 9 gasdicht verschließende Tor 17 geöffnet, so kann ein Roboterarm in die Prozesskammer 3 greifen, um die beschichteten Substrate 2 zu entfernen und gegen zu beschichtende Substrate 2 austauschen. Dabei wird der Substrathalter 4 immer um einen entsprechenden Umfangswinkel weitergedreht.
Wird die gesamte Prozesskammeranordnung von der in der Fig. 1 dargestellten Stellung nach unten verlagert, so kann ein anderer Roboterarm durch die seitliche Öffnung 9 in die Prozesskammer 3 hineingreifen, um die Deckenplatte 6 zu fassen. In dieser Betriebsstellung kann die nach oben weisende Oberfläche des Substrathalters 4 unterhalb der Unterkante der Öffnung 9 liegen. Die Deckenplatte 6 liegt jedoch in einem Bereich zwischen der Oberkante und der Unter- kante der Öffnung 9. Dadurch braucht der Roboterarm lediglich eine Vertikalbewegung durchzuführen. Der Roboterarm löst die Deckenplatte 6 aus der HaI- terung, mit der die Deckenplatte 6 am Deckenplattenträger 5 befestigt ist. Der Roboterarm entnimmt die Deckenplatte 6 in Richtung des in der Fig. 2 im Be- reich der seitlichen Öffnung 9 dargestellten Doppelpfeils, um eine neue Deckenplatte 6 mit der Unterseite des Deckenplattenträgers 5 zu verbinden.
Der Austausch der Deckenplatte erfolgt zwischen einzelnen Beschichtungspro- zessen, um die Deckenplatte zu reinigen. Da die Deckenplatten im Prozess eine erheblich niedrigere Temperatur aufweist als der Substrathalter 4, ist eine parasitäre Beschichtung der Deckenplatte 6 nicht zu vermeiden. Eine derartige parasitäre Beschichtung der Deckenplatte 6 führt in der Regel zu Nachteilen, weil sich aus dem an der Oberfläche der Deckenplatte 6 abgeschiedene Materialpartikel bilden können, die auf die Substrate herabfallen können. Durch das regel- mäßige Wechseln der Deckenplatte 6 wird die Masse des dort abgeschiedenen Materials in tolerablen Grenzen gehalten.
Der Deckenplattenträger 5 kann starr mit dem Substrathalter 4 über geeignete, insbesondere außerhalb der Prozesskammer 3 angeordnete starre Verbindun- gen verbunden sein. Bei dieser Anordnung brauchen Deckenplattenträger 5 und Substrathalter 4 nicht getrennt in Vertikalrichtung angetrieben werden. Der Vertikalantrieb kann dann beispielsweise in der Hohlwelle 12 angreifen, die durch eine Bodenöffnung aus dem Reaktorgehäuse 1 herausgeführt ist. An dieser Hohlachse 12 kann auch der Drehantrieb angreifen, um den Substrathal- ter 4 um seine eigene Achse während des Abscheidungsprozesses drehanzutreiben. Es ist aber auch möglich, den Drehantrieb und / oder den Vertikalantrieb innerhalb des Reaktorgehäuses 1 unterzubringen.
Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel sind mit der Bezugszif- fer 20 Schwenkhaken bezeichnet, die von außen drehbetätigbar sind. Diese Schwenkhaken untergreifen mit einem Hakenfortsatz die Deckenplatte 6, um sie so fest am Deckenplattenhalter zu halten.
Die Fig. 3 zeigt grob schematisch eine Gesamtvorrichtung mit einem Reaktor- gehäuse 1, einer Ätzkammer 22 und einer Kassette 21. Zwischen diesen drei Kammern 1, 21 und 22 befindet sich ein mehrgelenkiger Roboterarm 23. Der Greifer des Roboterarms 23 kann in die in Fig. 1 dargestellte Prozesskammer 3 einfahren. Der Greifer liegt dann in dem Freiraum 10 unterhalb der Deckenplatte 6. Der Greifer kann dann vertikal nach oben verlagert werden, bis er in Be- rührung der Anlage an die Deckenplatte 6 tritt. Dann werden die Schwenkhaken 20 verdreht, so dass die Deckenplatte 6 frei wird. Durch vertikales Absenken des Greifers wird die Deckenplatte von dem Deckenplattenträger 5 entfernt. Der Greifer verlässt dann zusammen mit der Deckenplatte 6 die Prozesskammer 3 und legt die Deckenplatte in einer Kassette 21 ab. Nachdem der Greif arm 23 anschließend eine gereinigte Deckenplatte 6 aus einer Ätzkammer 22 entnommen hat, bringt er diese in die Prozesskammer 3, wo sie mittelst der Schwenkhaken 20 an dem Deckenplattenträger 5 befestigt wird.
Der Schwenkhaken 20 besitzt an seinem in die Prozesskammer 10 hineinragen- den Ende eine Abwinklung. Diese Abwinklung kann die eine im Wesentlichen Kreis scheibenform aufweisende Deckenplatte 6 randseitig untergreifen. Es können drei oder mehr Schwenkhaken vorgesehen sein, die jeweils durch Öffnungen des Reaktorgehäuses in das Reaktorinnere hineinragen. Die Schwenkhaken 20 können nicht nur gedreht werden, um die Haltefortsätze in die Unter- fassungslage zu bringen. Die Schwenkhaken 20 können sich auch in Vertikalrichtung verlagern, wenn es erforderlich ist, die Deckenplatte 6 abzusenken.
Es wird als vorteilhaft angesehen, dass die Deckenplatte 6 durch lösbare Haltemittel lediglich an ihrem Rand unterfasst ist. Es wird ferner als vorteilhaft angesehen, dass die Deckenplatte nur bereichsweise an ihrer Umfangsrandkan- te unterfasst wird. Die Ätzkammer 22 ist ein hermetisch gegenüber der Außenwelt abgeschottetes Reaktionsgefäß. Es ist temperierbar. Es kann mit geeigneten Heizorganen auf eine Prozesstemperatur gebracht werden, bei welcher innerhalb der Ätzkam- mer 22 ein Trockenätzprozess stattfinden kann. Hierzu wird ein ätzfähiges Gas in die Ätzkammer 22 eingeleitet. Es kann sich dabei um Trocken-HCl handeln. In die Ätzkammer 22 kann darüber hinaus auch ein Inertgas eingeleitet werden, um die Ätzkammer 22 zu spülen. Die gereinigte Deckenplatte 6 kann nach Vollendung des Ätzprozesses auch noch unter dieser Schutzgasatmosphäre innerhalb der Ätzkammer 22 verbleiben, bis sie mit dem Reaktorarm 23 dort entnommen wird, um nach Öffnen des Tores 17 in der zuvor beschriebenen Weise in das Reaktorgehäuse eingesetzt zu werden.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offen- barung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollinhaltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen.

Claims

ANSPRÜCHE
1. Vorrichtung zum Abscheiden mindestens einer Schicht auf mindestens einem Substrat (2) mit einer in einem Reaktorgehäuse (1) angeordneten Prozesskammer, die einen von einem Substrathalter (4) gebildeten Prozesskammerboden, eine diesem gegenüberliegende Prozesskammerdecke (5, 6) und ein Gaseinlassorgan (7) zum Einlassen eines schichtbildende Komponenten enthaltenen Prozessgases aufweist, wobei die Prozesskammerdecke (5, 6) eine unterhalb eines Deckenplattenträgers (5) ange- ordnete Deckenplatte (6) aufweist, die sich im Wesentlichen über die gesamte Horizontalflächenerstreckung des Substrathalters (4) erstreckt, dadurch gekennzeichnet, dass das im lateralen Zentrum der Prozesskammer (3) angeordnete Gaseinlassorgan (7) durch eine Öffnung des Substrathalters (4) gespeist wird und die lösbar dem Deckenträger (5) zugeordnete Deckenplatte (6) durch eine seitliche Öffnung (9) des Reaktorgehäuses (1) austauschbar ist.
2. Vorrichtung nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, dass der Deckenplattenträger (5) gekühlt ist.
3. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass das Gaseinlassorgan (7) durch die Öffnung (8) des Substrathalters (4) hindurchragt.
4. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass das Gaseinlassorgan (7) eine drehangetriebene Hohlwelle (12) ausbildet, mit welcher der im Wesentlichen rotationssymmetrische Substrathalter (4) drehantreibbar ist.
5. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch einen Freiraum (10) zwischen der oberen Stirnseite (7') des Gaseinlassorgans (7) und der Deckenplatte (6).
6. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass zumindest der Deckenplattenträger (5) von einer Prozessstellung in eine Deckenplatten- austauschstellung vertikal verlagerbar ist.
7. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die seitliche Reaktorgehäuseöffnung (9) eine Be- und Entladeöffnung der Prozesskammer (3) ist.
8. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Substrathalter (4) von unten insbesondere mittelst einer HF-Heizspule (11) beheizbar ist.
9. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass sowohl Decke (5, 6) als auch Boden (4) der Prozesskammer vertikal verlagerbar sind.
10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Prozessgase von unten durch einen Boden des Reaktorgehäuses (1) in das Gaseinlassorgan (7) eingespeist werden.
11. Verfahren zum Abscheiden mindestens einer Schicht auf mindestens einem Substrat (2) in einer Prozesskammer (3) in einem Reaktorgehäuse (1), wobei auf dem von einem Prozesskammerboden gebildeten Substrathalter (4) das mindestens eine Substrat gehalten ist und durch ein Gaseinlassorgan (7) schichtbildende Komponenten enthaltenes Prozessgas in die Prozesskammer (3) eingeleitet wird, wobei eine auswechselbare Deckenplatte (6) unterhalb eines Deckenplattenträgers (5) angeordnet ist, dadurch gekennzeichnet, dass die lösbar am Deckenplattenträger (5) angeordnete Deckenplatte (6) nach einem Abscheidungsprozess mittelst eines durch eine seitliche Öffnung (9) des Reaktorgehäuses (1) eingreifenden Roboterarm (23) entnommen wird, um außerhalb des Reaktorgehäuses (1) in einer Ätzkammer (22) gereinigt zu werden, wobei die gereinigte Deckenplatte
(6) durch die seitliche Öffnung (9) des Reaktorgehäuses (1) in die Prozesskammer eingebracht wird und am Deckenplattenträger (5) befestigt wird.
12. Verfahren nach Anspruch 11 oder insbesondere danach, dadurch gekenn- zeichnet, dass zeitgleich mit dem Abscheidungsprozess eine Prozesskammerdecke (6) in einer außerhalb des Reaktorgehäuses (1) angeordneten Ätzkammer (22) gereinigt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche 11 oder 12, da- durch gekennzeichnet, dass die Deckenplatte (6) vor oder nach der Reinigung in der Ätzkammer (22) in einer Lagerkassette (21) zwischengelagert wird.
EP06819598A 2005-11-25 2006-11-20 Cvd-reaktor mit auswechselbarer prozesskammerdecke Withdrawn EP1954852A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510056324 DE102005056324A1 (de) 2005-11-25 2005-11-25 CVD-Reaktor mit auswechselbarer Prozesskammerdecke
PCT/EP2006/068642 WO2007060143A1 (de) 2005-11-25 2006-11-20 Cvd-reaktor mit auswechselbarer prozesskammerdecke

Publications (1)

Publication Number Publication Date
EP1954852A1 true EP1954852A1 (de) 2008-08-13

Family

ID=37728344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819598A Withdrawn EP1954852A1 (de) 2005-11-25 2006-11-20 Cvd-reaktor mit auswechselbarer prozesskammerdecke

Country Status (4)

Country Link
EP (1) EP1954852A1 (de)
DE (1) DE102005056324A1 (de)
TW (1) TWI402373B (de)
WO (1) WO2007060143A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673080B2 (en) 2007-10-16 2014-03-18 Novellus Systems, Inc. Temperature controlled showerhead
DE102009025971A1 (de) * 2009-06-15 2010-12-16 Aixtron Ag Verfahren zum Einrichten eines Epitaxie-Reaktors
KR101937115B1 (ko) 2011-03-04 2019-01-09 노벨러스 시스템즈, 인코포레이티드 하이브리드 세라믹 샤워헤드
CN102231416A (zh) * 2011-06-14 2011-11-02 泉州市博泰半导体科技有限公司 化学气相沉积反应设备
DE202011103798U1 (de) * 2011-07-28 2012-10-29 Michael Harro Liese Schnellverschluss für Reaktoren und Konvertoren
US20140174350A1 (en) * 2011-08-09 2014-06-26 Samsung Electronics Co., Ltd. Vapor deposition apparatus
CN103422071B (zh) * 2012-05-18 2015-06-17 中国地质大学(北京) 一种可快速更换匀气方式的真空腔室
DE102012110125A1 (de) 2012-10-24 2014-04-24 Aixtron Se Vorrichtung zum Behandeln von Substraten mit einer auswechselbaren Deckenplatte sowie Verfahren zum Auswechseln einer derartigen Deckenplatte
US10351955B2 (en) * 2013-12-18 2019-07-16 Lam Research Corporation Semiconductor substrate processing apparatus including uniformity baffles
US10741365B2 (en) * 2014-05-05 2020-08-11 Lam Research Corporation Low volume showerhead with porous baffle
US10378107B2 (en) 2015-05-22 2019-08-13 Lam Research Corporation Low volume showerhead with faceplate holes for improved flow uniformity
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead
DE202018100363U1 (de) * 2018-01-23 2019-04-24 Aixtron Se Vorrichtung zum Verbinden eines Suszeptors mit einer Antriebswelle
DE102020103947A1 (de) 2020-02-14 2021-08-19 AIXTRON Ltd. CVD-Reaktor und Verfahren zum Handhaben einer Prozesskammer-Deckenplatte
CN117684262A (zh) * 2024-02-04 2024-03-12 楚赟精工科技(上海)有限公司 气体注入装置和气相反应设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696779A (en) * 1969-12-29 1972-10-10 Kokusai Electric Co Ltd Vapor growth device
JPS6097622A (ja) * 1983-11-01 1985-05-31 Toshiba Mach Co Ltd エピタキシヤル装置
US4926793A (en) * 1986-12-15 1990-05-22 Shin-Etsu Handotai Co., Ltd. Method of forming thin film and apparatus therefor
JPH0733576B2 (ja) * 1989-11-29 1995-04-12 株式会社日立製作所 スパツタ装置、及びターゲツト交換装置、並びにその交換方法
JPH05230625A (ja) * 1992-02-19 1993-09-07 Fujitsu Ltd 薄膜作製装置及び薄膜作製方法
JP3024940B2 (ja) * 1992-06-24 2000-03-27 アネルバ株式会社 基板処理方法及びcvd処理方法
JP2566101B2 (ja) * 1992-08-13 1996-12-25 株式会社東芝 スパッタ装置
US5592581A (en) * 1993-07-19 1997-01-07 Tokyo Electron Kabushiki Kaisha Heat treatment apparatus
JPH07228970A (ja) * 1994-02-16 1995-08-29 Nec Corp スパッタリング装置
KR960002534A (ko) * 1994-06-07 1996-01-26 이노우에 아키라 감압·상압 처리장치
US6103069A (en) * 1997-03-31 2000-08-15 Applied Materials, Inc. Chamber design with isolation valve to preserve vacuum during maintenance
US6321680B2 (en) * 1997-08-11 2001-11-27 Torrex Equipment Corporation Vertical plasma enhanced process apparatus and method
US6108937A (en) * 1998-09-10 2000-08-29 Asm America, Inc. Method of cooling wafers
JP4162779B2 (ja) * 1998-11-04 2008-10-08 キヤノンアネルバ株式会社 Cvd装置およびcvd方法
KR100476370B1 (ko) * 2002-07-19 2005-03-16 주식회사 하이닉스반도체 배치형 원자층증착장치 및 그의 인시튜 세정 방법
DE10320597A1 (de) * 2003-04-30 2004-12-02 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von Halbleiterschichten mit zwei Prozessgasen, von denen das eine vorkonditioniert ist
DE102004035335A1 (de) * 2004-07-21 2006-02-16 Schott Ag Reinraumfähige Beschichtungsanlage
DE102004045046B4 (de) * 2004-09-15 2007-01-04 Schott Ag Verfahren und Vorrichtung zum Aufbringen einer elektrisch leitfähigen transparenten Beschichtung auf ein Substrat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007060143A1 *

Also Published As

Publication number Publication date
TW200728496A (en) 2007-08-01
WO2007060143A1 (de) 2007-05-31
DE102005056324A1 (de) 2007-06-06
TWI402373B (zh) 2013-07-21

Similar Documents

Publication Publication Date Title
EP1954852A1 (de) Cvd-reaktor mit auswechselbarer prozesskammerdecke
EP1523585B1 (de) Be- und entladevorrichtung für eine beschichtungseinrichtung
EP1817440B1 (de) Verfahren und vorrichtung zum abscheiden von dicken gallium-nitrit-schichten auf einem saphirsubstrat und zugehörigem substrathalter
DE102006018515A1 (de) CVD-Reaktor mit absenkbarer Prozesskammerdecke
EP0343530B1 (de) Vakuumanlage
DE60024424T2 (de) Halbleiter-Wafer Entwicklungsgerät mit vertikal gestapelte Entwicklungsräume und einachsiges Dual-Wafer Transfer System
EP1774057B1 (de) Vorrichtung und verfahren zur chemischen gasphasenabscheidung mit hohem durchsatz
DE69935351T2 (de) Verfahren zum Abscheiden von Atomschichten
EP0354294A2 (de) Vorrichtung nach dem Karussell-Prinzip zum Beschichten von Substraten
DE102012110125A1 (de) Vorrichtung zum Behandeln von Substraten mit einer auswechselbaren Deckenplatte sowie Verfahren zum Auswechseln einer derartigen Deckenplatte
DE19728310A1 (de) Verfahren und Apparatur zum Herstellen epitaxialer Wafer
DE3923538A1 (de) Vorrichtung zur gasphasenbearbeitung von scheibenfoermigen werkstuecken
EP2220265A1 (de) Pvd - vakuumbeschichtungsanlage
DE3211051C2 (de)
WO2011138315A1 (de) Bevorratungsmagazin einer cvd-anlage
DE102005056536A1 (de) CVD-Reaktor mit widerstandsbeheiztem Suszeptor
CH692741A5 (de) Verfahren zur Herstellung in Vakuum oberflächenbehandelter Werkstücke und Vakuumbehandlungsanlage zu dessen Durchführung
DE102005056323A1 (de) Prozesskammermodul zum gleichzeitigen Abscheiden von Schichten auf mehreren Substraten
DE102015107315A1 (de) Verfahren und Vorrichtung zum Reinigen eines Gaseinlassorgans
WO2021209578A1 (de) Cvd-verfahren und cvd-reaktor mit austauschbaren mit dem substrat wärme austauschenden körpern
WO2011128260A1 (de) Thermisches behandlungsverfahren mit einem aufheizschritt, einem behandlungsschritt und einem abkühlschritt
DE102012104475A1 (de) Carousel-Reactor
DE19522574A1 (de) Reaktor zur Beschichtung von flächigen Substraten und Verfahren zur Herstellung derartiger Substrate
WO2021043754A1 (de) Lademodul für ein cvd-reaktorsystem
DE102019105913A1 (de) Suszeptoranordnung eines CVD-Reaktors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080509

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIXTRON AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIXTRON SE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140522

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141002