EP1954727A1 - Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe - Google Patents

Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe

Info

Publication number
EP1954727A1
EP1954727A1 EP06807816A EP06807816A EP1954727A1 EP 1954727 A1 EP1954727 A1 EP 1954727A1 EP 06807816 A EP06807816 A EP 06807816A EP 06807816 A EP06807816 A EP 06807816A EP 1954727 A1 EP1954727 A1 EP 1954727A1
Authority
EP
European Patent Office
Prior art keywords
sup
isobutene
sub
boron
copolymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06807816A
Other languages
English (en)
French (fr)
Inventor
Phillip Hanefeld
Volker BÖHM
Marcus Sigl
Nina Challand
Michael Röper
Hans-Michael Walter
Brigitte Voit
Fritz Elmar Kuehn
Ahmed Hijazi
Radha Krishnan Narayanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1954727A1 publication Critical patent/EP1954727A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • C08F110/10Isobutene

Definitions

  • the present invention relates to a process for the preparation of highly reactive isobutene homo- or copolymers having a number average molecular weight M n of 500 to 1,000,000 by polymerization of isobutene or an isobutene-containing monomer mixture in the liquid phase in the presence of a dissolved, dispersed or supported boron-containing catalyst complex , Since part of these boron-containing catalyst complexes constitute novel compounds, the present invention further relates to these new compounds themselves.
  • highly reactive polyisobutene homo- or copolymers are understood to mean those polyisobutenes which contain a high content of terminal ethylenic double bonds.
  • highly reactive polyisobutenes are to be understood as meaning polyisobutenes which have a proportion of vinylidene double bonds ( ⁇ -double bonds) of at least 60 mol%, preferably at least 70 mol% and in particular at least 80 mol% , based on the polyisobutene macromolecules have.
  • vinylidene groups are understood to mean those double bonds whose position in the polyisobutene macromolecule is represented by the general formula
  • Polymer stands for the polyisobutene radical shortened by one isobutene unit.
  • the vinylidene groups show the highest reactivity, whereas a double bond further inside the macromolecules shows no or definitely lower reactivity in functionalization reactions.
  • Highly reactive polyisobutenes are used inter alia as intermediates for the preparation of additives for lubricants and fuels, as described for example in DE-A 27 02 604.
  • Such highly reactive polyisobutenes are, for. B. according to the method of
  • DE-A 27 02 604 obtainable by cationic polymerization of isobutene in the liquid phase in the presence of boron trifluoride as a catalyst.
  • the disadvantage here is that the resulting polyisobutenes have a relatively high polydispersity.
  • Polyisobutenes having a similarly high proportion of terminal double bonds but having a narrower molecular weight distribution are obtainable, for example, by the process of EP-A 145 235, US Pat. No.
  • EP-A 1 344 785 describes a process for the preparation of highly reactive polyisobutenes using a solvent-stabilized transition metal complex with weakly coordinating anions as the polymerization catalyst.
  • Suitable metals are those of the 3rd to 12th group of the periodic table; Manganese complexes are used in the examples.
  • catalyst systems as used for example in EP-A 145 235, US Pat. No. 5,408,018 or WO 99/64482, lead to a certain residual fluorine content in the product in the form of organic fluorine compounds.
  • fluorine atoms bound directly to a metal center should be dispensed with in such a catalyst complex.
  • a typical weakly coordinating anion occurring here is, for example, En-Ci 7 H 35 CO 2 (B (C 6 Fs) 3 Ja] -.
  • the object of the present invention was therefore to provide a process for the preparation of low to medium molecular weight highly reactive polyisobutene homo- or copolymers, in particular for the preparation of polyisobutene polymers having a number average molecular weight M n of 500 to 1,000,000 and having a terminal vinylidene content. Double bonds of at least 80 mol%, which on the one hand allows polymerization of isobutene or isobutene-containing monomer sources at not too low temperature, but at the same time allows significantly shorter polymerization times.
  • the catalyst used in this case should not contain easily eliminable fluorine functions.
  • the object has been achieved by a process for the preparation of highly reactive isobutene homo- or copolymers having a number average molecular weight M n of 500 to 1,000,000 by polymerization of isobutene or an isobutene-containing monomer mixture in the liquid phase in the presence of a dissolved, dispersed or supported boron-containing catalyst complex, characterized in that the catalyst complex is a proton acid compound of the general formula I.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 independently of one another are aliphatic, heterocyclic or aromatic fluorine-containing hydrocarbon radicals having in each case 1 to 18 carbon atoms or silyl groups containing C 1 to C 18 hydrocarbon radicals,
  • A denotes a nitrogen-containing bridge member which forms covalent bonds to the boron atoms via its nitrogen atoms
  • n is the number 0 or 1
  • n stands for the number 0 or 1
  • x denotes a number> 0,
  • isobutene homopolymers are understood to mean those polymers which, based on the polymer, are composed of at least 98 mol%, preferably at least 99 mol%, of isobutene. Accordingly, isobutene copolymers are understood as meaning those polymers which contain more than 2 mol% of monomers which are copolymerized in a different form from isobutene.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are in the case of fluorohydrocarbon radicals independently of one another aliphatic, heterocyclic or aromatic fluorine-containing hydrocarbon radicals having in each case 1 to 18, preferably 3 to 18 carbon atoms.
  • fluorohydrocarbon radicals independently of one another aliphatic, heterocyclic or aromatic fluorine-containing hydrocarbon radicals having in each case 1 to 18, preferably 3 to 18 carbon atoms.
  • aliphatic radicals those having 1 to 10, in particular 2 to 6, carbon atoms are preferred.
  • These aliphatic radicals can be linear, branched or cyclic. They each contain 1 to 12, in particular 3 to 9 fluorine atoms.
  • Typical examples of such aliphatic radicals are difluoromethyl, trifluoromethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 1, 2,2,2-tetrafluoroethyl, pentafluoroethyl, 1,1,1-trifluoro-2 -propyl, 1,1,1-trifluoro-2-butyl, 1,1,1-trifluoro-tert-butyl and tris (trifluoromethyl) -methyl.
  • the variables R 1, R 2, R 3, R 4, R 5 and R 6 independently of one another, Ce to C-aryl radicals, in particular Ce to C-aryl radicals, having in each case 3 to 12 Fluorine atoms, in particular 3 to 6 fluorine atoms; in this case, pentafluorophenyl radicals, 3- or 4- (trifluoromethyl) phenyl radicals and 3,5-bis (trifluoromethyl) phenyl radicals are very particularly preferred.
  • Ce to Ci8-aryl or Ce to Cg-aryl is in the context of the present invention optionally further substituted polyfluorophenyl or polyfluorotolyl, optionally further substituted Polyfluornaphthyl, optionally further substituted polyfluorobiphenyl, optionally further substituted polyfluoroanthracenyl or optionally further substituted polyfluorophenanthrenyl.
  • further substituents which may be present singly or multiply are, for example, nitro, cyano, hydroxy, chlorine and trichloromethyl.
  • the stated number of carbon atoms for these aryl radicals include all the carbon atoms contained in these radicals, including the carbon atoms of substituents on the aryl radicals.
  • Suitable alkyl radicals are, in particular, linear or branched alkyl radicals having 1 to 8 carbon atoms.
  • Examples thereof are methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl, tert-butyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methyl- butyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1, 1 - Dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1, 2 Trimethylpropyl, 1, 2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, 1-e
  • longer-chain alkyl radicals such as n-decyl, n-dodecyl, n-tricycde, isotridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl are also usable in principle. Especially suitable are trimethylsilyl and triethylsilyl radicals.
  • the variables R 1, R 2, R 3, R 4, R 5 and R 6 can contain a minor extent additionally functional groups or heteroatoms, provided this does not impair the dominating fluorocarbon character or the dominating silylhydrocarbyl character of the radicals.
  • Such functional groups or heteroatoms are, for example, further halogen atoms, such as chlorine or bromine, nitro groups, cyano groups, hydroxyl groups and C 1 to C 4 alkoxy groups, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy and tert-butoxy.
  • heteroatoms may also be part of the underlying hydrocarbon chains or rings, for example oxygen in the form of ether functions, eg.
  • the nitrogen-containing bridge member A which forms covalent bonds to the boron atoms via its nitrogen atoms
  • a unit of the formula -NH- which is formally derived from ammonia can serve.
  • Further examples of A are aliphatic and aromatic diamines such as 1,2-diaminomethane, 1,2-ethylenediamine, 1,3-propylenediamine, 1,4-butylenediamine, 1,2,4,1,3 or 1,4 Phenylenediamine-derived units.
  • the bridging member A denotes an optionally simply positively charged five- or six-membered heterocyclic unit having at least 2 nitrogen atoms, which may be saturated or unsaturated, for example pyrazolium, imidazolidine, imidazolinium, imidazolium, 1,2,3-triazolidine, 1 , 2,3-Triazolium, 1, 2,4-triazolium, tetrazolium or pyrazane. Particularly preferred is imidazolium for A.
  • the protic acid compounds of general formula I may also contain neutral solvent molecules L.
  • They are preferably selected from open-chain and cyclic ethers, in particular from di-C 1 to C 3 -alkyl ethers, ketones, thiols, organic sulfides, sulfones, sulfoxides, sulfonic acid esters, organic sulfates, phosphanes, phosphane oxides, organic phosphites, organic phosphates, Phosphoric acid amides, carboxylic acid esters, carboxylic acid amides and alkylnitriles and aryl nitriles.
  • the solvent molecules L stand for solvent molecules that can form coordinative bonds with the central boron atoms. These are molecules which are commonly used as solvents, but at the same time via at least one dative grouping, e.g. have a lone pair of electrons that can form a coordinative bond to a central metal. Preferred solvent molecules L are those which, on the one hand, bind coordinatively to the central metal boron, but on the other hand do not represent strong Lewis bases, so that they can easily be displaced from the coordination sphere of the central metal in the course of the polymerization.
  • the solvent molecules L have, inter alia, the function of stabilizing the protons contained in the compounds I, for example in the case of ethers as diethyl etherates [H (OEt 2 ) 2 ] + .
  • open-chain and cyclic ethers for solvent molecules L are diethyl ether, dipropyl ether, diisopropyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, tetrahydrofuran and dioxane.
  • open-chain ethers preference is given to di-Cr to C3-alkyl ethers, in particular symmetrical di-Ci- to C3-alkyl ethers.
  • Suitable ketones for solvent molecules L are, for example, acetone, ethyl methyl ketone, acetoacetone or acetophenone.
  • Suitable thiols, organic sulfides (thioethers), sulfones, sulfoxides, sulfonic acid esters and organic sulfates for sulfur-containing solvent molecules L are, for example, long-chain mercaptans such as dodecyl mercaptan, dialkyl sulfides, dialkyl disulfides, dimethylsulfone, dimethyl sulfoxide, methylsulfonate or dialkyl sulfates such as dimethyl sulfate.
  • Suitable phosphines, phosphine oxides, organic phosphites, organic phosphates and phosphoric acid amides for phosphorus-containing solvent molecules L are, for example, triphenylphosphine, triphenylphosphine oxide, trialkyl, triaryl or mixed aryl / alkyl phosphites, trialkyl, triaryl or mixed aryl / alkyl phosphates or hexamethylphosphoric triamide.
  • Suitable carboxylic acid esters for solvent molecules L are, for example, methyl or ethyl acetate, methyl or ethyl propionate, methyl or ethyl butyrate, methyl or ethyl caproate or methyl or ethyl benzoate.
  • Suitable carboxylic acid amides for solvent molecules L are, for example, formamide, dimethylformamide, acetamide, dimethylacetamide, propionamide, benzamide or N, N-dimethylbenzamide.
  • Suitable alkylnitriles and aryl nitriles for solvent molecules L are especially C 1 to C 6 alkylnitriles, especially C 1 to C 4 alkylnitriles, for example acetonitrile, propionitrile, butyronitrile or pentylnitrile, and benzonitrile.
  • all L are the same solvent molecule.
  • protic acid compounds of general formula I can be generated in situ and used in this form as catalysts for isobutene polymerization, as described by Kennedy et al. in the literature article cited at the outset in Polymerie Materials Science and Engineering (1999), 80, p. 495.
  • the protic acid compounds of the general formula I can also be prepared from their synthetically readily available and therefore partially commercially available salts, for example the silver salt, as pure substances and used according to the invention. They are usually stable in storage over a longer period in this form.
  • the protic acid compounds I for example, the corresponding silver salt in a protic, moderately polar solvent with Hydrogen halide added and thereby eliminated, sparingly soluble silver halide separated.
  • the polymerization process according to the invention is suitable for the preparation of low to medium molecular weight highly reactive isobutene homo- or copolymers.
  • Preferred comonomers here are styrene, styrene derivatives such as in particular ⁇ -methylstyrene and 4-methylstyrene, styrene and styrene derivatives-containing monomer mixtures, alkadienes such as butadiene and isoprene and mixtures thereof.
  • isobutene, styrene or mixtures thereof are used as monomers in the polymerization process according to the invention.
  • Isobutene or isobutene-containing C4 hydrocarbon streams for example C4 raffinates, C4 cuts from isobutane dehydrogenation, C4 cuts, are suitable as isobutene source for the use of isobutene or an isobutene-containing monomer mixture as the monomer to be polymerized from steam crackers and fluid catalysed cracking (FCC) crackers, provided that they are substantially free of 1,3-butadiene contained therein.
  • Suitable C4 hydrocarbon streams typically contain less than 500 ppm, preferably less than 200 ppm, butadiene. The presence of 1-butene and of cis- and trans-2-butene is largely uncritical.
  • the isobutene concentration in the C4 hydrocarbon streams is in the
  • the isobutene-containing monomer mixture may contain small amounts of contaminants such as water, carboxylic acids or mineral acids, without resulting in critical yield or selectivity losses. It is expedient to avoid an accumulation of these impurities by removing such pollutants from the isobutene-containing monomer mixture, for example by adsorption on solid adsorbents such as activated carbon, molecular sieves or ion exchangers.
  • Isobutene copolymerizable are reacted.
  • the monomer mixture preferably contains at least 5% by weight, particularly preferably at least 10% by weight and in particular at least 20% by weight of isobutene, and preferably at most 95% by weight. , Particularly preferably at most 90 wt .-% and in particular at most 80 wt .-% comonomers.
  • Suitable copolymerizable monomers are vinylaromatics such as styrene and ⁇ -methylstyrene, C 1 -C 4 -alkylstyrenes such as 2-, 3- and 4-methylstyrene and also 4-tert-butylstyrene, alkadienes such as butadiene and isoprene and isoolefins having from 5 to 10 carbon atoms.
  • vinylaromatics such as styrene and ⁇ -methylstyrene
  • C 1 -C 4 -alkylstyrenes such as 2-, 3- and 4-methylstyrene and also 4-tert-butylstyrene
  • alkadienes such as butadiene and isoprene and isoolefins having from 5 to 10 carbon atoms.
  • Suitable comonomers are olefins which have a Silyl group such as 1-Tri ⁇ methoxysilylethen, 1- (trimethoxysilyl) propene, 1- (trimethoxysilyl) -2-methylpropene-2, 1 - [tri (methoxyethoxy) silyl] ethene, 1 - [tri (methoxyethoxy) silyl ] propene, and 1- [tri (methoxyethoxy) silyl] -2-methylpropene-2, as well as vinyl ethers such as tert-butyl vinyl ether.
  • copolymers are to be prepared by the process according to the invention, the process can be designed such that preferably random polymers or preferably block copolymers are formed.
  • block copolymers it is possible for example to feed the various monomers successively to the polymerization reaction, the addition of the second comonomer taking place in particular only when the first comonomer is already at least partially polymerized. In this way, both diblock, triblock and higher block copolymers are accessible, which have a block of one or the other comonomer as a terminal block, depending on the order of monomer addition.
  • block copolymers are also formed when all comonomers are simultaneously fed to the polymerization reaction, but one of them polymerizes significantly faster than either one or the other.
  • block copolymers preferably form with a terminal polyisobutene block. This is because the vinyl aromatic compound, especially styrene, polymerizes significantly faster than isobutene.
  • the polymerization can be carried out both continuously and discontinuously.
  • Continuous processes can be carried out in analogy to known prior art processes for the continuous polymerization of isobutene in the presence of liquid phase Lewis acid catalysts.
  • the process according to the invention is suitable both for carrying out at low temperatures, for example at -78 to 0 ° C., and at higher temperatures, ie at at least 0 ° C., for example at 0 to 100 ° C.
  • the polymerization is mainly for economic reasons, preferably at least 0 ° C eg at 0 to 100 0 C, particularly preferably at 20 to 60 0 C carried out to the energy and material consumption, which is necessary for cooling, as low as possible to hold. However, it can just as well at lower temperatures, for example at -78 to ⁇ 0 ° C, preferably at -40 to -10 ° C, performed.
  • the polymerization takes place at or above the boiling point of the monomer or monomer mixture to be polymerized, it is preferably carried out in pressure vessels, for example in autoclaves or in pressure reactors.
  • the polymerization is carried out in the presence of an inert diluent.
  • the inert diluent used should be suitable for choosing the during the polymerization reaction usually occurring increase in the viscosity of the reaction solution to reduce so far that the removal of the resulting heat of reaction can be ensured.
  • Suitable diluents are those solvents or solvent mixtures which are inert to the reagents used.
  • Suitable diluents are, for example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane and isooctane, cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and the xylene, and halogenated hydrocarbons such as methyl chloride, dichloromethane and trichloromethane, and mixtures the aforementioned diluents.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, octane and isooctane
  • cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane
  • aromatic hydrocarbons such as benzene, toluene and the xylene
  • halogenated hydrocarbon optionally in admixture with at least one of the abovementioned aliphatic or aromatic hydrocarbons.
  • dichloromethane is used.
  • the diluents are freed before use of impurities such as water, carboxylic acids or mineral acids, for example by adsorption on solid adsorbents such as activated carbon, molecular sieves or ion exchangers.
  • the polymerization is preferably carried out under largely aprotic conditions, in particular under anhydrous reaction conditions.
  • Aprotic or anhydrous reaction conditions are understood to mean that the water content (or the content of protic impurities) in the reaction mixture is less than 50 ppm and in particular less than 5 ppm.
  • the feedstocks will be dried before use by physical and / or chemical means.
  • an organometallic compound for example an organolithium, organomagnesium or organoaluminum compound, in an amount sufficient to remove the traces of water to remove from the solvent.
  • the solvent thus treated is then preferably condensed directly into the reaction vessel.
  • the halogenated solvents which are not suitable for drying with metals such as sodium or potassium or with metal alkyls, are freed from water (traces) with suitable drying agents, for example with calcium chloride, phosphorus pentoxide or molecular sieve.
  • the beginning of polymerization is then the time at which all the reactants are contained in the reaction vessel.
  • the boron-containing catalyst complex may partially or completely dissolve in the reaction medium or be present as a dispersion. Alternatively, the catalyst complex can also be used in supported form.
  • the boron-containing catalyst complex is brought into contact with a suitable carrier material and thus converted into a heterogenized form.
  • the contacting takes place, for example, by impregnation, impregnation, spraying, brushing or related techniques.
  • the contacting also includes physisorption techniques.
  • the contacting can be carried out at normal temperature and atmospheric pressure or else at higher temperatures and / or pressures.
  • the boron-containing catalyst complex By contacting the boron-containing catalyst complex with the carrier material enters a physical and / or chemical interaction. Such interaction mechanisms are, on the one hand, the exchange of one or more neutral solvent molecules L and / or one or more charged structural units of the boron-containing catalyst complex with neutral or correspondingly charged groups, molecules or ions, which are incorporated in or attached to the support material. Furthermore, the anion of the boron-containing catalyst complex can be exchanged for a corresponding negatively charged group or an anion from the support material or the positively charged proton from the boron-containing catalyst complex for a correspondingly positively charged cation from the support material (for example, an alkali metal ion). In addition to or instead of these genuine ion exchange processes, weaker electrostatic interactions may also occur. Finally, the boron-containing catalyst complex can also be fixed to the support material by means of covalent bonds, for example by reaction with hydroxyl groups or silanol groups, which are located inside the support material or preferably on the surface
  • mesoporous carrier materials have proven to be particularly advantageous.
  • Mesoporous carrier materials generally have an internal surface area of from 100 to 3000 m 2 / g, in particular from 200 to 2500 m 2 / g, and pore diameters of from 0.5 to 50 nm, in particular from 1 to 20 nm.
  • Suitable carrier materials are in principle all solid inert substances with a high surface area, which can usually serve as a support or scaffold for active substance, in particular for catalysts.
  • Typical inorganic classes of substances for such support materials are activated carbon, alumina, silica gel, kieselguhr, talc, kaolin, clays and silicates.
  • Typical organic classes of such support materials are crosslinked polymer matrices such as crosslinked polystyrenes and crosslinked polymethacrylates, phenol-formaldehyde resins or polyalkylamine resins.
  • the carrier material is selected from molecular sieves and ion exchangers.
  • ion exchangers it is possible to use both cation, anion and amphoteric ion exchangers.
  • Preferred organic or inorganic types of matrices for such ion exchangers are polystyrenes wetted with divinylbenzene (crosslinked divinylbenzene-styrene copolymers), divinylbenzene crosslinked polymethacrylates, phenol-formaldehyde resins, polyalkylamine resins, hydrophilized cellulose, crosslinked dextran, crosslinked agarose, zeolites , Montmorillonites, attapulgites, bentonites, aluminum silicates and acid salts of polyvalent metal ions such as zirconium phosphate, titanium tartrate or nickel hexacyanoferrate (II).
  • divinylbenzene crosslinked divinylbenzene-styrene copolymers
  • divinylbenzene crosslinked polymethacrylates phenol-formaldehyde
  • Acid ion exchangers usually carry carboxylic acid, phosphonic acid, sulfonic acid, carboxymethyl or sulfoethyl groups.
  • Basic ion exchangers usually contain primary, secondary or tertiary amino groups, quaternary ammonium groups, aminoethyl or diethylaminoethyl groups.
  • Molecular sieves have a strong adsorption capacity for gases, vapors and solutes and are generally also applicable to ion exchange processes. Molecular sieves typically have uniform pore diameters, on the order of the diameter of molecules, and large internal surfaces, typically 600 to 700 m 2 / g. In particular, silicates, aluminum silicates, zeolites, silicoaluminophosphates and / or carbon molecular sieves can be used as molecular sieves in the context of the present invention.
  • Ion exchangers and molecular sieves having an inner surface area of 100 to 3000 m 2 / g, especially 200 to 2500 m 2 / g and pore diameters of 0.5 to 50 nm, in particular from 1 nm to 20, are particularly advantageous.
  • the support material is selected from molecular sieves of the types H-AIMCM-41, H-AIMCM-48, NaAIMCM-41 and NaAIMCM-48.
  • molecular sieve types represent silicates or aluminum silicates, on whose inner surface silanol groups adhere, which may be of importance for the interaction with the catalyst complex.
  • the interaction is believed to be mainly due to the partial exchange of protons and / or sodium ions.
  • the boron-containing catalyst complex which is effective as the polymerization catalyst is used in such an amount that, based on the amounts of monomers used, in a molar ratio of preferably 1:10 to 1: 1000. 0000, especially from 1: 10,000 to 1: 500,000 and especially from 1: 5000 to 1: 100,000 in the polymerization medium is present.
  • the concentration ("loading") of the boron-containing catalyst complex in the carrier material is in the range of preferably 0.005 to 20 wt .-%, especially 0.01 to 10 wt .-% and in particular 0.1 to 5 wt .-%.
  • the boron-containing catalyst complex which acts as a polymerization catalyst is present in the polymerization medium, for example as a loose bed, as a fluidized bed, as a fluid bed or as a fixed bed.
  • Suitable reactor types for the polymerization process according to the invention are accordingly usually stirred tank reactors, loop reactors, tubular reactors, fluidized bed reactors, fluidized bed reactors, stirred tank reactors with and without solvent, liquid bed reactors, continuous fixed bed reactors and discontinuous fixed bed reactors (batch mode).
  • the polymerization can also be designed as a continuous process.
  • the monomer or monomers to be polymerized can be supplied as such, diluted with a solvent or as a monomer-containing hydrocarbon stream.
  • the reaction mixture is preferably deactivated, for example by adding a protic compound, in particular by adding water, alcohols, such as methanol, ethanol, n-propanol and isopropanol or mixtures thereof with water, or by adding an aqueous base, e.g. an aqueous solution of an alkali or alkaline earth metal hydroxide such as sodium hydroxide, potassium hydroxide, magnesium hydroxide or calcium hydroxide, an alkali metal or alkaline earth metal carbonate such as sodium, potassium, magnesium or calcium carbonate, or an alkali metal or Erdalka- bicarbonate such as sodium, potassium, magnesium or calcium bicarbonate.
  • a protic compound in particular by adding water, alcohols, such as methanol, ethanol, n-propanol and isopropanol or mixtures thereof with water, or by adding an aqueous base, e.g. an aqueous solution of an alkali or alkaline earth metal hydroxide such as sodium hydrox
  • the process according to the invention is used for the preparation of highly reactive isobutene homopolymers or copolymers having a content of terminal vinylidene double bonds ( ⁇ -double bonds) of at least 80 mol%, preferably of at least 85 mol%, more preferably of at least 90 mole%, and more preferably at least 95 mole%, eg of about 100 mol%.
  • block copolymers are preferably also formed with the simultaneous addition of the comonomers, the isobutene block generally being able to form the terminal, i. represents the last block formed.
  • the process of the invention is used to prepare highly reactive isobutene-styrene copolymers.
  • the highly reactive isobutene-styrene copolymers have a content of terminal vinylidene double bonds ( ⁇ -double bonds) of at least 80 mol%, more preferably at least 85 mol%, more preferably at least 90 mol%, and most preferably at least 95 Mol%, for example of about 100 mol%, on.
  • isobutene or an isobutene-containing hydrocarbon cut is copolymerized with at least one vinylaromatic compound, in particular styrene.
  • Such a monomer mixture particularly preferably contains from 5 to 95% by weight, particularly preferably from 30 to 70% by weight, of styrene.
  • PDI M w / Mn
  • the highly reactive isobutene homo- or copolymers prepared by the process according to the invention have a number average molecular weight M n of from 500 to 50,000, more preferably from 500 to 45,000, more preferably from 500 to 25,000, even more preferably from 500 to 10,000, in particular from 500 to More preferably from 800 to 2,500. More particularly, isobutene homopolymers more preferably have a number average molecular weight M n of from 500 to 50,000, more preferably from 500 to 10,000, and most preferably from 500 to 5,000, eg from about 1,000 or from about 2,300.
  • isobutene and isobutene-containing monomer mixtures which are polymerizable under cationic conditions are successfully polymerized with high conversions in short reaction times even at relatively high polymerization temperatures.
  • the use of less volatile fluorine compounds in smaller amounts compared to boron trifluoride and boron trifluoride adducts as polymerization catalysts puts less of a burden on sewage and the environment. Furthermore, virtually no residual fluorine content occurs in the product in the form of organic fluorine compounds.
  • the present invention therefore relates to a protic acid compound of the formula Ia
  • R 1 , R 2 , R 3 and R 4 are 3- or 4-trifluoromethylphenyl radicals or 3,5-bis (trifluoromethyl) phenyl radicals, L denotes neutral solvent molecules as defined above and
  • x denotes a number> 0.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 independently of one another represent aliphatic or aromatic fluorine-containing hydrocarbon radicals having in each case 1 to 18 carbon atoms in the abovementioned meaning
  • A is an optionally simply postively charged five- or six-membered heterocyclic unit having at least 2 nitrogen atoms, in particular imidazolium, as a nitrogen-containing bridge member which forms covalent bonds to the boron atoms via its nitrogen atoms,
  • n is the number 1
  • n stands for the number 0 or 1
  • x denotes a number> 0.
  • polyisobutene having a number average molecular weight M n of 4,000, a polydispersity of 1, 9 and a content of terminal vinylidene double bonds of 82 mol% was obtained at a conversion of 49%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit Mn = 500 bis 45.000 durch Polymerisation von Isobuten in flüssiger Phase in Gegenwart eines gelösten, dispergierten oder geträgerten borhaltigen Katalysatorkomplexes, indem man als Katalysatorkomplex eine protonensaure Verbindung (I) einsetzt [H+]m+1 [R1R2R3B-(-Am+-BR5R6-)n-R4](m+1)- • Lx (I); R1 bis R6 unabhängig voneinander aliphatische, heterocyclische oder aromatische fluorhaltige Kohlenwasserstoffreste mit jeweils 1 bis 18 Kohlenstoffatomen oder C1- bis C18-Kohlenwasserstoffreste enthaltende Silylgruppen, A stickstoffhaltiges Brückenglied, welches zu den Boratomen kovalente Bindungen über seine Stickstoffatome ausbildet, L neutrale Solvensmoleküle, n = 0 oder 1, m = 0 oder 1 und x ≥ 0.

Description

Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit einem zahlenmittleren Molekulargewicht Mn von 500 bis 1.000.000 durch Polymerisation von Isobuten oder eines Isobuten-haltigen Monomergemisches in flüssiger Phase in Gegenwart eines gelösten, dispergierten oder geträgerten borhaltigen Katalysatorkomplexes. Da ein Teil dieser borhaltigen Katalysatorkomplexe neue Verbindungen darstellt, betrifft die vorliegende Erfindung weiterhin diese neuen Verbindungen selbst.
Unter hochreaktiven Polyisobutenhomo- oder -copolymeren versteht man im Unter- schied zu den sogenannten niedrigreaktiven Polymeren solche Polyisobutene, die einen hohen Gehalt an terminal angeordneten ethylenischen Doppelbindungen enthalten. Im Rahmen der vorliegenden Erfindung sollen unter hochreaktiven Polyisobutenen solche Polyisobutene verstanden werden, die einen Anteil an Vinyliden-Doppelbindun- gen (α-Doppelbindungen) von wenigstens 60 Mol-%, vorzugsweise von wenigstens 70 Mol-% und insbesondere von wenigstens 80 Mol-%, bezogen auf die Polyisobuten- Makromoleküle, aufweisen. Unter Vinylidengruppen werden im Sinne der vorliegenden Anmeldung solche Doppelbindungen verstanden, deren Lage im Polyisobuten- Makromolekül durch die allgemeine Formel
Polymer-
beschrieben wird, d.h. die Doppelbindung befindet sich in der Polymerkette in α-Stellung. "Polymer" steht für den um eine Isobuteneinheit verkürzten Polyisobuten- rest. Die Vinylidengruppen zeigen die höchste Reaktivität, wohingegen eine weiter im Inneren der Makromoleküle liegende Doppelbindung keine oder auf jeden Fall geringe- re Reaktivität bei Funktionalisierungsreaktionen zeigt. Hochreaktive Polyisobutene werden unter anderem als Zwischenprodukte zur Herstellung von Additiven für Schmier- und Kraftstoffe verwendet, wie dies beispielsweise in DE-A 27 02 604 beschrieben wird.
Derartige hochreaktive Polyisobutene sind z. B. nach dem Verfahren der
DE-A 27 02 604 durch kationische Polymerisation von Isobuten in flüssiger Phase in Gegenwart von Bortrifluorid als Katalysator erhältlich. Nachteilig hierbei ist, dass die dabei erhaltenen Polyisobutene eine relativ hohe Polydispersität aufweisen. Die PoIy- dispersität PDI ist ein Maß für die Molekulargewichtsverteilung der erhaltenen PoIy- merketten und entspricht dem Quotient aus gewichtsmittlerem Molekulargewicht Mw und zahlenmittlerem Molekulargewicht Mn (PDI = Mw/Mn). Polyisobutene mit einem ähnlich hohen Anteil an endständigen Doppelbindungen, jedoch mit einer engeren Molekulargewichtsverteilung sind beispielsweise nach dem Verfahren der EP-A 145 235, US 5 408 018 sowie WO 99/64482 erhältlich, wobei die Polymerisation in Gegenwart eines desaktivierten Katalysators, zum Beispiel eines Komplexes aus Bortrifluorid, Alkoholen und/oder Ethern, erfolgt. Nachteilig hierbei ist, dass bei sehr tiefen Temperaturen, oftmals deutlich unterhalb von 0 0C, was einen hohen Energieaufwand verursacht, gearbeitet werden muss, um tatsächlich zu hochreaktiven Polyisobutenen zu gelangen.
Die EP-A 1 344 785 beschreibt ein Verfahren zur Herstellung hochreaktiver Polyisobutene unter Verwendung eines solvensstabilisierten Übergangsmetallkomplexes mit schwach koordinierenden Anionen als Polymerisationskatalysator. Als geeignete Metalle werden solche der 3. bis 12. Gruppe des Periodensystems genannt; in den Beispielen werden Mangankomplexe eingesetzt. Zwar kann bei diesem Verfahren bei Reaktionstemperaturen oberhalb von 0 0C polymerisiert werden, nachteilig ist jedoch, dass die Polymerisationszeiten unakzeptabel lang sind, so dass eine wirtschaftliche Nutzung dieses Verfahrens unattraktiv wird.
Es ist bekannt, dass Katalysatorsysteme, wie sie beispielsweise in der EP-A 145 235, US 5 408 018 oder WO 99/64482 verwendet werden, zu einem gewissen Restfluorgehalt im Produkt in Form von organischen Fluorverbindungen führen. Um solche Nebenprodukte zu verringern oder ganz zu vermeiden, sollte in einem solchen Katalysatorkomplex auf direkt an ein Metallzentrum gebundene Fluoratome verzichtet werden.
Kennedy et al. beschreiben in Polymerie Materials Science and Engineering (1999), 80, S. 495, aus Li[B(C6Fs)4] und (CHa)3SiCI über die Zwischenstufe (CHa)3Si+ [B(C6Fs)4]- in situ hergestelltes "H+ [B(C6Fs)4]-" als Initiator für die kationische Polymerisation von Isobuten zu hochmolekularem Isobutenhomo- und -copolymeren. Die somit erzielten zahlenmittleren Molekulargewichte Mn liegen (gemäß Fig. 1 dieses Literaturartikels) im Bereich von 47.000 bis 600.000.
Die WO 03/037940 und der Artikel von Tse et al. in European Polymer Journal 40 (2004), S. 2653 bis 2657, offenbaren Addukte aus Tri(pentafluorphenyl)boran und Carbonsäuren wie Octadecansäure, Benzoesäure, Pentafluorbenzoesäure, Trifluoressig- säure und ählichen Carbonsäuren als Initiatoren für die kationische Polymerisation von Isobuten. Ein dabei auftretendes typisches schwach koordinierendes Anion ist beispielsweise En-Ci7H35CO2(B(C6Fs)3Ja]-.
Im Review-Artikel von I. Krossing und I. Raabe in Angewandte Chemie 2004, 1 16, S. 2116 bis 2142, wird im Zusammenhang mit einer Übersicht über schwach koordinierende Anionen auf Basis von Boraten und verwandten Anionen (S. 21 18/21 19) die Verbindung [H(OEt2)2]+ [(F5C6)3B(μ-NH2)B(C6F5)3]- offenbart. Hinweise zu möglichen Anwendungen solcher Verbindungen werden im dortigen Zusammenhang nicht gegeben.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von nieder- bis mittelmolekularen hochreaktiven Polyisobutenhomo- oder -copolymeren bereitzustellen, insbesondere zur Herstellung von Polyisobutenpolymeren mit einem zahlenmittleren Molekulargewicht Mn von 500 bis 1.000.000 und mit einem Gehalt an endständigen Vinyliden-Doppelbindungen von wenigstens 80 Mol-%, welches einerseits eine Polymerisation von Isobuten oder Isobuten-haltigen Monomerenquellen bei nicht allzu tiefen Temperatur erlaubt, gleichzeitig jedoch deutlich kürzere Polymerisationszeiten ermöglicht. Der hierbei verwendete Katalysator sollte keine leicht abspaltbaren Fluorfunktionen enthalten.
Die Aufgabe wurde gelöst durch ein Verfahren zur Herstellung von hochreaktiven Iso- butenhomo- oder -copolymeren mit einem zahlenmittleren Molekulargewicht Mn von 500 bis 1.000.000 durch Polymerisation von Isobuten oder eines Isobuten-haltigen Monomergemisches in flüssiger Phase in Gegenwart eines gelösten, dispergierten oder geträgerten borhaltigen Katalysatorkomplexes, dadurch gekennzeichnet, dass man als Katalysatorkomplex eine protonensaure Verbindung der allgemeinen Formel I
[H+]m+i [R1R2R3B-(-Am+-BR5R6-)n-R4](m+1)- • Lx (I)
in der
die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für aliphatische, hete- rocyclische oder aromatische fluorhaltige Kohlenwasserstoffreste mit jeweils 1 bis 18 Kohlenstoffatomen oder d- bis Ciβ-Kohlenwasserstoffreste enthaltende Silylgruppen stehen,
A ein stickstoffhaltiges Brückenglied, welches zu den Boratomen kovalente Bindungen über seine Stickstoffatome ausbildet, bezeichnet,
L neutrale Solvensmoleküle bezeichnet,
n für die Zahl 0 oder 1 steht,
m für die Zahl 0 oder 1 steht und
x eine Zahl > 0 bezeichnet,
einsetzt. Im Falle des NichtVorhandenseins eines Brückengliedes A (n = 0) steht dessen Ladungszahl m auch für 0.
Unter Isobutenhomopolymeren versteht man im Rahmen der vorliegenden Erfindung solche Polymere, die bezogen auf das Polymer zu wenigstens 98 Mol-%, vorzugsweise zu wenigstens 99 Mol-% aus Isobuten aufgebaut sind. Dementsprechend versteht man unter Isobutencopolymeren solche Polymere, die mehr als 2 Mol-% Monomere einpo- lymerisiert enthalten, die von Isobuten verschieden sind.
Die Variablen R1, R2, R3, R4, R5 und R6 stehen im Falle von Fluorkohlenwasserstoffresten unabhängig voneinander für aliphatische, heterocyclische oder aromatische fluor- haltige Kohlenwasserstoffreste mit jeweils 1 bis 18, vorzugsweise 3 bis 18 Kohlenstoffatomen. Im Falle von aliphatischen Resten werden solche mit 1 bis 10, insbesondere 2 bis 6 Kohlenstoffatomen bevorzugt. Diese aliphatischen Reste können linear, ver- zweigt oder cyclisch sein. Sie enthalten jeweils 1 bis 12, insbesondere 3 bis 9 Fluoratome. Typische Beispiele für derartige aliphatische Reste sind Difluormethyl, Trifluor- methyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 1 ,2,2,2-Tetrafluorethyl, Pentafluorethyl, 1 ,1 ,1 -Tri-fluor-2-propyl, 1 ,1 ,1 -Trifluor-2-butyl, 1 ,1 ,1 -Trifluor-tert.-butyl und Tris(trifluormethyl)-methyl.
In einer bevorzugten Ausführungsform stehen die die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für Ce- bis Cis-Arylreste, insbesondere Ce- bis Cg-Aryl- reste, mit jeweils 3 bis 12 Fluoratomen, insbesondere 3 bis 6 Fluoratomen; hierbei werden Pentafluorphenylreste, 3- oder 4-(Trifluormethyl)phenylreste und 3,5-Bis(tri- fluormethyl)phenylreste ganz besonders bevorzugt.
Ce- bis Ci8-Aryl bzw. Ce- bis Cg-Aryl steht im Rahmen der vorliegenden Erfindung für gegebenenfalls weiter substituiertes Polyfluorphenyl oder Polyfluortolyl, gegebenenfalls weiter substituiertes Polyfluornaphthyl, gegebenenfalls weiter substituiertes Polyfluor- biphenyl, gegebenenfalls weiter substituiertes Polyfluoranthracenyl oder gegebenenfalls weiter substituiertes Polyfluorphenanthrenyl. Beispiel für weitere Substituenten, die ein- oder mehrfach vorhanden sein können, sind hierbei beispielsweise Nitro, Cya- no, Hydroxy, Chlor und Trichlormethyl. Die genannte Anzahl an Kohlenstoffatomen für diese Arylreste umfassen sämtliche in diesen Resten enthaltenen Kohlenstoffatome, einschließlich der Kohlenstoffatome von Substituenten an den Arylresten.
Im Falle von d- bis Cis-Kohlenwasserstoffreste enthaltenden Silylgruppen stehen die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander vorzugsweise für Trialkyl- silylgruppe, wobei die drei Alkylreste verschieden oder vorzugsweise gleich sein kön- nen. Als Alkylreste kommen hier vor allem lineare oder verzweigte Alkylreste mit 1 bis 8 Kohlenstoffatomen in Betracht. Beispiele hierfür sind Methyl, Ethyl, n-Propyl, Isopro- pyl, n-Butyl, 2-Butyl, Isobutyl, tert.-Butyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methyl- butyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1 ,1-Dimethylpropyl, 1 ,2-Dimethyl- propyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1 ,1 -Di- methylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethyl- butyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 ,1 ,2-Trimethylpropyl, 1 ,2,2-Tri- methylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl und 2-Ethylhexyl. Jedoch sind auch längerkettige Alkylreste wie n-Decyl, n-Dodecyl, n-Tri- decyl, Isotridecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecyl prinzipiell verwendbar. Ganz besonders gut eignen sich Trimethylsilyl- und Triethylsilylreste.
Die Variablen R1, R2, R3, R4, R5 und R6 können in geringem Umfang zusätzlich funktionelle Gruppen oder Heteroatome enthalten, soweit dies den dominierenden Fluorkohlenwasserstoff-Charakter bzw. den dominierenden Silylkohlenwasserstoff-Charakter der Reste nicht beeinträchtigt. Derartige funktionelle Gruppen oder Heteroatome sind beispielsweise weitere Halogenatome wie Chlor oder Brom, Nitrogruppen, Cyanogrup- pen, Hydroxygruppen sowie d- bis C4-Alkoxygruppen wie Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy und tert.-Butoxy. Heteroatome können aber auch Bestandteil der zugrundeliegenden Kohlenwasserstoffketten oder -ringe sein, beispielsweise Sauerstoff in Form von Etherfunktionen, z. B. in Polyoxyalkylenketten, oder Stickstoff und/oder Sauerstoff als Bestandteil von heterocyclischen aromatischen oder teil- oder vollgestättigten Ringsystemen, z. B. in Pyridinen, Imidazolen, Imidazolinen, Piperidinen oder Morpholinen. In jedem Fall sind die Variablen R1, R2, R3, R4, R5 und R6 aber über ein Kohlenstoffatom an die Boratome kovalent gebunden.
Die Variablen R1, R2, R3, R4, R5 und R6 können alle unterschiedlich sein. Es können aber auch mehrere oder alle dieser Variablen gleich sein. In besonders bevorzugten Ausführungsformen sind (im Falle von n = 1) alle sechs Variablen R1, R2, R3, R4, R5 und R6 bzw. (im Falle von n = 0) alle vier Variablen R1, R2, R3 und R4 gleich und stehen jeweils für Pentafluorphenyl, 3,5-Bis(trifluormethyl)phenyl, Trimethylsilyl oder Triethylsi- IyI.
Typische nicht verbrückte protonensaure Verbindungen I (n = 0) enthalten als einfach negativ geladenes Anion Tetrakis(pentafluorphenyl)boran, Tetrakis[3-(trifluormethyl)- phenyl]boran, Tetrakis[4-(trifluormethyl)phenyl]boran oder Tetrakis[3,5-bis(trifluor- methyl)phenyl]boran.
Als stickstoffhaltiges Brückenglied A, welches zu den Boratomen kovalente Bindungen über seine Stickstoffatome ausbildet, kann im einfachsten Fall eine formal von Ammoniak abgeleitete Einheit der Formel -NH- dienen. Weitere Beispiele für A sind von ali- phatischen und aromatischen Diaminen wie 1 ,2-Diaminomethan, 1 ,2-Ethylendiamin, 1 ,3-Propylendiamin, 1 ,4-Butylendiamin, 1 ,2-, 1 ,3- oder 1 ,4-Phenylendiamin abgeleitete Einheiten. Das Brückenglied A bezeichnet in einer bevorzugten Ausführungsform eine gegebenenfalls einfach positiv geladene fünf- oder sechsgliedrige Heterocyclus-Einheit mit mindestens 2 Stickstoffatomen, welche gesättigt oder ungesättigt sein kann, beispielsweise Pyrazolium, Imidazolidin, Imidazolinium, Imidazolium, 1 ,2,3-Triazolidin, 1 ,2,3- Triazolium, 1 ,2,4-Triazolium, Tetrazolium oder Pyrazan. Besonders bevorzugt wird Imidazolium für A.
Eine typische verbrückte protonensaure Verbindung I (n = 1 ) enthält als einfach negativ geladenes Anion die Struktur [(F5C6)3B-Imidazolium-B(C6F5)3]-, wobei die Imidazolium- Brücke über jedes seiner beiden Stickstoffatome jeweils eine kovalente Bindung zu einem der beiden Boratome ausbildet.
In den protonensauren Verbindungen der allgemeinen Formel I können auch neutrale Solvensmoleküle L enthalten sein. Diese Solvensmoleküle L können auch als Liganden oder Donoren bezeichnet werden. Pro Formeleinheit I können üblicherweise bis x = 12 solcher Solvensmoleküle L, insbesondere x = 2 bis 8, vorliegen. Vorzugsweise werden sie ausgewählt sind aus offenkettigen und cyclischen Ethern, insbesondere aus Di-d- bis C3-alkylethern, Ketonen, Thiolen, organischen Sulfiden, Sulfonen, Sulfoxiden, SuI- fonsäureestern, organischen Sulfaten, Phosphanen, Phosphanoxiden, organischen Phosphiten, organischen Phosphaten, Phosphorsäureamiden, Carbonsäureestern, Carbonsäureamiden sowie Alkylnitrilen und Arylnitrilen.
Die Solvensmoleküle L stehen für Lösungsmittelmoleküle, die mit den zentralen Boratomen koordinative Bindungen ausbilden können. Hierbei handelt es sich um Molekü- Ie, die üblicherweise als Lösungsmittel eingesetzt werden, gleichzeitig aber über wenigstens eine dative Gruppierung, z.B. über ein freies Elektronenpaar, verfügen, die eine koordinative Bindung zum einem Zentralmetall eingehen kann. Bevorzugte Solvensmoleküle L sind solche, die einerseits koordinativ an das Zentralmetall Bor binden, andererseits jedoch keine starken Lewisbasen darstellen, so dass sie im Verlauf der Polymerisation aus der Koordinationssphäre des Zentralmetalls leicht verdrängt werden können.
Die Solvensmoleküle L haben unter anderem auch die Funktion, die in den Verbindungen I enthaltenen Protonen zu stabilisieren, beispielsweise im Falle von Ethern als Diethyletherate [H(OEt2)2]+.
Beispiele für offenkettige und cyclische Ether für Solvensmoleküle L sind Diethylether, Dipropylether, Diisopropylether, Methyl-tert.-butylether, Ethyl-tert.-butylether, Tetra- hydrofuran und Dioxan. Im Falle von offenkettigen Ethern werden Di-Cr bis C3-alkyl- ether, insbesondere symmetrische Di-Ci- bis C3-alkylether, bevorzugt. Geeignete Ketone für Solvensmoleküle L sind beispielsweise Aceton, Ethylmethylke- ton, Acetoaceton oder Acetophenon.
Geeignete Thiole, organische Sulfide (Thioether), Sulfone, Sulfoxide, Sulfonsäureester und organische Sulfate für schwefelhaltige Solvensmoleküle L sind beispielsweise län- gerkettige Mercaptane wie Dodecylmercaptan, Dialkylsulfide, Dialkyldisulfide, Di- methylsulfon, Dimethylsulfoxid, Methylsulfonsäuremethylester oder Dialkylsulfate wie Dimethylsulfat.
Geeignete Phosphane, Phosphanoxide, organische Phosphite, organische Phosphate und Phosphorsäureamide für phosphorhaltige Solvensmoleküle L sind beispielsweise Triphenylphosphin, Triphenylphosphanoxid, Trialkyl-, Triaryl- oder gemischte Aryl/Alkyl- phosphite, Trialkyl-, Triaryl- oder gemischte Aryl/Alkylphosphate oder Hexamethylphos- phorsäuretriamid.
Geeignete Carbonsäureester für Solvensmoleküle L sind beispielsweise Essigsäuremethyl- oder -ethylester, Propionsäuremethyl- oder -ethylester, Buttersäuremethyloder -ethylester, Capronsäuremethyl- oder -ethylester oder Benzoesäuremethyl- oder -ethylester.
Geeignete Carbonsäureamide für Solvensmoleküle L sind beispielsweise Formamid, Dimethylformamid, Acetamid, Dimethylacetamid, Propionamid, Benzamid oder N,N-Dimethylbenzamid.
Geeignete Alkylnitrile und Arylnitrile für Solvensmoleküle L sind insbesondere d- bis Cβ-Alkylnitrile, vor allem d- bis C4-Alkylnitrile, beispielsweise Acetonitril, Propionitril, Butyronitril oder Pentylnitril, sowie Benzonitril.
Bevorzugt stehen in den protonensauren Verbindungen der allgemeinen Formel I alle L für das gleiche Solvensmolekül.
Die protonensauren Verbindungen der allgemeinen Formel I können in situ erzeugt und in dieser Form als Katalysatoren für die Isobuten-Polymerisation eingesetzt werden, wie von Kennedy et al. in dem eingangs zitierten Literaturartikel in Polymerie Materials Science and Engineering (1999), 80, S. 495, beschrieben.
Die protonensauren Verbindungen der allgemeinen Formel I können aber auch aus ihren präparativ gut zugänglichen und daher teilweise kommerziell erhältlichen Salzen, beispielsweise dem Silbersalz, als Reinsubstanzen hergestellt und erfindungsgemäß eingesetzt werden. Sie sind in dieser Form in der Regel über einen längeren Zeitraum lagerstabil. Zur Präparation der protonensauren Verbindungen I wird beispielsweise das entsprechende Silbersalz in einem protischen, mäßig polaren Lösungsmittel mit Halogenwasserstoff versetzt und das dabei eliminierte, schwer lösliche Silberhalogenid abgetrennt.
Das erfindungsgemäße Polymerisationsverfahren eignet sich zur Herstellung von nie- der- bis mittelmolekularen hochreaktiven Isobutenhomo- oder -copolymeren. Bevorzugte Comonomere sind hierbei Styrol, Styrolderivate wie insbesondere α-Methylstyrol und 4-Methylstyrol, Styrol- und Styrolderivate-haltige Monomerengemische, Alkadiene wie Butadien und Isopren sowie Gemische davon. Insbesondere setzt man in das erfindungsgemäße Polymerisationsverfahren Isobuten, Styrol oder Gemische davon als Monomere ein.
Für den Einsatz von Isobuten oder einem Isobuten-haltigen Monomerengemisch als zu polymerisierendem Monomer eignet sich als Isobuten-Quelle sowohl Isobuten selbst als auch Isobuten-haltige C4-Kohlenwasserstoffströme, beispielsweise C4-Raffinate, C4-Schnitte aus der Isobutan-Dehydrierung, C4-Schnitte aus Steamcrackern und aus FCC-Crackern (fluid catalysed cracking), sofern sie weitgehend von darin enthaltenem 1 ,3-Butadien befreit sind. Geeignete C4-Kohlenwasserstoffströme enthalten in der Regel weniger als 500 ppm, vorzugsweise weniger als 200 ppm, Butadien. Die Anwesenheit von 1 -Buten sowie von eis- und trans-2-Buten ist weitgehend unkritisch. Typi- scherweise liegt die Isobutenkonzentration in den C4-Kohlenwasserstoffströmen im
Bereich von 40 bis 60 Gew.-%. Das Isobuten-haltige Monomerengemisch kann geringe Mengen an Kontaminanten wie Wasser, Carbonsäuren oder Mineralsäuren enthalten, ohne dass es zu kritischen Ausbeute- oder Selektivitätseinbußen kommt. Es ist zweckdienlich, eine Anreicherung dieser Verunreinigungen zu vermeiden, indem man solche Schadstoffe beispielsweise durch Adsorption an feste Adsorbentien wie Aktivkohle, Molekularsiebe oder Ionenaustauscher, aus dem Isobuten-haltigen Monomerengemisch entfernt.
Es können Monomermischungen von Isobuten beziehungsweise des Isobuten-haltigen Kohlenwasserstoffgemischs mit olefinisch ungesättigten Monomeren, welche mit
Isobuten copolymerisierbar sind, umgesetzt werden. Sofern Monomermischungen des Isobutens mit geeigneten Comonomeren copolymerisiert werden soll, enthält die Mo- nomermischung vorzugsweise wenigstens 5 Gew.-%, besonders bevorzugt wenigstens 10 Gew.-% und insbesondere wenigstens 20 Gew.-% Isobuten, und vorzugsweise höchstens 95 Gew.-%, besonders bevorzugt höchstens 90 Gew.-% und insbesondere höchstens 80 Gew.-% Comonomere.
Als copolymerisierbare Monomere kommen in Betracht Vinylaromaten wie Styrol und α-Methylstyrol, Ci-C4-Alkylstyrole wie 2-, 3- und 4-Methylstyrol sowie 4-tert.-Butylstyrol, Alkadiene wie Butadien und Isopren sowie Isoolefine mit 5 bis 10 C-Atomen wie 2-Me- thylbuten-1 , 2-Methylpenten-1 , 2-Methylhexen-1 , 2-Ethylpenten-1 , 2-Ethylhexen-1 und 2-Propylhepten-1. Als Comonomere kommen weiterhin Olefine in Betracht, die eine Silylgruppe aufweisen, wie 1-Triιmethoxysilylethen, 1-(Trimethoxysilyl)propen, 1-(Tri- methoxysilyl)-2-methylpropen-2, 1 -[Tri(methoxyethoxy)silyl]ethen, 1 -[Tri(methoxy- ethoxy)silyl]propen, und 1-[Tri(meth-oxyethoxy)silyl]-2-methylpropen-2, sowie Vinyl- ether wie tert.-Butylvinylether.
Sollen mit dem erfindungsgemäßen Verfahren Copolymere hergestellt werden, so kann das Verfahren so ausgestaltet werden, dass bevorzugt statistische Polymere oder bevorzugt Blockcoplymere entstehen. Zur Herstellung von Blockcopolymeren kann man beispielsweise die verschiedenen Monomere nacheinander der Polymerisationsreakti- on zuführen, wobei die Zugabe des zweiten Comonomers insbesondere erst dann erfolgt, wenn das erste Comonomer zumindest teilweise schon polymerisiert ist. Auf diese Weise sind sowohl Diblock-, Triblock- als auch höhere Blockcopolymere zugänglich, die je nach Reihenfolge der Monomerzugabe einen Block des einen oder anderen Comonomers als terminalen Block aufweisen. Blockcopolymere entstehen in einigen Fäl- len aber auch dann, wenn alle Comonomere zwar gleichzeitig der Polymerisationsreaktion zugeführt werden, eines davon aber signifikant schneller polymerisiert als das oder die anderen. Dies ist insbesondere dann der Fall, wenn Isobuten und eine vinylaroma- tische Verbindung, insbesondere Styrol, im erfindungsgemäßen Verfahren copolymeri- siert werden. Dabei entstehen vorzugsweise Blockcopolymere mit einem terminalen Polyisobutenblock. Dies ist darauf zurückzuführen, dass die vinylaromatische Verbindung, speziell Styrol, signifikant schneller polymerisiert als Isobuten.
Die Polymerisation kann sowohl kontinuierlich als auch diskontinuierlich erfolgen. Kontinuierliche Verfahren können in Analogie zu bekannten Verfahren des Standes der Technik zur kontinuierlichen Polymerisation von Isobuten in Gegenwart von Lewissäure-Katalysatoren in flüssiger Phase durchgeführt werden.
Das erfindungsgemäße Verfahren ist sowohl für eine Durchführung bei niedrigen Temperaturen, z.B. bei -78 bis 0 °C, als auch bei höheren Temperaturen, d.h. bei wenigs- tens 0 °C, z.B. bei 0 bis 100 °C, geeignet. Die Polymerisation wird vor allem aus wirtschaftlichen Gründen vorzugsweise bei wenigstens 0 °C, z.B. bei 0 bis 100 0C, besonders bevorzugt bei 20 bis 60 0C durchgeführt, um den Energie- und Materialverbrauch, der für eine Kühlung erforderlich ist, möglichst gering zu halten. Sie kann jedoch genauso gut bei niedrigeren Temperaturen, z.B. bei -78 bis <0 °C, vorzugsweise bei -40 bis -10 °C, durchgeführt werden.
Erfolgt die Polymerisation bei oder oberhalb der Siedetemperatur des zu polymerisie- rende Monomers oder Monomerengemischs, so wird sie vorzugsweise in Druckgefäßen, beispielsweise in Autoklaven oder in Druckreaktoren, durchgeführt.
Vorzugsweise wird die Polymerisation in Gegenwart eines inerten Verdünnungsmittels durchgeführt. Das verwendete inerte Verdünnungsmittel sollte geeignet sein, die wäh- rend der Polymerisationsreaktion in der Regel auftretende Erhöhung der Viskosität der Reaktionslösung soweit zu verringern, dass die Abführung der entstehenden Reaktionswärme gewährleistet werden kann. Als Verdünnungsmittel sind solche Lösungsmittel oder Lösungsmittelgemische geeignet, die gegenüber den eingesetzten Reagenzien inert sind. Geeignete Verdünnungsmittel sind beispielsweise aliphatische Kohlenwasserstoffe wie Butan, Pentan, Hexan, Heptan, Octan und Isooctan, cycloaliphatische Kohlenwasserstoffe, wie Cyclopentan und Cyclohexan, aromatische Kohlenwasserstoffe, wie Benzol, Toluol und die XyIoIe, und halogenierte Kohlenwasserstoffe wie Methylchlorid, Dichlormethan und Trichlormethan, sowie Mischungen der vorgenannten Ver- dünnungsmittel. Bevorzugt verwendet man wenigstens einen halogenierten Kohlenwasserstoff, gegebenenfalls im Gemisch mit wenigstens einem der vorstehend genannten aliphatischen oder aromatischen Kohlenwasserstoffe. Insbesondere verwendet man Dichlormethan. Vorzugsweise werden die Verdünnungsmittel vor ihrem Einsatz von Verunreinigungen wie Wasser, Carbonsäuren oder Mineralsäuren befreit, beispielsweise durch Adsorption an feste Adsorbentien wie Aktivkohle, Molekularsiebe oder Ionenaustauscher.
Vorzugsweise wird die Polymerisation unter weitgehend aprotischen, insbesondere unter wasserfreien Reaktionsbedingungen durchgeführt. Unter aprotischen bezie- hungsweise wasserfreien Reaktionsbedingungen versteht man, dass der Wassergehalt (bzw. der Gehalt an protischen Verunreinigungen) im Reaktionsgemisch weniger als 50 ppm und insbesondere weniger als 5 ppm beträgt. In der Regel wird man daher die Einsatzstoffe vor ihrer Verwendung durch physikalische und/oder durch chemische Maßnahmen trocknen. Insbesondere hat es sich bewährt, die als Lösungsmittel einge- setzten aliphatischen oder alicyclischen Kohlenwasserstoffe nach üblicher Vorreinigung und Vortrocknung mit einer metallorganischen Verbindung, beispielsweise einer Organolithium-, Organomagnesium- oder Organoaluminium-Verbindung, in einer Menge zu versetzen, die ausreicht, um die Wasserspuren aus dem Lösungsmittel zu entfernen. Das so behandelte Lösungsmittel wird dann vorzugsweise direkt in das Reakti- onsgefäß einkondensiert. In ähnlicher Weise kann man auch mit den zu polymerisie- renden Monomeren, insbesondere mit Isobuten oder mit den Isobuten-haltigen Mischungen verfahren. Auch die Trocknung mit anderen üblichen Trockenmitteln wie Molekularsieben oder vorgetrockneten Oxiden wie Aluminiumoxid, Siliciumdioxid, CaI- ciumoxid oder Bariumoxid, ist geeignet. Die halogenierten Lösungsmittel, für die eine Trocknung mit Metallen wie Natrium oder Kalium oder mit Metallalkylen nicht in Betracht kommt, werden mit dafür geeigneten Trocknungsmitteln, beispielsweise mit CaI- ciumchlorid, Phosphorpentoxid oder Molekularsieb, von Wasser(spuren) befreit. In analoger Weise kann man auch diejenigen Einsatzstoffe trocknen, für die eine Behandlung mit Metallalkylen ebenfalls nicht in Betracht kommt, beispielsweise vinylaromati- sehe Verbindungen. Die Polymerisation des Isobutens bzw. des isobutenhaltigen Einsatzmaterials erfolgt in der Regel spontan beim Inkontaktbringen des borhaltigen Katalysatorkomplexes (d.h. der protonensauren Verbindung I) mit dem Monomer bei der gewünschten Reaktionstemperatur. Hierbei kann man so vorgehen, dass man das Monomer gegebenenfalls im Lösungsmittel vorlegt, auf Reaktionstemperatur bringt und anschließend den borhaltigen Katalysatorkomplex, beispielsweise als lose Schüttung, zugibt. Man kann auch so vorgehen, dass man den borhaltigen Katalysatorkomplex (beispielsweise als lose Schüttung oder als Festbett) gegebenenfalls im Lösungsmittel vorlegt und anschließend das Monomer zugibt. Als Polymerisationsbeginn gilt dann derjenige Zeitpunkt, zu dem alle Reaktanden im Reaktionsgefäß enthalten sind. Der borhaltige Katalysatorkomplex kann sich teilweise oder vollständig im Reaktionsmedium lösen oder als Dispersion vorliegen. Alternativ kann der Katalysatorkomplex auch in geträgerter Form eingesetzt werden.
Soll der borhaltige Katalysatorkomplex in geträgerter Form eingesetzt werden, wird er mit einem geeigneten Trägermaterial in Kontakt gebracht und somit in eine heterogeni- sierte Form überführt. Das Inkontaktbringen erfolgt beispielsweise durch Imprägnieren, Tränken, Besprühen, Bepinseln oder verwandete Techniken. Das Inkontaktbringen umfasst auch Techniken der Physisorption. Das Inkontaktbringen kann bei Normaltem- peratur und Normaldruck oder auch bei höheren Temperaturen und/oder Drücken erfolgen.
Durch das Inkontaktbringen geht der borhaltige Katalysatorkomplex mit dem Trägermaterial eine physikalische und/oder chemische Wechselwirkung ein. Derartige Wechsel- Wirkungsmechanismen sind zum einen der Austausch von einem oder mehreren neutralen Solvensmolekülen L und/oder von einer oder mehrerer geladener Struktureinheiten des borhaltigen Katalysatorkomplexes gegen neutrale bzw. entsprechend geladene Gruppierungen, Moleküle oder Ionen, welche im Trägermater eingebaut sind oder auf ihm haften. Weiterhin kann das Anion des borhaltigen Katalysatorkomplexes gegen eine entsprechende negativ geladene Gruppierung oder ein Anion aus dem Trägermaterial oder das positiv geladene Proton aus dem borhaltigen Katalysatorkomplex gegen ein entsprechend positiv geladenes Kation aus dem Trägermaterial (beispielsweise ein Alkalimetallion) ausgetauscht werden. Neben solchen echten lonenaustauschvorgän- gen oder anstelle dieser können auch schwächere elektrostatische Wechselwirkung auftreten. Schließlich kann der borhaltige Katalysatorkomplex auch mittels kovalenter Bindungen an das Trägermaterial fixiert werden, beispielsweise durch Reaktion mit Hydroxylgruppen oder Silanolgruppen, die im Inneren des Trägermaterials oder vorzugsweise auf der Oberfläche sitzen.
Wesentlich für die Eignung als Trägermaterial im Rahmen der vorliegenden Erfindung sind auch seine spezifische Oberflächegröße und seine Porositätseigenschaften. Hierbei haben sich mesoporöse Trägermaterialien als besonders vorteilhaft herausgestellt. Mesoporöse Trägermaterialien haben in der Regel ein innere Oberfläche von 100 bis 3000 m2/g, insbesondere 200 bis 2500 m2/g, und Porendurchmesser von 0,5 bis 50 nm, insbesondere von 1 bis 20 nm.
Als Trägermaterial eignen sich prinzipiell alle festen inerten Substanzen mit großer Oberfläche, die üblicherweise als Unterlage oder Gerüst für Wirkstoff, insbesondere für Katalysatoren, dienen können. Typische anorganische Stoffklassen für solche Trägermaterialien sind Aktivkohle, Tonerde, Kieselgel, Kieselgur, Talk, Kaolin, Tone und Silikate. Typische organische Stoffklassen für solche Trägermaterialien sind vernetzte Polymermatrices wie vernetzte Polystyrole und vernetzte Polymethacrylate, Phenol- Formaldehyd-Harze oder Polyalkylamin-Harze.
Vorzugsweise ist das Trägermaterial aus Molekularsieben und Ionenaustauschern ausgewählt.
Als Ionenaustauscher können sowohl Kationen-, Anionen- als auch amphotere Ionenaustauscher verwendet werden. Bevorzugte organische oder anorganische Matrices- Typen für derartige Ionenaustauscher sind hierbei mit Divinylbenzol benetzte Polystyrole (vernetzte Divinylbenzol-Styrol-Copolymerisate), mit Divinylbenzol vernetzte Polymethacrylate, Phenol-Formaldehyd-Harze, Polyalkylamin-Harze, hydrophilisierte Cellulose, vernetztes Dextran, vernetzte Agarose, Zeolithe, Montmorillonite, Attapulgite, Bentonite, Aluminiumsilikate und saure Salze polyvalenter Metallionen wie Zirconiumphosphat, Titanwolframat oder Nickelhexacyanoferrat(ll). Saure Ionenaustauscher tragen üblicherweise Carbonsäure-, Phosphonsäure-, Sulfonsäure-, Carboxymethyl- oder Sulfoethyl-Gruppen. Basische Ionenaustauscher enthalten meistens primäre, sekundäre oder tertiäre Aminogruppen, quartäre Ammoniumgruppen, Aminoethyl- oder Diethylaminoethyl-Gruppen.
Molekularsiebe haben ein starkes Adsorptionsvermögen für Gase, Dämpfe und gelöste Stoffe und sind generell auch für lonenaustauschvorgänge einsetzbar. Molekularsiebe haben in der Regel einheitliche Porendurchmesser, die in der Größenordnung der Durchmesser von Molekülen liegen, und große innere Oberflächen, typischerweise 600 bis 700 m2/g. Als Molekularsiebe im Rahmen der vorliegenden Erfindung können insbesondere Silikate, Aluminiumsilikate, Zeolithe, Silicoalumophosphate und/oder Kohlenstoff-Molekularsiebe verwendet werden.
Ionenaustauscher und Molekularsiebe mit einer inneren Oberfläche von 100 bis 3000 m2/g, insbesondere 200 bis 2500 m2/g, und Porendurchmessern von 0,5 bis 50 nm, insbesondere von 1 bis 20 nm, sind besonders vorteilhaft.
Vorzugsweise ist das Trägermaterial aus Molekularsieben der Typen H-AIMCM-41 , H-AIMCM-48, NaAIMCM-41 und NaAIMCM-48 ausgewählt. Diese Molekularsieb-Typen stellen Silikate oder Aluminiumsilikate dar, auf deren innerer Oberfläche Silanolgrup- pen haften, die für die Wechselwirkung mit den Katalysatorkomplex von Bedeutung sein können. Die Wechselwirkung beruht vermutlich jedoch hauptsächlich auf dem teilweisen Austausch von Protonen und/oder Natriumionen.
Sowohl beim Einsatz als Lösung, als Dispersion oder in geträgerter Form wird der als Polymerisationskatalysator wirksame borhaltige Katalysatorkomplex in solch einer Menge eingesetzt, dass er, bezogen auf die Mengen an eingesetzten Monomeren, in einem molaren Verhältnis von vorzugsweise 1 :10 bis 1 :1.000.0000, vor allem von 1 :10.000 bis 1 :500.000 und insbesondere von 1 :5000 bis 1 :100.000 im Polymerisationsmedium vorliegt.
Die Konzentration ("Beladung") des borhaltigen Katalysatorkomplexes im Trägermaterial liegt im Bereich von vorzugsweise 0,005 bis 20 Gew.-%, vor allem 0,01 bis 10 Gew.-% und insbesondere 0,1 bis 5 Gew.-%.
Der als Polymerisationskatalysator wirksame borhaltige Katalysatorkomplex liegt im Polymerisationsmedium beispielsweise als lose Schüttung, als Wirbelbett, als Flüssigbett oder als Festbett vor. Geeignete Reaktortypen für das erfindungsgemäße Polyme- risationsverfahren sind demgemäß üblicherweise Rührkesselreaktoren, Schlaufenreaktoren, Rohrreaktoren, Wirbelbettreaktoren, Wirbelschichtreaktoren, Rührtankreaktoren mit und ohne Lösungsmittel, Flüssigbettreaktoren, kontinuierliche Festbettreaktoren und diskontinuierliche Festbettreaktoren (batch-Fahrweise).
Zur Herstellung von Copolymeren kann man so vorgehen, dass man die Monomere, gegebenenfalls im Lösungsmittel, vorlegt und anschließend den borhaltigen Katalysatorkomplex, beispielsweise als lose Schüttung, zugibt. Die Einstellung der Reaktionstemperatur kann vor oder nach der Zugabe des borhaltigen Katalysatorkomplexes erfolgen. Man kann auch so vorgehen, dass man zunächst nur eines der Monomere, gegebenenfalls im Lösungsmittel, vorlegt, an schließend den borhaltigen Katalysatorkomplex zugibt und erst nach einer gewissen Zeit, beispielsweise wenn wenigstens 60%, wenigstens 80% oder wenigstens 90% des Monomers umgesetzt sind, das oder die weiteren Monomere zugibt. Alternativ kann man den borhaltigen Katalysatorkomplex, beispielsweise als lose Schüttung, gegebenenfalls im Lösungsmittel, vorlegen, anschließend die Monomere gleichzeitig oder nacheinander zugeben und dann die gewünschte Reaktionstemperatur einstellen. Als Polymerisationsbeginn gilt dann derjenige Zeitpunkt, zu dem der borhaltigen Katalysatorkomplex und wenigstens eines der Monomere im Reaktionsgefäß enthalten sind.
Neben der hier beschriebenen diskontinuierlichen Vorgehensweise kann man die Polymerisation auch als kontinuierliches Verfahren ausgestalten. Hierbei führt man die Einsatzstoffe, d.h. das oder die zu polymerisierenden Monomere, gegebenenfalls das Lösungsmittel sowie gegebenenfalls den borhaltigen Katalysatorkomplex (beispielsweise als lose Schüttung) der Polymerisationsreaktion kontinuierlich zu und entnimmt kontinuierlich Reaktionsprodukt, so dass sich im Reaktor mehr oder weniger stationäre Polymerisationsbedingungen einstellen. Das oder die zu polymerisierenden Monomere können als solche, verdünnt mit einem Lösungsmittel oder als monomerhaltiger Kohlenwasserstoffstrom, zugeführt werden.
Zum Reaktionsabbruch wird das Reaktionsgemisch vorzugsweise desaktiviert, beispielsweise durch Zugabe einer protischen Verbindung, insbesondere durch Zugabe von Wasser, Alkoholen, wie Methanol, Ethanol, n-Propanol und Isopropanol oder deren Gemische mit Wasser, oder durch Zugabe einer wässrigen Base, z.B. einer wässrigen Lösung eines Alkali- oder Erdalkalihydroxids wie Natriumhydroxid, Kaliumhydroxid, Magnesiumhydroxid oder Calciumhydroxid, eines Alkali- oder Erdalkalicarbonats wie Natrium-, Kalium-, Magnesium- oder Calciumcarbonat, oder eines Alkali- oder Erdalka- lihydrogencarbonats wie Natrium-, Kalium-, Magnesium- oder Calciumhydrogencarbo- nat.
In einer bevorzugten Ausführungsform der Erfindung dient das erfindungsgemäße Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit einem Gehalt an terminalen Vinyliden-Doppelbindungen (α-Doppelbindungen) von wenigstens 80 Mol-%, vorzugsweise von wenigstens 85 Mol-%, besonders bevorzugt von wenigstens 90 Mol-% und insbesondere von wenigstens 95 Mol-%, z.B. von etwa 100 Mol-%. Insbesondere dient es zur Herstellung von hochreaktiven Copolymeren, die aufgebaut sind aus Monomeren umfassend Isobuten und wenigstens eine vinyl- aromatische Verbindung und einem Gehalt an terminalen Vinyliden-Doppelbindungen (α-Doppelbindungen) von wenigstens 80 Mol-%, vorzugsweise von wenigstens 85 Mol-%, besonders bevorzugt von wenigstens 90 Mol-% und insbesondere von wenigstens 95 Mol-%, z.B. von etwa 100 Mol-%, aufweisen.
Bei der Copolymerisation von Isobuten oder Isobuten-haltigen Kohlenwasserstoffschnitten mit wenigstens einer vinylaromatischen Verbindung entstehen auch bei gleichzeitiger Zugabe der Comonomere vorzugsweise Blockcopolymere, wobei der Isobutenblock in der Regel den terminalen, d.h. den zuletzt gebildeten Block darstellt.
Dementsprechend dient das erfindungsgemäße Verfahren in einer bevorzugten Ausführungsform zur Herstellung von hochreaktiven Isobuten-Styrol-Copolymeren. Vorzugsweise weisen die hochreaktiven Isobuten-Styrol-Copolymere einen Gehalt an terminalen Vinyliden-Doppelbindungen (α-Doppelbindungen) von wenigstens 80 Mol-%, besonders bevorzugt von wenigstens 85 Mol-%, stärker bevorzugt von wenigstens 90 Mol-% und insbesondere von wenigstens 95 Mol-%, z.B. von etwa 100 Mol-%, auf. Zur Herstellung solcher Copolymere wird Isobuten oder ein Isobuten-haltiger Kohlenwasserstoffschnitt mit wenigstens einer vinylaromatischen Verbindung, insbesondere Styrol, copolymerisiert. Besonders bevorzugt enthält ein solches Monomerengemisch 5 bis 95 Gew.-%, besonders bevorzugt 30 bis 70 Gew.-% Styrol.
Vorzugsweise weisen die mit dem erfindungsgemäßen Verfahren hergestellten hochreaktiven Isobutenhomo- oder -copolymere, speziell die Isobutenhomopolymere, eine Polydispersität (PDI = Mw/Mn) von 1 ,0 bis 3,0, vor allem von höchstens 2,0, vorzugsweise von 1 ,0 bis 2,0, besonders bevorzugt von 1 ,0 bis 1 ,8 und insbesondere von 1 ,0 bis 1 ,5 auf.
Vorzugsweise besitzen die mit dem erfindungsgemäßen Verfahren hergestellten hochreaktiven Isobutenhomo- oder -copolymere ein zahlenmittleres Molekulargewicht Mn von 500 bis 50.000, besonders bevorzugt von 500 bis 45.000, stärker bevorzugt von 500 bis 25.000, noch stärker bevorzugt von 500 bis 10.000, insbesondere von 500 bis 5000 und vor allem von 800 bis 2500. Isobutenhomopolymere speziell besitzen noch stärker bevorzugt ein zahlenmittleres Molekulargewicht Mn von 500 bis 50.000, insbesondere von 500 bis 10.000 und vor allem von 500 bis 5000, z.B. von etwa 1000 oder von etwa 2300.
Durch das erfindungsgemäße Verfahren werden Isobuten und isobutenhaltige Mono- mermischungen, die unter kationischen Bedingungen polymerisierbar sind, mit hohen Umsätzen in kurzen Reaktionszeiten selbst bei relativ hohen Polymerisationstemperaturen erfolgreich polymerisiert. Man erhält hochreaktive Isobutenhomo- oder -copoly- mere mit einem hohen Gehalt an terminalen Vinyliden-Doppelbindungen und mit einer recht engen Molekulargewichtsverteilung. Durch die Verwendung von weniger flüchtigen Fluorverbindungen in geringeren Mengen im Vergleich zu Bortrifluorid und Bortri- fluorid-Addukten als Polymerisationskatalysatoren werden Abwässer und Umwelt weniger belastet. Weiterhin tritt praktisch keine Restfluorgehalt im Produkt in Form von organischen Fluorverbindungen auf.
Da ein Teil der beschriebenen heterogenisierten Metallkomplexe neue Substanzen darstellen, sind diese ebenfalls Gegenstand der vorliegenden Erfindung. Gegenstand der vorliegenden Erfindung sind daher protonensaure Verbindung der Formel Ia
H+ [R1R2R3B-R4]- * Lx (Ia)
in der
die Variablen R1, R2, R3 und R4 für 3- oder 4-Trifluormethylphenylreste oder 3,5- Bis(trifluormethyl)phenylreste stehen, L neutrale Solvensmoleküle in der vorgenannten Bedeutung bezeichnet und
x eine Zahl > 0 bezeichnet.
Weiterhin sind Gegenstand der vorliegenden Erfindung protonensaure Verbindung der allgemeinen Formel Ib
[H+]m+i [R1R2R3B-(-Am+-BR5R6-)-R4](m+1)- • U (Ib)
in der
die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für aliphatische oder aromatische fluorhaltige Kohlenwasserstoffreste mit jeweils 1 bis 18 Kohlenstoffatomen in der vorgenannten Bedeutung stehen,
A eine gegebenenfalls einfach postiv geladene fünf- oder sechsgliedrige Heterocyclus- Einheit mit mindestestens 2 Stickstoffatomen, insbesondere Imidazolium, als stickstoffhaltiges Brückenglied, welches zu den Boratomen kovalente Bindungen über seine Stickstoffatome ausbildet, bezeichnet,
L neutrale Solvensmoleküle in der vorgenannten Bedeutung bezeichnet,
n für die Zahl 1 steht,
m für die Zahl 0 oder 1 steht und
x eine Zahl > 0 bezeichnet.
Die vorliegende Erfindung wird durch die nachfolgenden Beispiele näher veranschau- licht.
Beispiel 1
Polymerisation von Rein-Isobuten mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis[3,5-bis(trifluormethyl)phenyl]boran-Anion (Katalysator A)
60 ml Isobuten wurden in 75 ml eines Gemisches aus gleichen Volumenteilen n-Hexan und Dichlormethan einkondensiert. Nach Abkühlung auf -40°C wurden 120 mg des Katalysators A unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -30°C an. Nach insgesamt 45 Minuten Polymerisationsdauer wurde die Reaktion durch Zugabe von 10 ml Methanol abgebrochen, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lö- sungsmittel im Vakuum erhielt man 7,5 g Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 4137, einer Polydispersität von 1 ,8 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von 88 Mol-%.
Beispiel 2
Polymerisation von Rein-Isobuten mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis[3,5-bis(trifluormethyl)phenyl]boran-Anion (Katalysator A)
40 ml Isobuten wurden in 120 ml eines Gemisches aus gleichen Volumenteilen n-He- xan und Dichlormethan einkondensiert. Nach Abkühlung auf -78°C wurden 200 mg des Katalysators A unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -65°C an. Nach insgesamt 30 Minuten Polymerisationsdauer wurde die Reaktion durch Zugabe von 10 ml Methanol abgebrochen, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lösungsmittel im Vakuum erhielt man bei einem Umsatz von 49 % Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 4000, einer Polydispersität von 1 ,9 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von 82 Mol-%.
Beispiel 3
Polymerisation von Rein-Isobuten mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis[3,5-bis(trifluormethyl)phenyl]boran-Anion (Katalysator A)
40 ml Isobuten wurden in 120 ml eines Gemisches aus gleichen Volumenteilen n-He- xan und Dichlormethan einkondensiert. Nach Abkühlung auf -30°C wurden 200 mg des Katalysators A unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -20°C an. Nach insgesamt 30 Minuten Polymerisationsdauer wurde die Reaktion durch Zugabe von 10 ml Methanol abgebrochen, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lösungsmittel im Vakuum erhielt man bei einem Umsatz von 62 % Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1300, einer Polydispersität von 2,0 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von größer 90 Mol-%.
Beispiel 4
Polymerisation von Rein-Isobuten mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis[3,5-bis(trifluormethyl)phenyl]boran-Anion (Katalysator A)
40 ml Isobuten wurden in 120 ml eines Gemisches aus gleichen Volumenteilen n-He- xan und Dichlormethan einkondensiert. Nach Abkühlung auf -30°C wurden 100 mg des Katalysators A unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -20°C an. Nach insgesamt 30 Minuten Polymerisationsdauer wurde die Reaktion durch Zugabe von 10 ml Methanol abgebrochen, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lösungsmittel im Vakuum erhielt man bei einem Umsatz von 6 % Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1300, einer Polydispersität von 2,0 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von 90 Mol-%.
Beispiel 5
Polymerisation von Raffinat 1 mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis[3,5-bis(trifluormethyl)phenyl]boran-Anion (Katalysator A)
40 ml eines technischen C4-Kohlenwasserstoffstromes (Raffinat 1 ), enthaltend
40 Gew.-% Isobuten, wurden in 120 ml eines Gemisches aus gleichen Volumenteilen n-Hexan und Dichlormethan einkondensiert. Nach Abkühlung auf -40°C wurden
200 mg des Katalysators A unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -30°C an. Nach insgesamt 45 Minuten Polymerisationsdauer wurde durch Zugabe von 10 ml Methanol gequencht, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lösungsmittel im Vakuum erhielt man 6,4 g Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1 160, einer Polydispersität von 2,0 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von 91 Mol-%.
Beispiel 6
Polymerisation von Rein-Isobuten mit der protonensauren Verbindung aus dem einfach negativ geladenem Tetrakis(pentafluorphenyl)boran-Anion (Katalysator B)
40 ml Isobuten wurden in 20 ml eines Gemisches aus gleichen Volumenteilen n-Hexan und Dichlormethan einkondensiert. Nach Abkühlung auf -40°C wurden 200 mg des Katalysators B unter Schutzatmosphäre zugegeben. Innerhalb von 10 Minuten stieg die Temperatur auf -30°C an. Nach insgesamt 45 Minuten Polymerisationsdauer wurde die Reaktion durch Zugabe von 10 ml Methanol abgebrochen, das Umsetzungsprodukt in weiterem Methanol aufgenommen und gewaschen. Nach Abdestillation der Lö- sungsmittel im Vakuum erhielt man 6,0 g Polyisobuten mit einem zahlenmittleren Molekulargewicht Mn von 1500, einer Polydispersität von 2,0 und einem Gehalt an terminalen Vinyliden-Doppelbindungen von 82 Mol-%.

Claims

Patentansprüche
1. Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit einem zahlenmittleren Molekulargewicht Mn von 500 bis 1.000.000 durch Po- lymerisation von Isobuten oder eines Isobuten-haltigen Monomergemisches in flüssiger Phase in Gegenwart eines gelösten, dispergierten oder geträgerten borhaltigen Katalysatorkomplexes, dadurch gekennzeichnet, dass man als Katalysatorkomplex eine protonensaure Verbindung der allgemeinen Formel I
[H+]m+i [R1R2R3B-(-Am+-BR5R6-)n-R4](m+1)- » Lχ (I)
in der
die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für aliphatische, heterocyclische oder aromatische fluorhaltige Kohlenwasserstoffreste mit jeweils
1 bis 18 Kohlenstoffatomen oder d- bis Ciβ-Kohlenwasserstoffreste enthaltende Silylgruppen stehen,
A ein stickstoffhaltiges Brückenglied, welches zu den Boratomen kovalente Bin- düngen über seine Stickstoffatome ausbildet, bezeichnet,
L neutrale Solvensmoleküle bezeichnet,
n für die Zahl 0 oder 1 steht,
m für die Zahl 0 oder 1 steht und
x eine Zahl > 0 bezeichnet,
einsetzt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für Ce- bis Cis-Arylreste mit jeweils 3 bis 6 Fluoratomen, insbesondere für Pentafluorphenylreste, 3- oder 4- (Trifluormethyl)phenylreste oder 3,5-Bis(trifluor-methyl)phenylreste, stehen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Brückenglied A eine gegebenenfalls einfach positiv geladene fünf- oder sechsgliedrige Heterocyclus-Einheit mit mindestens 2 Stickstoffatomen, insbesondere Imidazoli- um, bezeichnet.
20050985 Ab/sm 1 1.10.06
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die neutralen Solvensmoleküle ausgewählt sind aus offenkettigen und cyclischen Ethern, insbesondere aus Di-Cr bis C3-alkylethern, Ketonen, Thiolen, organischen Sulfiden, Sulfonen, Sulfoxiden, Sulfonsäureestern, organischen Sulfaten, Phospha- nen, Phosphanoxiden, organischen Phosphiten, organischen Phosphaten,
Phosphorsäureamiden, Carbonsäureestern, Carbonsäureamiden, sowie Alkyl- nitrilen und Arylnitrilen.
5. Verfahren nach den Ansprüchen 1 bis 4 zur Herstellung von hochreaktiven Iso- butenhomo- oder -copolymeren mit einem zahlenmittleren Molekulargewicht Mn von 500 bis 5000.
6. Verfahren nach den Ansprüchen 1 bis 5 zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit einem Gehalt an terminalen Vinyliden- Doppelbindungen von wenigstens 80 Mol-%.
7. Verfahren nach den Ansprüchen 1 bis 6 zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mit einer Polydispersität von höchstens 2,0.
8. Protonensaure Verbindung der Formel Ia
H+ [R1R2R3B-R4]- * Lx (Ia)
in der
die Variablen R1, R2, R3 und R4 für 3- oder 4-Trifluormethylphenylreste oder 3,5- Bis(trifluormethyl)phenylreste stehen,
L neutrale Solvensmoleküle bezeichnet und
x eine Zahl > 0 bezeichnet.
9. Protonensaure Verbindung der allgemeinen Formel Ib
[H+]m+i [R1R2R3B-(-Am+-BR5R6-)-R4](m+1)- » U (Ib)
in der
die Variablen R1, R2, R3, R4, R5 und R6 unabhängig voneinander für aliphatische oder aromatische fluorhaltige Kohlenwasserstoffreste mit jeweils 1 bis 18 Kohlenstoffatomen stehen, A eine gegebenenfalls einfach postiv geladene fünf- oder sechsgliedrige Hetero- cyclus-Einheit mit mindestestens 2 Stickstoffatomen, insbesondere Imidazolium, als stickstoffhaltiges Brückenglied, welches zu den Boratomen kovalente Bindungen über seine Stickstoffatome ausbildet, bezeichnet,
L neutrale Solvensmoleküle bezeichnet,
n für die Zahl 1 steht,
m für die Zahl 0 oder 1 steht und
x eine Zahl > 0 bezeichnet.
EP06807816A 2005-11-21 2006-11-15 Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe Withdrawn EP1954727A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005055817A DE102005055817A1 (de) 2005-11-21 2005-11-21 Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren mittels borhaltiger Katalysatorkomplexe
PCT/EP2006/068466 WO2007057404A1 (de) 2005-11-21 2006-11-15 Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe

Publications (1)

Publication Number Publication Date
EP1954727A1 true EP1954727A1 (de) 2008-08-13

Family

ID=37692592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06807816A Withdrawn EP1954727A1 (de) 2005-11-21 2006-11-15 Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe

Country Status (6)

Country Link
US (1) US20080249267A1 (de)
EP (1) EP1954727A1 (de)
KR (1) KR20080068107A (de)
CN (1) CN101331159A (de)
DE (1) DE102005055817A1 (de)
WO (1) WO2007057404A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2152762B1 (de) * 2007-04-27 2011-11-23 Basf Se Verfahren zur herstellung von en-addukten mittels mikrowellenstrahlung
WO2008138836A2 (de) * 2007-05-11 2008-11-20 Basf Se Verfahren zur herstellung von polyisobutylbernsteinsäureanhydriden
CN102015798B (zh) * 2008-05-07 2014-03-05 巴斯夫欧洲公司 α-烯烃/异丁烯二嵌段共聚物
JP6914444B2 (ja) 2018-04-05 2021-08-04 エルジー・ケム・リミテッド 陽イオン性金属複合体及びボレート系バルキー陰イオンを有する有機金属触媒、その製造方法及びそれを用いたオリゴマー又はポリマーの製造方法
KR102028722B1 (ko) * 2018-04-13 2019-10-07 한국생산기술연구원 포미톱시스 팔루스트리스를 이용한 이소부틸렌 생산 방법
KR102301668B1 (ko) * 2018-07-27 2021-09-14 주식회사 엘지화학 폴리부텐 올리고머의 제조 방법
KR102395709B1 (ko) * 2018-11-23 2022-05-09 주식회사 엘지화학 폴리부텐 올리고머의 제조 방법
WO2021034041A1 (ko) * 2019-08-19 2021-02-25 주식회사 엘지화학 유기 보레이트계 촉매, 이를 이용한 이소부텐 올리고머의 제조방법 및 이로부터 제조된 이소부텐 올리고머
CN113490692B (zh) 2019-08-26 2023-03-28 株式会社Lg化学 催化剂组合物和使用该催化剂组合物制备烃类树脂的方法
EP3943516B1 (de) * 2019-12-06 2023-11-01 Lg Chem, Ltd. Katalysatorzusammensetzung und verfahren zur herstellung von polyisobuten unter verwendung derselben
CN114174353B (zh) 2020-04-08 2023-07-28 株式会社Lg化学 催化剂组合物和使用该催化剂组合物制备异丁烯类低聚物的方法
KR20210144566A (ko) * 2020-05-22 2021-11-30 주식회사 엘지화학 액상 고무 제조방법 및 이로부터 제조된 액상 고무
KR20220037612A (ko) * 2020-09-18 2022-03-25 주식회사 엘지화학 촉매 조성물 및 이를 이용한 이소부텐-이소프렌 공중합체의 제조방법
CN114057783B (zh) * 2021-12-23 2023-07-14 山东海科创新研究院有限公司 一种双草酸硼酸锂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2702604C2 (de) * 1977-01-22 1984-08-30 Basf Ag, 6700 Ludwigshafen Polyisobutene
GB8329082D0 (en) * 1983-11-01 1983-12-07 Bp Chem Int Ltd Low molecular weight polymers of 1-olefins
US5068490A (en) * 1989-08-18 1991-11-26 Amoco Corporation BF3-tertiary etherate complexes for isobutylene polymerization
BE1006694A5 (fr) * 1991-06-22 1994-11-22 Basf Ag Procede de preparation de polyisobutenes extremement reactifs.
CN1120168C (zh) * 1998-02-20 2003-09-03 陶氏环球技术公司 包含扩展阴离子的催化剂活化剂
GB0009289D0 (en) * 2000-04-15 2000-05-31 Dow Corning Process for the condensation of compounds having silicon bonded hydroxy or alkoxy groups
DE10211418A1 (de) * 2002-03-15 2003-09-25 Bayer Ag Verfahren zur Herstellung hochreaktiver Polyisobutene

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007057404A1 *

Also Published As

Publication number Publication date
WO2007057404A1 (de) 2007-05-24
DE102005055817A1 (de) 2007-05-24
US20080249267A1 (en) 2008-10-09
CN101331159A (zh) 2008-12-24
KR20080068107A (ko) 2008-07-22

Similar Documents

Publication Publication Date Title
EP1954722B1 (de) Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels metallhaltiger katalysatorkomplexe
WO2007057404A1 (de) Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren mittels borhaltiger katalysatorkomplexe
EP1954728A1 (de) Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren aus technischen c4-kohlenwasserstoffströmen mittels protonensaurer katalysatorkomplexe
EP2496613B1 (de) Verfahren zur herstellung von homo- oder copolymeren
WO2010139684A1 (de) Verbindung aus einem protonierten aromaten und einem schwach koordinierenden anion als polymerisationskatalysator für isobuten oder ein isobuten-haltiges monomerengemisch
EP2536768B1 (de) Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren
EP1343829B1 (de) Verfahren zur herstellung von polyisobutenen
KR102421836B1 (ko) 고반응성 이소부텐 단독- 또는 공중합체의 제조 방법
WO2008138836A2 (de) Verfahren zur herstellung von polyisobutylbernsteinsäureanhydriden
EP2742073A1 (de) Verfahren zur herstellung von hochreaktiven isobutenhomo- oder -copolymeren
DE2632730A1 (de) Ein auf einem traeger aufgebrachter ziegler-katalysator sowie verfahren zu dessen herstellung und verwendung desselben
EP1347995A2 (de) Verfahren zur herstellung von homo- und copolymeren des isobutens
WO2012072643A2 (de) Herstellung von isobutenhomo- oder -copolymer-derivaten
US7365152B2 (en) Method for producing highly reactive, low halogen polyisobutenes
WO2010125035A1 (de) Metallkomplex mit schwach koordinierendem gegenion als polymerisationskatalysator für isobuten oder ein isobuten-haltiges monomerengemisch
DE102005038284A1 (de) Verfahren zur Polymerisation von ethylenisch ungesättigten Monomeren
DE102005038281A1 (de) Verfahren zur Polymerisation ethylenisch ungesättigter Monomere
DE102007046159A1 (de) Verfahren zur Herstellung von hochreaktiven Isobutenhomo- oder -copolymeren
DE1595055C (de) Verfahren zur Herstellung \on Isobuty lenhomo oder copolymeren
DE102007040919A1 (de) Verfahren zur Herstellung von Homo- oder Copolymeren aus olefinischen Monomeren mittels Pyrazoliumsalzen
DE2636495A1 (de) Polymerisationskatalysator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090907

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110531