EP1926841B1 - Procede de pulverisation de gaz froid - Google Patents

Procede de pulverisation de gaz froid Download PDF

Info

Publication number
EP1926841B1
EP1926841B1 EP06793543.7A EP06793543A EP1926841B1 EP 1926841 B1 EP1926841 B1 EP 1926841B1 EP 06793543 A EP06793543 A EP 06793543A EP 1926841 B1 EP1926841 B1 EP 1926841B1
Authority
EP
European Patent Office
Prior art keywords
coating
particles
nanoparticles
microencapsulation
cold gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06793543.7A
Other languages
German (de)
English (en)
Other versions
EP1926841A1 (fr
Inventor
Rene Jabado
Jens Dahl Jensen
Ursus KRÜGER
Daniel Körtvelyessy
Volkmar LÜTHEN
Uwe Pyritz
Ralph Reiche
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1926841A1 publication Critical patent/EP1926841A1/fr
Application granted granted Critical
Publication of EP1926841B1 publication Critical patent/EP1926841B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a cold spraying method in which a cold spray jet directed onto a substrate to be coated is produced by means of a cold spray nozzle, to which particles forming the coating are added.
  • the aforementioned Kaltgasspritzbacter is for example from the DE 102 24 780 A1 known.
  • particles which are to form a coating on a substrate to be coated are introduced into a cold gas jet produced by means of a cold spray nozzle and are preferably accelerated by the latter to supersonic speed. Therefore, the particles impact the substrate with a high kinetic energy sufficient to ensure adhesion of the particles to the substrate.
  • coatings can be produced with high deposition rates, with thermal activation of the particles not being necessary or only to a small extent. Therefore, thermally relatively sensitive particles can be used for film formation. Due to the requirement of injecting kinetic energy into the particles, it is necessary that they have sufficient inertia. Therefore, the cold gas spraying is limited to particle sizes above 5 microns.
  • a thermal coating method can be used.
  • the nanoparticles are suspended in a liquid and with this liquid the flame jet fed to the thermal coating process.
  • mixtures of liquids can be used, whereby the composition of the nanostructured layer can be influenced.
  • the use of thermal spraying is limited to applications of this method to high temperature resistant layered materials when nanostructuring of the nanoparticles being supplied is to be maintained (eg, ceramic particles).
  • microencapsulation agglomerates of nanoparticles can be provided with microencapsulations. This microencapsulation then holds the nanoparticles together.
  • microencapsulated agglomerates can be deposited, for example, by sputtering, wherein the microencapsulation is retained during the sputtering process due to the low mechanical stress during the deposition from the gas phase.
  • agglomerates of nanoparticles can also be prepared by encapsulating them in a polymer suspension.
  • the encapsulated agglomerates produced thereby are said to be loose and are suitable for different applications, for example, the production of layers.
  • the object of the invention is to provide a cold gas spraying process for coating substrates, with which nanostructured layers of unsintered agglomerates of nanoparticles can be produced.
  • microencapsulated agglomerates of nanoparticles whose microencapsulation consists of a self-assembling layer of bipolar polymer molecules, in the formation of electrostatic forces are used to increase the density of the microencapsulation .
  • These agglomerates have a sufficient inertia with respect to the application of the cold gas spraying process, so that they adhere to it during acceleration to the substrate to be coated.
  • the microencapsulation of the nanoparticles according to the invention thus has the purpose that the nanoparticles can be incorporated into a forming coating. Within the coating that is being built up, the advantages of the nanoparticles can be utilized.
  • nanostructured coatings can be produced whose structure is determined by the nanostructure of the nanoparticles. Since the nanoparticles with the inventive method are the cold gas spraying accessible, it is also possible to use relatively temperature-sensitive nanoparticles, since this method can be carried out in relation to thermal spraying at low temperatures. This concludes, however not a certain warming of the cold gas jet, through which an additional activation of the particles can take place.
  • the energy input into the cold gas jet is dimensioned such that the microencapsulation of the particles is destroyed on the substrate. It can thereby be achieved that the properties of the formed coating are determined solely by the properties of the nanoparticles, while the decomposition products of the microencapsulation escape into the environment. This can be achieved, for example, by virtue of the fact that the microencapsulation has a significantly lower boiling point than the nanoparticles, so that the heat resulting from the impact of the particles on the substrate is sufficient to evaporate the microencapsulation without the nanoparticles being melted.
  • the microencapsulation can also be deliberately selected so that it can be incorporated, for example, as a filler in the coating. This results in composites of the nanoparticles and the material of the microencapsulation, whose properties can be adjusted to the required requirement profile.
  • the microencapsulation could contain polymers, while the nanoparticles are formed from hard materials (for example, ceramics such as TiO.sub.2. ) Because of the hardness of the nanoparticles, this makes it possible to produce a wear protection layer made of plastic which has an enormous ductility and adhesion due to the properties of the plastic matrix.
  • the energy input into the cold gas jet is dimensioned such that the microencapsulation is incorporated into the coating.
  • the structure of the particles used for coating remains largely intact, wherein the microencapsulation in the coating forms a matrix in which the nanoparticles are contained.
  • a restructuring within the particles can take place depending on the energy input into the cold gas jet.
  • the energy input into the cold gas jet is changed during the construction of the coating. This makes it possible to influence the structure of the coating depending on the layer thickness, so that layers with variable properties can be produced over the layer thickness.
  • the energy input can be abruptly changed to a layered structure of the coating or continuously changed to produce gradient layers.
  • the energy input into the cold gas jet can essentially be influenced by two energy components.
  • the kinetic energy input can be influenced by the degree of acceleration of the particles in the cold gas jet. This is the main variable of influence since, according to the principle of cold gas spraying, the kinetic energy of the particles causes coating formation.
  • Another possibility of influencing the energy input is the already mentioned possibility to additionally supply thermal energy to the cold gas jet. This helps to heat the particles due to the reaction of the kinetic energy when hitting the forming coating.
  • the addition of the different types of particles takes place during the construction of the coating.
  • a reactive gas to be added to the cold gas jet, which reacts with constituents of the particles in the formation of the coating.
  • oxygen can be added to gas, which, for example, leads to the formation of oxides when metallic nanoparticles are used, whose properties of wear protection can be specifically utilized in the finished coating.
  • the reactive gas contributes to the dissolution of the material of the microencapsulation.
  • the activation energy for reaction with the reactive gas advantageously arises only at the time of impact of the particles on the forming coating when the kinetic energy of the particles is converted into heat energy.
  • various nanoparticles are contained in the particles.
  • the mixtures of nanoparticles in the particles can react with one another when these particles strike the forming coating or form structural phases which have a mixture of the elements contained in the nanoparticles.
  • nanoparticles By a suitable selection of the nanoparticles it can also be achieved that the various nanoparticles react with one another during the formation of the coating. As a result, precursors of reaction products can be prepared as nanoparticles whose reaction products would pose problems in the production as nanoparticles.
  • the nanostructure of the coating is specifically changed in a heat treatment step following the coating.
  • the Heat treatment step can be set in the structure of the nanostructured coating diffusion processes of individual alloying elements of the nanoparticles or between nanoparticles of different composition in motion, which can be influenced by temperature and duration during the heat treatment, the structural change targeted. Furthermore, any stresses can be reduced by the heat treatment in the coating.
  • auxiliaries for the layer formation in particular grain growth inhibitors, are contained in the particles.
  • grain growth inhibitors it is possible, for example, to obtain the nanostructure in a heat treatment of the nanostructured layer with a simultaneous reduction of stresses in the microstructure.
  • Grain growth inhibitors are for example in US 6,287,714 B1 described.
  • the substrate is formed by a plastic body, in particular a lamp base, wherein a protective layer against electromagnetic radiation, in particular in the UV range is formed as a coating whose composition in the area adjacent to the lamp base in terms of good adhesion is modified on the lamp base.
  • the lamp base to be coated may, for example, be lamp sockets of gas discharge lamps for use in motor vehicle headlamps.
  • the proportions of the headlight light in the UV range are in fact harmful to the lamp base made of plastic, which decomposes under its influence during prolonged operation of the gas discharge lamp.
  • the need for coating the lamp cap to protect against UV radiation may be, for example of the EP 1 460 675 A2 be removed.
  • the problem to be solved in the coating is that the layers which are suitable for UV protection have a ceramic microstructure and therefore because of their brittle behavior tend to break off from the ductile base material of the lamp base.
  • This can be prevented by the inventive use of the described method in that the composition of the layer on the lamp base is optimized in terms of good adhesion.
  • a polymer portion which simultaneously forms the microencapsulation, can be incorporated into the layer so that it achieves properties which are comparable in terms of ductility to those of the base material.
  • a gradient layer can then be formed, in which the proportion of polymer material decreases towards the surface of the layer and finally disappears completely, since this must be kept away from the radiation of the lamp as a UV-light-sensitive component.
  • the UV-light impermeable components for example copper oxide, can be provided as nanoparticles in the microencapsulation, the proportion of such nanopatterns being increased towards the surface of the layer up to a proportion of 100%.
  • a multilayer structure may also be preferred, the proportion of polymer material being reduced step by step.
  • FIG. 1 a coating system for cold gas spraying is shown.
  • This has a vacuum container 11, in which on the one hand a cold spray nozzle 12 and on the other hand, a substrate to be coated 13 are arranged (fastening not shown in detail).
  • a process gas can be supplied to the cold spray nozzle.
  • This has, as indicated by the contour, a Laval shape, through which the process gas is expanded and accelerated in the form of a cold gas jet (arrow 15) to a surface 16 of the substrate 13 back.
  • the process gas may contain as reactive gas, for example, oxygen 17, which betei a reaction at the surface 16 of the substrate 13 is is.
  • the process gas can be heated in a manner not shown, whereby a required process temperature can be set in the vacuum container 11.
  • a second line 18 of the cold spray nozzle 12 particles 19 are supplied, which are accelerated in the gas jet and impinge on the surface 16.
  • the kinetic energy of the particles 19 leads to the formation of a layer 20 into which the oxygen 17 can also be incorporated.
  • the processes occurring during the layer formation are explained in more detail below.
  • the substrate 13 in the direction of the double arrow 21 in front of the cold gas nozzle 12 are moved back and forth.
  • the vacuum in the vacuum vessel 11 is constantly maintained by a vacuum pump 22, wherein the process gas is passed through a filter 23 before being passed through the vacuum pump 22 in order to filter out particles and other residual products of the coating that do not hit the surface 16 these were tied.
  • an influence zone 24 which indicates that due to the kinetic energy of the particles 19, an interaction between the near-surface regions of the substrate 13 and the impinging particles 19 is formed. This leads to an adhesion of the growing layer 20 on the substrate, wherein the substrate is micro-deformed on the surface. With further layer growth, the already adhering particles 19 with the newly incident particles 19 in a comparable interaction, whereby a continuous layer structure is possible.
  • the particles 19 consist of an agglomerate 25 of nanoparticles, which are held together by a microencapsulation 26b.
  • the microencapsulation 26b is retained when the particles 19 strike the substrate 13.
  • the microencapsulation thus represents a matrix in which the agglomerate of nanoparticles is bound.
  • the nanoparticles can consist, for example, of copper oxide with which a UV protective coating can be applied in the case of a lamp according to FIG.
  • the microencapsulation in this case would consist of the material of the lamp cap, for example a polymer, so that an excellent adhesion of the nanoparticles bound in the microencapsulation 26b arises.
  • the kinetic energy imparted to the particles 19 by the cold gas nozzle 12 can be increased so that more and more evaporation of the microencapsulation 26 occurs when the particles strike the forming layer 20.
  • a gradient layer can be produced whose generated surface consists exclusively of copper oxide in order to produce an effective UV protection for the polymer of the substrate 13.
  • FIGS. 2 and 3 represent different forms of agglomerated nanoparticles 27 in different microencapsules 26a, 26b, 26c.
  • a microencapsulation 26a can be formed by introducing the nanoparticles 27 into a suspension. Within this suspension, the nanoparticles agglomerate into agglomerates corresponding to the amount of FIG. 2 correspond to nanoparticles 27.
  • a suspension is added to the suspension in which the agglomerates of the nanoparticles 27 are already present, which forms the microencapsulation 26a.
  • These may, for example, be molecules which form a so-called self-assembling layer, ie a self-structuring layer, around the respective agglomerate of nanoparticles 27.
  • These may, for example, be bipolar polymer molecules which automatically align themselves in the layer of the microencapsulation 26a and in this way produce the polymer sheath with a comparatively high density.
  • This process of self-assembly is supported in particular by nanoparticles 27, which themselves have a charge or are designed as dipoles.
  • FIG. 3 a particle 19 is shown, which is constructed in multiple layers.
  • the agglomerates of nanoparticles 27a, 27b are each provided with a microencapsulation, the microencapsulations yielding a multilayered particle.
  • the particles 19 according to FIG. 4 can be prepared by a process which the company Capsulution ® has explained on 23.05.2005 on their homepage www.capsulution.com under "Technology”. This method is referred to there as LBL Technology ® (LBL means layer by layer).
  • LBL means layer by layer.
  • the nanoparticles are suspended in an aqueous solution according to this method, whereby electrostatic forces of the material of the microencapsulation are used to form the microencapsules around the agglomerates.
  • FIG. 4 an embodiment of the method according to the invention is shown schematically.
  • a particle 19 is accelerated to the surface 16 of the substrate 13 and easily deforms upon impact, the microencapsulation 26a is blown off.
  • the nanoparticles 27 form the coating 20, which is getting thicker as the process continues.
  • the energy input by the cold spraying process is adjusted so that the microstructure of the nanoparticles 27 is largely retained, so that the nanostructure of the forming layer 20 is determined by the size of the nanoparticles.
  • FIG. 5 is an application example of a according to the described method according to FIG. 1
  • Protective layer 28 formed shown This is applied to a lamp cap 29 and thereby protects it from UV radiation emanating from a lamp body 30.
  • lamp 31 is a gas discharge lamp for vehicle headlights.
  • the lamp base 29 is provided only in the area with the protective layer 28 which is exposed to the UV radiation directly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Claims (12)

  1. Procédé de pulvérisation de gaz froid, dans lequel on produit par une buse ( 12 ) de pulvérisation à froid un jet ( 15 ) de gaz froid qui est dirigé sur un substrat ( 13 ) à revêtir et auquel sont ajoutées des particules ( 19 ) formant le revêtement ( 20 ),
    caractérisé
    en ce que l'on utilise comme particules ( 19 ) des agglomérats microencapsulés et non frittés de nanoparticules ( 27 ), la microencapsulation ( 26a ) étant constituée d'une self-assembling layer en molécules polymères bipolaires a la formation de laquelle on utilise des forces électrostatiques pour augmenter la masse volumique de la microencapsulation.
  2. Procédé suivant la revendication 1,
    caractérisé
    en ce que l'on proportionne l'apport d'énergie au jet ( 15 ) de gaz froid de manière à détruire la microencapsulation ( 26a, 26b, 26c ) des particules ( 19 ) sur le substrat.
  3. Procédé suivant la revendication 2,
    caractérisé
    en ce que l'on élimine du revêtement dans un stade de procédé venant ensuite des résidus du matériau de la microencapsulation ( 26a, 26b, 26c ) détruite.
  4. Procédé suivant la revendication 1,
    caractérisé
    en ce que l'on proportionne l'apport d'énergie au jet ( 15 ) de gaz froid de manière à incorporer la microencapsulation ( 26a, 26b, 26c ) dans le revêtement ( 20 ).
  5. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que l'on modifie l'apport d'énergie au jet ( 15 ) de gaz froid pendant la constitution du revêtement ( 20 ).
  6. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que l'addition de particules ( 19 ) de type différent s'effectue pendant la formation du revêtement ( 20 ).
  7. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce qu'on ajoute au jet ( 15 ) de gaz froid un gaz réactif qui, lors de la formation du revêtement ( 20 ), réagit sur des constituants des particules ( 19 ).
  8. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que les nanoparticules ( 27 ) de type différent sont contenurs dans les particules ( 19 ).
  9. Procédé suivant la revendication 8,
    caractérisé
    en ce que les nanoparticules ( 27 ) de type différent réagissent entre elles pendant la formation du revêtement ( 20 ).
  10. procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que l'on modifie à dessein, la nanostructure du revêtement ( 20 ) dans un stade de traitement thermique en aval du revêtement.
  11. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce qu'en plus des nanoparticules ( 27 ) des adjuvants pour la formation d'une couche, notamment des inhibiteurs de croissance de grain, sont contenus dans les particules ( 29 ).
  12. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que le substrat est formé par une pièce en matière plastique, notamment par un culot ( 29 ) de lampe, une couche ( 28 ) de protection vis-à-vis du rayonnement électromagnétique, notamment dans le domaine UV, étant formée comme revêtement, couche dont la composition est modifiée en ce qui concerne une bonne adhérence au culot de lampe dans la zone voisine du culot de lampe.
EP06793543.7A 2005-09-23 2006-09-15 Procede de pulverisation de gaz froid Not-in-force EP1926841B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047688A DE102005047688C5 (de) 2005-09-23 2005-09-23 Kaltgasspritzverfahren
PCT/EP2006/066392 WO2007033936A1 (fr) 2005-09-23 2006-09-15 Procede de pulverisation de gaz froid

Publications (2)

Publication Number Publication Date
EP1926841A1 EP1926841A1 (fr) 2008-06-04
EP1926841B1 true EP1926841B1 (fr) 2014-08-20

Family

ID=37085297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793543.7A Not-in-force EP1926841B1 (fr) 2005-09-23 2006-09-15 Procede de pulverisation de gaz froid

Country Status (4)

Country Link
US (1) US8080278B2 (fr)
EP (1) EP1926841B1 (fr)
DE (1) DE102005047688C5 (fr)
WO (1) WO2007033936A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047103A1 (de) 2006-09-28 2008-04-03 Siemens Ag Pulver für Kaltgasspritzverfahren
GB0909183D0 (en) * 2009-05-28 2009-07-08 Bedi Kathryn J Coating method
DE102009033620A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Kaltgasspritzen von oxydhaltigen Schutzschichten
DE102009037846A1 (de) * 2009-08-18 2011-02-24 Siemens Aktiengesellschaft Partikelgefüllte Beschichtungen, Verfahren zur Herstellung und Verwendungen dazu
DE102009052983A1 (de) 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Beschichten von Kunststoffbauteilen mittels kinetischen Kaltgasspritzens
DE102009052970A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
EP2543443B1 (fr) * 2010-03-04 2019-01-09 Imagineering, Inc. Dispositif de formation de revêtement et procédé de production d'une matière de formation de revêtement
DE102010022593A1 (de) * 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen einer Schicht mit einer metallischen Gefügephase und einer Gefügephase aus Kunststoff, Bauteil mit einer solchen Schicht sowie Verwendungen dieses Bauteils
EP2596152B1 (fr) 2010-07-15 2019-12-18 Commonwealth Scientific and Industrial Research Organisation Traitement de surface
DE102011052120A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien
DE102011052118A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zum Aufbringen einer Beschichtung auf einem Substrat, Beschichtung und Verwendung von Partikeln
DE102011052119A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
US20140065320A1 (en) * 2012-08-30 2014-03-06 Dechao Lin Hybrid coating systems and methods
US9850579B2 (en) * 2015-09-30 2017-12-26 Delavan, Inc. Feedstock and methods of making feedstock for cold spray techniques
DE102018009153B4 (de) 2017-11-22 2021-07-08 Mitsubishi Heavy Industries, Ltd. Beschichtungsverfahren
US11492708B2 (en) 2018-01-29 2022-11-08 The Boeing Company Cold spray metallic coating and methods
CN110468402A (zh) * 2018-05-11 2019-11-19 中国科学院金属研究所 一种冷喷涂制备y2o3陶瓷涂层的改进方法
US11634820B2 (en) * 2019-06-18 2023-04-25 The Boeing Company Molding composite part with metal layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004694A1 (fr) * 2000-07-07 2002-01-17 Linde Ag Surface en plastique a revetement pulverise thermiquement et son procede de production
WO2004091571A2 (fr) * 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Revetement/enrobage de nanoparticules au moyen de polymeres par un procede par antisolvant supercritique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US6287714B1 (en) * 1997-08-22 2001-09-11 Inframat Corporation Grain growth inhibitor for nanostructured materials
FR2775696B1 (fr) * 1998-03-05 2000-04-14 Saint Gobain Vitrage Substrat a revetement photocatalytique
US7101575B2 (en) * 1998-03-19 2006-09-05 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Production of nanocapsules and microcapsules by layer-wise polyelectrolyte self-assembly
RU2160697C2 (ru) 1998-09-11 2000-12-20 Акционерное общество закрытого типа "Тетра" Способ управления формой синтезируемых частиц и получения материалов и устройств, содержащих ориентированные анизотропные частицы и наноструктуры (варианты)
RU2149218C1 (ru) 1998-12-18 2000-05-20 Бузник Вячеслав Михайлович Состав для покрытий и способ его нанесения
CA2366945A1 (fr) * 1999-03-05 2000-09-08 Alcoa Inc. Procede utilise pour deposer un flux ou un flux et un metal sur un substrat metallique pour brasage
US6723387B1 (en) * 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
US6674047B1 (en) * 2000-11-13 2004-01-06 Concept Alloys, L.L.C. Wire electrode with core of multiplex composite powder, its method of manufacture and use
US7442227B2 (en) * 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
DE10224780A1 (de) * 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US20040058167A1 (en) 2002-07-19 2004-03-25 Mehran Arbab Article having nano-scaled structures and a process for making such article
DE10312806A1 (de) 2003-03-21 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lampe
US20050132843A1 (en) * 2003-12-22 2005-06-23 Xiangyang Jiang Chrome composite materials
US20060090593A1 (en) * 2004-11-03 2006-05-04 Junhai Liu Cold spray formation of thin metal coatings

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004694A1 (fr) * 2000-07-07 2002-01-17 Linde Ag Surface en plastique a revetement pulverise thermiquement et son procede de production
WO2004091571A2 (fr) * 2003-04-08 2004-10-28 New Jersey Institute Of Technology (Njit) Revetement/enrobage de nanoparticules au moyen de polymeres par un procede par antisolvant supercritique

Also Published As

Publication number Publication date
DE102005047688C5 (de) 2008-09-18
US8080278B2 (en) 2011-12-20
EP1926841A1 (fr) 2008-06-04
US20110039024A1 (en) 2011-02-17
WO2007033936A1 (fr) 2007-03-29
DE102005047688B3 (de) 2006-11-02

Similar Documents

Publication Publication Date Title
EP1926841B1 (fr) Procede de pulverisation de gaz froid
EP1899494B1 (fr) Procede de fabrication de couches ceramiques
DE102012212954B4 (de) Kaltgesprühte und wärmebehandelte Beschichtung für Magnesium
DE102009026655B3 (de) Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung
DD259586A5 (de) Verfahren zur herstellung von gespruehten abreibbaren beschichtungen und nach dem verfahren hergestellte beschichtung
DE112004002500T5 (de) Kaltspritzvorrichtung mit Pulvervorheizeinrichtung
WO2009010297A1 (fr) Matériau aluminium duplex à base d'aluminium présentant une première et une seconde phase et procédé de production d'un matériau aluminium duplex
EP2732072B1 (fr) Procédé de réparation des parties endommagées d'une pièce moulée et procédé de fabrication d'un matériau de réparation approprié
EP2807287A1 (fr) Procédé de pulvérisation à gaz froid
EP2576863B1 (fr) Procédé de réalisation d'une couche par injection de gaz froid et utilisation d'une telle couche
DE3224305C2 (fr)
DE102016223244A1 (de) Verfahren und Vorrichtung zum generativen Fertigen eines dreidimensionalen Objekts und dreidimensionales Objekt
EP2257656B1 (fr) Procédé pour former une couche par projection dynamique à froid
EP3211974B1 (fr) Procédé de fabrication d'une structure en couches sur une zone de surface d'un élément de construction et utilisation d'un dispositif pour effectuer ce procédé
WO2019076677A1 (fr) Procédé de fabrication d'un palier lisse et palier lisse fabriqué par ce procédé
DE1646679A1 (de) Verfahren zur Herstellung von Schutzueberzuegen auf Kohienstoffgegenstaenden und Einrichtung zu seiner Durchfuehrung
EP0911423B1 (fr) Méthode pour assembler des pièces
DE102011120540B4 (de) Herstellung eines Sinterpulvers und Sinterkörper
EP1785508B1 (fr) Méthode de fabrication d'une couche photocatalytique
EP2617868B1 (fr) Procédé et dispositif de pulvérisation thermique
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
EP3411516A1 (fr) Creuset
DE10114306B4 (de) Kompositschicht, Verfahren zur Herstellung einer Kompositschicht und deren Verwendung
EP1923478A1 (fr) Couche d'accrochage rugueuse
EP2087143A2 (fr) Revêtement déposé en phase vapeur, composant supportant les contraintes thermiques comprenant un tel revêtement, et procédé et dispositif de réalisation d'un tel revêtement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110308

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 683541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013929

Country of ref document: DE

Effective date: 20141002

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013929

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

26N No opposition filed

Effective date: 20150521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141020

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140820

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060915

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160914

Year of fee payment: 11

Ref country code: NL

Payment date: 20160905

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160809

Year of fee payment: 11

Ref country code: SE

Payment date: 20160908

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161121

Year of fee payment: 11

Ref country code: CH

Payment date: 20161202

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013929

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 683541

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916