DE102011052119A1 - Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren - Google Patents

Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren Download PDF

Info

Publication number
DE102011052119A1
DE102011052119A1 DE102011052119A DE102011052119A DE102011052119A1 DE 102011052119 A1 DE102011052119 A1 DE 102011052119A1 DE 102011052119 A DE102011052119 A DE 102011052119A DE 102011052119 A DE102011052119 A DE 102011052119A DE 102011052119 A1 DE102011052119 A1 DE 102011052119A1
Authority
DE
Germany
Prior art keywords
coating material
additive
spraying
particles
thermal plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011052119A
Other languages
English (en)
Inventor
wird später genannt werden Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eckart GmbH
Original Assignee
Eckart GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckart GmbH filed Critical Eckart GmbH
Priority to DE102011052119A priority Critical patent/DE102011052119A1/de
Priority to JP2014522093A priority patent/JP2014527575A/ja
Priority to KR1020147004893A priority patent/KR20140061422A/ko
Priority to CN201810874735.5A priority patent/CN108950459A/zh
Priority to EP12741313.6A priority patent/EP2737100B1/de
Priority to US14/234,851 priority patent/US20140230692A1/en
Priority to CN201280046396.2A priority patent/CN103827344A/zh
Priority to PCT/EP2012/064638 priority patent/WO2013014213A2/de
Publication of DE102011052119A1 publication Critical patent/DE102011052119A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Paints Or Removers (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung eines Partikel-haltigen pulverförmigen Beschichtungsmaterials, wobei auf der Oberfläche der Partikel zumindest teilweise ein Additiv aufgebracht wurde, in Beschichtungsverfahren, insbesondere beim Kaltgasspritzen, Flammspritzen, Hochgeschwindigkeitsflammspritzen, thermischen Plasmaspritzen und nichtthermischen Plasmaspritzen. Ferner betrifft die vorliegende Erfindung Beschichtungsverfahren, insbesondere die vorgenannten Verfahren, unter Einsatz des erfindungsgemäßen pulverförmigen Beschichtungsmaterials.

Description

  • Die vorliegende Erfindung behandelt die Verwendung pulverförmiger Beschichtungsmaterialien zur Beschichtung von Substraten. Ferner umfasst die vorliegende Erfindung Verfahren zur Substratbeschichtung unter Verwendung derartiger pulverförmiger Beschichtungsmaterialien. Ferner umfasst die vorliegende Erfindung pulverförmige Beschichtungsmaterialien, die für die vorgenannten Verwendungen und/oder Verfahren geeignet sind.
  • Es sind bereits eine Vielzahl an Beschichtungsverfahren für unterschiedliche Substrate bekannt. Beispielsweise werden Metalle oder deren Vorstufen aus der Gasphase auf einer Substratoberfläche abgeschieden, siehe z.B. PVD- oder CVD-Verfahren. Ferner können entsprechende Stoffe beispielsweise aus einer Lösung mittels galvanischer Verfahren abgeschieden werden. Zudem ist es möglich, Beschichtungen beispielsweise in der Form von Lacken auf die Oberfläche aufzubringen. Alle Verfahren besitzen jedoch spezifische Vor- und Nachteile. Beispielsweise werden bei der Auftragung in Form von Lacken große Mengen an Wasser und/oder organische Lösemittel benötigt, eine Trocknungszeit ist erforderlich, das aufzubringende Beschichtungsmaterial muss mit dem Basislack kompatibel sein und ein Rest der Basislackes verbleibt ebenfalls auf dem Substrat. Beispielsweise die Aufbringung mittels PVD-Verfahren erfordert große Mengen an Energie, um schwerflüchtige Stoffe in die Gasphase zu bringen.
  • In Anbetracht der vorgenannten Einschränkungen wurde eine Vielzahl von Beschichtungsverfahren entwickelt, um die für den jeweiligen Verwendungszweck gewünschten Eigenschaften bereitzustellen. Bekannte Verfahren nutzen zur Erzeugung der Beschichtungen beispielsweise kinetische Energie, thermische Energie oder Mischungen hiervon, wobei die thermische Energie beispielsweise aus einer konventionellen Verbrennungsflamme oder einer Plasmaflamme stammen kann. Letztere werden weiter unterschieden in thermische und nichtthermische Plasmen, denen gemein ist, dass ein Gas partiell oder vollständig in freie Ladungsträger wie Ionen oder Elektronen aufgetrennt wurde.
  • Beim Kaltgasspritzen erfolgt die Bildung der Beschichtung durch Aufbringen eines Pulvers auf eine Substratoberfläche, wobei die Pulverpartikel stark beschleunigt werden. Hierzu wird ein erhitztes Prozessgas durch Expansion in einer Lavaldüse auf Überschallgeschwindigkeit beschleunigt und anschließend das Pulver injiziert. Infolge der hohen kinetischen Energie bilden die Partikel beim Auftreffen auf der Substratoberfläche eine dichte Schicht.
  • Beispielsweise offenbart die WO 2010/003396 A1 die Verwendung des Kaltgasspritzens als Beschichtungsverfahren zum Aufbringen von Verschleißschutzbeschichtungen. Weiterhin finden sich Offenbarungen des Kaltgasspritzverfahrens beispielsweise in EP 1 363 811 A1 , EP 0 911 425 B1 und US 7,740,905 B2 .
  • Das Flammspritzen gehört zur Gruppe der thermischen Beschichtungsverfahren. Hierbei wird ein pulverförmiges Beschichtungsmaterial in die Flamme eines Brenngas-Sauerstoff-Gemisches eingebracht. Hierbei können beispielsweise mit Acetylen-Sauerstoffflammen Temperaturen von bis zu ungefähr 3200 °C erreicht werden. Details zum Verfahren können Publikationen wie z.B. EP 830 464 B1 und US 5,207,382 A entnommen werden.
  • Beim Thermischen Plasmaspritzen wird ein pulverförmiges Beschichtungsmaterial in ein thermisches Plasma injiziert. Im typischerweise verwendeten thermischen Plasma werden Temperaturen von bis zu ca. 20 000 K erreicht, wodurch das injizierte Pulver aufschmilzt und als Beschichtung auf einem Substrat abgeschieden wird.
  • Das Verfahren des Thermisches Plasmaspritzens und spezifische Ausführungsformen sowie Verfahrensparameter sind dem Fachmann bekannt. Exemplarisch wird auf die WO 2004/016821 verwiesen, die den Einsatz des Thermisches Plasmaspritzens zum Aufbringen einer amorphen Beschichtung beschreibt. Ferner offenbart beispielsweise EP 0 344 781 den Einsatz des Flammspritzens und des thermischen Plasmaspritzens als Beschichtungsverfahren unter Einsatz eines Wolframcarbidpulvergemisches. Spezifische Geräte zur Verwendung in Plasmaspritzverfahren sind vielfach in der Literatur beschrieben, wie beispielsweise in EP 0 342 428 A2 , US 7,678,428 B2 , US 7,928,338 B2 und EP 1 287 898 A2 .
  • Beim Hochgeschwindigkeitsflammspritzen wird ein Kraftstoff unter hohem Druck verbrannt, wobei als Kraftstoff sowohl Brenngase, flüssige Brennstoffe und Mischungen hiervon eingesetzt werden können. In die hochbeschleunigte Flamme wird ein pulverförmiges Beschichtungsmaterial injiziert. Dieses Verfahren ist bekannt dafür, dass es sich durch verhältnismäßig dichte Spritzschichten auszeichnen soll. Auch das Hochgeschwindigkeitsflammspritzen ist dem Fachmann gut bekannt und wurde bereits in zahlreichen Veröffentlichungen beschrieben. Beispielsweise offenbart EP 0 825 272 A2 eine Substratbeschichtung mit einer Kupferlegierung unter Einsatz des Hochgeschwindigkeitsflammspritzens. Ferner offenbaren beispielsweise WO 2010/037548 A1 und EP 0 492 384 A1 das Verfahren des Hochgeschwindigkeitflammspritzens und Geräte zur Verwendung hierin.
  • Das nichtthermische Plasmaspritzen erfolgt weitgehend analog zum thermischen Plasmaspritzen und Flammspritzen. Ein pulverförmiges Beschichtungsmaterial wird in ein nichtthermisches Plasma injiziert und hiermit auf eine Substratoberfläche aufgetragen. Wie beispielsweise der EP 1 675 971 B1 entnommen werden kann, zeichnet sich dieses Verfahren durch eine besonders niedrige thermische Belastung des beschichteten Substrats aus. Auch dieses Verfahren, besondere Ausführungsformen und entsprechende Verfahrensparameter sind dem Fachmann aus verschiedenen Publikationen bekannt. Beispielsweise beschreibt die EP 2 104 750 A2 die Anwendung dieses Verfahrens und eine Vorrichtung zu dessen Durchführung. Beispielsweise DE 103 20 379 A1 beschreibt die Herstellung eines elektrisch beheizbaren Elementes unter Einsatz dieses Verfahrens. Weitere Offenbarungen hinsichtlich des Verfahrens oder Vorrichtungen für das nichtthermische Plasmaspritzen finden sich beispielsweise in EP 1 675 971 B1, DE 10 2006 061 435 A1 , WO 03/064061 A1 , WO 2005/031026 A1 , DE 198 07 086 A1 , DE 101 16 502 A1 , WO 01/32949 A1 , EP 0 254 424 B1 , EP 1 024 222 A2 , DE 195 32 412 A1 , DE 199 55 880 A1 und DE 198 56 307 C1 .
  • Ein allgemeines Problem von Beschichtungsverfahren unter Einsatz eines pulverförmigen Beschichtungsmaterials ist die Förderung der Pulver. Insbesondere zur Herstellung von beispielsweise besonders dünnen Schichten ist eine sehr gleichmäßige Zuführung des pulverförmigen Beschichtungsmaterials notwendig. Aus diesem Grund finden sich zusätzlich verschiedene speziell ausgestaltete Fördervorrichtungen als Thema eigener Patentanmeldungen. Beispiele finden sich in WO 03/029762 A1 und WO 2011/032807 A1 .
  • Aufgabe der vorliegenden Erfindung ist es, die Erzeugung neuartiger Beschichtungen zu ermöglichen oder die Herstellung bekannter Beschichtungen zu verbessern. Ferner ist es eine Aufgabe der vorliegenden Erfindung, die Erzeugung hochwertiger besonders dünner Beschichtungen zu ermöglichen. Ferner ist es eine Aufgabe der vorliegenden Erfindung, bestehende Probleme hinsichtlich der Förderbarkeit des in einem Beschichtungsverfahren eingesetzten pulverförmigen Beschichtungsmaterials zu lösen.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, Verfahren zur Substratbeschichtung bereitzustellen, die sich durch neuartige Beschichtungen oder eine verbesserte Qualität der Beschichtung auszeichnen.
  • Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein pulverförmiges Beschichtungsmaterial bereitzustellen, das für eine der vorgenannten Verwendungen in Beschichtungsverfahren besonders geeignet ist.
  • Die vorliegende Erfindung betrifft die Verwendung eines Partikel-haltigen pulverförmigen Beschichtungsmaterials in einem Beschichtungsverfahren, wobei die Partikel des pulverförmigen Beschichtungsmaterials zumindest teilweise mit mindestens einem Additiv vesehen sind und wobei das Beschichtungsverfahren ausgewählt wird aus der Gruppe bestehend aus Kaltgasspritzen, Flammspritzen, Hochgeschwindigkeitsflammspritzen, thermischem Plasmaspritzen und nichtthermischem Plasmaspritzen.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendung beträgt der Gewichtsanteil des Additivs bzw. der Additive höchstens 32 Gew.-%, bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen beträgt der Gewichtsanteil des Additivs bzw. der Additive zwischen 0,02 % und 32 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen beträgt der Kohlenstoffgehalt der additivversehenen Partikel des pulverförmigen Beschichtungsmaterials von 0,01 Gew.-% bis 15 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen beträgt der Gewichtsanteil des Additivs bzw. der Additive mindestens 0,02 Gew.-%, bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen weist die als Additiv eingesetzte Verbindung bzw. weisen die als Additiv eingesetzten Verbindungen mindestens 6 Kohlenstoffatome auf.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen umfassen oder sind die Partikel des pulverförmigen Beschichtungsmaterials Metallpartikel und das Metall wird ausgewählt aus der Gruppe bestehend aus Silber, Gold, Platin, Palladium, Vanadium, Chrom, Mangan, Cobalt, Germanium, Antimon, Aluminium, Zink, Zinn, Eisen, Kupfer, Nickel, Titan, Silizium, Legierungen und Mischungen davon.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen wird das Beschichtungsverfahren ausgewählt aus der Gruppe bestehend aus. Flammspritzen und nichtthermischem Plasmaspritzen. Besonders bevorzugt ist das nichtthermische Plasmaspritzen.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen umfasst das mindestens eine Additiv keine Stearinsäure und/oder Ölsäure und vorzugsweise keine gesättigte und ungesättigte C18-Carbonsäuren, mehr bevorzugt keine gesättigte und ungesättigte C14 bis C18-Carbonsäuren, noch mehr bevorzugt keine gesättigte und ungesättigte C12 bis C18-Carbonsäuren und am meisten bevorzugt keine gesättigte und ungesättigte C10 bis C20-Carbonsäuren.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen wird das Additiv bzw. werden die Additive ausgewählt aus der Gruppe bestehend aus Polymeren, Monomeren, Silanen, Wachsen, oxidierten Wachsen, Carbonsäuren, Phosphonsäuren, Derivate der vorgenannten und Mischungen davon.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen weist das pulverförmige Beschichtungsmaterial einen Span-Wert im Bereich von 0,4 bis 2,9 auf, der wie folgt definiert ist:
    Figure 00070001
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen ist das Additiv bzw. sind die Additive von den beschichteten Partikeln mit organischem und/oder wässrigem Lösungsmittel ablösbar.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert im Bereich von 1,5 bis 53 μm auf.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D90-Wert im Bereich von 9 bis 103 μm auf.
  • Bei bestimmten Ausführungsformen der vorgenannten Verwendungen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert im Bereich von 0,2 bis 5 μm auf.
  • Weiterhin betrifft die vorliegende Erfindung Verfahren zur Beschichtung eines Substrats ausgewählt aus der Gruppe bestehend aus Kaltgasspritzen, Flammspritzen, Hochgeschwindigkeitsflammspritzen, thermischem Plasmaspritzen und nichtthermischem Plasmaspritzen, wobei ein pulverförmiges Beschichtungsmaterial eingesetzt wird, dessen Partikel zumindest teilweise mit mindestens einem Additiv versehen sind.
  • Bei bestimmten Ausführungsformen des vorgenannten Verfahrens wird das Verfahren ausgewählt wird aus der Gruppe bestehend aus Flammspritzen und nichtthermisches Plasmaspritzen. Vorzugsweise ist das Verfahren in bestimmten der vorgenannten Ausführungsformen das nichtthermische Plasmaspritzen.
  • Bei bestimmten Ausführungsformen der vorgenannten Verfahren wird das pulverförmige Beschichtungsmaterial als Aerosol gefördert.
  • Bei bestimmten Ausführungsformen der vorgenannten Verfahren ist das auf das Substrat gerichtete Medium Luft oder wurde aus Luft erzeugt. Die vorgenannte Luft kann aus der Umgebungsatmosphäre entnommen werden. Bei bestimmten Ausführungsformen, bei denen beispielsweise eine besonders hohe Reinheit der Beschichtung gewünscht ist, wird die Luft vor ihrem Einsatz gereinigt, wobei beispielsweise Staub und/oder Wasserdampf abgetrennt wird. Ebenfalls kann es bevorzugt sein, dass auch die gasförmigen Bestandteile der Luft außer Stickstoff und Sauerstoff weitgehend vollständig abgetrennt werden, wobei die Gesamtmenge der Verunreinigungen vorzugsweise < 0,01 Vol.-%, weiter bevorzugt < 0,001 Vol.-% ist.
  • Der Begriff "pulverförmiges Beschichtungsmaterial" im Sinne der vorliegenden Erfindung bezieht sich auf ein Partikelgemisch, das auf das Substrat als Beschichtung aufgebracht wird. Das Versehen der Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials mit dem Additiv bzw. den Additiven muss hierbei nicht vollständig sein, um die erfindungsgemäße Verwendung zu ermöglichen. Ohne dass es als Einschränkung der Erfindung verstanden werden soll, ist es die Ansicht der Erfinder, dass die Wirkung der aufgebrachten Additive unter anderem durch eine Wirkung als Abstandshalter zwischen den einzelnen Partikeln verursacht wird, wobei ein Aufbringen oder eine Belegung der Oberfläche über einen bestimmten Grad hinaus mit keiner merklich verbesserten Förderbarkeit verbunden ist, jedoch einen vermehrten Einsatz des Additivs bzw. der Additive erfordert, welcher daher nur Kosten verursacht und somit wirtschaftlich nicht sinnvoll ist. Daher ist es bei bestimmten Ausführungsformen bevorzugt, dass höchstens 90 %, vorzugsweise höchstens 85 %, mehr bevorzugt höchstens 80 %, noch mehr bevorzugt höchstens 75 % und am meisten bevorzugt höchstens 70 % der Oberfläche der Partikel mit dem Additiv bzw. den Additiven belegt sind. Gleichzeitig bietet eine möglichst vollständige Belegung der Oberfläche der Partikel jedoch eine gewisse Schutzwirkung beispielsweise vor oxidierenden Einflüssen aus der Umgebung. Daher ist es bei bestimmten besonders bevorzugten Ausführungsformen der Erfindung bevorzugt, dass mindestens 20 %, vorzugsweise mindestens 25 %, mehr bevorzugt mindestens 30 % und noch mehr bevorzugt mindestens 35 % der Oberfläche der Partikel mit dem Additiv bzw. den Additiven belegt sind. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass mindestens 40 %, vorzugsweise mindestens 50 %, mehr bevorzugt mindestens 55 % und noch mehr bevorzugt mindestens 60 % der Oberfläche der Partikel mit dem Additiv bzw. den Additiven belegt sind. Eine Bestimmung der Oberflächenbelegung der erfindungsgemäßen pulverförmigen Beschichtungsmaterialien erfolgt mittels REM, wobei 30 zufällig ausgewählte Partikel betrachtet werden.
  • Überraschenderweise haben die Erfinder festgestellt, dass die Förderbarkeit eines pulverförmigen Beschichtungsmaterials durch die zumindest partielle Belegung der Oberfläche der Partikel mit mindestens einem Additiv deutlich erhöht wird. Dies ist in Beschichtungsverfahren, insbesondere bei solchen, bei denen eine dünne Schicht aufgetragen werden soll, von großer Bedeutung, um hochqualitative und reproduzierbare Ergebnisse zu erhalten. Eine Erhöhung der Reproduzierbarkeit des Verfahrens und gleichmäßigere Zuführung des pulverförmigen Beschichtungsmaterials ermöglicht ferner die Herstellung deutlich homogenerer Beschichtungen mit wenig Fehlstellen und einem sehr hohen Vernetzungsgrad der Partikel. Derartige Merkmale sind insbesondere von Bedeutung für die Herstellung besonders dünner Beschichtungen. Zudem resultiert eine derart verbesserte Förderbarkeit in einer deutlich vereinfachten Zuführung des pulverförmigen Beschichtungsmaterials und einer drastischen Verringerung des apparativen Aufwands.
  • Erfindungsgemäße Verfahren, die zum Aufbau von Beschichtungen eingesetzt werden können, sind beispielsweise Kaltgasspritzen, thermisches Plasmaspritzen, nichtthermisches Plasmaspritzen, Flammspritzen und Hochgeschwindigkeitsflammspritzen. Von besonders großer Bedeutung erweist sich eine verbesserte Förderbarkeit insbesondere bei Beschichtungsverfahren, bei denen eine möglichst geringe thermische Belastung des Substrats hervorgerufen werden soll und keine oder nahezu keine thermische Komponente für die Aufbringung der Beschichtung eingesetzt wird. Bei bestimmten Ausführungsformen ist daher die Verwendung des erfindungsgemäßen pulverförmigen Beschichtungsmaterials beim Flammspritzen, nichtthermischen Plasmaspritzen, Kaltgasspritzen und Hochgeschwindigkeitsflammspritzen bevorzugt. In bestimmten Fällen ist es zudem erwünscht, auch empfindliche Substrate mit dem erfindungsgemäßen Verfahren beschichten zu können, weshalb das pulverförmige Beschichtungsmaterial mit lediglich begrenzter kinetischer Energie aufgebracht werden darf. Bei bestimmten der vorgenannten Ausführungsformen wird das Verfahren daher bevorzugt ausgewählt aus der Gruppe bestehend aus Flammspritzen und nichtthermischen Plasmaspritzen. Der industrielle Einsatz des Flammspritzens erfordert jedoch den Einsatz und zur Sicherstellung eines kontinuierlichen Betriebs die Lagerung großer Mengen des eingesetzten Gases. Da beim Flammspritzen brennbare Gase zum Erzeugen der Flamme erforderlich sind, ist deren Lagerung mit einem entsprechenden Sicherheitsrisiko verbunden und erfordert daher spezielle Sicherheitsvorschriften. Ein Plasma kann hingegen auch unter Einsatz nichtbrennbarer Gase erzeugt werden, so dass die Lagerung entsprechender Gasmengen mit geringeren Sicherheitsstandards und daher verminderten Kosten verbunden ist. Bei bestimmten der vorgenannten Ausführungsformen ist es daher ganz besonders bevorzugt, dass das nichtthermische Plasmaspritzen als Beschichtungsverfahren genutzt wird.
  • Der Begriff "Additiv" im Sinne der vorliegenden Erfindung bezieht sich auf Stoffe die auf der Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials unvernetzt vorliegen, d.h. nicht vernetzt wurden. Insbesondere bezieht sich der Begriff "Additiv" bei bevorzugten Ausführungsformen der vorliegenden Erfindung auf kohlenstoffhaltige Verbindung, die auf der Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials nicht vernetzt wurden. Im Sinne der vorliegenden Erfindung wird unter „nicht auf der Oberfläche vernetzt“ verstanden, dass während oder nach dem Aufbringen des Additivs auf die Partikel des pulverförmigen Beschichtungsmaterials keine kovalenten Bindungen zwischen den einzelnen Additivmolekülen aufgebaut werden, mithin keine Nachvernetzung auf der Pigmentoberfläche erfolgt. Insbesondere werden unter dem Begriff "Additiv" keine vernetzten Polymere verstanden, wie sie beispielsweise in der EP 2115075 A1 offenbart werden.
  • Bei bestimmten Ausführungsformen ist es insbesondere bevorzugt, dass die Additive nur mittels physikalischer Bindungen an die Partikel des pulverförmigen Beschichtungsmaterials gebunden sind, beispielsweise mittels Van-der-Waals-Wechselwirkungen, Dipol-Wechselwirkungen oder Wasserstoffbrücken. Es ist jedoch auch möglich, dass die Additive zusätzlich oder alternativ mittels chemischer Bindungen wie beispielsweise kovalenten oder ionischen Bindungen an die Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials gebunden sind.
  • Generell ist es bevorzugt, dass die erfindungsgemäßen Additive durch den Einsatz organischer und/oder wässriger Lösungsmittel wieder von den Partikeln abgelöst werden können. Derartige Additive besitzen insbesondere den Vorteil, dass sie leicht und kostengünstig aufzubringen sind. Bei bestimmten Ausführungsformen können bestimmte bevorzugte Additive beispielsweise in einem Lösungsmittel dispergiert und durch mechanische Kräfte auf die Pulverpartikel aufgebracht werden. Zusätzlich oder alternativ können bei bestimmten Ausführungsformen die Additive in einem geeigneten Lösungsmittel gelöst, dann mit den Pulverpartikeln gemischt und durch Abdampfen des Lösungsmittels auf die Pulverpartikel aufgebracht werden.
  • Ohne dass es als Einschränkung der Erfindung verstanden werden soll, ist es die Ansicht der Erfinder, dass die erfindungsgemäßen Additive die Wechselwirkungen zwischen den Partikeln herabsetzen und dadurch die Förderbarkeit erhöhen.
  • Stoffe, die als Additive im Sinne der vorliegenden Erfindung sind insbesondere kohlenstoffhaltige Verbindungen, die chemisch und/oder physikalisch auf der Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials gebunden werden.
  • Ohne dass es als Einschränkung der vorliegenden Erfindung verstanden werden soll, ist es die Ansicht der Erfinder, dass eine besonders starke Verbesserung der erfindungsgemäß hergestellten Beschichtungen bei der Verwendung von Additiven mit hohem Kohlenstoffgehalt in einer Verbrennungsflamme oder einer Plasmaflamme dadurch hervorgerufen wird, dass das Additiv in der Flamme verbrennt und hierbei vorhandene Agglomerate des pulverförmigen Beschichtungsmaterials aufbricht. Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des additivbelegten pulverförmigen Beschichtungsmaterials mindestens 0,01 Gew.-%, vorzugsweise mindestens 0,05 Gew.-%, mehr bevorzugt mindestens 0,1 Gew.-% und noch mehr bevorzugt mindestens 0,17 Gew.-% ist. Insbesondere ist es in bestimmten Ausführungsformen bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des additivbelegten pulverförmigen Beschichtungsmaterial mindestens 0,22 Gew.-%, vorzugsweise mindestens 0,28 Gew.-%, mehr bevorzugt mindestens 0,34 Gew.-% und noch mehr bevorzugt mindestens 0,4 Gew.-% ist. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Andererseits ist es bei bestimmten Ausführungsformen bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des additivbelegten pulverförmigen Beschichtungsmaterial höchstens 15 Gew.-%, vorzugsweise höchstens 10 Gew.-%, mehr bevorzugt höchstens 7 Gew.-% und noch mehr bevorzugt höchstens 5 Gew.-% beträgt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der Kohlenstoffgehalt höchstens 4 Gew.-%, vorzugsweise höchstens 3 Gew.-%, mehr bevorzugt höchstens 2 Gew.-% und noch mehr bevorzugt höchstens 1 Gew.-% beträgt. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei bestimmten Ausführungsformen ist es insbesondere bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des additivbelegten pulverförmigen Beschichtungsmaterial im Bereich zwischen 0,01 Gew.-% und 15 Gew.-%, vorzugsweise im Bereich zwischen 0,05 Gew.-% und 10 Gew.-%, mehr bevorzugt im Bereich zwischen 0,1 Gew.-% und 7 Gew.-% und noch mehr bevorzugt im Bereich zwischen 0,17 Gew.-% und 5 Gew.-% liegt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des additivbelegten pulverförmigen Beschichtungsmaterial im Bereich zwischen 0,22 Gew.-% und 4 Gew.-%, vorzugsweise im Bereich zwischen 0,28 Gew.-% und 3 Gew.-%, mehr bevorzugt im Bereich zwischen 0,34 Gew.-% und 2 Gew.-% und noch mehr bevorzugt im Bereich zwischen 0,4 Gew.-% und 1 Gew.-% liegt. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs. Die Bestimmung des Gewichtsanteils der Kohlenstoffatome am Gesamtgewicht des Beschichtungsmaterials und des Additivs erfolgt beispielsweise mit einem CS 200 Gerät der Firma Leco Instruments GmbH.
  • Bei bestimmten Ausführungsformen ist es ferner bevorzugt, dass die als Additiv eingesetzten Verbindungen mindestens 6 Kohlenstoffatome, vorzugsweise mindestens 7 Kohlenstoffatome, mehr bevorzugt mindestens 8 Kohlenstoffatome und noch mehr bevorzugt mindestens 9 Kohlenstoffatome enthalten. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass die als Additiv eingesetzten Verbindungen mindestens 10 Kohlenstoffatome, vorzugsweise mindestens 11 Kohlenstoffatome, mehr bevorzugt mindestens 12 Kohlenstoffatome und noch mehr bevorzugt mindestens 13 Kohlenstoffatome enthalten. Die Anzahl der im erfindungsgemäßen Additiv enthaltenen Kohlenstoffatome kann beispielsweise durch Bestimmung des jeweiligen Additivs bestimmt werden. Hierbei können alle dem Fachmann bekannten Verfahren zur Bestimmung einer Substanz herangezogen werden. Beispielsweise kann ein Additiv unter Einsatz organischer und/oder wässriger Lösungsmittel von den Partikeln des pulverförmigen Beschichtungsmaterials abgelöst werden und anschließend mittels HPLC, GCMS, NMR, CHN oder Kombinationen der vorgenannten untereinander oder mit anderen routinemäßig genutzten Verfahren identifiziert werden.
  • Bei bestimmten Ausführungsformen ist es ferner bevorzugt, dass der Gewichtsanteil des Additivs bzw. der Additive mindestens 0,02 Gew.-%, vorzugsweise mindestens 0,08 Gew.-%, mehr bevorzugt mindestens 0,17 Gew.-% und noch mehr bevorzugt mindestens 0,30 Gew.-% beträgt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der C-Gehalt des Beschichtungsmaterials und des Additivs mindestens 0,35 Gew.-%, vorzugsweise mindestens 0,42 Gew.-%, mehr bevorzugt mindestens 0,54 Gew.-% und noch mehr bevorzugt mindestens 0,62 Gew.-% beträgt. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei weiteren bestimmten Ausführungsformen ist es ferner bevorzugt, dass der Gewichtsanteil des Additivs höchstens 32 Gew.-%, vorzugsweise höchstens 18 Gew.-%, mehr bevorzugt höchstens 13 Gew.-% und noch mehr bevorzugt höchstens 9 Gew.-% beträgt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der C-Gehalt des Beschichtungsmaterial und des Additivs höchstens 7 Gew.-%, vorzugsweise höchstens 6 Gew.-%, mehr bevorzugt höchstens 4,5 Gew.-% und noch mehr bevorzugt höchstens 2,3 Gew.-% beträgt. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Bei weiteren bestimmten Ausführungsformen ist es ferner bevorzugt, dass der Gewichtsanteil des Additivs im Bereich zwischen 0,02 Gew.-% und 32 Gew.-%, vorzugsweise im Bereich zwischen 0,08 Gew.-% und 18 Gew.-%, mehr bevorzugt im Bereich zwischen 0,17 Gew.-% und 13 Gew.-% und noch mehr bevorzugt im Bereich zwischen 0,30 Gew.-% und 9 Gew.-% liegt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der Gewichtsanteil der Kohlenstoffatome des Beschichtungsmaterials und des Additivs im Bereich zwischen 0,35 Gew.-% und 7 Gew.-%, vorzugsweise im Bereich zwischen 0,42 Gew.-% und 6 Gew.-%, mehr bevorzugt im Bereich zwischen 0,54 Gew.-% und 4,5 Gew.-% und noch mehr bevorzugt im Bereich zwischen 0,62 Gew.-% und 2,3 Gew.-% liegt. Die vorgenannten Gew.-% beziehen sich auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  • Beispiele für Stoffe, die als Additive im Sinne der vorliegenden Erfindung eingesetzt werden können sind:
    Polymere (z.B. Polysaccharide, Kunststoffe), Monomere, Silane, Wachse, oxidierte Wachse, Carbonsäuren (z.B. Fettsäuren), Phosphonsäuren, Derivate der vorgenannten (insbesondere Carbonsäurederivate und Phosphorsäurederivate) und Mischungen hiervon. Bei bestimmten Ausführungsformen ist es bevorzugt, dass Polysaccharide, Kunststoffe, Silane, Wachse, oxidierte Wachse, Carbonsäuren (z.B. Fettsäuren) Carbonsäurederivate, Phosphonsäuren, Phosphorsäurederivate oder Mischungen hiervon, vorzugsweise Polysaccharide, Silane, Wachse, oxidierte Wachse, Carbonsäuren (z.B. Fettsäuren) Carbonsäurederivate, Phosphonsäuren, Phosphorsäurederivate oder Mischungen hiervon, mehr bevorzugt Polysaccharide, Silane, Wachse, oxidierte Wachse, Phosphonsäuren, Phosphorsäurederivate oder Mischungen hiervon, als Additiv eingesetzt werden.
  • Die vorgenannten Wachse umfassen natürliche Wachse als auch synthetische Wachse. Beispiele derartiger Wachse sind Paraffinwachse, Petroleumwachse, Montanwachse, tierische Wachse (z.B. Bienenwachs, Shellack, Wollwachs), pflanzliche Wachse (z.B. Carnaubawachs, Candelillawachs, Reiswachs), Fettsäureamidwachse (wie z.B. Erucamid), Polyolefinwachse (wie z.B. Polyethylenwachse, Polypropylenwachse), gepfropfte Polyolefinwachse, Fischer-Tropsch Wachse, und oxidierte Polyethylenwachse und modifizierte Polyethylen und Polypropylenwachse (z.B. Metallocen-Wachse). Die erfindungsgemäßen Wachse sind bei bestimmten Ausführungsformen bevorzugt über physikalische Bindungen gebunden. Es ist jedoch nicht ausgeschlossen, dass die Wachse bei weiteren bestimmten Ausführungsformen über funktionelle Gruppen verfügen, die alternativ oder zusätzlich eine ionische und/oder kovalente Bindung ermöglichen.
  • Der Begriff "Polymer" im Sinne der vorliegenden Erfindung umfasst auch Oligomere. Bei bestimmten bevorzugten Ausführungsformen sind die erfindungsgemäß eingesetzten Polymere jedoch bevorzugt aus mindestens 25 Monomereinheiten, mehr bevorzugt aus mindestens 35 Monomereinheiten, noch mehr bevorzugt aus mindestens 45 Monomereinheiten und am meisten bevorzugt aus mindestens 50 Monomereinheiten aufgebaut. Die Polymere können hierbei an die Partikel des pulverförmigen Beschichtungsmaterials gebunden sein, ohne dass kovalente oder ionische Bindung ausgebildet werden. Bei bestimmten Ausführungsformen ist es jedoch bevorzugt, dass das erfindungsgemäße Additiv mindestens eine ionische oder kovalente Bindung zu den Partikeln des pulverförmigen Beschichtungsmaterials ausbilden kann. Eine derartige Bindung erfolgt bei bestimmten der vorgenannten Ausführungsformen vorzugsweise über eine im Polymer enthaltene Phosphorsäure-, Carbonsäure-, Silan- oder Sulfonsäuregruppe.
  • Der Begriff "Polysaccharid" im Sinne der vorliegenden Erfindung umfasst auch Oligosaccharide. Bei bestimmten bevorzugten Ausführungsformen sind die erfindungsgemäß eingesetzten Polysaccharide jedoch bevorzugt aus mindestens 4 Monomereinheiten, mehr bevorzugt aus mindestens 8 Monomereinheiten noch mehr bevorzugt aus mindestens 10 Monomereinheiten und am meisten bevorzugt aus mindestens 12 Monomereinheiten aufgebaut sind. Bei bestimmten Ausführungsformen besonders bevorzugte Polysaccharide sind Cellulose, Cellulosederivate wie z.B. Methylcellulose, Ethylcellulose, Carboxymethylcelluose, Hydroxyethylcellulose, Hydroxypropylmethylcellulose, Nitrocellulose (z.B. Ethocel, oder Methocel von der Dow Wolff cellulosics), Celluloseester (z.B. Celluloseacetat, Celluloseacetobutyrat, und Cellulosepropionat), Stärke wie z.B. Maisstärke, Kartoffelstärke und Weizenstärke und modifizierte Stärken.
  • Der Begriff "Kunststoff" im Sinne der vorliegenden Erfindung umfasst thermoplastische, duroplastische oder elastomere Kunststoffe. Besonders bevorzugt sind hierbei thermoplastische Kunststoffe, wobei alle dem Fachmann bekannten Thermoplaste in Betracht kommen. Eine Zusammenstellung entsprechender Thermoplaste findet sich z.B. im Kunststoff-Taschenbuch, Hrsg. Saechtling, 25. Ausgabe, Hanser-Verlag, München, 1992, insbesondere Kapitel 4 sowie darin zitierte Verweise, und im Kunststoff-Handbuch, Hrsg. G. Becker und D. Braun, Bände 1 bis 11, Hanser-Verlag, München, 1966 bis 1996. Ohne hierauf beschränkt zu sein, sollen zur Verdeutlichung die folgenden Thermoplaste exemplarisch genannt werden: Polyoxyalkylene, Polycarbonate (PC), Polyester wie Polybutylenterephthalat (PBT) oder Polyethylenterephthalat (PET), Polyolefine wie Polyethylen oder Polypropylen (PP), Poly(meth)acrylate, Polyamide, vinylaromatische (Co)polymere wie Polystyrol, schlagzähmodifiziertes Polystyrol wie HI-PS, oder ASA-, ABS- oder AES-Polymerisate, Polyarylenether wie Polyphenylenether (PPE), Polysulfone, Polyurethane, Polylactide, halogenhaltige Polymerisate, imidgruppenhaltige Polymere, Celluloseester, Silicon-Polymere und thermoplastische Elastomere. Es können auch Mischungen unterschiedlicher Thermoplaste in der Form von ein- oder mehrphasigen Polymerblends eingesetzt werden.
  • Polyoxyalkylenhomo- oder -copolymerisate, insbesondere (Co)polyoxymethylene (POM), und Verfahren zu deren Herstellung sind dem Fachmann an sich bekannt und in der Literatur beschrieben. Die Polymerhauptkette dieser Polymere weist mindestens 50 Mol-% an wiederkehrenden Einheiten -CH2O- auf. Die Homopolymeren werden im Allgemeinen durch Polymerisation von Formaldehyd oder Trioxan, vorzugsweise katalytisch, hergestellt. Beispiele sind Polyoxymethylencopolymere und Polyoxymethylenterpolymerisate.
  • Geeignete Polycarbonate sind an sich bekannt und sind z.B. gemäß DE 1 300 266 B1 mittels Grenzflächenpolykondensation oder gemäß DE 14 95 730 A1 durch Umsetzung von Biphenylcarbonat mit Bisphenolen erhältlich.
  • Geeignete Polyester sind ebenfalls an sich bekannt und in der Literatur beschrieben. Die Polyester können durch Umsetzung von aromatischen Dicarbonsäuren, deren Estern oder anderer esterbildender Derivate derselben mit aliphatischen Dihydroxyverbindungen in an sich bekannter Weise hergestellt werden. Bei bestimmten Ausführungsformen werden als Dicarbonsäuren Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen eingesetzt. Bis zu 10 mol-% der aromatischen Dicarbonsäuren können durch aliphatische oder cycloaliphatische Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäuren und Cyclohexandicarbonsäuren ersetzt werden. Beispiele aliphatischer Dihydroxyverbindungen sind Diole mit 2 bis 6 Kohlenstoffatomen, insbesondere 1,2-Ethandiol, 1,4-Butandiol, 1,6-Hexandiol, 1,4-Hexandiol, 1,4-Cyclohexandiol und Neopentylglykol oder deren Mischungen.
  • Beispiele der vorgenannten Polyolefine sind Polyethylen und Polypropylen sowie Copolymerisate auf der Basis von Ethylen oder Propylen, ggf. auch mit höheren α-Olefinen. Der Begriff "Polyolefin" im Sinne der vorliegenden Erfindung umfasst auch Ethylen-Propylen-Elastomere und Ethylen-Propylen-Terpolymere.
  • Beispiele der vorgenannten Poly(meth)acrylate sind Polymethylmethacrylat (PMMA) und Copolymere auf der Basis von Methylmethacrylat mit bis zu 40 Gew.-% weiterer copolymerisierbarer Monomeren, wie z.B. n-Butylacrylat, t-Butylacrylat oder 2-Ethylhexylacrylat.
  • Die vorgenannten Polyamide umfassen auch Polyetheramide wie Polyetherblockamide und werden beispielsweise in den Offenbarungen der US 2,071,250 , US 2,071,251 , US 2,130,523 , US 2,130,948 , US 2,241,322 , US 2,312,966 , US 2,512,606 und US 3,393,210 beschrieben. Ferner umfassen die vorgenannten Polyamide beispielsweise Polycaprolactame, Polycapryllactame, Polylaurinlactame und Polyamide, die durch Umsetzung von Dicarbonsäuren mit Diaminen erhalten werden. Beispiele hierfür geeigneter Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoffatomen und aromatische Dicarbonsäuren einsetzbar. Beispiel geeigneter Diamine sind Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlenstoffatomen sowie m-Xylylendiamin, Di-(4-aminophenyl)methan, Di-(4-aminocyclohexyl)-methan, 2,2-Di-(4-aminophenyl)-propan oder 2,2-Di-(4-aminocyclohexyl)-propan.
  • Beispiele der vorgenannten vinylaromatischen (Co)polymere sind Polystyrol, Styrol-Acrytnitril-Copolymere (SAN) und schlagzähmodifiziertes Polystyrol (HIPS = High Impact Polystyrene). Die Herstellung derartiger vinylaromatischen (Co)polymere ist dem Fachmann bekannt und findet sich beispielsweise in der EP-A-302 485 . Weitere Beispiele sind ASA-, ABS- und AES-Polymerisate (ASA = Acrylnitril-Styrol-Acrylester, ABS = Acrylnitril-Butadien-Styrol, AES = Acrylnitril-EPDM-Kautschuk-Styrol). Die Herstellung von ABS-Polymerisaten findet sich beispielsweise in DE 197 28 629 A1 und von ASA-Polymerisaten beispielsweise in EP 99 532 A2 . Angaben über die Herstellung von AES-Polymerisaten finden sich ferner beispielsweise in der US 3,055,859 oder in der US 4,224,419 .
  • Beispiele der vorgenannten Polyarylenether sind Polyarylenether an sich, Polyarylenethersulfide, Polyarylenethersulfone und Polyarylenetherketone. Deren Arylengruppen können gleich oder verschieden und unabhängig voneinander beispielsweise einen aromatischen Rest mit 6 bis 18 C-Atomen sein. Beispiele geeigneter Arylenreste sind Phenylen, Bisphenylen, Terphenylen, 1,5-Naphthylen, 1,6-Naphthylen, 1,5-Anthrylen, 9,10-Anthrylen oder 2,6- Anthrylen. Exemplarische Herstellungsangaben von Polyarylenethersulfonen finden sich in EP 113 112 A1 und EP 135 130 A2 .
  • Weitere Beispiele von Kunststoffen, die bei bestimmten Ausführungsformen als Additive eingesetzt werden können, sind Polyurethane, Polyisocyanurate und Polyharnstoffe.
  • Beispiele der Polymere der Milchsäure, Polylactide, sowie Verfahren zu deren Herstellung sind dem Fachmann bekannt. Bei bestimmten Ausführungsformen ist es insbesondere bevorzugt, Co- oder Blockcopolymere auf der Basis von Milchsäure und weiteren Monomeren einzusetzen.
  • Beispiele halogenhaltiger Polymerisate sind die Polymerisate des Vinylchlorids, wie Polyvinylchlorid (PVC) (z.B. Hart-PVC und Weich-PVC), und Copolymerisate des Vinylchlorids (z.B. PVC-U-Formmassen).
  • Weitere Beispiele von Kunststoffen, die bei bestimmten Ausführungsformen als Additive eingesetzt werden können, sind fluorhaltige Polymere wie Polytetrafluorethylen (PTFE), Tetrafluorethylen-Perfluorpropylen-Copolymere (FEP), Copolymere des Tetrafluorethylens mit Perfluoralkylvinylether, Ethylen-Tetrafluorethylen-Copolymere (ETFE), Polyvinylidenfluorid (PVDF), Polyvinylfluorid (PVF), Polychlortrifluorethylen (PCTFE) und Ethylen-Chlortrifluorethylen-Copolymere (ECTFE).
  • Beispiele der vorgenannten imidgruppenhaltigen Polymere sind Polyimide, Polyetherimide, und Polyamidimide. Derartige Polymere werden beispielsweise in Römpp Chemie Lexikon, CD-ROM Version 1.0, Thieme Verlag Stuttgart 1995, beschrieben.
  • Die vorgenannten thermoplastischen Elastomere (TPE) sind dadurch gekennzeichnet, dass sie sich wie Thermoplaste verarbeiten lassen, jedoch kautschukelastische Eigenschaften aufweisen. Nähere Informationen finden sich beispielsweise in G. Holden et al., Thermoplastic Elastomers, 2. Auflage, Hanser Verlag, München 1996. Beispiele sind thermoplastische Polyurethanelastomere (TPE-U oder TPU), Styrol-Oligoblock-Copolymere (TPE-S) wie SBS (Styrol-Butadien-Styrol-oxyBlockcopolymer) und SEES (Styrol-Ethylen-Butylen-Styrol-Blockcopolymer, erhältlich durch Hydrieren von SBS), thermoplastische Polyolefin-Elastomere (TPE-O), thermoplastische Polyester-Elastomere (TPE-E), thermoplastische Polyamid-Elastomere (TPE-A) und thermoplastische Vulkanisate (TPE-V).
  • Beispiele für die vorgenannten Polyacrylate sind Poly(meth)acrylate, welche bevorzugt als Homopolymere oder als Blockpolymere vorliegen. Derartige Polymere werden beispielsweise von der Fa. Evonik unter dem Handelsnamen Degalan vertrieben.
  • Bei bestimmten Ausführungsformen ist es bevorzugt, dass die Additive ausgewählt werden aus der Gruppe bestehend aus den Produkten der Copolymerisation von PE oder PP mit Maleinsäure(anhydrid) oder Acrylsäure.
  • Bei bestimmten Ausführungsformen ist es bevorzugt, dass die als Additive eingesetzten Polymere ein Molekulargewicht von höchstens 200000, vorzugsweise von höchstens 170000, mehr bevorzugt von höchstens 150000 und noch mehr bevorzugt höchstens 130000 aufweisen. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass die als Additive eingesetzten Verbindungen ein Molekulargewicht von höchstens 110000, vorzugsweise von höchstens 90000, mehr bevorzugt von höchstens 70000 und noch mehr bevorzugt von höchstens 50000 aufweisen.
  • Die vorgenannten Carbonsäuren umfassen bei bestimmten Ausführungsformen insbesondere auch Dicarbonsäuren, Tricarbonsäuren und Tetracarbonsäuen.
  • Beispiele von Dicarbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure.
  • Bei bestimmten bevorzugten Ausführungsformen sind die vorgenannten Carbonsäurederivate insbesondere auf Carbonsäureester ausgerichtet.
  • Beispiele der vorgenannten Fettsäuren sind Caprinsäure, Undecansäure, Laurinsäure, Tridecansäure, Myristinsäure, Pentadecansäure, Palmitinsäure, Margarinsäure, Nonadecansäure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Undecylensäure, Palmitoleinsäure, Elaidinsäure, Vaccensäure, lcosensäure, Cetoleinsäure, Erucasäure, Nervonsäure, Sorbinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachidonsäure, Timnodonsäure, Clupanodonsäure, Docosahexaensäure, Stearinsäure und Ölsäure. Bei bestimmten ganz besonders bevorzugten Ausführungsformen der vorliegenden Erfindung umfassen die Additive keine Stearinsäure und Ölsäure und vorzugsweise keine gesättigte und ungesättigte C18-Carbonsäuren, mehr bevorzugt keine gesättigte und ungesättigte C14 bis C18-Carbonsäuren, noch mehr bevorzugt keine gesättigte und ungesättigte C12 bis C18-Carbonsäuren und am meisten bevorzugt keine gesättigte und ungesättigte C10 bis C20-Carbonsäuren. Der Begriff "C" gefolgt von einer Zahl bezieht sich im Sinne der vorliegenden Erfindung auf die in einem Molekül bzw. Molekülbestandteil enthaltenen Kohlenstoffatome, wobei die Zahl die Anzahl der Kohlenstoffatome wiedergibt.
  • Die vorgenannten Phosphonsäuren werden durch Formel (I) wiedergegeben: (X)mP(= 0)YnR(3-m) (I), wobei m 0, 1 oder 2 ist, n 0 oder 1 ist, X gleich oder verschieden sein kann und Wasserstoff, Hydroxy, Halogen oder-NR'2 ist, R' gleich oder verschieden sein kann und Wasserstoff, eine substituierte oder unsubstituierte C1–C9 Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe ist, Y gleich oder verschieden sein kann und -O-, -S-, -NH- oder -NR- ist und R gleich oder verschieden sein kann und ausgewählt wird aus der Gruppe bestehend aus C1–C30 Alkylgruppen, C2–C30 Alkenylgruppen, C2–C30 Alkinylgruppen, C5–C30 Arylgruppen, C6–C30 Arylalkylgruppen, C4–C30 Heteroarylgruppen, C5–C30 Heteroarylalkylgruppen, C3–C30 Cycloalkylgruppen, C4–C30 Cycloalkylalkylgruppen, C2–C30 Heterocycloalkylgruppen, C3–C30 Heterocycloalkylalkylgruppen, C1–C30 Estergruppen, C1–C30 Alkylethergruppen, C1–C30 Cycloalkylethergruppen, C1–C30 Cycloalkenylethergruppen, C6–C30 Arylethergruppen, C7–C30 Arylalkylethergruppen, wobei die vorgenannten Gruppen substituiert oder unsubstituiert und gegebenenfalls geradkettig oder verzweigt sein können.
  • Der Begriff "substituiert" im Sinne der vorliegenden Erfindung beschreibt, dass mindestens ein Wasserstoffatom der betreffenden Gruppe durch eine Halogen-, Hydroxy-, Cyano-, C1–C8 Alkyl-, C2–C8 Alkenyl, C2–C8 Alkinyl, C1–C5 Alkanoyl, C3–C8 Cycloalkyl-, heterocyclische, Aryl-, Heteroaryl, C1–C7 Alkylcarbonyl, C1–C7 Alkoxy-, C2–C7 Alkenyloxy-, C2–C7 Alkinyloxy-, Aryloxy-, Acyl, C1–C7 Acryloxy-, C1–C7 Methacryloxy-, C1–C7 Epoxy-, C1–C7 Vinyl-, C1–C5 Alkoxycarbonyl-, Aroyl-, Aminocarbonyl-, Alkylaminocarbonyl-, Dialkylaminocarbonyl-, Amincarbonyloxy-, C1–C7 Alkylaminocarbonyloxy-, C1–C7 Dialkylamincarbonyloxy-, C1–C7 Alkanoylamin-, C1–C7 Alkoxycarbonylamin-, C1–C7 Alkylsulfonylamin-, Aminosulfonyl-, C1–C7 Alkylaminosulfonyl-, C1–C7 Dialkylaminsulfonyl-, Carboxy-, Cyano-, Trifluoromethyl-, Trifluoromethoxy-, Nitro-, Sulfonsäure-, Phosphorsäure-, Amin-, Amid- (wobei das Stickstoffatom optional unabhängig voneinander einfach oder zweifach substituiert mit C1–C5 Alkyl oder Arylgruppen ist), Ureido- (wobei die Stickstoffatome optional unabhängig voneinander einfach oder zweifach substituiert mit C1–C5 Alkyl oder Arylgruppen ist) oder C1–C5 Alkylthiogruppe.
  • Die Begriffe "Cycloalkylgruppe" und "Heterocycloalkylgruppe" im Sinne der vorliegenden Erfindung umfassen gesättigte, partiell gesättigte und ungesättigte Systeme ausgenommen aromatische Systeme, die als "Arylgruppen" bzw. "Heteroarylgruppen" bezeichnet werden.
  • Der Begriff "Alkyl" im Sinne der vorliegenden Erfindung steht soweit nicht anders angegeben bevorzugt für gerade oder verzweigte C1 bis C27-, mehr bevorzugt für gerade oder verzweigte C1 bis C25- und noch mehr bevorzugt für gerade oder verzweigte C1 bis C20-Kohlenstoffketten. Die Begriffe "Alkenyl" und "Alkinyl" im Sinne der vorliegenden Erfindung stehen soweit nicht anders angegeben bevorzugt für gerade oder verzweigte C2 bis C27-, mehr bevorzugt für gerade oder verzweigte C2 bis C25- und noch mehr bevorzugt für gerade oder verzweigte C2 bis C20-Kohlenstoffketten. Der Begriff "Aryl" im Sinne der vorliegenden Erfindung steht für aromatische Kohlenstoffringe, vorzugsweise für aromatische Kohlenstoffringe mit höchstens 7 Kohlenstoffatomen, mehr bevorzugt für den Phenylring, wobei die vorgenannten aromatischen Kohlenstoffringe Bestandteil eines kondensierten Ringsystems sein können. Beispiele für Arylgruppen sind Phenyl, Hydroxyphenyl, Biphenyl und Naphthyl. Der Begriff "Heteroaryl" im Sinne der vorliegenden Erfindung steht für aromatische Ringe, bei denen formal ein Kohlenstoffatom eines analogen Arylringes durch ein Heteroatom ersetzt wurde, vorzugsweise gegen ein Atom ausgewählt aus der Gruppe bestehend aus O, S und N.
  • Die vorgenannten Silane sind gekennzeichnet durch eine Struktur gemäß Formel (II): RpSiX(4-p) (II), wobei p 0, 1, 2 oder 3 ist, X gleich oder verschieden sein kann und Wasserstoff, Hydroxy, Halogen oder -NR'2 ist, R' gleich oder verschieden sein kann und Wasserstoff, eine substituierte oder unsubstituierte C1–C9 Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe ist und R gleich oder verschieden sein kann und ausgewählt wird aus der Gruppe bestehend aus C1–C30 Alkylgruppen, C2–C30 Alkenylgruppen, C2–C30 Alkinylgruppen, C5–C30 Arylgruppen, C6–C30 Arylalkylgruppen, C4–C30 Heteroarylgruppen, C5–C30 Heteroarylalkylgruppen, C3–C30 Cycloalkylgruppen, C4–C30 Cycloalkylalkylgruppen, C2–C30 Heterocycloalkylgruppen, C3–C30 Heterocycloalkylalkylgruppen, C1–C30 Estergruppen, C1–C30 Alkylethergruppen, C1–C30 Cycloalkylethergruppen, C1–C30 Cycloalkenylethergruppen, C6–C30 Arylethergruppen, C7–C30 Arylalkylethergruppen, wobei die vorgenannten Gruppen substituiert oder unsubstituiert und gegebenenfalls geradkettig oder verzweigt sein können.
  • Das Additiv kann beispielsweise chemisch oder physikalisch an die Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials gebunden sein. Hierbei ist es nicht erforderlich, dass eine lückenlose Oberflächenbelegung der Partikel erfolgt, auch wenn dies bei bestimmten Ausführungsformen der vorliegenden Erfindung bevorzugt ist.
  • Bei bestimmten Ausführungsformen ist es bevorzugt, dass die Additive möglichst leicht an der Oberfläche der Partikel des pulverförmigen Beschichtungsmaterials gebunden sind. Beispielsweise ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass die erfindungsgemäß eingesetzten Additive keine funktionelle Gruppe tragen. Der Begriff "funktionelle Gruppe" im Sinne der vorliegenden Erfindung bezeichnet Molekülgruppen in Molekülen, die die Stoffeigenschaften und das Reaktionsverhalten der Moleküle maßgeblich beeinflussen. Beispiele derartiger funktioneller Gruppen sind:
    Carbonsäuregruppen, Sulfonsäuregruppen, Phosphorsäuregruppen, Silangruppen, Carbonylgruppen, Hydroxylgruppen, Amingruppen, Hydrazingruppen, Halogengruppen und Nitrogruppen.
  • Bei bestimmten anderen Ausführungsformen ist es hingegen bevorzugt, dass die Additive beispielsweise infolge von Reibung nicht zu leicht von der Oberfläche abgetragen werden können. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass die erfindungsgemäß eingesetzten Additive mindestens eine funktionelle Gruppe, vorzugsweise mindestens zwei funktionelle Gruppen, mehr bevorzugt mindestens drei funktionelle Gruppen tragen.
  • Die Erfinder haben überraschenderweise gefunden, dass bei der Verwendung der erfindungsgemäß mit einem Additiv belegten pulverförmigen Beschichtungsmaterialien auch den Einsatz von Beschichtungsmaterialien mit einem unerwartet hohen Schmelzpunkt erlaubt. Ohne dass es als Einschränkung der Erfindung verstanden werden soll, ist es die Ansicht der Erfinder, dass die gleichmäßigere Förderung der Partikel bei verminderter Neigung zur Agglomeration es erlaubt, dass die Partikel vereinzelt auf der Substratoberfläche auftreffen und die vorhandene kinetische Energie vollständig zur Verformung des Partikels genutzt werden kann. Im Falle einer ungleichmäßigen, also lokalisierten, Aufbringung von Agglomeraten wird scheinbar ein Teil der kinetischen Energie durch das Aufbrechen des Agglomerats aufgebraucht und später auftreffende Partikel durch bereits an dieser Stelle vorhandenes, jedoch noch nicht erstarrtes Beschichtungsmaterial abgefedert. Sofern das pulverförmige Beschichtungsmaterial zuvor durch eine Flamme geführt wird, wird die thermische Energie bei gleichmäßiger zugeführten Partikel ohne Agglomerate ferner wahrscheinlich besser auf die Partikel übertragen.
  • Beispielsweise können bei bestimmten Ausführungsformen erfindungsgemäß mit mindestens einem Additiv belegte pulverförmige Beschichtungsmaterialien auch zur Herstellung homogener Schichten eingesetzt werden, wenn der in [K] gemessene Schmelzpunkt des Beschichtungsmaterials bis zu 50 %, vorzugsweise bis zu 60 %, mehr bevorzugt bis zu 65% und noch mehr bevorzugt bis zu 70 % der in [K] gemessenen Temperatur des im Beschichtungsverfahren eingesetzten auf das Substrat gerichteten Mediums, beispielsweise des Gasstroms, der Verbrennungsflamme und/oder der Plasmaflamme, beträgt. Bei bestimmten der vorgenannten Ausführungsformen können ferner erfindungsgemäß mit mindestens einem Additiv belegte pulverförmige Beschichtungsmaterialien auch zur Herstellung homogener Schichten eingesetzt werden, wenn der in [K] gemessene Schmelzpunkt des Beschichtungsmaterials bis zu 75 %, vorzugsweise bis zu 80 %, mehr bevorzugt bis zu 85% und noch mehr bevorzugt bis zu 90 % der in [K] gemessenen Temperatur des im Beschichtungsverfahren eingesetzten auf das Substrat gerichteten Mediums, beispielsweise des Gasstroms, der Verbrennungsflamme und/oder der Plasmaflamme, beträgt. Die vorgenannten Prozentzahlen beziehen sich auf das Verhältnis der Schmelztemperatur des Beschichtungsmaterials zur Temperatur des Gasstromes beim Kaltgasspritzen, der Verbrennungsflamme beim Flammspritzen und Hochgeschwindigkeitsflammspritzen oder der Plasmaflamme beim nichtthermischen oder thermischen Plasmaspritzen in [K].
  • Der Begriff "homogene Schicht" im Sinne der vorliegenden Erfindung beschreibt, dass die betreffende Beschichtung weniger als 10 %, vorzugsweise weniger als 5 %, mehr bevorzugt weniger als 3 %, noch mehr bevorzugt weniger als 1 % und am meisten bevorzugt weniger als 0,1 % Hohlräume aufweisen. Insbesondere ist es bevorzugt, dass gar keine Hohlräume zu erkennen sind. Der vorgenannte Begriff "Hohlraum" im Sinne der vorliegenden Erfindung beschreibt den Anteil der in der Beschichtung eingeschlossenen Lücken an der zweidimensionalen Fläche eines Querschliffes des beschichteten Substrates, bezogen auf die in der zweidimensionalen Fläche enthaltene Beschichtung. Eine Bestimmung dieses Anteils erfolgt mittels REM an 30 zufällig ausgewählten Stellen der erfindungsgemäß erzeugten Beschichtung, wobei beispielsweise eine Länge von 100 μm der Substratbeschichtung betrachtet wird.
  • Überraschenderweise wurde gefunden, dass durch den Einsatz des Beschichtungsmaterials und des Additivs nicht nur eine verbesserte Förderbarkeit pulverförmiger Beschichtungsmaterialien gegeben ist, sondern auch bislang nicht förderbare pulverförmige Beschichtungsmaterialien auf einfache Weise gefördert und zur Herstellung hochwertiger Beschichtungen eingesetzt werden können.
  • Die Bestimmung der Größenverteilung der Partikel erfolgt vorzugsweise mittels Lasergranulometrie. Bei dieser Methode können die Partikel in Form eines Pulvers vermessen werden. Die Streuung des eingestrahlten Laserlichts wird in verschiedene Raumrichtungen erfasst und gemäß der Fraunhofer Beugungstheorie ausgewertet. Dabei werden die Partikel rechnerisch als Kugeln behandelt. Somit beziehen sich die ermittelten Durchmesser stets auf den über alle Raumrichtungen ermittelten Äquivalentkugeldurchmesser, unabhängig von der tatsächlichen Form der Partikel. Es wird die Größenverteilung ermittelt, die in Form eines Volumenmittels, bezogen auf den Äquivalentkugeldurchmesser berechnet wird. Diese volumengemittelte Größenverteilung kann als Summenhäufigkeitsverteilung dargestellt werden. Die Summenhäufigkeitsverteilung wird vereinfachend durch verschiedene Kennwerte charakterisiert, beispielsweise den D10-, D50- oder D90-Wert.
  • Die Messungen können beispielsweise mit dem Partikelgrößenanalysator HELOS der Fa. Sympatec GmbH, Clausthal-Zellerfeld, Deutschland, durchgeführt werden. Die Dispergierung eines trockenen Pulvers kann hierbei mit einer Dispergiereinheit vom Typ Rodos T4.1 bei einem Primärdruck von beispielsweise 4 bar erfolgen. Alternativ kann Größenverteilungskurve der Partikel beispielsweise mit einem Gerät der Fa. Quantachrome (Gerät: Cilas 1064) gemäß Herstellerangaben vermessen werden. Hierzu werden 1,5 g des pulverförmigen Beschichtungsmaterials in ca. 100 ml Isopropanol suspendiert, 300 Sekunden im Ultraschallbad (Gerät: Sonorex IK 52, Fa. Bandelin) behandelt und anschließend mittels einer Pasteurpipette in die Probenvorbereitungszelle des Messgerätes gegeben und mehrmals vermessen. Aus den einzelnen Messergebnissen werden die resultierenden Mittelwerte gebildet. Die Auswertung der Streulichtsignale erfolgt dabei nach der Fraunhofer Methode.
  • Bei bestimmten Ausführungsformen der Erfindung ist es bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert von höchstens 53 μm, vorzugsweise höchstens 51 μm, mehr bevorzugt höchstens 50 μm und noch mehr bevorzugt höchstens 49 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert von höchstens 48 μm, vorzugsweise höchstens 47 μm, mehr bevorzugt höchstens 46 μm und noch mehr bevorzugt höchstens 45 μm aufweist.
  • Der Begriff "D50" im Sinne der vorliegenden Erfindung bezeichnet die Partikelgröße, bei der 50 % der vorgenannten mittels Lasergranulometrie volumengemittelten Partikelgrößenverteilung unterhalb des angegebenen Wertes liegen. Die Messungen können beispielsweise gemäß dem vorgenannten Messverfahren mit einem Partikelgrößenanalysator HELOS der Fa. Sympatec GmbH, Clausthal-Zellerfeld, Deutschland, durchgeführt werden.
  • Bei bestimmten Ausführungsformen der Erfindung ist es insbesondere bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert von mindestens 1,5 μm, vorzugsweise mindestens 2 μm, mehr bevorzugt mindestens 4 μm und noch mehr bevorzugt mindestens 6 μm aufweist. insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert von mindestens 7 μm, vorzugsweise mindestens 9 μm, mehr bevorzugt mindestens 11 μm und noch mehr bevorzugt mindestens 13 μm aufweist.
  • Bei bestimmten Ausführungsformen ist es ferner bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 1,5 bis 53 μm, vorzugsweise im Bereich von 2 bis 51 μm, mehr bevorzugt im Bereich von 4 bis 50 μm und noch mehr bevorzugt im Bereich von 6 bis 49 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 7 bis 48 μm, vorzugsweise im Bereich von 9 bis 47 μm, mehr bevorzugt im Bereich von 11 bis 46 μm und noch mehr bevorzugt im Bereich von 13 bis 45 μm aufweist.
  • Bei anderen Ausführungsformen ist es beispielsweise bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 1,5 bis 45 μm, vorzugsweise im Bereich von 2 bis 43 μm, mehr bevorzugt im Bereich von 2,5 bis 41 μm und noch mehr bevorzugt im Bereich von 3 bis 40 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 3,5 bis 38 μm, vorzugsweise im Bereich von 4 bis 36 μm, mehr bevorzugt im Bereich von 4,5 bis 34 μm und noch mehr bevorzugt im Bereich von 5 bis 32 μm aufweist.
  • Bei wieder anderen Ausführungsformen ist es hingegen beispielsweise bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 9 bis 53 μm, vorzugsweise im Bereich von 12 bis 51 μm, mehr bevorzugt im Bereich von 15 bis 50 μm, noch mehr bevorzugt im Bereich von 17 bis 49 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das Pulver eine Korngrößenverteilung mit einem D50-Wert im Bereich von 19 bis 48 μm, vorzugsweise im Bereich von 21 bis 47 μm, mehr bevorzugt im Bereich von 23 bis 46 μm und noch mehr bevorzugt im Bereich von 25 bis 45 μm aufweist.
  • Bei weiteren bestimmten Ausführungsformen der Erfindung ist es bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D90-Wert von höchstens 103 μm, vorzugsweise höchstens 99 μm, mehr bevorzugt höchstens 95 μm, noch mehr bevorzugt höchstens 91 μm und am meisten bevorzugt höchstens 87 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial einen D90-Wert von höchstens 83 μm, vorzugsweise höchstens 79 μm, mehr bevorzugt höchstens 75 μm und noch mehr bevorzugt höchstens 71 μm aufweist.
  • Der Begriff "D90" im Sinne der vorliegenden Erfindung bezeichnet die Partikelgröße, bei der 90 % der vorgenannten mittels Lasergranulometrie volumengemittelten Partikelgrößenverteilung unterhalb des angegebenen Wertes liegen. Die Messungen können beispielsweise gemäß dem vorgenannten Messverfahren mit einem Partikelgrößenanalysator HELOS der Fa. Sympatec GmbH, Clausthal-Zellerfeld, Deutschland, durchgeführt werden.
  • Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D90-Wert von mindestens 9 μm, vorzugsweise mindestens 11 μm, mehr bevorzugt mindestens 13 μm und noch mehr bevorzugt mindestens 15 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D90-Wert von mindestens 17 μm, vorzugsweise mindestens 19 μm, mehr bevorzugt mindestens 21 μm und noch mehr bevorzugt mindestens 22 μm aufweist.
  • Gemäß bestimmten bevorzugten Ausführungsformen weisen die pulverförmigen Beschichtungsmaterialien eine Korngrößenverteilung mit einem D90-Wert im Bereich von 42 bis 103 µm, vorzugsweise im Bereich von 45 bis 99 µm, mehr bevorzugt im Bereich von 48 bis 95 μm und noch mehr bevorzugt im Bereich von 50 bis 91 μm auf. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial einen D90-Wert im Bereich von 52 bis 87 µm, vorzugsweise im Bereich von 54 bis 81 µm, mehr bevorzugt im Bereich von 56 bis 75 μm und noch mehr bevorzugt im Bereich von 57 bis 71 μm aufweist.
  • Ferner wurde überraschenderweise gefunden, dass eine deutliche Verbesserung der Förderbarkeit feiner Partikelgrößen durch eine Additivbelegung erreicht wird. Dies bietet den Vorteil, dass auch pulverförmige Beschichtungsmaterialien mit einem größeren Feinanteil und daher besserer Aktivierbarkeit beim nichtthermischen Plasmaspritzen einsetzbar werden. Bei weiteren bestimmten Ausführungsformen der Erfindung ist es bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von höchstens 5 μm, vorzugsweise höchstens 4 μm, mehr bevorzugt höchstens 3 μm und noch mehr bevorzugt höchstens 2,5 μm aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von höchstens 2,2 μm, vorzugsweise höchstens 2 μm, mehr bevorzugt höchstens 1,8 μm und noch mehr bevorzugt höchstens 1,7 μm aufweist.
  • Der Begriff "D10" im Sinne der vorliegenden Erfindung bezeichnet die Partikelgröße, bei der 10 % der vorgenannten mittels Lasergranulometrie volumengemittelten Partikelgrößenverteilung unterhalb des angegebenen Wertes liegen. Die Messungen können beispielsweise gemäß dem vorgenannten Messverfahren mit einem Partikelgrößenanalysator HELOS der Fa. Sympatec GmbH, Clausthal-Zellerfeld, Deutschland, durchgeführt werden.
  • Andererseits neigen auch die additivbelegten pulverförmigen Beschichtungsmaterialien mit hohem Feinanteil noch in starkem Maße zur Bildung von Feinstäuben, wodurch die Handhabung entsprechender Pulver deutlich erschwert wird. Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass das additivbelegte, pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von mindestens 0,2 μm, vorzugsweise mindestens 0,4 μm, mehr bevorzugt mindestens 0,5 μm und noch mehr bevorzugt mindestens 0,6 μm aufweisen. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das additivbelegte, pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von mindestens 0,7 μm, vorzugsweise 0,8 μm, mehr bevorzugt 0,9 μm und noch mehr bevorzugt mindestens 1,0 μm aufweist.
  • Bei bestimmten bevorzugten Ausführungsformen ist das additivbelegte, pulverförmige Beschichtungsmaterial dadurch gekennzeichnet, dass es eine Körngrößenverteilung mit einem D10-Wert aus einem Bereich von 0,2 bis 5 μm, vorzugsweise aus einem Bereich von 0,4 bis 4 μm, mehr bevorzugt aus einem Bereich von 0,5 bis 3 μm und noch mehr bevorzugt aus einem Bereich von 0,6 bis 2,5 μm aufweisen. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das additivbelegte, pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert aus einem Bereich von 0,7 bis 2,2 μm, vorzugsweise aus einem Bereich von 0,8 bis 2,1 μm, mehr bevorzugt aus einem Bereich von 0,9 bis 2,0 μm und noch mehr bevorzugt aus einem Bereich von 1,0 bis 1,9 μm aufweist
  • Insbesondere ist es beispielsweise bei bestimmten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 3,7 bis 26 µm, einem D50-Wert von 6 bis 49 µm und einem D90-Wert von 12 bis 86 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es besonders bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 5,8 bis 26 µm, einem D50-Wert von 11 bis 46 µm und einem D90-Wert von 16 bis 83 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es noch mehr bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 9 bis 19 µm, einem D50-Wert von 16 bis 35 µm und einem D90-Wert von 23 bis 72 µm aufweist.
  • Bei weiteren bestimmten Ausführungsformen ist es beispielsweise bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 0,8 bis 28 µm, einem D50-Wert von 1,5 bis 45 µm und einem D90-Wert von 2,5 bis 81 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es besonders bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 2,2 bis 22 µm, einem D50-Wert von 4 bis 36 µm und einem D90-Wert von 4 bis 62 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es noch mehr bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 2,8 bis 17 µm, einem D50-Wert von 6 bis 28 µm und einem D90-Wert von 9 bis 49 µm aufweist.
  • Bei weiteren bestimmten Ausführungsformen ist es beispielsweise bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 4,8 bis 29 µm, einem D50-Wert von 9 bis 53 µm und einem D90-Wert von 13 bis 97 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es besonders bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 12 bis 26 µm, einem D50-Wert von 23 bis 46 µm und einem D90-Wert von 35 bis 87 µm aufweist. Bei bestimmten der vorgenannten Ausführungsformen ist es noch mehr bevorzugt, dass das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D10-Wert von 15 bis 24 µm, einem D50-Wert von 28 bis 44 µm und einem D90-Wert von 41 bis 78 µm aufweist.
  • Ferner wurde beobachtet, dass die Förderbarkeit des additivbelegten, pulverförmigen Beschichtungsmaterials von der Breite der Korngrößenverteilung abhängig ist. Eine Berechnung dieser Breite kann durch Angabe des sogenannten Span-Wertes erfolgen, welcher wie folgt definiert ist:
    Figure 00360001
  • Die Erfinder haben gefunden, dass durch den Einsatz eines pulverförmigen Beschichtungsmaterials mit niedrigerem Span bei bestimmten Ausführungsformen beispielsweise eine noch gleichmäßigere Förderbarkeit des pulverförmigen Beschichtungsmaterials erzielt wird, wodurch die Bildung einer homogeneren und höherqualitativen Schicht weiter vereinfacht wird. Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass der Span des pulverförmigen Beschichtungsmaterials höchstens 2,9, vorzugsweise höchstens 2,6, mehr bevorzugt höchstens 2,4 und noch mehr bevorzugt höchstens 2,1 ist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass der Span des pulverförmigen Beschichtungsmaterials höchstens 1,9, vorzugsweise höchstens 1,8, mehr bevorzugt höchstens 1,7 und noch mehr bevorzugt höchstens 1,6 ist.
  • Andererseits haben die Erfinder gefunden, dass nicht notwendigerweise ein sehr enger Span zur Bereitstellung der gesuchten Förderbarkeit erforderlich ist, was die Herstellung des pulverförmigen Beschichtungsmaterials erleichtert. Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass der Span-Wert des pulverförmigen Beschichtungsmaterials mindestens 0,4, vorzugsweise mindestens 0,5, mehr bevorzugt mindestens 0,6 und noch mehr bevorzugt mindestens 0,7 ist. Insbesondere ist es bei bestimmten Ausführungsformen bevorzugt, dass der Span-Wert des pulverförmigen Beschichtungsmaterials mindestens 0,8, vorzugsweise mindestens 0,9, mehr bevorzugt mindestens 1,0 und noch mehr bevorzugt mindestens 1,1 ist.
  • Basierend auf der hierin offenbarten Lehre kann der Fachmann eine beliebige Kombination insbesondere der vorgenannten Span-Wertgrenzwerte auswählen, um die gewünschten Eigenschaftskombination bereitzustellen. Bei bestimmten Ausführungsformen ist es beispielsweise bevorzugt, dass das pulverförmige Beschichtungsmaterial einen Span-Wert im Bereich von 0,4 bis 2,9, vorzugsweise im Bereich von 0,5 bis 2,6, mehr bevorzugt im Bereich von 0,6 bis 2,4 und noch mehr bevorzugt im Bereich von 0,7 bis 2,1 aufweist. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das pulverförmige Beschichtungsmaterial einen Span-Wert im Bereich von 0,8 bis 1,9, vorzugsweise im Bereich von 0,9 bis 1,8, mehr bevorzugt im Bereich von 1,0 bis 1,7 und noch mehr bevorzugt im Bereich von 1,1 bis 1,6 aufweist.
  • Dem Fachmann ist bewusst, dass basierend auf der hierin offenbarten Lehre je nach gewünschter Kombination der Vorteile bestimmte Kombinationen der Span-Grenzwerte oder Wertbereiche mit den oben genannten bevorzugten D50-Wertbereichen bevorzugt sind. Beispielsweise weist das pulverförmige Beschichtungsmaterial bei bestimmten bevorzugten Ausführungsformen eine Korngrößenverteilung mit einem Span im Bereich von 0,4 bis 2,9 und einem D50-Wert im Bereich von 1,5 bis 53 μm, vorzugsweise im Bereich von 2 bis 51 μm, mehr bevorzugt im Bereich von 4 bis 50 μm, noch mehr bevorzugt im Bereich von 6 bis 49 μm und am meisten bevorzugt im Bereich von 7 bis 48 μm auf. Bei bestimmten bevorzugten der vorgenannten Ausführungsformen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem Span im Bereich von 0,5 bis 2,6 und einem D50-Wert im Bereich von 1,5 bis 53 μm, vorzugsweise im Bereich von 2 bis 51 μm, mehr bevorzugt im Bereich von 4 bis 50 μm, noch mehr bevorzugt im Bereich von 6 bis 49 μm und am meisten bevorzugt im Bereich von 7 bis 48 μm auf. Bei bestimmten weiter bevorzugten Ausführungsformen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem Span im Bereich von 0,6 bis 2,4 und einem D50-Wert im Bereich von 1,5 bis 53 μm, vorzugsweise im Bereich von 2 bis 51 μm, mehr bevorzugt im Bereich von 4 bis 50 μm, noch mehr bevorzugt im Bereich von 6 bis 49 μm und am meisten bevorzugt im Bereich von 7 bis 48 μm auf. Bei bestimmten noch weiter bevorzugten Ausführungsformen weist das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem Span im Bereich von 0,7 bis 2,1 und einem D50-Wert im Bereich von 1,5 bis 53 μm, vorzugsweise im Bereich von 2 bis 51 μm, mehr bevorzugt im Bereich von 4 bis 50 μm, noch mehr bevorzugt im Bereich von 6 bis 49 μm und am meisten bevorzugt im Bereich von 7 bis 48 μm auf.
  • Ferner wurde gefunden, dass die Dichte des pulverförmigen Beschichtungsmaterials einen Einfluss auf die Förderung derartiger Pulver in Form eines Aerosols haben kann. Ohne dass es als Einschränkung der Erfindung verstanden werden soll, ist es die Ansicht der Erfinder, dass die Trägheitsunterschiede gleichgroßer Partikel unterschiedlicher Dichte zu einem unterschiedlichen Verhalten der Aerosolströme pulverförmiger Beschichtungsmaterialien mit identischer Korngrößenverteilung führen. Daher kann es sich als schwierig erweisen, Förderungsverfahren, die für einen spezifischen D50 optimiert wurden, auf pulverförmige Beschichtungsmaterialien anderer Dichte zu übertragen. Bei bestimmten Ausführungsformen ist es daher bevorzugt, dass die obere Grenze des Span-Wertes in Abhängigkeit von der Dichte des eingesetzten pulverförmigen Beschichtungsmaterials korrigiert wird.
    Figure 00380001
  • Hierbei ist SpanOK der korrigierte obere Span-Wert, SpanO der obere Span-Wert, ρAlu die Dichte von Aluminium (2,7 g/cm3) und ρX die Dichte des eingesetzten pulverförmigen Beschichtungsmaterials. Es wurde jedoch ferner gefunden, dass die Unterschiede bei pulverförmigen Beschichtungsmaterialien mit einer geringeren Dichte als Aluminium nur geringfügig sind und eine diesbezüglich optimierte Auswahl des pulverförmigen Beschichtungsmaterials keine merkliche Verbesserung der Förderbarkeit bewirkt. Für pulverförmige Beschichtungsmaterialien mit einer Dichte geringer als die Dichte von Aluminium wird daher ein pulverförmiges Beschichtungsmaterial mit unkorrigiertem oberem Span-Wert eingesetzt.
  • Erfindungsgemäß einsetzbare Beschichtungsverfahren sind dem Fachmann unter den Namen Kaltgasspritzen, thermisches Plasmaspritzen, nichtthermisches Plasmaspritzen, Flammspritzen und Hochgeschwindigkeitsflammspritzen bekannt.
  • Das Kaltgasspritzen zeichnet sich dadurch aus, dass das aufzubringende Pulver nicht im Gasstrahl aufgeschmolzen wird, sondern dass die Partikel stark beschleunigt werden und infolge ihrer kinetischen Energie eine Beschichtung auf der Oberfläche des Substrats bilden. Hierbei können verschiedene dem Fachmann bekannte Gase als Trägergas eingesetzt werden wie Stickstoff, Helium, Argon, Luft, Krypton, Neon, Xenon, Kohlenstoffdioxid, Sauerstoff oder Mischungen davon. Bei bestimmten Varianten ist es insbesondere bevorzugt, dass als Gas, Luft, Helium oder Gemische davon eingesetzt werden.
  • Durch eine kontrollierte Expansion der vorgenannten Gase in einer entsprechenden Düse werden Gasgeschwindigkeiten von bis zu 3000 m/s erreicht. Die Partikel können hierbei auf bis zu 2000 m/s beschleunigt werden. Bei bestimmten Varianten des Kaltgasspritzens ist es jedoch bevorzugt, dass sie Partikel beispielsweise Geschwindigkeiten zwischen 300 m/s und 1600 m/s, vorzugsweise zwischen 1000 m/s und 1600 m/s, mehr bevorzugt zwischen 1250 m/s und 1600 m/s erreichen.
  • Nachteilig ist beispielsweise die große Lärmentwicklung, die durch die hohen Geschwindigkeiten der verwendeten Gasströme hervorgerufen wird.
  • Beim Flammspritzen wird beispielsweise ein Pulver mittels einer Flamme in den flüssigen oder plastischen Zustand überführt und dann als Beschichtung auf ein Substrat aufgetragen. Hierbei wird z.B. eine Mischung aus Sauerstoff und einem brennbaren Gas wie Acetylen oder Wasserstoff verbrannt. In bestimmten Varianten des Flammspritzens wird ein Teil des Sauerstoff genutzt, um das pulverförmige Beschichtungsmaterial in die Verbrennungsflamme zu befördern. Die Partikel erreichen bei gebräuchlichen Varianten dieses Verfahrens Geschwindigkeiten zwischen 24 bis 31 m/s.
  • Ähnlich wie bei Flammspritzen wird auch beim Hochgeschwindigkeitsflammspritzen beispielsweise ein Pulver mittels einer Flamme in einen flüssigen oder plastischen Zustand überführt. Die Partikel werden jedoch im Vergleich zum vorgenannten Verfahren bedeutend höher beschleunigt. Bei spezifischen Beispielen des vorgenannten Verfahrens wird beispielsweise eine Geschwindigkeit des Gasstroms von 1220 bis 1525 m/s mit einer Geschwindigkeit der Partikel von ca. 550 bis 795 m/s genannt. Bei weiteren Varianten dieses Verfahrens werden jedoch auch Gasgeschwindigkeiten von über 2000 m/s erreicht. Im Allgemeinen ist es bei gebräuchlichen Varianten des voranstehenden Verfahrens bevorzugt, dass die Geschwindigkeit der Flamme zwischen 1000 und 2500 m/s liegt. Ferner ist es bei gebräuchlichen Varianten bevorzugt, dass die Flammentemperatur zwischen 2200 °C und 3000 °C liegt. Die Temperatur der Flamme ist somit vergleichbar zur Temperatur beim Flammspritzen. Dies wird erreicht durch Verbrennung der Gase unter einem Druck von ca. 515 bis 621 kPa gefolgt von der Expansion der Verbrennungsgase in einer Düse. Im Allgemeinen wird die Auffassung vertreten, dass hierbei erzeugte Beschichtungen eine höhere Dichte aufweisen, verglichen mit beispielsweise Beschichtungen erhalten durch das Flammspritzverfahren.
  • Das Detonations/Explosivflammspritzen kann als Unterart des Hochgeschwindigkeitsflammspritzens betrachtet werden. Hierbei wird das pulverförmige Beschichtungsmaterial durch wiederholte Detonationen eines Gasgemisches wie Acetylen/Sauerstoff stark beschleunigt, wobei beispielsweise Partikelgeschwindigkeiten von ca. 730 m/s erreicht werden. Die Detonationsfrequenz des Verfahrens liegt hierbei beispielsweise zwischen ca. 4 bis 10 Hz. Bei Varianten wie dem sogenannten Hochfrequenz-Gasdetonationsspritzen werden jedoch auch Detonationsfrequenzen um ca. 100 Hz gewählt.
  • Die erhaltenen Schichten sollen gewöhnlicherweise eine besonders hohe Härte, Stärke, Dichte und gute Bindung an die Substratoberfläche aufweisen. Nachteilig ist bei den vorgenannten Verfahren der erhöhte Sicherheitsaufwand, sowie beispielsweise die große Lärmbelastung aufgrund der hohen Gasgeschwindigkeiten.
  • Beim thermischen Plasmaspritzen wird beispielsweise ein Primärgas wie Argon mit einer Geschwindigkeit von 40 l/min und ein Sekundärgas wie Wasserstoff mit einer Geschwindigkeit von 2,5 l/min durch einen Gleichstromlichtbogenofen geleitet, wobei ein thermisches Plasma erzeugt wird. Anschließend erfolgt die Zuführung von beispielsweise 40 g/min des pulverförmigen Beschichtungsmaterials unter Hilfe eines Trägergasstromes, der mit einer Geschwindigkeit von 4 l/min in die Plasmaflamme geleitet wird. Bei gebräuchlichen Varianten des thermischen Plasmaspritzens beträgt die Förderrate des pulverförmigen Beschichtungsmaterials zwischen 5 g/min und 60 g/min, mehr bevorzugt zwischen 10 g/min und 40 g/min.
  • Bei bestimmten Varianten des Verfahrens ist es bevorzugt Argon, Helium oder Mischungen davon als ionisierbares Gas einzusetzen. Der gesamte Gasstrom beträgt bei bestimmten Varianten ferner bevorzugt 30 bis 150 SLPM (standard liters per minute). Die zur Ionisation des Gasstromes eingesetzte elektrische Leistung ohne die infolge einer Kühlung abgeführte Wärmeenergie kann beispielsweise zwischen 5 und 100 kW, vorzugsweise zwischen 40 und 80 kW, gewählt werden. Hierbei können Plasmatemperaturen zwischen 4000 K und einigen 10000 K erreicht werden.
  • Beim nichtthermischen Plasmaspritzen wird ein nichtthermisches Plasma zur Aktivierung des pulverförmigen Beschichtungsmaterials eingesetzt. Das hierbei verwendete Plasma wird beispielsweise mit einer Barriereentladung oder Coronaentladung mit einer Frequenz von 50 Hz bis 1 MHz erzeugt. In bestimmten Varianten des nichtthermischen Plasmaspritzens ist es bevorzugt, dass bei einer Frequenz von 10 kHz bis 100 kHz gearbeitet wird. Die Temperatur des Plasmas beträgt hierbei bevorzugt weniger als 3000 K, vorzugsweise weniger als 2500 K und noch mehr bevorzugt weniger als 2000 K. Dies minimiert den technischen Aufwand und hält den Energieeintrag in das aufzubringende Beschichtungsmaterial möglichst gering, was wiederum eine schonende Beschichtung des Substrats erlaubt. Die Größenordnung der Temperatur der Plasmaflamme ist somit bevorzugt vergleichbar mit der beim Flammspritzen oder beim Hochgeschwindigkeitsflammspritzen. Durch gezielte Wahl der Parameter lassen sich auch nichtthermische Plasmen erzeugen, deren Kerntemperatur unter 1173 K oder sogar unter 773 K im Kernbereich beträgt. Die Messung der Temperatur im Kernbereich erfolgt hierbei beispielsweise mit einem Thermoelement Typ NiCr/Ni und einem Spitzendurchmesser von 3 mm in 10 mm Abstand vom Düsenaustritt im Kern des austretenden Plasmastrahls bei Umgebungsdruck. Derartige nichtthermische Plasmen sind insbesondere für Beschichtungen von sehr temperaturempfindlichen Substraten geeignet.
  • Zur Erzeugung von Beschichtungen mit scharfen Begrenzungen ohne die Notwendigkeit gezielt Bereiche abdecken zu müssen, hat es sich als vorteilhaft erwiesen, insbesondere die Austrittöffnung der Plasmaflamme derart zu gestalten, dass die Bahnbreiten der erzeugten Beschichtungen zwischen 0,2 mm und 10 mm liegen. Dies ermöglicht eine sehr genaue, flexible, energieeffiziente Beschichtung unter bestmöglicher Ausnutzung des eingesetzten Beschichtungsmaterials. Als Abstand der Spritzlanze zum Substrat wird beispielsweise eine Distanz von 1 mm gewählt. Dies ermöglicht eine größtmögliche Flexibilität der Beschichtungen und gewährleistet gleichzeitig qualitativ hochwertige Beschichtungen. Zweckdienlicherweise liegt der Abstand zwischen Spritzlanze und Substrat zwischen 1 mm und 35 mm.
  • Als ionisierbares Gas können im nichtthermischen Plasmaverfahren verschiedene, dem Fachmann bekannte Gase und deren Mischungen eingesetzt werden. Beispiele hierfür sind Helium, Argon, Xenon, Stickstoff, Sauerstoff, Wasserstoff oder Luft, vorzugsweiseweise Argon oder Luft. Ein besonders bevorzugtes ionisierbares Gas ist Luft.
  • Beispielsweise zur Verminderung der Lärmbelastung kann es auch hier bevorzugt sein, dass die Geschwindigkeit des Plasmastromes unter 200 m/s liegt. Als Strömungsgeschwindigkeit kann beispielsweise ein Wert zwischen 0,01 m/s und 100 m/s, vorzugsweise zwischen 0,2 m/s und 10 m/s gewählt werden. Insbesondere ist es bei bestimmten Ausführungsformen beispielsweise bevorzugt, dass der Volumenstrom des Trägergases zwischen 10 und 25 l/min, mehr bevorzugt zwischen 15 und 19 l/min liegt.
  • Gemäß einer bevorzugten Ausführungsform sind die Partikel des pulverförmigen Beschichtungsmaterials vorzugsweise metallische Partikel oder metallhaltige Partikel. Insbesondere ist es bevorzugt, dass der Metallgehalt der metallischen Partikel oder metallhaltigen Partikel mindestens 95 Gew.-%, vorzugsweise mindestens 99 Gew.-%, noch mehr bevorzugt mindestens 99,9 Gew.-% ist. Bei bestimmten bevorzugten Ausführungsformen wird das Metall oder die Metalle aus der Gruppe bestehend aus Silber, Gold, Platin, Palladium, Vanadium, Chrom, Mangan, Cobalt, Germanium, Antimon, Aluminium, Zink, Zinn, Eisen, Kupfer, Nickel, Titan, Silizium, Legierungen und Mischungen davon ausgewählt. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass das Metall oder die Metalle aus der Gruppe bestehend aus Silber, Gold, Aluminium, Zink, Zinn, Eisen, Kupfer, Nickel, Titan, Silizium, Legierungen und Mischungen davon, vorzugsweise aus der Gruppe bestehend aus Silber, Gold, Aluminium, Zink, Zinn, Eisen, Nickel, Titan, Silizium, Legierungen und Mischungen davon, ausgewählt wird.
  • Gemäß weiteren bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird das Metall oder werden die Metalle der Partikel des pulverförmigen Beschichtungsmaterials ausgewählt aus der Gruppe bestehend aus Silber, Aluminium, Zink, Zinn, Kupfer, Legierungen und Mischungen davon ausgewählt. Als bei spezifischen Ausführungsformen besonders geeignete Partikel haben sich insbesondere metallische Partikel oder metallhaltige Partikel erwiesen, bei denen das Metall oder die Metalle ausgewählt werden aus der Gruppe bestehend aus Silber, Aluminium und Zinn.
  • Bei weiteren Ausführungsformen der Erfindung besteht das pulverförmige Beschichtungsmaterial aus anorganischen Partikeln, die vorzugsweise aus der Gruppe bestehend aus Carbonaten, Oxiden, Hydroxiden, Carbiden, Halogeniden, Nitriden und Mischungen davon ausgewählt werden. Besonders geeignet sind mineralische und/oder metalloxidische Partikel.
  • Bei anderen Ausführungsformen werden die anorganischen Partikel alternativ oder zusätzlich aus der Gruppe bestehend aus Kohlepartikeln oder Graphitpartikeln ausgewählt.
  • Eine weitere Möglichkeit besteht in der Verwendung von Mischungen der metallischen Partikel und der vorgenannten anorganischen Partikel, wie beispielsweise mineralische und/oder metalloxidische Partikel, und/oder den Partikeln, die aus der Gruppe bestehend aus Carbonaten, Oxiden, Hydroxiden, Carbiden, Halogeniden, Nitriden und Mischungen davon, ausgewählt werden.
  • Ferner kann das pulverförmige Beschichtungsmaterial Glaspartikel umfassen oder aus ihnen bestehen. Bei bestimmten Ausführungsformen ist es insbesondere bevorzugt, dass das pulverförmige Beschichtungsmaterial beschichtete Glaspartikel umfasst oder aus ihnen besteht.
  • Zudem umfasst das pulverförmige Beschichtungsmaterial bei bestimmten Ausführungsformen organische und/oder anorganische Salze oder besteht aus ihnen.
  • Bei wieder anderen Ausführungsformen der vorliegenden Erfindung umfasst das pulverförmige Beschichtungsmaterial Kunststoffpartikel oder besteht aus ihnen. Die vorgenannten Kunststoffpartikel werden gebildet aus beispielsweise reinen oder gemischten Homo-, Co-, Block- oder Präpolymeren oder Mischungen davon. Hierbei können die Kunststoffpartikel reine Kristalle sein oder Mischkristalle sein oder amorphe Phasen aufweisen. Die Kunststoffpartikel können beispielsweise durch mechanische Zerkleinerung von Kunststoffen erhalten werden.
  • Bei bestimmten Ausführungsformen des erfindungsgemäßen Verfahrens umfasst oder besteht das pulverförmige Beschichtungsmaterial aus Mischungen von Partikeln unterschiedlicher Materialien. Bei bestimmten bevorzugten Ausführungsformen besteht das pulverförmige Beschichtungsmaterial insbesondere aus mindestens zwei, vorzugsweise drei, verschiedenen Partikeln unterschiedlicher Materialien.
  • Die Partikel können über unterschiedliche Verfahren hergestellt sein. Beispielsweise können die Metallpartikel durch Verdüsung oder Zerstäubung von Metallschmelzen erhalten werden. Glaspartikel können durch mechanische Zerkleinerung von Glas oder aber auch aus der Schmelze erzeugt werden. Im letzteren Fall kann die Glasschmelze ebenfalls zerstäubt oder verdüst werden. Alternativ kann geschmolzenes Glas auch auf rotierenden Elementen, beispielsweise einer Trommel, zerteilt werden.
  • Mineralische Partikel, metalloxidische Partikel und anorganische Partikel, die aus der Gruppe, die aus Oxiden, Hydroxiden, Carbonaten, Carbiden, Nitriden, Halogeniden und Mischungen davon besteht, ausgewählt werden, können erhalten werden, indem die natürlich vorkommenden Mineralien, Gesteine, etc. zerkleinert und nachfolgend größenklassiert werden.
  • Das Größenklassieren kann beispielsweise mittels Zyklonen, Windsichtern, Sieben, etc. durchgeführt werden.
  • Bei bestimmten Ausführungsformen der vorliegenden Erfindung sind die Partikel des pulverförmigen Beschichtungsmaterials mit einer Beschichtung versehen worden, bevor sie mit dem Additiv belegt wurden.
  • Bei bestimmten bevorzugten Ausführungsformen der vorliegenden Erfindung kann die vorgenannte Beschichtung ein Metall umfassen oder aus einem Metall bestehen. Eine derartige Beschichtung eines Partikels kann geschlossen oder partikulär ausgebildet sein, wobei Beschichtungen mit geschlossener Struktur bevorzugt sind. Die Schichtdicke einer derartigen metallischen Beschichtung liegt vorzugsweise unter 1 µm, mehr bevorzugt unter 0,8 µm und noch mehr bevorzugt unter 0,5 µm. Bei bestimmten Ausführungsformen weisen derartige Beschichtungen eine Dicke von mindestens 0,05 µm, mehr bevorzugt von mindestens 0,1 µm auf. Bei bestimmten Ausführungsformen besonders bevorzugte Metalle zur Verwendung in einer der vorgenannten Beschichtungen, vorzugsweise als Hauptbestandteile, werden ausgewählt aus der Gruppe bestehen aus Kupfer, Titan, Gold, Silber, Zinn, Zink, Eisen, Silicium, Nickel und Aluminium, vorzugsweise aus der Gruppe bestehend aus Gold, Silber, Zinn und Zink, weiter bevorzugt aus der Gruppe bestehend aus Silber, Zinn und Zink. Der Begriff Hauptbestandteil im Sinne der vorgenannten Beschichtung bezeichnet, dass das betreffende Metall oder eine Mischung der vorgenannten Metalle mindestens 90 Gew.-%, vorzugsweise 95 Gew.-%, weiter bevorzugt 99 Gew.-% des Metallgehalts der Beschichtung darstellen. Es muss verstanden werden, dass im Falle einer partiellen Oxidation der Sauerstoffanteil der entsprechenden Oxidschicht nicht eingerechnet wird. Die Herstellung derartiger metallischer Beschichtungen kann beispielsweise mittels der Gasphasensynthese oder nasschemischen Verfahren erfolgen.
  • Bei weiteren bestimmten Ausführungsformen sind die erfindungsgemäßen Partikel des pulverförmigen Beschichtungsmaterials zusätzlich oder alternativ mit einer Metalloxidschicht beschichtet. Vorzugsweise besteht diese Metalloxidschicht im Wesentlichen aus Siliziumoxid, Aluminiumoxid, Boroxid, Zirkoniumoxid, Ceroxid, Eisenoxid, Titanoxid, Chromoxid, Zinnoxid, Molybdänoxid, deren Oxidhydraten, deren Hydroxiden und Mischungen davon. Bei bestimmten bevorzugten Ausführungsformen besteht die Metalloxidschicht im Wesentlichen aus Siliziumoxid. Der vorgenannte Begriff "besteht im Wesentlichen aus" im Sinne der vorliegenden Erfindung bedeutet, dass mindestens 90 %, vorzugsweise mindestens 95 %, mehr bevorzugt mindestens 98 %, noch mehr bevorzugt mindestens 99 % und am meisten bevorzugt mindestens 99,9 % der Metalloxidschicht aus den vorgenannten Metalloxiden besteht, jeweils bezogen auf die Anzahl der Teilchen der Metalloxidschicht, wobei gegebenenfalls enthaltenes Wasser nicht mitgerechnet wird. Die Bestimmung der Zusammensetzung der Metalloxidschicht kann mittels dem Fachmann bekannter Verfahren wie beispielsweise dem Sputtern in Kombination mit XPS oder TOF-SIMS erfolgen. Insbesondere ist es bei bestimmten der vorgenannten Ausführungsformen bevorzugt, dass die Metalloxidschicht kein Oxidationsprodukt eines darunter befindlichen Metallkernes darstellt. Die Aufbringung einer derartigen Metalloxidschicht kann beispielsweise mit dem Sol-Gel-Verfahren erfolgen.
  • Bei bestimmten bevorzugten Ausführungsformen wird das Substrat aus der Gruppe bestehend aus Kunststoffsubstraten, anorganischen Substraten, Cellulose-haltigen Substraten und Mischungen davon ausgewählt.
  • Bei den Kunststoffsubstraten kann es sich beispielsweise um Kunststofffolien oder Formkörper aus Kunststoffen handeln. Die Formkörper können dabei geometrisch einfache oder komplexe Formen aufweisen. Der Kunststoffformkörper kann beispielsweise ein Bauteil aus der Kraftfahrzeugindustrie oder der Bauindustrie sein.
  • Bei den Cellulose-haltigen Substraten kann es sich um Pappe, Papier, Holz, Holzenthaltende Substrate, etc. handeln.
  • Die anorganischen Substrate können beispielsweise metallische Substrate, wie Bleche oder metallische Formkörper oder keramische oder mineralische Substrate oder Formkörper sein. Die anorganischen Substrate können auch Solarzellen oder Siliziumwaver sein, auf die beispielsweise elektrisch leitfähige Beschichtungen oder Kontakte aufgebracht werden.
  • Als anorganische Substrate können auch Substrate aus Glas, wie beispielsweise Glasscheiben, verwendet werden. Das Glas, insbesondere Glasscheiben, können unter Verwendung des erfindungsgemäßen Verfahrens beispielsweise mit elektrochromen Beschichtungen versehen werden.
  • Die mittels dem erfindungsgemäßen Verfahren beschichteten Substrate sind für sehr unterschiedliche Anwendungen geeignet.
  • Bei bestimmten Ausführungsformen weisen die Beschichtungen optische und/oder elektromagnetische Wirkungen auf. Hierbei können die Beschichtungen Reflektionen oder Absorptionen hervorrufen. Ferner können die Beschichtungen elektrisch leitfähig, semi-leitfähig oder nichtleitend sein.
  • Elektrisch leitfähige Schichten können beispielsweise in der Form von Leiterbahnen auf Bauteile aufgebracht werden. Dies kann beispielsweise dazu verwendet werden, um die Stromführung im Rahmen des Bordnetzes bei einem Kraftfahrzeugbauteil zu ermöglichen. Ferner kann eine derartige Leiterbahn jedoch auch beispielsweise als Antenne, als Abschirmung, als elektrischer Kontakt, etc. geformt sein. Dies ist beispielsweise besonders vorteilhaft für RFID-Anwendungen (radio frequency identifcation). Weiterhin können erfindungsgemäße Beschichtungen beispielsweise für Heizzwecke oder zur gezielten Beheizung spezieller Bauteile oder spezieller Teile größerer Bauteile verwendet werden.
  • Bei weiteren bestimmten Ausführungsformen dienen die erzeugten Beschichtungen als Gleitschichten, Diffusionsbarrieren für Gase und Flüssigkeiten, Verschleiß- und/oder Korrosionsschutzschichten. Weiterhin können die erzeugten Beschichtungen die Oberflächenspannung von Flüssigkeiten beeinflussen oder haftvermittelnde Eigenschaften aufweisen.
  • Die erfindungsgemäß hergestellten Beschichtungen können ferner als Sensorflächen, beispielsweise als Mensch-Maschine-Schnittstelle (HMI: Human-Machine-Interface), beispielsweise in Form eines Berührungsbildschirmes (Touch Screen) verwendet werden. Ebenso können die Beschichtungen zur Abschirmung von elektromagnetischen Interferenzen (EMI) oder zum Schutz vor elektrostatischen Entladungen (ESD) verwendet werden. Die Beschichtungen können auch verwendet werden, um eine elektromagnetische Verträglichkeit (EMV) zu bewirken.
  • Bei wieder anderen Ausführungsformen dienen die Beschichtungen als elektrische Kontakte und erlauben eine elektrische Verbindung zwischen verschiedenen Materialien.
  • Dem Fachmann ist bewusst, dass die vorstehend im Hinblick auf das erfindungsgemäße Verfahren angegebenen Spezifizierungen bezüglich des pulverförmigen Beschichtungsmaterials und der darin enthaltenen Partikel entsprechend auch für die Verwendung des pulverförmigen Beschichtungsmaterials und der darin enthaltenen Partikel gelten, sowie umgekehrt.
  • Beispiele
  • Verwendete Materialien und Methoden.
  • Die Bestimmung der Größenverteilung der Partikel der verwendeten pulverförmigen Beschichtungsmaterialien erfolgte mittels eines HELOS Gerätes (Sympatec, Deutschland). Für die Messung wurden 3 g des pulverförmigen Beschichtungsmaterials in das Messgerät gegeben und vor der Messung für 30 Sekunden mit Ultraschall behandelt. Zur Dispergierung wurde eine Rodos T4.1 Dispergiereinheit eingesetzt, wobei der Primärdruck 4 bar betrug. Die Auswertung erfolgte mit der Standardsoftware des Gerätes.
  • Das erfindungsgemäße Verfahren wird nunmehr anhand der nachstehenden Beispiele näher erläutert, ohne dabei auf die Bespiele beschränkt zu sein.
  • Beispiel 1: mit Acrylpolymer (Poly(iso-butylmethacrylat) belegte, pulverförmige Beschichtungsmaterialien
  • Es wurden 0,3 g eines Acrylpolymeren auf Basis von iso-Butylmethacrylat (Degalan P 675, Fa. Evonik) als Additiv eingesetzt und in 50 g Essigester gelöst. Anschließend wurde diese Mischung zusammen mit 240 g Aluminiumpartikel (D50 = 17,5 µm) in einen Kneter (Duplex-Kneter der Fa. IKA) gegeben und 30 min bei RT (20 °C) geknetet. Danach wurde eine Temperatur von 40 °C und ein Vakuum von 250 mbar eingestellt. Es wurde 1 h getrocknet und danach wurden die additivierten Partikel aus dem Kneter entnommen und anschließend gesiebt (71 µm).
  • Beispiel 2: mit Ethylcellulose belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Als Additiv wurde 1 g Ethylcellulose (Ethocel Standard 10, Fa. Dow Wolff Cellulosics) verwendet.
  • Beispiel 3: mit Acrylpolymer (Methylmethacrylat) belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Als Additiv wurden 2 g eines Acrylpolymeren auf Basis von Methylmethacrylat und n-Butylmethacrylat (Degalan LP AL 23, FA. Evonik) verwendet.
  • Beispiel 4: mit 1,10-Decandicarbonsäure belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Hierbei wurde Aluminiumpartikel mit einem D50-Wert von 2 μm eingesetzt. Als Additiv wurden 3 g 1,10-Decandicarbonsäure verwendet.
  • Beispiel 5: mit Monoethylfumerat belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Hierbei wurden Aluminiumpartikel mit einem D50-Wert von 2 μm eingesetzt. Als Additiv wurden 3 g Monoethylfumerat verwendet.
  • Beispiel 6: mit Ethocel belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Hierbei wurden Kupferpartikel mit einem D50-Wert von 34 μm eingesetzt. Als Additiv wurden 3 g Ethylcellulose (Ethocel Standard 10, Fa. Dow Wolff Cellulosics) verwendet.
  • Beispiel 7: mit Monoethylfumerat belegte, pulverförmige Beschichtungsmaterialien
  • Die Aufbringung des Additivs wurde analog zu Beispiel 1 durchgeführt. Hierbei wurden Kupferpartikel mit einem D50-Wert von 34 μm eingesetzt. Als Additiv wurden 3 g DEGALAN PM 381 (Copolymer aus Methylmethacrylat und Isobutylmethacrylat, Fa. Evonik) verwendet.
  • Beispiel 8: Bestimmung der Förderbarkeit
  • Um eine Verbesserung der Förderbarkeit des erfindungsgemäß mit einem Additiv belegten pulverförmigen Beschichtungsmaterials zu bestimmen, wurde ein Fluidimeter AS 100 der Firma Sames eingesetzt. Hierbei wurden 250 g der jeweiligen Partikel gemäß Beispiel 1 bis 3 eingefüllt und mit einem Gas fluidisiert. Als Gas wurde hierbei Stickstoff eingesetzt. Anschließend wurde für 30 Sekunden eine kalibrierte Bohrung geöffnet und das Gewicht (G) des in dieser Zeit ausgeflossenen Materials als Maßgröße festgehalten.
    Probe Gewicht
    Standart Alugrieß WA 25 5 g
    Beispiel 1 12 g
    Beispiel 2 28 g
    Beispiel 3 16 g
  • Beispiel 9: nichtthermisches Plasmaspritzen von Aluminiumpartikeln
  • Mittels einer Plasmadustanlage der Firma Reinhausen Plasma wurde versucht unter Einsatz der Standardeinstellungen Aluminiumpartikel mit einem D50 von 2 μm auf die Substratoberfläche aufzutragen, wobei Alumiumpartikel ohne Additiv, die Aluminiumpartikel gemäß Beispiel 4 oder die Aluminiumpartikel gemäß Beispiel 5 verwendet wurden.
  • Unter Einsatz der Aluminiumpartikel ohne Additiv konnte keine Beschichtung im Sinne der Erfindung auf die Oberfläche des Substrats aufgebracht werden. Die Aluminiumpartikel gemäß Beispiel 4 und 5 konnten hingegen gut appliziert werden und bildeten auf der Oberfläche des Substrates eine homogene Beschichtung.
  • Beispiel 10: nichtthermisches Plasmaspritzen von Kupferpartikeln
  • Mittels einer Plasmadustanlage der Firma Reinhausen Plasma wurde versucht unter Einsatz der Standardeinstellungen Kupferpartikel mit einem D50 von 34 μm auf die Substratoberfläche aufzutragen, wobei zum Einen Kupferpartikel ohne Additiv und zum Anderen Kupferpartikel gemäß Beispiel 6 oder gemäß Beispiel 7 verwendet wurden.
  • Mittels der Kupferpartikel ohne Additiv konnte lediglich eine lückenhafte Beschichtung mit Einschlüssen auf der Oberfläche des Substrats erzeugt werden. Die Kupferpartikel gemäß den Beispielen 6 und 7 ermöglichten hingegen die Ausbildung einer deutlich homogeneren Beschichtung.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2010/003396 A1 [0005]
    • EP 1363811 A1 [0005]
    • EP 0911425 B1 [0005]
    • US 7740905 B2 [0005]
    • EP 830464 B1 [0006]
    • US 5207382 A [0006]
    • WO 2004/016821 [0008]
    • EP 0344781 [0008]
    • EP 0342428 A2 [0008]
    • US 7678428 B2 [0008]
    • US 7928338 B2 [0008]
    • EP 1287898 A2 [0008]
    • EP 0825272 A2 [0009]
    • WO 2010/037548 A1 [0009]
    • EP 0492384 A1 [0009]
    • EP 1675971 B1 [0010]
    • DE 10320379 A1 [0010]
    • DE 102006061435 A1 [0010]
    • WO 03/064061 A1 [0010]
    • WO 2005/031026 A1 [0010]
    • DE 19807086 A1 [0010]
    • DE 10116502 A1 [0010]
    • WO 01/32949 A1 [0010]
    • EP 0254424 B1 [0010]
    • EP 1024222 A2 [0010]
    • DE 19532412 A1 [0010]
    • DE 19955880 A1 [0010]
    • DE 19856307 C1 [0010]
    • WO 03/029762 A1 [0011]
    • WO 2011/032807 A1 [0011]
    • EP 2115075 A1 [0037]
    • DE 1300266 B1 [0055]
    • DE 1495730 A1 [0055]
    • US 2071250 [0059]
    • US 2071251 [0059]
    • US 2130523 [0059]
    • US 2130948 [0059]
    • US 2241322 [0059]
    • US 2312966 [0059]
    • US 2512606 [0059]
    • US 3393210 [0059]
    • EP 302485 A [0060]
    • DE 19728629 A1 [0060]
    • EP 99532 A2 [0060]
    • US 3055859 [0060]
    • US 4224419 [0060]
    • EP 113112 A1 [0061]
    • EP 135130 A2 [0061]
  • Zitierte Nicht-Patentliteratur
    • Kunststoff-Taschenbuch, Hrsg. Saechtling, 25. Ausgabe, Hanser-Verlag, München, 1992, insbesondere Kapitel 4 [0053]
    • Kunststoff-Handbuch, Hrsg. G. Becker und D. Braun, Bände 1 bis 11, Hanser-Verlag, München, 1966 bis 1996 [0053]
    • Römpp Chemie Lexikon, CD-ROM Version 1.0, Thieme Verlag Stuttgart 1995 [0066]
    • G. Holden et al., Thermoplastic Elastomers, 2. Auflage, Hanser Verlag, München 1996 [0067]

Claims (15)

  1. Verwendung eines Partikel-haltigen pulverförmigen Beschichtungsmaterials bei einem Beschichtungsverfahren ausgewählt aus der Gruppe bestehend aus Kaltgasspritzen, Flammspritzen, Hochgeschwindigkeitsflammspritzen, thermischem Plasmaspritzen und nichtthermischem Plasmaspritzen, wobei die Partikel des pulverförmigen Beschichtungsmaterials zumindest teilweise mit mindestens einem Additiv versehen sind.
  2. Verwendung gemäß Anspruch 1, wobei der Gewichtsanteil des mindestens einen Additivs höchstens 32 Gew.-% beträgt, bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  3. Verwendung gemäß einem der Ansprüche 1 oder 2, wobei der Kohlenstoffgehalt des mit mindestens einem Additiv versehenen pulverförmigen Beschichtungsmaterials von 0,01 Gew.-% bis 15 Gew.-%, bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs, beträgt.
  4. Verwendung gemäß einem der Ansprüche 1 bis 3, wobei der Gewichtsanteil des mindestens einen Additivs mindestens 0,02 Gew.-% beträgt, bezogen auf das Gesamtgewicht des Beschichtungsmaterials und des Additivs.
  5. Verwendung gemäß einem der Ansprüche 1 bis 4, wobei die als Additiv eingesetzte Verbindung bzw. die als Additiv eingesetzten Verbindungen mindestens 6 Kohlenstoffatome aufweist bzw. aufweisen.
  6. Verwendung gemäß einem der Ansprüche 1 bis 5, wobei die Partikel Metallpartikel umfassen oder sind und das Metall ausgewählt wird aus der Gruppe bestehend aus Silber, Gold, Platin, Palladium, Vanadium, Chrom, Mangan, Cobalt, Germanium, Antimon, Aluminium, Zink, Zinn, Eisen, Kupfer, Nickel, Titan, Silizium, Legierungen und Mischungen davon.
  7. Verwendung gemäß einem der Ansprüche 1 bis 6, wobei das Beschichtungsverfahren ausgewählt wird aus der Gruppe bestehend aus Flammspritzen und nichtthermischem Plasmaspritzen, und vorzugsweise das nichtthermische Plasmaspritzen ist.
  8. Verwendung gemäß einem der Ansprüche 1 bis 7, wobei das mindestens eine Additiv keine Stearinsäure und/oder Ölsäure umfasst.
  9. Verwendung gemäß einem der Ansprüche 1 bis 8, wobei das mindestens eine Additiv aus der Gruppe, die aus Polymeren, Monomeren, Silanen, Wachsen, oxidierten Wachsen, Carbonsäuren, Phosphonsäuren, Derivaten der vorgenannten und Mischungen davon besteht, ausgewählt wird.
  10. Verwendung gemäß einem der Ansprüche 1 bis 9, wobei das mindestens eine Additiv von den beschichteten Partikeln mit organischem und/oder wässrigem Lösungsmittel ablösbar ist.
  11. Verwendung gemäß einem der Ansprüche 1 bis 10, wobei das pulverförmige Beschichtungsmaterial eine Korngrößenverteilung mit einem D50-Wert aus einem Bereich von 1,5 bis 53 μm aufweist.
  12. Verfahren zur Beschichtung eines Substrats ausgewählt aus der Gruppe bestehend aus Kaltgasspritzen, Flammspritzen, Hochgeschwindigkeitsflammspritzen, thermischem Plasmaspritzen und nichtthermischem Plasmaspritzen, dadurch gekennzeichnet, dass das Verfahren folgenden Schritt umfasst: Einbringen eines Partikel-haltigen pulverförmiges Beschichtungsmaterial in ein auf ein zu beschichtendes Substrat gerichtetes Medium, wobei die Partikel mit mindestens einem Additiv versehen sind.
  13. Verfahren gemäß Anspruch 12, wobei das Verfahren zur Beschichtung ausgewählt wird aus der Gruppe bestehend aus Flammspritzen und nichtthermischem Plasmaspritzen, und vorzugsweise das nichtthermische Plasmaspritzen ist.
  14. Verfahren gemäß einem der Ansprüche 12 oder 13, wobei das pulverförmige Beschichtungsmaterial als Aerosol gefördert wird.
  15. Verfahren gemäß einem der Ansprüche 12 bis 14, wobei das auf das Substrat gerichtete Medium Luft ist oder aus Luft erzeugt wurde.
DE102011052119A 2011-07-25 2011-07-25 Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren Withdrawn DE102011052119A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102011052119A DE102011052119A1 (de) 2011-07-25 2011-07-25 Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
JP2014522093A JP2014527575A (ja) 2011-07-25 2012-07-25 基材コーティングのための方法、およびそのような方法における添加剤含有粉末化コーティング物質の使用
KR1020147004893A KR20140061422A (ko) 2011-07-25 2012-07-25 기판 코팅 방법 및 이러한 방법에서 첨가제 함유 분말 코팅 물질의 용도
CN201810874735.5A CN108950459A (zh) 2011-07-25 2012-07-25 用于基材涂布的方法以及含有添加剂的粉末涂料材料在该方法中的用途
EP12741313.6A EP2737100B1 (de) 2011-07-25 2012-07-25 Verfahren zur substratbeschichtung und verwendung additivversehener, pulverförmiger beschichtungsmaterialien in derartigen verfahren
US14/234,851 US20140230692A1 (en) 2011-07-25 2012-07-25 Methods for Substrate Coating and Use of Additive-Containing Powdered Coating Materials in Such Methods
CN201280046396.2A CN103827344A (zh) 2011-07-25 2012-07-25 用于基材涂布的方法以及含有添加剂的粉末涂料材料在该方法中的用途
PCT/EP2012/064638 WO2013014213A2 (de) 2011-07-25 2012-07-25 Verfahren zur substratbeschichtung und verwendung additivversehener, pulverförmiger beschichtungsmaterialien in derartigen verfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011052119A DE102011052119A1 (de) 2011-07-25 2011-07-25 Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren

Publications (1)

Publication Number Publication Date
DE102011052119A1 true DE102011052119A1 (de) 2013-01-31

Family

ID=47502757

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011052119A Withdrawn DE102011052119A1 (de) 2011-07-25 2011-07-25 Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren

Country Status (1)

Country Link
DE (1) DE102011052119A1 (de)

Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3055859A (en) 1956-09-28 1962-09-25 Basf Ag Impact-resistant plastic compositions comprising a styrene polymer and a cross-linked acrylic acid ester polymer, and process for preparing same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE1495730A1 (de) 1963-07-24 1969-04-10 Bayer Ag Verfahren zur Herstellung thermoplastischer Polykondensationsprodukte
US4224419A (en) 1978-06-20 1980-09-23 Basf Aktiengesellschaft Weathering-resistant, high-impact, easily colored thermoplastic compositions
EP0099532A2 (de) 1982-07-23 1984-02-01 BASF Aktiengesellschaft Thermoplastische Formmasse
EP0113112A1 (de) 1982-12-23 1984-07-11 Amoco Corporation Verwendung eines amorphen aromatischen thermoplastischen Polymeren
EP0135130A2 (de) 1983-08-20 1985-03-27 BASF Aktiengesellschaft Verfahren zur Herstellung von Polyethern
EP0302485A2 (de) 1987-08-07 1989-02-08 BASF Aktiengesellschaft Thermoplastische Formmassen
EP0342428A2 (de) 1988-05-16 1989-11-23 Thyssen Guss Ag Vorrichtung zum Plasmaspritzen
EP0344781A1 (de) 1988-06-02 1989-12-06 The Perkin-Elmer Corporation Wolframkarbid für das Plasmaspritzen
EP0254424B1 (de) 1986-06-20 1991-11-06 Nippon Paint Co., Ltd. Verfahren und Vorrichtung zur Behandlung von Pulver
EP0492384A1 (de) 1990-12-22 1992-07-01 OSU-MASCHINENBAU GmbH Düse für eine Vorrichtung und ein Verfahren zum Hochgeschwindigkeitsflammspritzen
US5207382A (en) 1989-06-03 1993-05-04 Eutectic Corporation Autogenous flame spraying apparatus for the flame spraying of powder-form materials or spray powder
DE19532412A1 (de) 1995-09-01 1997-03-06 Agrodyn Hochspannungstechnik G Verfahren und Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
DE19610054C2 (de) * 1996-03-14 1998-01-29 Linde Ag Gleitfläche für Sportgerät
EP0825272A2 (de) 1996-08-22 1998-02-25 Sulzer Metco Japan Ltd. Verfahren zum Hochgeschwindigkeitsflammspritzen
DE19728629A1 (de) 1997-07-04 1999-01-07 Basf Ag Thermoplastische Formmassen mit geringer Eigenfarbe
DE19807086A1 (de) 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19856307C1 (de) 1998-12-07 2000-01-13 Bosch Gmbh Robert Vorrichtung zur Erzeugung eines freien kalten Plasmastrahles
EP1024222A2 (de) 1999-01-27 2000-08-02 eybl International AG Verfahren zur Ausrüstung von textilen Substraten
WO2001032949A1 (de) 1999-10-30 2001-05-10 Agrodyn Hochspannungstechnik Gmbh Verfahren und vorrichtung zur plasmabeschichtung von oberflächen
DE19955880A1 (de) 1999-11-20 2001-05-23 Henkel Kgaa Plasmabeschichtung von Metallen bei Atmosphärendruck
WO2002024970A2 (de) * 2000-09-21 2002-03-28 Federal-Mogul Burscheid Gmbh Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvern
DE10116502A1 (de) 2001-04-03 2002-10-24 Wolfgang Vioel Verfahren und Vorrichtung zur Ausbildung eines Plasmastrahls
EP0911425B1 (de) 1997-10-27 2003-01-22 Linde AG Verfahren zum thermischen Beschichten von Substratwerkstoffen
EP1287898A2 (de) 2001-09-03 2003-03-05 Shimazu Kogyo Yugengaisha Plasmabrenner zum Plasmaspritzen
WO2003029762A1 (de) 2001-09-29 2003-04-10 Michael Dvorak Verfahren und vorrichtung zur zuführung dosierter mengen eines feinkörnigen schüttguts
WO2003064061A1 (en) 2002-01-29 2003-08-07 Ciba Specialty Chemicals Holding Inc. Process for the production of strongly adherent coatings
EP1363811A1 (de) 2001-02-24 2003-11-26 Leoni AG Verfahren zum herstellen eines formbauteils mit einer integrierten leiterbahn und formbauteil
WO2004016821A2 (en) 2002-08-02 2004-02-26 3M Innovative Properties Company Plasma projection
DE10320379A1 (de) 2003-05-06 2004-12-02 Leoni Ag Elektrisch beheizbares Element und Verfahren zum Herstellen eines elektrisch beheizbaren Elements
EP0830464B1 (de) 1996-03-25 2005-01-05 Wilson Greatbatch Ltd. Mit flammspritzen beschichtete elektrodenkomponente und verfahren zu deren herstellung
WO2005031026A1 (de) 2003-09-26 2005-04-07 Michael Dvorak Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles
DE10041974B4 (de) * 2000-08-25 2008-02-14 Daimler Ag Beschichtungsverfahren für Zylinderköpfe und Verwendung
DE102006061435A1 (de) 2006-12-23 2008-06-26 Leoni Ag Verfahren und Vorrichtung zum Aufspritzen insbesondere einer Leiterbahn, elektrisches Bauteil mit einer Leiterbahn sowie Dosiervorrichtung
DE102005047688C5 (de) * 2005-09-23 2008-09-18 Siemens Ag Kaltgasspritzverfahren
EP2115075A1 (de) 2007-02-07 2009-11-11 Eckart GmbH Chemikalienbeständige metalleffektpigmente, verfahren zu deren herstellung und verwendung derselben
WO2010003396A1 (de) 2008-07-05 2010-01-14 Mtu Aero Engines Gmbh Verfahren und vorrichtung zum kaltgasspritzen
US7678428B2 (en) 2002-04-12 2010-03-16 Sulzer Metco Ag Plasma spraying method
WO2010037548A1 (de) 2008-10-01 2010-04-08 Technische Universität Chemnitz Verfahren und vorrichtung zum thermischen beschichten von oberflächen, insbesondere hochgeschwindigkeitsflammspritzen
US7740905B2 (en) 2006-01-10 2010-06-22 Siemens Aktiengesellschaft Nozzle arrangement and method for cold gas spraying
WO2011032807A1 (de) 2009-09-15 2011-03-24 Reinhausen Plasma Gmbh Verfahren und vorrichtung zum fördern und verteilen von pulvern in einem gasstrom
US7928338B2 (en) 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3055859A (en) 1956-09-28 1962-09-25 Basf Ag Impact-resistant plastic compositions comprising a styrene polymer and a cross-linked acrylic acid ester polymer, and process for preparing same
DE1495730A1 (de) 1963-07-24 1969-04-10 Bayer Ag Verfahren zur Herstellung thermoplastischer Polykondensationsprodukte
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
US4224419A (en) 1978-06-20 1980-09-23 Basf Aktiengesellschaft Weathering-resistant, high-impact, easily colored thermoplastic compositions
EP0099532A2 (de) 1982-07-23 1984-02-01 BASF Aktiengesellschaft Thermoplastische Formmasse
EP0113112A1 (de) 1982-12-23 1984-07-11 Amoco Corporation Verwendung eines amorphen aromatischen thermoplastischen Polymeren
EP0135130A2 (de) 1983-08-20 1985-03-27 BASF Aktiengesellschaft Verfahren zur Herstellung von Polyethern
EP0254424B1 (de) 1986-06-20 1991-11-06 Nippon Paint Co., Ltd. Verfahren und Vorrichtung zur Behandlung von Pulver
EP0302485A2 (de) 1987-08-07 1989-02-08 BASF Aktiengesellschaft Thermoplastische Formmassen
EP0342428A2 (de) 1988-05-16 1989-11-23 Thyssen Guss Ag Vorrichtung zum Plasmaspritzen
EP0344781A1 (de) 1988-06-02 1989-12-06 The Perkin-Elmer Corporation Wolframkarbid für das Plasmaspritzen
US5207382A (en) 1989-06-03 1993-05-04 Eutectic Corporation Autogenous flame spraying apparatus for the flame spraying of powder-form materials or spray powder
EP0492384A1 (de) 1990-12-22 1992-07-01 OSU-MASCHINENBAU GmbH Düse für eine Vorrichtung und ein Verfahren zum Hochgeschwindigkeitsflammspritzen
DE19532412A1 (de) 1995-09-01 1997-03-06 Agrodyn Hochspannungstechnik G Verfahren und Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
DE19610054C2 (de) * 1996-03-14 1998-01-29 Linde Ag Gleitfläche für Sportgerät
EP0830464B1 (de) 1996-03-25 2005-01-05 Wilson Greatbatch Ltd. Mit flammspritzen beschichtete elektrodenkomponente und verfahren zu deren herstellung
EP0825272A2 (de) 1996-08-22 1998-02-25 Sulzer Metco Japan Ltd. Verfahren zum Hochgeschwindigkeitsflammspritzen
DE19728629A1 (de) 1997-07-04 1999-01-07 Basf Ag Thermoplastische Formmassen mit geringer Eigenfarbe
EP0911425B1 (de) 1997-10-27 2003-01-22 Linde AG Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE19807086A1 (de) 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19856307C1 (de) 1998-12-07 2000-01-13 Bosch Gmbh Robert Vorrichtung zur Erzeugung eines freien kalten Plasmastrahles
EP1024222A2 (de) 1999-01-27 2000-08-02 eybl International AG Verfahren zur Ausrüstung von textilen Substraten
WO2001032949A1 (de) 1999-10-30 2001-05-10 Agrodyn Hochspannungstechnik Gmbh Verfahren und vorrichtung zur plasmabeschichtung von oberflächen
DE19955880A1 (de) 1999-11-20 2001-05-23 Henkel Kgaa Plasmabeschichtung von Metallen bei Atmosphärendruck
DE10041974B4 (de) * 2000-08-25 2008-02-14 Daimler Ag Beschichtungsverfahren für Zylinderköpfe und Verwendung
WO2002024970A2 (de) * 2000-09-21 2002-03-28 Federal-Mogul Burscheid Gmbh Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvern
EP1363811A1 (de) 2001-02-24 2003-11-26 Leoni AG Verfahren zum herstellen eines formbauteils mit einer integrierten leiterbahn und formbauteil
DE10116502A1 (de) 2001-04-03 2002-10-24 Wolfgang Vioel Verfahren und Vorrichtung zur Ausbildung eines Plasmastrahls
EP1287898A2 (de) 2001-09-03 2003-03-05 Shimazu Kogyo Yugengaisha Plasmabrenner zum Plasmaspritzen
WO2003029762A1 (de) 2001-09-29 2003-04-10 Michael Dvorak Verfahren und vorrichtung zur zuführung dosierter mengen eines feinkörnigen schüttguts
WO2003064061A1 (en) 2002-01-29 2003-08-07 Ciba Specialty Chemicals Holding Inc. Process for the production of strongly adherent coatings
US7678428B2 (en) 2002-04-12 2010-03-16 Sulzer Metco Ag Plasma spraying method
WO2004016821A2 (en) 2002-08-02 2004-02-26 3M Innovative Properties Company Plasma projection
DE10320379A1 (de) 2003-05-06 2004-12-02 Leoni Ag Elektrisch beheizbares Element und Verfahren zum Herstellen eines elektrisch beheizbaren Elements
WO2005031026A1 (de) 2003-09-26 2005-04-07 Michael Dvorak Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles
EP1675971B1 (de) 2003-09-26 2010-05-19 Michael Dvorak Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles
DE102005047688C5 (de) * 2005-09-23 2008-09-18 Siemens Ag Kaltgasspritzverfahren
US7740905B2 (en) 2006-01-10 2010-06-22 Siemens Aktiengesellschaft Nozzle arrangement and method for cold gas spraying
DE102006061435A1 (de) 2006-12-23 2008-06-26 Leoni Ag Verfahren und Vorrichtung zum Aufspritzen insbesondere einer Leiterbahn, elektrisches Bauteil mit einer Leiterbahn sowie Dosiervorrichtung
US7928338B2 (en) 2007-02-02 2011-04-19 Plasma Surgical Investments Ltd. Plasma spraying device and method
EP2115075A1 (de) 2007-02-07 2009-11-11 Eckart GmbH Chemikalienbeständige metalleffektpigmente, verfahren zu deren herstellung und verwendung derselben
WO2010003396A1 (de) 2008-07-05 2010-01-14 Mtu Aero Engines Gmbh Verfahren und vorrichtung zum kaltgasspritzen
WO2010037548A1 (de) 2008-10-01 2010-04-08 Technische Universität Chemnitz Verfahren und vorrichtung zum thermischen beschichten von oberflächen, insbesondere hochgeschwindigkeitsflammspritzen
WO2011032807A1 (de) 2009-09-15 2011-03-24 Reinhausen Plasma Gmbh Verfahren und vorrichtung zum fördern und verteilen von pulvern in einem gasstrom

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
G. Holden et al., Thermoplastic Elastomers, 2. Auflage, Hanser Verlag, München 1996
Kunststoff-Handbuch, Hrsg. G. Becker und D. Braun, Bände 1 bis 11, Hanser-Verlag, München, 1966 bis 1996
Kunststoff-Taschenbuch, Hrsg. Saechtling, 25. Ausgabe, Hanser-Verlag, München, 1992, insbesondere Kapitel 4
Römpp Chemie Lexikon, CD-ROM Version 1.0, Thieme Verlag Stuttgart 1995

Similar Documents

Publication Publication Date Title
EP2737100B1 (de) Verfahren zur substratbeschichtung und verwendung additivversehener, pulverförmiger beschichtungsmaterialien in derartigen verfahren
DE102011052120A1 (de) Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien
JP7468977B2 (ja) 金属粉末の噴霧化製造方法
DE102011052121A1 (de) Beschichtungsverfahren nutzend spezielle pulverförmige Beschichtungsmaterialien und Verwendung derartiger Beschichtungsmaterialien
CN106424711B (zh) 导电性微粒及其制造方法、导电性树脂组成物、导电性薄片、以及电磁波屏蔽薄片
JP2014522913A5 (de)
WO2013014212A2 (de) Verfahren zum aufbringen einer beschichtung auf einem substrat, beschichtung und verwendung von partikeln
JP2008530302A (ja) 粉末コーティング組成物の結合
EP1401967A1 (de) Verfahren zur herstellung von formkörpern mit elektrisch-leitfähiger beschichtung und formkörper mit entsprechender beschichtung
US20180133847A1 (en) Fine silver particle composition
DE102011052119A1 (de) Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren
WO2015197802A1 (de) Verfahren zur herstellung eines partikelhaltigen aerosols
KR20150110455A (ko) 제막 방법, 다공질막, 광 전극 및 색소 증감 태양 전지
EP2900763A1 (de) Beschichtete ferromagnetische metallpigmente, verfahren zu deren herstellung und deren verwendung
RU2511146C1 (ru) Способ нанесения теплозащитного электропроводящего покрытия на углеродные волокна и ткани
JP4776885B2 (ja) 片状粒体による被膜形成方法
Reina et al. Effects of HTPB-coating on nano-sized aluminum in solid rocket propellant performance
Ellingsen et al. Application of supersonic cold spray for solid-state battery manufacturing
WO2012065704A1 (de) Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern
JP5105349B2 (ja) コーティング方法。
DE102018005390A1 (de) Verfahren zur Funktionalisieren einer Oberfläche, sowie zugehörige Vorrichtungen
Agarwal et al. Experimental Analysis of Impact Behavior of Ultra-High Molecular Weight Polyethylene-Nano Ceramics Composite Particles by Isolated Particle Deposition Method Using Downstream Injection Cold Spray Technique
EP2366730A1 (de) Verfahren zur chemischen Modifizierung der polymeren Oberfläche eines partikulären Feststoffs
Vetter et al. Polypyrrole/aluminium flake hybrid pigments for corrosion inhibition of aluminium 2024
DE102016219056A1 (de) Verfahren zur Oberflächenmodifizierung von Partikeln

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140201