WO2012065704A1 - Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern - Google Patents

Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern Download PDF

Info

Publication number
WO2012065704A1
WO2012065704A1 PCT/EP2011/005687 EP2011005687W WO2012065704A1 WO 2012065704 A1 WO2012065704 A1 WO 2012065704A1 EP 2011005687 W EP2011005687 W EP 2011005687W WO 2012065704 A1 WO2012065704 A1 WO 2012065704A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
coating
coarse
grained
plasma jet
Prior art date
Application number
PCT/EP2011/005687
Other languages
English (en)
French (fr)
Inventor
Michael Dvorak
Franz Mielemeier
Original Assignee
Michael Dvorak
Franz Mielemeier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Dvorak, Franz Mielemeier filed Critical Michael Dvorak
Publication of WO2012065704A1 publication Critical patent/WO2012065704A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/10Arrangements for collecting, re-using or eliminating excess spraying material the excess material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/22Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
    • B05B7/222Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
    • B05B7/226Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to a process for producing coatings from powders by blowing the powder into a gas jet, which preferably operates as a plasma jet.
  • a method of this kind is disclosed in EP 1 675 971 B1.
  • a jet of a low-temperature plasma is directed onto the substrate surface to be coated and the coating powder metered to the plasma jet, wherein the substrate temperature increase during and after the coating process below 100 ° C, preferably below 50 ° C.
  • the process makes it possible to produce well-adhering coatings. Coating powders of small particle sizes of less than 20 ⁇ m and of irregular shape are, however, poorly flowable.
  • CONFIRMATION COPY therefore, it adheres and tends to form agglomerates and caking in the delivery lines and equipment of the plant, which adversely affect the coating quality and generally impair the functioning of the plant.
  • the invention has for its object to avoid these disadvantages and to provide a method of the type mentioned, which ensures the trouble-free production of high-quality coatings with fine and ultrafine coating powders.
  • This object is achieved according to the invention by adding coarse-grained powder having a particle size between 20 and 200 ⁇ m and preferably blocky form to the coating powder, the power of the plasma jet and the delivery rate of the coating powder being such that the coarse-grained powder is blown off during the coating process and not included in the coating.
  • the invention provides that the admixture of the coarse-grained powder is already carried out in the powder silo for the coating powder.
  • the coarse-grained particles then cause a continuous cleaning of the powder line system including distributors and injectors during operation.
  • This also applies to the hot gas stream leading nozzles, which can thereby achieve a much longer service life. It is particularly advantageous if the nozzles are placed at a small distance of about 5 mm to about 2 cm to the substrate.
  • the coarse-grained powder is made of refractory materials with low thermal conductivity and high reflection for thermal radiation, such as Al 2 O 3.
  • the explosion tendency is reduced by the addition of virtually non-combustible coarse-grained powders, which has the advantage of safe handling and Storage of the coating powder or coating powder mixtures brings with it.
  • the inventive method is particularly suitable for cold coating processes with a gas jet temperature in the injection range of the coating powder ⁇ 2000 °, because under these conditions, the high-melting admixture is not melted and thanks to their physical properties the hot gas jet almost no share of the energy withdrawn for Heating the coating powder is necessary.
  • the inventive method proves to be particularly advantageous in coating processes in which the admixture is accelerated to particle velocities less than 500 m / s, preferably less than 200 m / s. In this way, it is ensured that no damage occurs when the coarse-grained particles appear on the surface to be coated, for example by a kind of sandblasting effect or even by anchoring these particles on the surface of the component to be coated.
  • the particle size of the admixture is chosen such that, despite the low particle velocity, its kinetic energy is sufficient to at least partially remove particles of the coating powder which do not adhere well to the coating surface.
  • the finest oxide skins which would otherwise form on deposition of metallic layers under an air atmosphere during the solidification of the ultrafine coating particles on the component surface.
  • the layer quality can be increased in terms of conductivity and density, for example.
  • the invention further provides that the coarse-grained powder is sucked off behind the coating site together with the excess coating powder and separated therefrom, preferably by separating sieves.
  • the dividing screens are installed in the pipe system of the suction device.
  • the collected powder mixture may be collected and conveyed to a recycling station in which the separation takes place by screening or the like separation process.
  • FIG. 1 shows a coating plant operating according to the method of the invention, simplified and schematically illustrated.
  • the coating installation according to FIG. 1 has a plasmatron 1 which is provided with a plasma nozzle 2 for producing a plasma jet 3.
  • the latter emerges from a lower nozzle opening 4 and is directed onto a substrate surface 5 to be coated, which is placed at a small distance (about 5 mm to 2 cm) from the nozzle opening 4.
  • the plasmatron 1 has an elongated, tubular housing 6, which tapers conically in the lower area towards the nozzle opening 4. Through a supply line 7, a plasma or working gas is introduced into the plasmatron 1, wherein preferably air or water vapor is used.
  • gases such as noble gases argon and helium
  • gases such as nitrogen, hydrogen, carbon dioxide, methane or corresponding vaporizable liquids, such as. Heptane or alcohols or mixtures of said gases and vapors to targeted To cause reactions with the coating material or to further reduce possible reactions with the ambient air.
  • a gas shield made of an inert protective gas such as argon or even carbon dioxide, which surrounds the gas jet emerging from the nozzle orifice.
  • an inert protective gas such as argon or even carbon dioxide
  • the use of a shielding the plasma and protective gas jet axis arranged protective bell is also recommended.
  • the protective gas volume flow and the length and shape of the protective bell are designed depending on the application so that on the one hand the length of the bell is only a few mm shorter, ideally 1 to 3 mm, than the required distance of the nozzle to the substrate surface and that not on the substrate surface Adherent particles are selectively led out of the protective bell, and thus the penetration of the ambient air is reduced to a minimum.
  • the coating plant is designed for the production of high quality coatings of fine and ultrafine powders with a particle size in the nanometer to micrometer range (preferably ⁇ 20 pm).
  • the coating powder located in a powder silo 8 is blown via a line 9 into the plasma jet 3 emerging from the nozzle 2.
  • a powder conveyor 10 is provided, which is suitable for supplying metered amounts of the fine to ultrafine coating powder to the plasma jet.
  • coarse-grained powder with a particle size> 20 ⁇ ⁇ 200 ⁇ and preferably mixed block form which is supplied to the powder silo 8 from a powder container 11 via a line 12.
  • a arranged in the line 12 powder conveyor 13 which supplies the powder silo 8 metered amounts of the coarse-grained powder. Depending on the nature of the coating powder, it is mixed with 5 to 95% by volume of coarse-grained powder.
  • the coarse-grained powder is made of refractory materials with low thermal conductivity and high reflection for thermal radiation.
  • metallic coating powders which can form explosive mixtures in contact with atmospheric oxygen, in this way the tendency to explode is reduced by the addition of virtually non-combustible coarse-grained powder.
  • the power energy of the plasma jet 3 and the delivery rate of the coating powder are such that the coarse-grained powder is blown off in the coating process, without going into the coating. It is expedient, the coarse-grained admixture to particle velocities ⁇ 500 m / s, preferably ⁇ 200 m / s to accelerate. This ensures that the coarse-grained powder does not cause damage to the coated surface.
  • the inventive method is particularly suitable for cold coating processes with a gas jet temperature ⁇ 2000 °, because under these conditions, the non-melting admixture due to its physical properties of the hot gas jet almost no share of the energy that is necessary for heating the coating powder.
  • the coarse-grained powder is sucked off behind the coating point by a suction line 14 together with the excess coating powder.
  • a suction pump 15 is installed in the line.
  • the coarse-grained powder can be separated from the excess coating powder in the extraction system.
  • a separation filter 16 is arranged in the suction line 14. The recovered powder can be used for the further coating process.
  • the coating method according to the invention makes it possible to produce larger layer thicknesses, since the adhesion of the layer (also within the layer) and the intrinsic stresses can be positively influenced.
  • the method according to the invention also makes it possible to produce thinner layers more precisely because the powder conveyors can be driven in the non-critical range, ie. with comparatively high flow rates (for example 10 g / min but a mixing ratio of 1:10, resulting in 1 g / min).
  • Powder residues not remaining as a layer, in particular metallic powders, are less hazardous due to the admixture. This can improve machine safety.
  • the admixtures also significantly reduce the dust emission of the ultrafine particles during handling of the coating powder mixtures and during the coating process.
  • significantly longer delivery lines can be used, whereby a greater spatial separation of the powder handling technology of the coating plant is possible.
  • the powder conveyor may be located in a different room than the coater. This is of technical advantage, in particular in applications in ultra-clean rooms.
  • the coating method according to the invention is also advantageous in the coating of Al heat exchanger tubes, because it makes it possible to use cheaper, finer powders and powder mixtures for applying fluxes and solders.
  • applications are possible, such as the production of functional, for example, wear and corrosion protection layers on oxidation-sensitive surfaces, such as components made of magnesium, aluminum or titanium and their alloys, for example, guide surfaces of piston rings on magnesium pistons for use in internal combustion engines.
  • oxidation-sensitive surfaces such as components made of magnesium, aluminum or titanium and their alloys, for example, guide surfaces of piston rings on magnesium pistons for use in internal combustion engines.
  • the selective processing of defects on the surface of large components made of high-quality metals and alloys with the same or similar materials is possible, for example, by pitting corrosion caused defects in chemical reactors.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung hochwertiger Beschichtungen aus feinen und ultrafeinen Pulvern durch Einblasen des Pulvers in einen vorzugsweise als Plasmastrahl arbeitenden Gasstrahl. Um die Fliessfähigkeit des Beschichtungspulvers zu optimieren, wird ihm grobkörniges Pulver mit einer Korngrösse zwischen 20 μm und 200 μm beigemischt. Die Leistungsenergie des Plasmastrahls und die Fördermenge des Beschichtungspulvers sind so bemessen, dass das grobkörnige Pulver beim Beschichtungsvorgang weggeblasen wird, ohne in die Beschichtung aufzugehen. Auf diese Weise wird die Agglomerationsbildung unterdrückt und die Bildung von Anbackungen weitgehend vermieden.

Description

Verfahren zur Herstellung von Beschichtungen aus feinkörnigen Pulvern
Die Erfindung betrifft ein Verfahren zur Herstellung von Beschichtungen aus Pulvern durch Einblasen des Pulvers in einen vorzugsweise als Plasmastrahl arbeitenden Gasstrahl.
Ein Verfahren dieser Art ist in der EP 1 675 971 B1 geoffenbart. Nach diesem Verfahren wird ein Strahl eines Niedertemperaturplasmas auf die zu beschichtende Substratoberfläche gerichtet und das Beschichtungspulver dem Plasmastrahl dosiert zugeführt, wobei die Substrattemperaturerhöhung während und nach dem Beschichtungsprozess unterhalb 100°C, vorzugsweise unter 50°C liegen soll. Das Verfahren ermöglicht zwar die Herstellung gut haftender Beschichtungen. Beschichtungspulver geringer Partikelgrössen von kleiner 20 prn und unregelmässiger Form sind aber mit schlechten Fliesseigenschaften be-
BESTÄTIGUNGSKOPIE haftet und neigen daher zur Bildung von Agglomeraten und Anbackungen in den Förderleitungen und Apparaturen der Anlage, die sich negativ auf die Be- schichtungsqualität auswirken und generell die Funktionsfähigkeit der Anlage beeinträchtigen.
Der Erfindung liegt die Aufgabe zugrunde, diese Nachteile zu vermeiden und ein Verfahren der eingangs genannten Art zu schaffen, der die störungsfreie Herstellung hochwertiger Beschichtungen mit feinen und ultrafeinen Beschich- tungspulvern sicherstellt.
Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass dem Beschich- tungspulver grobkörniges Pulver mit einer Korngrösse zwischen 20 und 200 pm und vorzugsweise blockiger Form beigemischt wird, wobei die Leistungsenergie des Plasmastrahls und die Fördermenge des Beschichtungspulvers so bemessen sind, dass das grobkörnige Pulver beim Beschichtungsvorgang weggeblasen und nicht in der Beschichtung aufgenommen wird.
Auf diese Weise wird die Fliessfähigkeit feiner und ultrafeiner Beschichtungs- pulver erheblich gesteigert und somit die Agglomerationsbildung weitgehend unterdrückt.
Je nach Beschaffenheit des Beschichtungspulvers werden ihm erfindungsgemäss 5 bis 95 Volumen % grobkörniges Pulver beigemischt.
Damit sich die Vorteile der verbesserten Fliesseigenschaften möglichst umfassend auswirken können, sieht die Erfindung vor, dass die Beimischung des grobkörnigen Pulvers bereits im Pulversilo für das Beschichtungspulver durchgeführt wird. Die grobkörnigen Partikel bewirken dann eine fortwährende Reinigung des Pulverleitungssystems inklusive Verteiler und Injektoren im Betrieb. Somit können dort Anbackungen vollständig vermieden werden. Das gilt auch für die den heissen Gasstrom führenden Düsen, die dadurch eine wesentlich längere Betriebsdauer erreichen können. Hierbei ist es besonders vorteilhaft, wenn die Düsen in einem geringen Abstand von ca. 5 mm bis ca. 2 cm zum Substrat plaziert sind.
Die Erfindung sieht ferner vor, dass das grobkörnige Pulver aus hochschmelzenden Werkstoffen mit geringer Wärmeleitfähigkeit und hoher Reflektion für Wärmestrahlung, wie AI2O3, hergestellt wird. Bei feinen Metallpulvern, insbesondere bei Metallpulvern reaktiver Werkstoffe wie Ti, AI, Mg und deren Legierungen, die im Kontakt mit Luftsauerstoff explosionsfähige Gemische bilden können, wird die Explosionsneigung durch die Zugabe von praktisch nichtbrennbarem grobkörnigen Pulvern entsprechend reduziert, was den Vorteil einer sicheren Handhabung und Lagerung des Beschichtungspulvers bzw. der Beschichtungspulvergemische mit sich bringt.
Die erfindungsgemässe Verfahrensweise eignet sich besonders für kalte Be- schichtungsverfahren mit einer Gasstrahltemperatur im Injektionsbereich des Beschichtungspulvers < 2000°, weil unter diesen Bedingungen die hochschmelzende Beimischung nicht aufgeschmolzen wird und dank ihren physikalischen Eigenschaften dem heissen Gasjet nahezu keinen Anteil von der Energie entzieht, die zum Erhitzen des Beschichtungspulvers nötig ist.
Die erfindungsgemässe Verfahrensweise erweist sich als besonders vorteilhaft bei Beschichtungsverfahren, bei denen die Beimischung auf Partikelgeschwindigkeiten weniger als 500 m/s, vorzugsweise kleiner als 200 m/s beschleunigt wird. Auf diese Weise wird sichergestellt, dass beim Auftreten der grobkörnigen Partikel auf der zu beschichtenden Oberfläche keine Beschädigungen entstehen, etwa durch eine Art Sandstrahleffekt oder gar durch Verankerung dieser Partikel auf der Oberfläche des zu beschichtenden Bauteils. Dabei ist die Partikelgrösse der Beimischung so gewählt, dass ihre kinetische Energie trotz der niedrigen Partikelgeschwindigkeit ausreichend ist, um nicht gut auf der Be- schichtungsoberfläche haftende Partikel des Beschichtungspulvers zumindest teilweise zu entfernen. Dasselbe gilt auch für feinste Oxidhäute, welche sich sonst bei der Abschei- dung metallischer Schichten unter Luftatmosphäre während der Erstarrung der ultrafeinen Beschichtungspartikel auf der Bauteiloberfläche bilden würden. Dadurch kann die Schichtqualität etwa bezüglich der Leitfähigkeit und Dichte gesteigert werden.
So lassen sich insbesondere mit niederenergetischen Beschichtungsverfahren, wie dem„Cold Plasma Deposition"-Verfahren, hochwertige metallische Schichten oder auch Schichten mit Halbleitereigenschaften selbst unter Luftatmosphäre abscheiden bzw. aufbringen.
Die Erfindung sieht ferner vor, dass das grobkörnige Pulver hinter der Be- schichtungsstelle zusammen mit dem überschüssigen Beschichtungspulver abgesaugt und von diesem vorzugsweise durch Trennsiebe getrennt wird.
Zweckmässigerweise sind die Trennsiebe im Leitungssystem der Absaugeinrichtung eingebaut.
Alternativ dazu kann das aufgefangene Pulvergemisch gesammelt und zu einer Recyclingstation befördert werden, in welcher die Trennung durch Sieb- oder dergleichen Trennverfahren stattfindet.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigt:
Fig. 1 eine nach dem erfindungsgemässen Verfahren arbeitende Beschich- tungsanlage, vereinfacht und schematisch dargestellt.
Die Beschichtungsanlage gemäss Fig. 1 weist ein Plasmatron 1 aus, das mit einer Plasmadüse 2 zur Erzeugung eines Plasmastrahls 3 versehen ist. Letzterer tritt aus einer unteren Düsenöffnung 4 aus und ist auf eine zu beschichtenden Substratoberfläche 5 gerichtet, die in einem geringen Abstand (ca. 5 mm bis 2 cm) von der Düsenöffnung 4 plaziert ist. Das Plasmatron 1 weist ein langgestrecktes, rohrförmiges Gehäuse 6 auf, das sich im unteren Bereich zur Düsenöffnung 4 hin konisch verjüngt. Durch eine Zuleitung 7 wird in das Plasmatron 1 ein Plasma- bzw. Arbeitsgas eingeleitet, wobei vorzugsweise Luft oder auch Wasserdampf eingesetzt wird.
Es können aber auch andere Gase, so wie Edelgase Argon und Helium, oder aber auch Gase, wie Stickstoff, Wasserstoff, Kohlendioxid, Methan oder auch entsprechende verdampfbare Flüssigkeiten, wie bspw. Heptan oder Alkohole oder auch entsprechende Mischungen genannter Gase und Dämpfe, um gezielte Reaktionen mit dem Beschichtungswerkstoff hervorzurufen oder auch mögliche Reaktionen mit der Umgebungsluft weiter zu reduzieren.
Zur Herstellung von hochwertigen Schichten aus stark reaktiven bspw. oxidati- onsempfindlichen Werkstoffen hat es sich ferner als vorteilhaft erwiesen, einen den aus dem Düsenmund austretenden Gasstrahl umhüllende Gasschirm aus einem inerten Schutzgas - wie Argon oder auch Kohlendioxid - einzusetzen. Hierbei ist zudem die Verwendung einer die Plasma- und Schutzgasstrahlachse umhüllend angeordnete Schutzglocke empfehlenswert. Der Schutzgasvolumenstrom sowie Länge und Form der Schutzglocke werden je nach Anwendung dabei so ausgelegt, dass zum einen die Länge der Glocke nur wenige mm kürzer, idealerweise 1 bis 3 mm, als der erforderliche Abstand der Düse zur Substratoberfläche ist und das die nicht auf der Substratoberfläche haftenden Partikel gezielt aus der Schutzglocke herausgeführt werden, und damit auch das Eindringen der Umgebungsluft auf ein Minimum reduziert wird.
Die Beschichtungsanlage ist zur Herstellung hochwertiger Beschichtungen aus feinen und ultrafeinen Pulvern mit einer Korngrösse im Nanometer- bis Mikrometerbereich (vorzugsweise < 20 pm) ausgelegt. Das in einem Pulversilo 8 befindliche Beschichtungspulver wird über eine Leitung 9 in den aus der Düse 2 austretenden Plasmastrahl 3 eingeblasen. Hierfür ist ein Pulverförderer 10 vorgesehen, der geeignet ist, dem Plasmastrahl dosierte Mengen des feinen bis ultrafeinen Beschichtungspulvers zuzuführen. Um die Fliessfähigkeit des Beschichtungspulvers durch die Rohrleitungen und Apparaturen der Anlage zu optimieren, wird ihm erfindungsgemäss grobkörniges Pulver mit einer Korngrösse > 20 μηι < 200 μιτι und vorzugsweise blockiger Form beigemischt, das dem Pulversilo 8 von einem Pulverbehälter 11 über eine Leitung 12 zugeführt wird. Hierzu dient ein in der Leitung 12 angeordneter Pulverförderer 13, der dem Pulversilo 8 dosierte Mengen des grobkörnigen Pulvers zuführt. Je nach Beschaffenheit des Beschichtungspulvers wird ihm 5 bis 95 Volumen % grobkörniges Pulver beigemischt.
Die Beimischung von grobkörnigem Pulver bewirkt eine Auflockerung und damit eine wesentlich bessere Fliessfähigkeit des feinen bis ultrafeinen Beschichtungspulvers entlang der Förderstrecke, die das Beschichtungspulver vom Pulversilo 8 bis zur Substratoberfläche 5 zurücklegt. Diese Eigenschaften wirken sich aus sowohl in den Förderleitungen als auch in den darin befindlichen Apparaturen der Anlage. Dadurch wird in allen Anlagenteilen die Bildung von Agglomerationen und Anbackungen weitgehend unterdrückt. Es ist selbstverständlich auch möglich, die Beimischung gezielt in besonders gefährdeten Bereichen der Beschichtungsanlage vorzunehmen.
Das grobkörnige Pulver ist aus hochschmelzenden Werkstoffen mit geringer Wärmeleitfähigkeit und hoher Reflektion für Wärmestrahlung hergestellt. Bei Verwendung von metallischen Beschichtungspulvern, die im Kontakt mit Luftsauerstoff explosionsfähige Gemische bilden können, wird auf diese Weise die Explosionsneigung durch Zugabe von praktisch nicht brennbarem grobkörnigen Pulver herabgesetzt.
Während des Beschichtungsvorgangs sind die Leistungsenergie des Plasmastrahls 3 und die Fördermenge des Beschichtungspulvers so bemessen, dass das grobkörnige Pulver beim Beschichtungsvorgang weggeblasen wird, ohne in die Beschichtung aufzugehen. Hierbei ist es zweckmässig, die grobkörnige Beimischung auf Partikelgeschwindigkeiten < 500 m/s, vorzugsweise < 200 m/s zu beschleunigen. Dadurch ist sichergestellt, dass das grobkörnige Pulver keine Beschädigung der beschichteten Oberfläche verursacht.
Die erfindungsgemässe Verfahrensweise eignet sich insbesondere für kalte Beschichtungsverfahren mit einer Gasstrahltemperatur < 2000°, weil unter diesen Bedingungen die nicht aufschmelzende Beimischung aufgrund seiner physikalischen Eigenschaften dem heissen Gasjet nahezu keinen Anteil von der Energie entzieht, die zum Erhitzen des Beschichtungspulvers nötig ist.
Das grobkörnige Pulver wird hinter der Beschichtungsstelle durch eine Absaugleitung 14 zusammen mit dem überschüssigen Beschichtungspulver abgesaugt. Hierfür ist in der Leitung eine Absaugpumpe 15 installiert. Im Absaugsystem kann gegebenenfalls das grobkörnige Pulver vom überschüssigen Beschichtungspulver abgetrennt werden. Hierfür ist in der Absaugleitung 14 ein Trennfilter 16 angeordnet. Das wiedergewonnene Pulver kann für den weiteren Beschichtungsprozess verwendet werden.
Das erfindungsgemässe Beschichtungsverfahren ermöglicht die Herstellung grösserer Schichtdicken, da die Anhaftung der Schicht (auch innerhalb der Schicht) sowie die intrinsischen Spannungen positiv beeinflussbar sind.
Das erfindungsgemässe Verfahren ermöglicht ferner die präzisere Herstellung dünnerer Schichten, weil die Pulverförderer im nicht kritischen Bereich gefahren werden können, d.h. mit vergleichweise hohen Förderraten (beispielweise 10 g/min aber ein Mischungsverhältnis von 1 :10, woraus 1 g/min resultiert).
Weitere Vorteile sind ein zeitlich stabilerer Beschichtungsprozess sowie keine Reaktion der Beimischungen mit dem Beschichtungswerkstoff. Nicht als Schicht verbleibende Pulverreste, insbesondere metallische Pulver, sind aufgrund der Beimischung weniger gefährlich. Dadurch kann die Maschinensicherheit verbessert werden. Durch die Beimischungen wird ferner die Staubemission der ultrafeinen Partikel beim Handling der Beschichtungspulvergemische und während des Be- schichtungsvorganges erheblich reduziert. Ausserdem können erheblich längere Förderleitungen eingesetzt werden, wodurch eine grössere räumliche Trennung der Pulverfördertechnik von der Beschichtungsanlage möglich ist. Beispielsweise kann sich der Pulverförderer in einem anderen Raum als die Beschichtungsanlage befinden. Dies ist insbesondere bei Anwendungen in Reinst-Räumen von technischem Vorteil.
Das erfindungsgemässe Beschichtungsverfahren ist auch bei der Beschichtung von Al-Wärmetauscherrohre vorteilhaft, weil dadurch die Verwendung preiswerter feinerer Pulver und Pulvermischungen zum Auftragen von Flussmitteln und Loten möglich ist.
Weitere Anwendungsgebiete sind die grossflächige Metallisierung von Si- wavern, die Auftragung von Leiterbahnen auf Solarzellen und auf 3D- Strukturen aus Kunststoffen, sowie die Herstellung von aktiven Kühlelementen, beispielweise Wismuttellurit auf Halbleiterstrukturen, und die Herstellung elektrischer Leiterbahnen auf flexiblen Schaltungen oder für RFID-Technik auf Kunststoff- oder Papierträgern.
Des weiteren sind Anwendungen möglich, wie die Herstellung von funktionellen, bspw. Verschleiss- und Korrosionsschutzschichten auf oxidationsempfind- lichen Oberflächen, wie Bauteilen aus Magnesium, Aluminium oder auch Titan und deren Legierungen, zum Beispiel Führungsflächen von Kolbenringen auf Magnesiumkolben zum Einsatz in Verbrennungskraftmaschinen. Auch ist die punktuelle Aufarbeitung von Fehlstellen auf der Oberfläche grosser Bauteile aus hochwertigen Metallen und Legierungen mit gleichen oder artverwandten Stoffen möglich, beispielsweise durch Lochfrass-Korrosion hervorgerufene Fehlstellen in chemischen Reaktoren.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Herstellung von Beschichtungen aus Pulvern durch Ein- blasen des Pulvers in einen vorzugsweise als Plasmastrahl arbeitenden Gasstrahl, dadurch gekennzeichnet, dass
dem Beschichtungspulver grobkörniges Pulver mit einer Korngrösse vorzugsweise zwischen 20 pm und 200 pm beigemischt wird, wobei die Leistungsenergie des Plasmastrahls und die Fördermenge des Beschichtungspulvers so bemessen sind, dass das grobkörnige Pulver beim Beschichtungsvorgang weggeblasen wird, ohne in der Beschichtung aufgenommen zu werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass dem Beschichtungspulver 5 bis 95 Volumenprozent grobkörniges Pulver, vorzugsweise in blockiger Form, beigemischt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beimischung im Pulversilo für das Beschichtungspulver durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Düse des Plasmastrahls in einem geringen Abstand von ca. 5 mm bis 2 cm zum Substrat plaziert ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das grobkörnige Pulver aus hochschmelzenden Werkstoffen mit geringer Wärmeleitfähigkeit und vorzugsweise hoher Reflektion für Wärmestrahlung hergestellt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es bei kalten Beschichtungsverfahren mit einer Gasstrahltemperatur im Injektionsbereich des Beschichtungspulvers kleiner als 2000° angewandt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Beimischung auf Partikelgeschwindigkeiten weniger als 500 m/s, vorzugsweise weniger als 200 m/s beschleunigt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das grobkörnige Pulver hinter der Beschichtungsstelle zusammen mit dem überschüssigen Beschichtungspulver abgesaugt und von diesem vorzugsweise durch Trennsiebe getrennt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Trennsiebe im Leitungssystem der Absaugeinrichtung eingebaut sind.
10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das aufgefangene Pulvergemisch gesammelt und zu einer Recyclingstation gefördert wird, in welcher die Trennung durch Sieb- oder dergleichen Trennverfahren stattfindet.
PCT/EP2011/005687 2010-11-15 2011-11-11 Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern WO2012065704A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01921/10A CH704074B1 (de) 2010-11-15 2010-11-15 Verfahren zur Herstellung von Beschichtungen aus feinkörnigen Pulvern.
CH01921/10 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012065704A1 true WO2012065704A1 (de) 2012-05-24

Family

ID=45524470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005687 WO2012065704A1 (de) 2010-11-15 2011-11-11 Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern

Country Status (2)

Country Link
CH (1) CH704074B1 (de)
WO (1) WO2012065704A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136818A (zh) * 2018-07-23 2019-01-04 翟恩荣 一种粉末离子等离子镀涂设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129024A (ja) * 1988-11-09 1990-05-17 Mitsubishi Metal Corp プラズマを用いた超電導セラミックス膜の製造法
JP2007254826A (ja) * 2006-03-23 2007-10-04 Ntn Corp 被膜形成装置および被膜形成方法
EP1675971B1 (de) 2003-09-26 2010-05-19 Michael Dvorak Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129024A (ja) * 1988-11-09 1990-05-17 Mitsubishi Metal Corp プラズマを用いた超電導セラミックス膜の製造法
EP1675971B1 (de) 2003-09-26 2010-05-19 Michael Dvorak Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles
JP2007254826A (ja) * 2006-03-23 2007-10-04 Ntn Corp 被膜形成装置および被膜形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136818A (zh) * 2018-07-23 2019-01-04 翟恩荣 一种粉末离子等离子镀涂设备

Also Published As

Publication number Publication date
CH704074B1 (de) 2015-12-31
CH704074A2 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
DE60009712T3 (de) Verfahren und vorrichtung zur sprühbeschichtung
EP2486163B1 (de) Atmosphärendruckplasmaverfahren zur herstellung oberflächenmodifizierter partikel und von beschichtungen
EP1382720B1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
EP1926841B1 (de) Kaltgasspritzverfahren
DE10261303B3 (de) Verbundmaterial zur Herstellung elektrischer Kontakte und Verfahren zu dessen Herstellung
EP2737101B1 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
DE102011052118A1 (de) Verfahren zum Aufbringen einer Beschichtung auf einem Substrat, Beschichtung und Verwendung von Partikeln
EP2737100A2 (de) Verfahren zur substratbeschichtung und verwendung additivversehener, pulverförmiger beschichtungsmaterialien in derartigen verfahren
WO2005031026A1 (de) Verfahren zur beschichtung einer substratoberfläche unter verwendung eines plasmastrahles
DE10224777A1 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
DE19747386A1 (de) Verfahren zum thermischen Beschichten von Substratwerkstoffen
EP3201373B1 (de) Plasma-beschichten von thermoelektrischem aktivmaterial mit nickel und zinn
DE10335470A1 (de) Verfahren und Vorrichtung zur Beschichtung oder Modifizierung von Oberflächen
DE102010005762A1 (de) Reinigungsverfahren für Beschichtungsanlagen
EP3211974B1 (de) Verfahren zur herstellung einer schichtstruktur an einem oberflächenbereich eines bauelements und verwendung einer vorrichtung zum durchführung dieses verfahrens
WO2013020679A1 (de) Reibwerterhöhende beschichtung und herstellung derselben mittels atmosphärendruckplasma-beschichtung
WO2012065704A1 (de) Verfahren zur herstellung von beschichtungen aus feinkörnigen pulvern
DE19826550A1 (de) Verfahren und Vorrichtung zum Erzeugen eines Pulveraerosols
EP2066827B1 (de) Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
EP0990711B1 (de) Bearbeitung von mittels thermischen Spritzens zu beschichtender Oberflächen
EP2252562B1 (de) Verfahren und vorrichtung zur herstellung eines dispersionsgehärteten gegenstandes der carbid-nanopartikel enthält
DE19747383A1 (de) Verbinden von Werkstücken
DE102012106078A1 (de) Beschichtungsvorrichtung und Verfahren zur Beschichtung eines Substrats
WO2015031921A1 (de) Verfahren zur oberflächenbehandlung mittels kaltgasspritzen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811320

Country of ref document: EP

Kind code of ref document: A1