EP1899494B1 - Procede de fabrication de couches ceramiques - Google Patents

Procede de fabrication de couches ceramiques Download PDF

Info

Publication number
EP1899494B1
EP1899494B1 EP06763866A EP06763866A EP1899494B1 EP 1899494 B1 EP1899494 B1 EP 1899494B1 EP 06763866 A EP06763866 A EP 06763866A EP 06763866 A EP06763866 A EP 06763866A EP 1899494 B1 EP1899494 B1 EP 1899494B1
Authority
EP
European Patent Office
Prior art keywords
particles
precursors
ceramic
process according
gas jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06763866A
Other languages
German (de)
English (en)
Other versions
EP1899494A2 (fr
Inventor
Ursus KRÜGER
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1899494A2 publication Critical patent/EP1899494A2/fr
Application granted granted Critical
Publication of EP1899494B1 publication Critical patent/EP1899494B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the invention relates to a method for producing ceramic layers, in which particles are injected by means of a nozzle onto the surface to be coated and adhere there.
  • thermal spraying The production of ceramic layers by thermal spraying is known, for example, from a publication of the US Department of Defense ( The AMPTIAC Newsletter, Spring 2002, Vol. 1 ). Thereafter, microparticles containing the ceramic constituents of the ceramic coating to be produced can be sprayed onto the surface to be coated in a thermal spraying process.
  • a plasma jet is generated, in which the microparticles of the ceramic material are fed and thereby at least partially melted.
  • a ceramic structure is formed, which may possibly be completed by a thermal aftertreatment.
  • siliceous plastics also referred to as preceramic polymers (eg, polycarbosilanes, polysilazanes, and polysiloxanes)
  • preceramic polymers eg, polycarbosilanes, polysilazanes, and polysiloxanes
  • thermal decomposition pyrolysis
  • thermo spraying HVOF spraying
  • the thermally sensitive polymer material is processed as particles which are encased by the ceramic material to be embedded. These particles may be in the flame jet of the thermal Spraying method are introduced so that the desired polymer-ceramic composite is formed in the sprayed layer.
  • the object of the invention is to provide a method for producing ceramic layers by means of injection, which is accessible to the production of polymer-ceramic layers.
  • This object is achieved with the method mentioned in the present invention that are used as particles precursors of a polymer ceramic (which are also referred to as preceramic polymers) and used as a nozzle Kaltspritzdüse using cold spraying.
  • the use of the cold spraying method has the advantage that, in contrast to thermal spraying processes, the energy required to form the coating is produced due to a strong acceleration of the coating particles in the cold gas jet (preferably at a multiple speed of sound).
  • Cold spraying are basically for example from the DE 102 24 780 A1 known.
  • the device necessary for operating the method has, for example, a vacuum chamber in which a substrate can be placed in front of a so-called cold spray nozzle.
  • the vacuum chamber is evacuated and by means of the cold spray nozzle (also called cold gas spray gun) a gas jet is generated, in which particles can be introduced for coating the workpiece.
  • the cold spray nozzle also called cold gas spray gun
  • the particles can additionally be heated, their heating being limited in such a way that the melting temperature of the particles is not achieved (this circumstance is named after the term cold gas spraying).
  • the energy input into the coating particles can be changed by adjusting the speed of the cold gas jet and by possibly additional introduction of thermal energy in the cold gas jet. It must be dimensioned so that the precursors of the polymer ceramic, which are accelerated in particle form on the surface of the substrate to be coated, at least adhere (see below for more). As a result, a coating of polymer ceramic can be produced by spraying, the properties of which are not jeopardized by thermal overstressing of the particles to be sprayed.
  • fillers whose thermal sensitivity would not permit an addition to the plasma jet of a thermal spraying process. Since the ceramics used in thermal spraying generally have a very high melting point, the addition of fillers is virtually eliminated in conventional ceramic processes.
  • metals in particular zirconium (Zr), titanium (Ti) or aluminum (A1) or metal alloys are supplied, in particular, from the abovementioned materials, which react with the precursors of the polymer ceramic during layer formation. This creates the opportunity to influence the composition of the polymer ceramics by adding active fillers.
  • passive fillers for example silicon oxide (SiO 2 ), silicon carbide (SiC), silicon nitride (SiN), boron nitride (BN) or corundum.
  • passivated or inactive metal alloys or metals can be added. Passivated metals are inactive because they have an oxidized surface that has ceramic properties. Inactive metals generally have a sufficiently high melting point that they are not involved in the reactions involved in the formation of the polymer ceramic. Priority is given to noble metals such as gold (Au) or platinum (Pt).
  • the fillers may preferably be incorporated nanoparticulate in the cold spraying process.
  • the nanoparticles In order to enable processing with cold gas spraying, the nanoparticles must be bound to larger particles due to their very low inertia.
  • the fillers can be embedded as nanoparticles in a matrix preceramic polymer as precursors of the polymer ceramic, wherein the precursors each form microparticles that can be processed with the cold gas spraying. Embedding in the matrix of the precursors is particularly advantageous in the case of reactive fillers, since they can then react completely in the formation process of the polymer ceramic because of their good distribution and large surface area.
  • a process for producing microparticles with nanoparticles embedded in a matrix as a microencapsulation is offered, for example, by the company Capsulation®.
  • the energy input into the cold gas jet is dimensioned in this way is that the reaction of the precursors of Polymerkerämik is completed during the film formation.
  • the precursors of the polymer ceramic are completely converted into the polymer ceramic when hitting the substrate (substrate or layer under construction), and fillers are incorporated at the same time or react with the precursors of the polymer ceramic.
  • the energy input into the cold gas jet is dimensioned such that adhesion of the particles is ensured, however, the reaction of the precursors of the polymer ceramic is not completed and then a post-treatment takes place.
  • the post-treatment can advantageously be carried out targeted conversion into polymer ceramics, which is done in the entire layer composite generated, whereby the construction of manufacturing-related stresses can be advantageously reduced or even excluded.
  • Aftertreatment in this context should also be understood to mean a treatment initiated directly after the impingement of the precursors of the polymer ceramic, which already applies additional energy to the formed portion of the coating during the layer construction.
  • the aftertreatment is effected, for example, by the energy input of electromagnetic radiation, in particular of laser light, into the layer which forms.
  • the laser can be advantageously aligned with the impact of the cold gas jet, which is achieved by the energy input into the layer just as locally, as is achieved by the cold gas jet.
  • the polymer ceramic in the coating can also be completed when, due to the requirements of the process, the energy input into the cold gas jet is limited.
  • the process parameter of the energy input into the cold gas jet can also advantageously be used to favorably influence the adhesion of the layer to the substrate. This happens because the energy input into the cold gas jet during the coating of the still uncoated substrate is dimensioned such that the particles form a bond with the material of the substrate. In this case, the fact must be taken into account that due to their kinetic energy, the particles can form a bond with the substrate when they are still uncoated, and these can consist, for example, of covalent bonds. As a result, the layer adhesion is advantageously improved, which, for example, reduces the risk of it peeling off when the ceramic layer is subjected to mechanical stress.
  • the single FIGURE represents a device for cold gas spraying.
  • This has a vacuum container 11, in which on the one hand a cold spray nozzle 12, which can also be referred to as a cold gas spray gun, and on the other hand, a substrate 13 is arranged (attachment not shown).
  • a process gas of the cold gas spray gun 12 can be supplied.
  • This has, as indicated by the contour, a Lavalform, through which the process gas is expanded and accelerated in the form of a gas jet (arrow 15) to a surface 16 of the substrate 13 out.
  • the process gas can, for example, as Reactive gas containing oxygen 17.
  • the process gas can be heated in a manner not shown, whereby a required process temperature is established in the vacuum container 12.
  • particles 19 can be supplied, which can be designed as a matrix preceramic polymers 19a with fillers 19b for the polymer ceramic to be formed. These particles are accelerated in the gas jet and impinge on the surface 16. The kinetic energy of the particles causes them to adhere to the surface 16, whereby the oxygen 17 is also incorporated into the forming layer 20 or participates in the pyrolytic reactions of the preceramic polymers.
  • further filler particles 19 c which are designed as microparticles, the cold gas jet are mixed, which are also incorporated in the layer 21.
  • the substrate 13 can be moved back and forth in the direction of the double arrow 21 in front of the cold spray nozzle 12.
  • the vacuum in the vacuum chamber 11 is constantly maintained by the vacuum pump 22, wherein the process gas is passed through a filter 23 before being passed through the vacuum pump 22 to filter out particles which were not bonded to the surface 16 upon impact with the surface 16 ,
  • a boundary region 24 which is shown cross-hatched and refers to the part of the structure of the substrate 13 adjoining the surface 16 and the particles of the forming layer adjoining the surface.
  • a heater 25 is furthermore provided in the vacuum container 11. With this, during the course of the coating process, the temperatures required in the vacuum chamber can be achieved. Furthermore, to introduce a local energy input into the layer in the form of electromagnetic radiation, a laser is accommodated in the vacuum container 11, which can be moved by means of a pivotable suspension. In particular, this can, as shown in the figure, be aligned with the impact point of the cold gas jet 15, whereby an additional external energy input can take place during the layer formation process, which is independent of the energy input into the cold gas jet 15.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Claims (8)

  1. Procédé de production de couches ( 20 ) en céramique, dans lequel on pulvérise des particules ( 19 ) au moyen d'une buse sur la surface ( 16 ) à revêtir et on les y laisse adhérer,
    caractérisé
    en ce qu'on utilise comme particules des précurseurs ( 19a ) d'une céramique polymère constituée sous la forme de polymères pré-céramiques et on utilise, comme buse, une buse ( 12 ) de projection à froid en mettant en oeuvre la projection de gaz froid.
  2. Procédé suivant la revendication 1,
    caractérisé
    en ce que l'on apporte d'autres particules comme charge ( 19b, 19c ) au jet ( 15 ) de gaz froid produit par la buse.
  3. Procédé suivant la revendication 2,
    caractérisé
    en ce que l'on apporte des métaux ou des alliages de métaux comme charge ( 19b, 19c ) active, qui réagissent lors de la formation de la couche sur les précurseurs ( 19a ) de la céramique polymère.
  4. Procédé suivant la revendication 2 ou 3,
    caractérisé
    en ce que l'on apporte des céramiques ou des alliages métalliques ou des métaux inactifs ou passivés comme charge ( 19a, 19c ) passives qui, lors de la formation de la couche, restent sans participer à la réaction des précurseurs ( 19a ) de la céramique polymère.
  5. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce qu'on proportionne l'apport d'énergie au jet ( 15 ) de gaz froid, de manière à exclure complètement la réaction des précurseurs ( 19a ) de la céramique polymère pendant la formation de la couche.
  6. Procédé suivant l'une des revendications 1 à 3,
    caractérisé
    en ce que l'on proportionne l'apport d'énergie au jet ( 15 ) de gaz froid, de manière à assurer une adhérence des particules ( 19 ), mais à ne pas exclure la réaction des précurseurs ( 19a ) de la céramique polymère et on effectue ensuite un post-traitement.
  7. Procédé suivant la revendication 6,
    caractérisé
    en ce que l'on effectue le post-traitement par l'apport d'énergie de rayonnement électromagnétique à la couche qui se forme.
  8. Procédé suivant l'une des revendications précédentes,
    caractérisé
    en ce que l'on proportionne l'apport d'énergie au jet ( 15 ) de gaz froid lors du revêtement du substrat ( 13 ) qui n'est pas encore revêtu, de manière à ce que les particules ( 19 ) entrent en liaison avec le matériau du substrat ( 13 ).
EP06763866A 2005-06-28 2006-06-23 Procede de fabrication de couches ceramiques Not-in-force EP1899494B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031101A DE102005031101B3 (de) 2005-06-28 2005-06-28 Verfahren zum Herstellen von keramischen Schichten
PCT/EP2006/063516 WO2007000422A2 (fr) 2005-06-28 2006-06-23 Procede de fabrication de couches ceramiques

Publications (2)

Publication Number Publication Date
EP1899494A2 EP1899494A2 (fr) 2008-03-19
EP1899494B1 true EP1899494B1 (fr) 2010-07-28

Family

ID=36709978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06763866A Not-in-force EP1899494B1 (fr) 2005-06-28 2006-06-23 Procede de fabrication de couches ceramiques

Country Status (5)

Country Link
US (1) US7781024B2 (fr)
EP (1) EP1899494B1 (fr)
JP (1) JP5106390B2 (fr)
DE (2) DE102005031101B3 (fr)
WO (1) WO2007000422A2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973324B2 (ja) * 2007-06-08 2012-07-11 株式会社Ihi コールドスプレー方法、コールドスプレー装置
DE102008016969B3 (de) 2008-03-28 2009-07-09 Siemens Aktiengesellschaft Verfahren zum Erzeugen einer Schicht durch Kaltgasspritzen
US8192799B2 (en) * 2008-12-03 2012-06-05 Asb Industries, Inc. Spray nozzle assembly for gas dynamic cold spray and method of coating a substrate with a high temperature coating
US8020509B2 (en) * 2009-01-08 2011-09-20 General Electric Company Apparatus, systems, and methods involving cold spray coating
DE102009033620A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Kaltgasspritzen von oxydhaltigen Schutzschichten
DE102009038013A1 (de) * 2009-08-20 2011-02-24 Behr Gmbh & Co. Kg Verfahren zur Oberflächen-Beschichtung zumindest eines Teils eines Grundkörpers
US20120009409A1 (en) 2010-07-08 2012-01-12 Jones William F Method for applying a layer of material to the surface of a non-metallic substrate
DE102011052118A1 (de) * 2011-07-25 2013-01-31 Eckart Gmbh Verfahren zum Aufbringen einer Beschichtung auf einem Substrat, Beschichtung und Verwendung von Partikeln
US20140323364A1 (en) 2013-03-15 2014-10-30 Melior Innovations, Inc. High Strength Low Density Synthetic Proppants for Hydraulically Fracturing and Recovering Hydrocarbons
US9815943B2 (en) 2013-03-15 2017-11-14 Melior Innovations, Inc. Polysilocarb materials and methods
US10167366B2 (en) 2013-03-15 2019-01-01 Melior Innovations, Inc. Polysilocarb materials, methods and uses
US9499677B2 (en) 2013-03-15 2016-11-22 Melior Innovations, Inc. Black ceramic additives, pigments, and formulations
US11091370B2 (en) 2013-05-02 2021-08-17 Pallidus, Inc. Polysilocarb based silicon carbide materials, applications and devices
US9919972B2 (en) 2013-05-02 2018-03-20 Melior Innovations, Inc. Pressed and self sintered polymer derived SiC materials, applications and devices
US9657409B2 (en) 2013-05-02 2017-05-23 Melior Innovations, Inc. High purity SiOC and SiC, methods compositions and applications
US9481781B2 (en) 2013-05-02 2016-11-01 Melior Innovations, Inc. Black ceramic additives, pigments, and formulations
US11014819B2 (en) 2013-05-02 2021-05-25 Pallidus, Inc. Methods of providing high purity SiOC and SiC materials
US10322936B2 (en) 2013-05-02 2019-06-18 Pallidus, Inc. High purity polysilocarb materials, applications and processes
JP6341505B2 (ja) * 2014-06-02 2018-06-13 国立大学法人東北大学 コールドスプレー用粉末、高分子被膜の製造方法および高分子被膜
EP3247488A4 (fr) * 2015-01-21 2018-08-08 Melior Innovations Inc. Procédés de fabrication de particules de céramique dérivées de polymère
DE102015201927A1 (de) 2015-02-04 2016-08-04 Siemens Aktiengesellschaft Verfahren zum Kaltgasspritzen mit Maske
US20170355018A1 (en) * 2016-06-09 2017-12-14 Hamilton Sundstrand Corporation Powder deposition for additive manufacturing
US10792679B2 (en) 2018-04-17 2020-10-06 General Electric Company Coating system and method
US10836682B2 (en) 2017-07-22 2020-11-17 Melior Innovations, Inc. Methods and apparatus for conducting heat exchanger based reactions
DE102018009153B4 (de) * 2017-11-22 2021-07-08 Mitsubishi Heavy Industries, Ltd. Beschichtungsverfahren
CN109554701B (zh) * 2018-12-27 2021-06-29 东莞华誉精密技术有限公司 一种手机壳体表面的喷涂方法及喷涂装置
DE102019218273A1 (de) * 2019-11-26 2021-05-27 Siemens Aktiengesellschaft Kaltgas-Spritzanlage mit einer Heizgasdüse und Verfahren zum Beschichten eines Substrats
CN115400926B (zh) * 2021-05-27 2024-05-10 创兆光有限公司 半导体激光器介电层以及半导体激光器的制作方法
CN113880607A (zh) * 2021-11-02 2022-01-04 李燕君 一种陶瓷电阻金属膜冷喷涂工艺
WO2023112310A1 (fr) * 2021-12-17 2023-06-22 三菱電機株式会社 Film de matériau composite de résine et procédé de fabrication de film de matériau composite de résine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8601119A (nl) * 1986-05-01 1987-12-01 Stork Screens Bv Werkwijze voor het vervaardigen van een bekleed voortbrengsel, onder toepassing van deze werkwijze verkregen dunwandige beklede cylinder, en een dergelijke cylinder omvattende inktoverdrachtswals.
JPS63278835A (ja) * 1987-05-11 1988-11-16 Nippon Steel Corp セラミックス積層体の製造方法
JP2670501B2 (ja) * 1988-02-08 1997-10-29 東燃株式会社 コーティング用組成物及びコーティング方法
JPH0649656A (ja) * 1992-08-04 1994-02-22 Vacuum Metallurgical Co Ltd ガス・デポジション法による超微粒子膜の形成法およびその形成装置
EP0939143A1 (fr) * 1998-02-27 1999-09-01 Ticona GmbH Poudre pour pulvérisation thermique contenant un polysulfure d'arylène
US6139913A (en) * 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus
US20030209610A1 (en) * 2001-12-14 2003-11-13 Edward Miller High velocity oxygen fuel (HVOF) method for spray coating non-melting polymers
DE10224780A1 (de) * 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
FR2850649B1 (fr) * 2003-01-30 2005-04-29 Snecma Propulsion Solide Procede pour le traitement de surface d'une piece en materiau composite thermostructural et application au brasage de pieces en materiau composite thermostructural
JP3890041B2 (ja) * 2003-07-09 2007-03-07 株式会社リケン ピストンリング及びその製造方法

Also Published As

Publication number Publication date
JP5106390B2 (ja) 2012-12-26
EP1899494A2 (fr) 2008-03-19
DE502006007540D1 (de) 2010-09-09
JP2008544092A (ja) 2008-12-04
WO2007000422A2 (fr) 2007-01-04
US7781024B2 (en) 2010-08-24
WO2007000422A3 (fr) 2007-03-22
US20090202732A1 (en) 2009-08-13
DE102005031101B3 (de) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1899494B1 (fr) Procede de fabrication de couches ceramiques
EP1926841B1 (fr) Procede de pulverisation de gaz froid
EP2746613B1 (fr) Disque de frien pour véhicule
DE3937526C2 (de) Verschleißfeste Titanlegierung, Verfahren zu ihrer Herstellung und ihre Verwendung
EP3045560B1 (fr) Procede et dispositif de production d'une structure ou composant pour applications a haute temperature
EP0915184B1 (fr) Procédé de fabrication d'une couche de céramique sur un substrat métallique
EP2732072B1 (fr) Procédé de réparation des parties endommagées d'une pièce moulée et procédé de fabrication d'un matériau de réparation approprié
EP2298962A1 (fr) Pulverisation à froid de revêtements contenant des oxydes
EP3249064A1 (fr) Fabrication additive de composants haute temperature en tial
EP1794342B1 (fr) Fabrication d'une couche de mullite cristalline étanche aux gaz à l'aide d'un procédé de projection thermique
EP2123377A1 (fr) Procédé de fabrication d'une pièce à usiner, en particulier un outil de bloc de jeu de construction ou une pièce d'outil de bloc de jeu de construction
EP2499279A1 (fr) Enduction de pièces en plastique par projection dynamique à froid
DE3224305A1 (de) Verfahren zur herstellung einer spannungsunempfindlichen keramischen thermischen sperrschicht auf einem metallsubstrat
EP2257656B1 (fr) Procédé pour former une couche par projection dynamique à froid
DE10208868B4 (de) Verfahren zur Herstellung eines Bauteils und/oder einer Schicht aus einer schwingungsdämpfenden Legierung oder intermetallischen Verbindung sowie Bauteil, das durch dieses Verfahren hergestellt wurde
DE102012017503A1 (de) Verfahren zur Nanostrukturierung von anorganischen und organischen Materialien durch kontinuierliche Bestrahlung mit einem Teilchenstrahl
EP2723916B1 (fr) Élément fabriqué pour la technique de coulée et procédé d'application d'une couche de protection contre la corrosion
EP3431459A1 (fr) Matériau composite renforcé par des fibres et son procédé de fabrication
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
DE102015205595B3 (de) Verfahren zur Herstellung keramischer Faserverbundwerkstoffe
DE102016225874A1 (de) Verfahren zur Beschichtung von Fasern für Faserverstärkte Werkstoffe
DE112016005061T5 (de) Vorrichtung und Verfahren für Kalt-Sprüh- und Beschichtungs-Verarbeitung
WO2012163321A1 (fr) Procédé d'injection de gaz froid présentant une meilleure adhérence et une porosité de couche réduite
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
DE102017222182A1 (de) Verfahren zum Aufbringen einer Titanaluminidlegierung, Titanaluminidlegierung und Substrat umfassend eine Titanaluminidlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071129

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080527

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502006007540

Country of ref document: DE

Date of ref document: 20100909

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007540

Country of ref document: DE

Effective date: 20110429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130623

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160610

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160602

Year of fee payment: 11

Ref country code: FR

Payment date: 20160615

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160902

Year of fee payment: 11

Ref country code: DE

Payment date: 20160819

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007540

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630