EP1920209B1 - Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes - Google Patents

Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes Download PDF

Info

Publication number
EP1920209B1
EP1920209B1 EP06762720A EP06762720A EP1920209B1 EP 1920209 B1 EP1920209 B1 EP 1920209B1 EP 06762720 A EP06762720 A EP 06762720A EP 06762720 A EP06762720 A EP 06762720A EP 1920209 B1 EP1920209 B1 EP 1920209B1
Authority
EP
European Patent Office
Prior art keywords
target
data
firing
calculated
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06762720A
Other languages
English (en)
French (fr)
Other versions
EP1920209A1 (de
Inventor
André Boss
Karel Vit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Rheinmetall Air Defence AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Air Defence AG filed Critical Rheinmetall Air Defence AG
Publication of EP1920209A1 publication Critical patent/EP1920209A1/de
Application granted granted Critical
Publication of EP1920209B1 publication Critical patent/EP1920209B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/142Indirect aiming means based on observation of a first shoot; using a simulated shoot

Definitions

  • Additional sources of error are in particular the unknown target movements between the time of firing the projectile and its arrival at the target. This makes it difficult to predetermine the probable position of the target at the meeting point, especially with longer flight distances of the projectile.
  • models of the target movement are formulated and controlled with measurement data of the target in order to identify the kinematics of the target. These data are then used in the fire control to predict the target position after the expected flight time, usually extrapolated.
  • the measurements are purely positional determinations.
  • the target speed and possibly the target acceleration are derived from these and used for extrapolation.
  • the accuracy of the extrapolated data is particularly dependent on the quality of the acceleration estimate.
  • the Fire Department will refuse to fire.
  • the known residuals of the Filters ie, the difference between the estimate and the measurement, are therefore less suitable for this purpose because they only include the position errors to the target.
  • a target maneuver always takes some time before the filter transforms the generated residuals into acceleration. This is spoken by the settling of the filter.
  • Time delay settling of the filter + flight time of the projectile + remaining dead times.
  • Improvements of the fire control are made by test projectiles or test shots, which can be called “closed-loop". To statistically improve the measurement results of the test projectiles, they are fired in a limited number in succession. A burst of fire, whose first shots are measured in the target, must be longer than the projectile flying time, if his last shots should profit from the corrections. Depending on the application, such measuring systems are complicated and also expensive.
  • a method and an arrangement for the shot control of a real or real target with real or simulated projectiles are known.
  • a computer can determine in real time the derivation of the theoretical trajectory of the projectile. This is done starting from pointing elements of the weapon, the ballistics etc. of the projectile, the comparison at each instant of the position of the projectile with respect to that of a certain point of the target.
  • the target information is determined according to the orientation of the laser beam and from the measured distance. From this, the shooting result is derived.
  • the shooter or the gun can first make a fictitious shot.
  • the computer processes the theoretical position of the simulated projectile when its reaching the target is detected and compares it with the location of the target. Then a real shot is triggered with new location data of the target, which are corrected depending on the result of the simulated shot.
  • the DE 11 65 459 B discloses a means for predetermining the angle or angles at which a missile must have left its starting location at a particular time to collide with a predetermined destination.
  • a system is included including the tracking device for the target and the missile, which uses a working according to the sampling principle control system.
  • the extrapolation unit of the device determines the probable trajectory of the target.
  • the simulator simulating the trajectory may be replaced by a device indicating the actual coordinates. These are then forwarded in the form of steering commands for the missile. It is known from the cited prior art to visually represent the predicted trajectories on a reduced scale in a shooter.
  • the US 4,308,015 A relates to an apparatus and method for training aircraft gunners and accurate scoring. The entire fight between the aircraft is simulated and recorded.
  • the invention takes on the task of specifying a method which assists a surgeon in the choice of the best burst of fire, especially in target maneuvers.
  • the invention is based on the idea to use a known calculation algorithm of a real shooting to determine the best moment of the fire triggering on moving targets, but not really trigger the fire command. This is purely hypothetical. Data is thereby determined and used by continuously calculating and collecting the fire commands and the associated prospective meeting points.
  • the method is based on calculating the fire commands and the expected meeting point without actually triggering the fire.
  • the goal is sought, the algorithm is switched on and this calculates everything else hypothetical.
  • In the algorithm can be contained thereby also the controlling of the guns as basis for the fire order.
  • the actual target position is determined and the error distance between the target and the predicted meeting point is calculated. This gives a statement about how exactly would have been shot. Although this information is obsolete by the flight time, but can be generated continuously and provide important information about the course of the expected hit probability.
  • the error in the target may be a minimum distance between the trajectories of the projectile and the target. If the time at the finish also plays a role, as in the case of disintegrating projectiles or grenades with a time fuse, the distance between the two at the time of disassembly is decisive. Alternatively, angle errors may be considered. Also, a suitable combination of different error definitions is conceivable, but the result is described advantageously with a scalable size.
  • current or quasi-current additional data are preferably made available to the operator via the display.
  • a software consideration in the algorithm is provided, wherein the graphical representation can be maintained.
  • a suitable measure of the hit error thus results as soon as the target approaches the meeting point calculated in advance.
  • the calculated measure of the hit errors is graphically displayed, continuously updated and additionally made available to the surgeon or algorithm. There is no correction of the fire commands instead, rather than a costly measurement in the target area, the operator a method / presentation made available, which support him in the choice of the most favorable moment of the fire triggering.
  • Fig. 1 shows a marked with 1 Richtes gun, which is supplied by a computer 3 with data a target 2 fights.
  • the computer 3 is electrically connected to the gun 1 as well as to a display device 4 for an operator 5.
  • the target measurements are synchronized with the base clock of the fire control, so they do not coincide with the predictable hit points P1 - P3.
  • Fig. 2 is part of a burst of fire.
  • the flight time to the target 2 in the example shown is two to three fire cycles.
  • the data is unified in time by a suitable interpolation.
  • the gun data will be kept for at least the duration of the projectile flight. As a result of the target movement, a certain amount of time expands so that no or more target measurements occur between two shots, which is taken into account in the data processing.
  • T w time window
  • the data is graphically represented as a left-moving curve 6.
  • the age of the most recent data equals the time of flight and is plotted on the right side of the window (f).
  • T F projectile flying time
  • T F In order to improve the obsolete data T F , additional information is preferably integrated into the method, which gives the surgeon 5 other relevant information Of origin so that the operator 5 can determine if the time had been properly selected also from the point of view of T F.
  • the operator 5 is additionally provided with data with T F / 2 as part curve (g) graphically ( Fig. 4 ).
  • the partial curve (g) indicates in the example shown that the current moment is not favorable, as due to the Fig. 3 was accepted as the hit errors rise again.
  • Another source of additional data may be the estimated accelerations from the filter. These are updated continuously with the help of the latest target measurement.
  • the direct observation of the goal 2 offers. Before an aircraft 2 exercises a maneuver, it must change its position relative to the direction of flight. In this case, as in Fig. 5 shown, a video image of the target 2 in the display diagram of the display 4 are displayed. This also provides up-to-date data or additional information that the operator 5 takes into account in assisting him in choosing the most favorable moment of the fire triggering.
  • An alternative implementation of the invention is to automate the process by a suitable algorithm to simplify the presentation of the result, for example with a lamp or to fire the fire by a fire command.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Luminescent Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Description

  • Bei der Bekämpfung von Zielen werden Feuerkommandos, d.h., der Abgangswinkel sowie das Moment der Schussabgabe mit der Absicht gewählt, eine möglichst hohe Trefferwahrscheinlichkeit zu erreichen. Die Genauigkeit der Einrichtung der Waffe, die Streuung der Munition und die atmosphärischen Einflüsse erschweren diese Aufgabe. Um diesen Störungen entgegenzuwirken, werden Maßnahmen ergriffen, wie beispielsweise das Eichen bei der Einrichtungsprozedur oder Messen von Luftdruck und Lufttemperatur und Wind. Hinzu kommt noch die Variabilität der Mündungsgeschwindigkeit, welche die Flugzeit des Projektils zum Ziel beeinflusst. In der Praxis wird daher oftmals die Mündungsgeschwindigkeit des Projektils gemessen und bei der Feuerleitung berücksichtigt. So ist aus der CH 691 143 A5 eine Vorrichtung zur Messung der Geschossgeschwindigkeit an der Mündung eines Waffenrohres bekannt. Diese umfasst zwei in einem Abstand voneinander an einem Tragrohr angeordnete, auf Veränderung eines magnetischen Flusses ansprechende Sensoren, die mit einer Auswerteelektronik in Verbindung stehen.
  • Zusätzliche Fehlerquellen sind insbesondere die unbekannten Zielbewegungen zwischen dem Zeitpunkt des Abfeuerns des Projektils und dessen Eintreffen im Ziel. So lässt sich besonders bei längeren Flugdistanzen des Projektils die voraussichtliche Position.des Zieles im Treffpunkt schwierig vorausbestimmen. Zur Reduktion dieser Fehler werden Modelle der Zielbewegung formuliert und mit Messdaten des Zieles angesteuert, um die Kinematik des Zieles zu identifizieren. Diese Daten werden dann in der Feuerleitung zur Voraussage der Zielposition nach der erwarteten Flugzeit eingesetzt, in der Regel extrapoliert.
  • Mit Ausnahme der radialen Geschwindigkeit sind die Messungen jedoch reine Positionsbestimmungen. Im Filter werden aus diesen die Zielgeschwindigkeit und eventuell Zielbeschleunigung abgeleitet und für die Extrapolation eingesetzt. Die Genauigkeit der extrapolierten Daten ist besonders von der Qualität der Beschleunigungsschätzung abhängig. Sobald das Ziel zudem manövriert und die Beschleunigungen deswegen groß sind, kann es passieren, dass die Feuerleitung die Feuerempfehlung verweigert. Die bekannten Residuen des Filters, d.h., die Differenz zwischen der Schätzung und der Messung, sind zu diesem Zweck daher weniger geeignet, weil sie nur die Lagefehler zum Ziel beinhalten. Bei einem Zielmanöver dauert es stets eine gewisse Zeit, bevor der Filter die generierten Resid>uen in Beschleunigung transformiert. Hierbei wird vom Einschwingen des Filters gesprochen.
  • Die gesamte Zeitverzögerung zwischen dem Zielmanöver und der Zeit des Eintreffens des Projektil, dessen Feuerelemente diese Manöver berücksichtigen, am Ziel setzt sich zusammen aus
    Zeitverzögerung = Einschwingen des Filters + Flugzeit des Projektils + übrige Totzeiten.
  • Unter übrige Totzeiten werden dabei der Zeitaufwand für die Messung, für die Datenverarbeitung und -transmission verstanden.
  • Verbesserungen der Feuerleitung werden durch Testprojektile bzw. Probeschüsse vorgenommen, was als "closed- loop" bezeichnet werden kann. Um statistisch die Messresultate der Testprojektile zu verbessern, werden diese in einer begrenzten Zahl hintereinander abgefeuert. Ein Feuerstoß, dessen erste Schüsse im Ziel vermessen werden, muss dabei länger als die Geschossflugzeit sein, wenn seine letzten Schüsse von den entsprechenden Korrekturen profitieren sollen. Je nach Anwendung sind derartige Messanlagen kompliziert und zudem teuer.
  • Aus der US 4,577 962 A (welche als Ausgangspunkt für den Anspruch 1 betrachtet werden kann) sind ein Verfahren und eine Anordnung zur Schuss-Steuerung ein reelles oder Echtziel mit reellen oder simulierten Projektilen bekannt. Im Rahmen insbesondere eines Schusssimulators kann ein Rechner in Echtzeit die Ableitung der theoretischen Flugbahn des Projektils bestimmen. Dies geschieht ausgehend von Richtelementen der Waffe, von der Ballistik etc. des Projektils, den Vergleich zu jedem Augenblick der Lage des Projektils gegenüber derjenigen eines bestimmten Punktes des Ziels. Die Zielinformationen werden nach der Ausrichtung des Laserstrahls und aus dem gemessenen Abstand ermittelt. Daraus wird dann das Schießergebnis abgeleitet. Zum Prüfen seines Schusses kann der Schütze bzw. das Geschütz zunächst einen fiktiven Schuss durchführen. Der Rechner verarbeitet die theoretische Lage des simulierten Projektils, wenn dessen Erreichen des Ziels erfasst ist und vergleicht diese mit der Lage des Ziels. Danach wird ein echter Schuss mit neuen Lagedaten des Ziels ausgelöst, wobei diese abhängig vom Ergebnis des simulierten Schusses korrigiert werden.
  • Die DE 11 65 459 B offenbart eine Einrichtung zur Vorausbestimmung des oder der Winkel, unter dem / denen zu einem bestimmten Zeitpunkt ein Flugkörper seinen Startort verlassen haben muss, um mit einem vorausbestimmten Ziel zu kollidieren. Dazu wird eine Anlage eingebunden einschließlich des Ortungsgerätes für das Ziel und des Flugkörpers, die ein nach dem Abtastprinzip arbeitendes Regelsystem verwendet. Die Extrapolationseinheit der Einrichtung ermittelt dabei die wahrscheinliche Flugbahn des Ziels. Der die Flugbahn simulierende Simulator kann durch eine die tatsächlichen Koordinaten angebende Einrichtung ersetzt werden. Diese sind werden dann in Form von Lenkkommandos für den Flugkörper diesem nachgesendet. Aus dem zitierten Stand der Technik ist bekannt, die vorausberechneten Bahnkurven in verkleinertem Maßstabeinem Schützen visuell darzustellen.
  • Die US 4,308,015 A betrifft eine Vorrichtung und ein Verfahren für das Training von Flugzeugrichtschützen und akkurate Bewerten. Dabei wird der komplette Kampf zwischen den Flugzeugen simuliert und aufgezeichnet.
  • Hier greift die Erfindung die Aufgabe auf, ein Verfahren anzugeben, welches einen Operateur bei der Wahl des günstigsten Feuerstoßes insbesondere bei Zielmanövern unterstützt.
  • Gelöst wird die Aufgabe durch die Merkmale des Patentanspruchs 1.
  • Vorteilhafte Ausführungen sind in den Unteransprüchen aufgezeigt.
  • Der Erfindung liegt die Idee zugrunde, zur Bestimmung des günstigsten Moments der Feuerauslösung auf sich bewegende Ziele einen bekannten Rechenalgorithmus eines realen Schießens zu verwenden, jedoch dabei den Feuerbefehl nicht wirklich auszulösen. Dieser läuft rein hypothetisch ab. Es werden dadurch Daten durch laufendes Berechnen und Sammeln der Feuerkommandos und der damit verbundenen voraussichtlichen Treffpunkte ermittelt und herangezogen.
  • Das Verfahren basiert also darauf, dass die Feuerkommandos und der erwartete Treffpunkt berechnet werden, ohne das Feuer jedoch real auszulösen. Das Ziel wird gesucht, der Algorithmus wird zugeschaltet und dieser berechnet alles Weitere hypothetisch. Im Algorithmus enthalten sein kann dabei auch das Steuern der Geschütze als Grundlage für den Feuerbefehl.
  • Nach der so berechneten Flugzeit des hypothetischen Geschosses wird die wirkliche Ziellage ermittelt und der Fehlerabstand zwischen dem Ziel und dem vorgerechneten Treffpunkt berechnet. Dieser gibt eine Aussage darüber wie genau geschossen worden wäre. Zwar ist diese Information um die Flugzeit veraltert, kann aber laufend generiert und wichtige Hinweise über den Verlauf der zu erwartenden Treffwahrscheinlichkeit liefern.
  • Der Fehler im Ziel kann beispielsweise als ein minimaler Abstand zwischen den Trajektorien des Geschosses und des Zieles sein. Wenn auch der Zeitpunkt im Ziel eine Rolle spielt, wie beispielsweise bei sich zerlegenden Geschossen oder Granaten mit einem Zeitzünder, ist der Abstand der beiden zum Zerlegungszeitpunkt maßgebend. Alternativ können Winkelfehler in Betracht gezogen werden. Auch eine geeignete Kombination verschiedener Fehlerdefinitionen ist denkbar, das Resultat wird aber vorteilhaft mit einer skalierbaren Größe beschrieben.
  • Bevorzugt werden Darstellungen mit sichtbarer Entwicklung der Fehler, beispielsweise graphische Kurven über die Zeit, die der Korrelationszeit des Verhaltens entspricht, da die Daten Auskunft nicht nur über den momentanen Fehler liefern sollten, sondern hauptsächlich eine Abschätzung deren Verhalten in der nahen Zukunft erlauben sollen. Dazu werden dem Bediener neben den hypothetischen Daten aktuelle bzw. quasi aktuelle Zusatzdaten vorzugsweise eben via Anzeige zur Verfügung gestellt. Bei einer Automatisierung des Verfahrens ist eine softwaremäßige Berücksichtigung im Algorithmus vorzusehen, wobei die graphische Darstellung beibehalten werden kann.
  • Mit Hilfe des Verfahrens ergibt sich also ein geeignetes Maß der Trefffehler, sobald sich das Ziel dem im Voraus berechneten Treffpunkt nähert. Das berechnete Maß der Trefffehler wird graphisch dargestellt, laufend aufdatiert und dem Operateur bzw. Algorithmus zusätzlich zur Verfügung gestellt. Es findet keine Korrektur der Feuerkommandos statt, vielmehr wird ohne eine aufwendige Messung im Zielgebiet dem Bediener ein Verfahren / eine Darstellung zur Verfügung gestellt, welche ihn bei der Wahl des günstigsten Moments der Feuerauslösung unterstützen.
  • Anhand eines Ausführungsbeispiels mit Zeichnung soll die Erfindung näher erläutert werden. Es zeigt:
  • Fig. 1
    in einer blockbildartigen Darstellung die für das Verfahren benötigten Mittel,
    Fig. 2
    eine graphische Darstellung eines Feuerstoßes,
    Fig. 3
    eine Darstellung der berechneten Zielablagen in einem Zeitfenster,
    Fig. 4
    die Darstellung aus Fig. 3 mit einer ersten Zusatzinformation ,
    Fig. 5
    die Darstellung aus Fig. 3 mit einer weiteren Zusatzinformation.
  • Fig. 1 zeigt ein mit 1 gekennzeichnetes richtbares Geschütz, welches von einem Rechner 3 mit Daten versorgt ein Ziel 2 bekämpft. Der Rechner 3 ist mit dem Geschütz 1 elektrisch als auch mit einem Anzeigegerät 4 für einen Bediener 5 verbunden. Im Rechner 3, der in der Regel der Feuerleitrechner ist, sind üblicherweise die Zielmessungen mit dem Grundtakt der Feuerleitung synchronisiert, sodass sie nicht mit den vorhersagbaren Trefferpunkten P1 - P3 zusammenfallen. In Fig. 2 ist ein Teil eines Feuerstoßes dargestellt. Ein selbst nicht näher dargestelltes Geschütz 1 feuert in regelmäßigen Abständen auf ein sich näherndes Ziel 2. Die Flugzeit zum Ziel 2 beträgt im dargestellten Beispiel zwei bis drei Feuerzyklen. Bevor die Zielablagen berechnet werden, werden die Daten durch eine geeignete Interpolation zeitlich vereinheitlicht. Die Geschützdaten werden mindestens für die Dauer der Projektilflugzeit aufbewahrt. Infolge der Zielbewegung kommt es zu einer gewissen Zeitausdehnung, sodass keine oder mehrere Zielmessungen zwischen zwei Schüssen anfallen, was bei der Datenverarbeitung berücksichtigt wird.
  • Fig. 3 zeigt eine mögliche Anwendung der berechneten Zielablagen in einem Zeitfenster der Breite Tw (Tw = Zeitfenster), die in der Anzeige 4 darstellbar sind. In dieser Implementierung werden die Daten graphisch als eine sich nach links bewegende Kurve 6 dargestellt. Das Alter der jüngsten Daten gleicht der Flugzeit und wird auf der rechten Seite des Fensters aufgetragen (f). Die älteren Daten mit Alter Tw + TF (TF= Geschossflugzeit) verschwinden aus dem Fenster auf dessen linken Rand (a). Je höher die Kurve 6 ist, desto größer wären die Trefferfehler zu jener Zeit, wenn geschossen worden wäre.
  • In dieser Darstellung läst sich erkennen, dass in (b) eine günstige aber kurze Gelegenheit verpasst wurde, während die Zeiten in (c) und (e) besonders ungünstig gewesen wären. Dafür hat sich der Fehler zur jetzigen Zeit (f) auf einen kleinen Wert beruhigt, sodass der Operateur 5 mit Vorteil das Feuer auslösen könnte und eine höhere Treffgenauigkeit erreicht.
  • Zur Verbesserung der veralterten Daten TF werden bevorzugt Zusatzinformationen in das Verfahren eingebunden, welche dem Operateur 5 andere relevante Informationen jüngeren Ursprungs zur Verfügung stellen, damit der Bediener 5 feststellen kann, ob der Zeitpunkt auch unter dem Gesichtspunkt von TF richtig gewählt worden wäre.
  • Dazu werden in einer ersten Variante dem Operateur 5 zusätzlich Daten mit TF/2 als Teilkurve (g) graphisch zur Verfügung gestellt (Fig. 4). Die Teilkurve (g) gibt im gezeigten Beispiel an, dass das jetzige Moment nicht günstig ist, wie aufgrund der Fig. 3 angenommen wurde, da die Trefffehler wieder ansteigen.
  • Eine weitere, nicht näher dargestellte Quelle für Zusatzdaten können die geschätzten Beschleunigungen aus dem Filter sein. Diese werden laufend mit Hilfe der neuesten Zielmessung aufdatiert.
  • Alternativ biete sich die direkte Beobachtung des Zieles 2 an. Bevor ein Flugzeug 2 ein Manöver ausübt, muss es seine Lage relativ zur Flugrichtung ändern. In diesem Fall kann, wie in Fig. 5 dargestellt, ein Videobild des Zieles 2 in das Darstellungsdiagramm der Anzeige 4 eingeblendet werden. Dieses liefert gleichfalls aktuelle Daten bzw. Zusatzinformationen, die vom Bediener 5 berücksichtigt, ihn bei der Wahl des günstigsten Moments der Feuerauslösung unterstützen.
  • Die graphischen Darstellungen nach Fig. 3 bis 5 unterstützen also den Operateur 5, der diese angezeigten Daten so interpretiert, dass er aus der Tendenz der Abläufe auf die zukünftige Entwicklung der Trefffehler schließen kann.
  • Eine alternative Implementierung der Erfindung ist, das Verfahren durch einen geeigneten Algorithmus zu automatisieren, um das Resultat einfacher darzustellen, beispielsweise mit einer Lampe oder zur Selbstauslösung des Feuers durch ein entsprechendes Feuerkommando.

Claims (8)

  1. Verfahren zur Bestimmung eines günstigen Moments der Feuerauslösung auf sich bewegende Ziele (2), wobei Feuerkommandos und zu erwartete Treffpunkte (P1 -P3) eines Geschosses mit dem Ziel (2) mit Hilfe eines Algorithmus berechnet werden, ohne einen Feuerstoß real auszulösen, wozu
    • das Ziel (2) gesucht,
    • der Algorithmus zugeschaltet und hypothetisch Daten ermittelt werden,
    • nach der so berechneten Flugzeit des hypothetischen Geschosses die wirkliche Ziellage ermittelt und der Fehlerabstand zwischen dem Ziel (2) und dem vorgerechneten Treffpunkt (P1, P2, P3) berechnet wird,
    • und daraus eine Aussage darüber getroffen wird, wie genau geschossen worden wäre.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Daten graphisch und in einer Anzeige (4) dargestellt werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die graphische Darstellung mit sichtbarer Entwicklung der Fehler erfolgt.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass graphische Kurven über die Zeit verwendet werden, die der Korrelationszeit des Verhaltens entspricht.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass reale und aktuelle bzw. quasi aktuelle Zusatzinformationen hinzugezogen werden können.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zusätzlich Daten mit TF/2 als Teilkurve (g) graphisch zur Verfügung gestellt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass geschätzte Beschleunigungen verwendet werden, welche laufend mit Hilfe der neuesten Zielmessung auf datiert werden.
  8. Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass ein Videobild des Zieles (2) in das Darstellungsdiagramm der Anzeige (4) eingeblendet wird.
EP06762720A 2005-09-02 2006-07-20 Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes Not-in-force EP1920209B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005041704A DE102005041704A1 (de) 2005-09-02 2005-09-02 Verfahren zur Optimierung eines Feuerauslösens einer Waffe oder eine Geschützes
PCT/EP2006/007128 WO2007028455A1 (de) 2005-09-02 2006-07-20 Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes

Publications (2)

Publication Number Publication Date
EP1920209A1 EP1920209A1 (de) 2008-05-14
EP1920209B1 true EP1920209B1 (de) 2011-03-30

Family

ID=37232475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06762720A Not-in-force EP1920209B1 (de) 2005-09-02 2006-07-20 Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes

Country Status (10)

Country Link
US (1) US8579194B2 (de)
EP (1) EP1920209B1 (de)
CN (1) CN101300458B (de)
AT (1) ATE503980T1 (de)
CA (1) CA2620435A1 (de)
DE (2) DE102005041704A1 (de)
DK (1) DK1920209T3 (de)
ES (1) ES2364187T3 (de)
WO (1) WO2007028455A1 (de)
ZA (1) ZA200800614B (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010362A1 (de) 2009-02-25 2011-01-13 Rheinmetall Waffe Munition Gmbh Feuerleitung einer richtbaren Waffenanlage
US8336776B2 (en) 2010-06-30 2012-12-25 Trijicon, Inc. Aiming system for weapon
US8172139B1 (en) 2010-11-22 2012-05-08 Bitterroot Advance Ballistics Research, LLC Ballistic ranging methods and systems for inclined shooting
TWI485630B (zh) 2012-12-14 2015-05-21 Sintai Optical Shenzhen Co Ltd 瞄準器,其操作方法,及其電腦程式產品
DE102013007229A1 (de) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Verfahren zum Betrieb eines Waffensystems
US12137974B1 (en) 2015-03-17 2024-11-12 Raytrx, Llc System, method, and non-transitory computer-readable storage media related to correction of vision defects using a visual display
US11016302B2 (en) 2015-03-17 2021-05-25 Raytrx, Llc Wearable image manipulation and control system with high resolution micro-displays and dynamic opacity augmentation in augmented reality glasses
US12062430B2 (en) 2015-03-17 2024-08-13 Raytrx, Llc Surgery visualization theatre
US11956414B2 (en) 2015-03-17 2024-04-09 Raytrx, Llc Wearable image manipulation and control system with correction for vision defects and augmentation of vision and sensing
US12237074B2 (en) 2015-03-17 2025-02-25 Raytrx, Llc System, method, and non-transitory computer-readable storage media related to correction of vision defects using a visual display
US12235445B2 (en) 2015-03-17 2025-02-25 Raytrx, Llc Wearable image manipulation and control system with high resolution micro-displays and dynamic opacity augmentation in augmented reality glasses
US12094595B2 (en) 2015-03-17 2024-09-17 Raytrx, Llc AR/XR headset for military medical telemedicine and target acquisition
EP3759416A4 (de) * 2018-03-01 2021-12-08 Axon Enterprise, Inc. Systeme und verfahren zur erkennung eines abstandes zwischen einer geleiteten elektrischen waffe und einem ziel
US12142367B2 (en) 2020-02-21 2024-11-12 Raytrx, Llc Surgery visualization theatre
US20250054611A1 (en) * 2020-05-04 2025-02-13 Raytrx, Llc Ar/xr headset for military target acquisition
WO2021262324A2 (en) * 2020-05-04 2021-12-30 Raytrx, Llc Ar/xr headset for military medical telemedicine and target acquisition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165459B (de) * 1959-07-04 1964-03-12 Boelkow Entwicklungen Kg Einrichtung zur Vorausbestimmung des oder der Winkel, unter dem oder denen zu einem bestimmten Zeitpunkt ein Flugkoerper seinen Startort verlassen muss, um mit einem vorausbestimmten Ziel zu kollidieren
CH474738A (de) * 1968-05-07 1969-06-30 Baumann Martin Vorrichtung zur Anzeige von Richtfehlern
CH650857A5 (en) * 1979-07-11 1985-08-15 Hans Baasch Dr Ing Monitoring apparatus for determining and displaying the aiming error when aiming and firing at moving targets
US4308015A (en) * 1979-12-20 1981-12-29 General Electric Company System and method for aircraft gunnery training and accuracy evaluation
FR2477695A1 (fr) * 1980-03-07 1981-09-11 Giravions Dorand Procede et appareillage de commande de tir sur cible reelle
EP0105432B1 (de) * 1982-09-30 1990-01-24 General Electric Company Automatische Schussverbesserung für Flugzeuge
US4794235A (en) * 1986-05-19 1988-12-27 The United States Of America As Represented By The Secretary Of The Army Non-linear prediction for gun fire control systems
CH691143A5 (de) 1995-03-17 2001-04-30 Contraves Ag Vorrichtung zur Messung der Geschossgeschwindigkeit an der Mündung eines Waffenrohres eines Geschützes hoher Kadenz.
GB0005594D0 (en) * 2000-03-09 2000-12-20 British Aerospace A ballistics fire control solution process and apparatus for a spin or fin stabilised projectile

Also Published As

Publication number Publication date
DK1920209T3 (da) 2011-07-11
WO2007028455A1 (de) 2007-03-15
ATE503980T1 (de) 2011-04-15
CA2620435A1 (en) 2007-03-15
ZA200800614B (en) 2008-12-31
US8579194B2 (en) 2013-11-12
DE502006009219D1 (de) 2011-05-12
CN101300458B (zh) 2012-09-26
CN101300458A (zh) 2008-11-05
DE102005041704A1 (de) 2007-03-15
EP1920209A1 (de) 2008-05-14
ES2364187T3 (es) 2011-08-26
US20090218400A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
EP1920209B1 (de) Verfahren zur optimierung eines feuerauslösens einer waffe oder eines geschützes
EP1304539A1 (de) Verfahren und Einrichtung zum Richten eines Waffenrohres und Verwendung der Einrichtung
WO1990008936A1 (de) Verfahren und vorrichtung zur verbesserung der treffgenauigkeit
DE602004001766T2 (de) Verfahren zum aktivieren eines geschosses in einer flugbahn an einem gewünschten punkt und zu einem berechneten zeitpunkt
CH669660A5 (de)
EP0547391A1 (de) Verfahren zur Erhöhung der Erfolgswahrscheinlichkeit bei der Flugkörperabwehr mittels eines fernzerlegbaren Geschosses
DE2452586C3 (de) Verfahren und Vorrichtung zur Festlegung der Dauer des Flugweges eines Geschosses
CH669659A5 (de)
EP1314950A1 (de) Verfahren und Vorrichtung zum Beurteilen der Richtfehler eines Waffensystems und Verwendung der Vorrichtung
EP3088836B1 (de) Verfahren zur detektion und verfolgung der position von lichtpunkten auf einer projektionsfläche eines waffensimulators, waffensimulator und recheneinheit eines waffensimulators zur realisierung des verfahrens
DE1951622A1 (de) Anordnung zur Simulation von Schussbahnen
EP3350536B1 (de) Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation
DE2429006B2 (de) Verfahren zur Schußsimulation ferngelenkter Flugkörper und Vorrichtung zur Durchführung des Verfahrens
DE2746534A1 (de) Verfahren zur simulation eines beweglichen zieles
EP1898173B1 (de) Bestimmung der einzustellenden Ausrichtung einer ballistischen Waffe
EP2989408B1 (de) Verfahren zum betrieb eines waffensystems
DE2105016C3 (de) Prüf- und Trainingsanlage für die Bedienung von Flakgeschützen
EP2120002B1 (de) Verfahren zur Klassifikation von anfliegenden RAM-Geschossen
EP0862041B1 (de) Verfahren und Anlage zum Bestimmen und Anzeigen eines Schussfehlers
DE3127844C2 (de) Verfahen zum Abwerfen von Munition von einem Kampfflugzeug aus
EP0862042B1 (de) Verfahren zur Ausbildung von Geschützbedienungsmannschaften, Anlage zur Durchführung des Verfahrens und Verwendung der Anlage
EP3350535B1 (de) Fernbedienbare waffenstation und verfahren zum betreiben einer fernbedienbaren waffenstation
DE2339164C3 (de) Verfahren und Einrichtung zur Simulation eines Schuß- oder Wurfvorganges
DE19806911C2 (de) Verfahren zur Überwachung der Ausichtung einer Artilleriewaffe
DE60015054T2 (de) Auf Bildverarbeitung gegründeter elektrooptischer Aussenschlachtfeldsimulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINMETALL AIR DEFENCE AG

17Q First examination report despatched

Effective date: 20091029

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR OPTIMISING THE TRIGGERING OF THE FIRING OF A WEAPON OR AN ARTILLERY GUN

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006009219

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009219

Country of ref document: DE

Effective date: 20110512

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110330

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2364187

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110826

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401536

Country of ref document: GR

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110730

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110721

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

BERE Be: lapsed

Owner name: RHEINMETALL AIR DEFENCE A.G.

Effective date: 20110731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009219

Country of ref document: DE

Effective date: 20120102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 503980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20130625

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20140620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20140717

Year of fee payment: 9

Ref country code: DK

Payment date: 20140721

Year of fee payment: 9

Ref country code: CH

Payment date: 20140721

Year of fee payment: 9

Ref country code: DE

Payment date: 20140721

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140721

Year of fee payment: 9

Ref country code: ES

Payment date: 20140728

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140723

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009219

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20110401536

Country of ref document: GR

Effective date: 20160202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150720