EP0105432B1 - Automatische Schussverbesserung für Flugzeuge - Google Patents

Automatische Schussverbesserung für Flugzeuge Download PDF

Info

Publication number
EP0105432B1
EP0105432B1 EP83109535A EP83109535A EP0105432B1 EP 0105432 B1 EP0105432 B1 EP 0105432B1 EP 83109535 A EP83109535 A EP 83109535A EP 83109535 A EP83109535 A EP 83109535A EP 0105432 B1 EP0105432 B1 EP 0105432B1
Authority
EP
European Patent Office
Prior art keywords
boresight
positions
aircraft
symbol
rounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83109535A
Other languages
English (en)
French (fr)
Other versions
EP0105432A3 (en
EP0105432A2 (de
Inventor
Charles Wyndham Robinson Hickin
Gene Tye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP0105432A2 publication Critical patent/EP0105432A2/de
Publication of EP0105432A3 publication Critical patent/EP0105432A3/en
Application granted granted Critical
Publication of EP0105432B1 publication Critical patent/EP0105432B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/14Elevating or traversing control systems for guns for vehicle-borne guns
    • F41G5/18Tracking systems for guns on aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/142Indirect aiming means based on observation of a first shoot; using a simulated shoot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/323Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device

Definitions

  • This invention relates to aircraft gunnery boresight correction, and more particularly, to a system for effecting such gunnery boresight correction in an aircraft, automatically, upon the firing of several rounds of bullets, and while in flight, if so desired.
  • U.S. Patent 3,136,992-French assigned to the assignee of the present invention, discloses an angle and range tracking radar to measure the positions of rounds fired from a turreted gun and to determine the alignment error between the radar and gun boresight axes. This system proved to be very effective for maintaining the alignment between the radar and the gun turret of a bomber defense fire control system and was produced in large quantities.
  • a tracking radar is of little value, however, as a bullet sensor on a fighter aircraft where the primary target sensor is the pilot looking through a head-up display (HUD). It is essential, in this case, that the error between the HUD sighting or aiming reference and the observed bullets be measured in the visible, or near visible, portion of the electromagnetic spectrum.
  • HUD head-up display
  • an automatic aircraft gunnery boresighting system for use in an aircraft having a gunnery system and a sighting system therefor. Included are means for detecting the location at a given instant of bullets fired from the gunnery system and means for displaying through the sighting system a boresight symbol representing a reference point from which the predicted instantaneous position of fired bullets is computed. Means are provided for storing data representing the positions of the fired bullets and the boresight symbol, as are means for predicting a path which the fired bullets will take. Means are provided for determining the error between the observed position of the fired bullets and the predicted position thereof, as are means for storing the determined error. Means are provided also for correcting the sighting system according to the determined error.
  • a method for boresighting a gunnery system in an aircraft having a sighting system including a boresight symbol includes the steps of: firing several rounds from the gunnery system; predicting the position of the fired rounds relative to the boresight symbol; detecting the actual positions of the fired rounds; determining the error vector between the predicted positions and the actual positions of the fired rounds; and correcting the sighting system to compensate for the error according to the error vector.
  • a method for automatically boresighting a gunnery system in an aircraft having a sighting system including a boresight symbol including the following steps: firing several rounds from the gunnery system; predicting the trajectory of the fired rounds relative to the boresight symbol; determining the actual trajectory of the fired rounds; determining the error vector between the predicted trajectory and the actual trajectory of the fired rounds; and correcting the sighting system to compensate for the error according to the error vector.
  • a method for automatically boresighting a gunnery system in an aircraft having a sighting system including a boresight symbol including performing two constant turn maneuvers and for each maneuver performing the following steps: firing several rounds from the gunnery system; determining the actual trajectory of the fired rounds; determining the best straight line of the trajectory (by averaging the bullet position centroid over a number of frames); then after the completion of the second maneuver solving the best straight lines for their instantaneous solution, that solution being the actual position of the aircraft boresight; and correcting the sighting system by replacing the previous boresight position with this new boresight position.
  • FIG. 1 of the drawing there is shown in block diagram form the preferred embodiment of the automatic aircraft gunnery boresighting system for use in an aircraft having a gunnery system and a sighting system therefor.
  • Means are provided for detecting the locations at a given instant of bullets fired from the gunnery system and such may take the form of a TV camera, such as cockpit television sensor, CTVS, 10.
  • Means are provided for generating and displaying an aiming or boresight symbol representing a sighting reference point from which the predicted instantaneous positions of fired bullets is computed, and such may take the form of headup display, HUD, 20 and its associated display processor 30.
  • HUD 20 includes a combining glass 22, HUD optics and electronics 24 which receive inputs from symbol generator 32, and weapon delivery processing section 34 forming a portion of digital processor 35 which in turn is a portion of the display processor 30.
  • Means are provided for storing data representing the positions of the fired bullets and the aiming symbol and such may take the form of boresight correction and tracer video (BSC & T) processing firmware 36, also forming a portion of display processor 30.
  • Means are also provided for predicting a path which the fired bullets will take and such is also accomplished in weapon delivery processing 34.
  • Means for determining the error between the observed positions of the fired bullets and the predicted positions thereof takes the form of the relative error processing section 38 of digital processor 35.
  • Means for storing the determined error may take the form of non-volatile memory 39 and means for correcting the sighting system according to the determined error takes the form of a weapon delivery processing section 34 of digital processor 35.
  • the circuit of Figure 1 operates as follows. For in-flight boresighting, the pilot makes a turning maneuver and fires a short burst, preferably of tracer rounds. The burst is sensed by CTVS 10 and the fired bullets are tracked by the video processing firmware 36. Details of the video processing firmware 36 are shown in Figure 2 and Figure 3 and will be described hereinafter.
  • Video processing firmware 36 is a set of highspeed digital circuitry which extracts bullet position from the camera video and store the positions in a buffer. The data are read by the digital processor 35 which compares the measured bullet positions with those calculated analytically using the original gun boresight position. An average error is calculated between the analytical bullet positions and the measured bullet positions, and the gun boresight position is updated by this error and stored in non-volatile memory 39 for use in weapon delivery calculations.
  • the boresight symbol position on the HUD is calculated to determine the present display boresight and account for camera and HUD alignment. This is done using a gun cross calculation module in the processor which positions an invisible tracker "gate" 550 over the expected position of the boresight symbol.
  • the . video processing firmware 36 detects the gun cross pixel positions in the video and stores them in the buffer. These data are then used by the boresight symbol calculation module to compute the present boresight symbol position.
  • the pilot has made a right turn and fired a short burst of tracer rounds.
  • the pilot trigger pull is detected by the processor and an analytical bullet position calculation is begun using a bullet trajectory algorithm. For every camera field of the CTVS 10, the tracker gate 550 is positioned at the theoretical bullet position, as seen in frames 5c through 5f, and tracker firmware 36 detects the actual bullet positions and stores them in the buffer.
  • the processor uses these data to calculate the centroid of the bullet positions and compares this centroid with the theoretical bullet position normal to the direction of the bullet stream. This relative error is averaged over each camera field and a corrected boresight symbol position is calculated for the entire burst. This calculation however will only correct boresight errors normal to the bullet trajectory. To get a two-axis correction, a turn in the opposite direction is required as shown in Figure 9. This will yield a unique solution for the correction.
  • Video signals from the CTVS 10 are referenced to a DC voltage in the video receiver 201 to allow the separation of the synchronizing pulses (HSP and VSP) from the picture video in the sync separator 202.
  • the picture video 203 is passed to the threshold circuit 204 where only video signals greater than a set threshold value are allowed at its output 205.
  • the vertical synchronizing pulse (VSP) and horizontal synchronizing pulse (HSP) conditions the line 206 and pixel counters 207 to allow a unique identification, or address, of each pixel within the video frame.
  • an electronic window 550 (of Figure 5) is formed about the predicted bullet positions, of sufficient width and height to encompass any positional errors, by window generator 240.
  • the window generator 240 generates window boundaries with data from the relative error processing section 38 (of Figure 1) and will allow only line counter values and pixel counter values that are within these bounds to be entered into the memories 208 and 209.
  • the video pulse counter 210 is advanced by each threshold video pulse 205.
  • the output of the counter 210 is: 1) used to sequentially address the memories for storing line and pixel counter 206 and 207 values that correspond to each threshold video pulse 205 and 2) used to prevent an abundance of threshold video pulses 205 from exceeding the saturation limits of the memories 208 and 209.
  • Logic gates 211 and 212 detect the saturation limit and prevent the counter 210 from exceeding this saturation value.
  • the window generator 240 When the line counter 206 exceeds the lower window boundary, the window generator 240 generates an interrupt signal to the relative error processing section 38 ( Figure 1).
  • the line and pixel data representing the threshold video pulse positions, and therefore the bullet positions within the CTVS field-of-view, are read from the memories 208 and 209 to the relative error processing section 38 by the CPU bus interface 213 in conjunction with processor control signals.
  • Figure 3 is a detailed schematic representation of window generator 240 of Figure 2 which will allow events that occur only within the bounds of the window 550 (of Figure 5).
  • Window bounds are precomputed by the processor 35 and stored with the aid of the load control 312 in registers 301 through 304. The outputs of these registers are fed to the first inputs of comparators 305 through 308.
  • the values of the line and pixel counters 206 and 207 are fed to the other inputs of the comparators 305 through 308.
  • favorable comparisons are made by the comparators 305 through 308 and signified by their outputs GTL, GTR, GTT, and GTB.
  • output signals GTL, GTR, GTT, and GTB are logically combined by logic gate 309 to produce the logic signal, WINDOW, that is used to enable memories 208 and 209 and the video pulse counter 210.
  • the circuit comprised of flip-flop 310 and gate 311 interrupts the computer immediately after the window's lower boundary is exceeded.
  • the load control 312 generates pulses to load registers 301 through 304 as DATA are received from the relative error processing section 38 and resets the interrupt circuits 310 and 311.
  • FIG. 4 and 5 a sequence of frames is shown that depicts the bullet positions as seen in the gunnery system's optical sight at various times throughout the bullet's flight for a given turn-rate of the aircraft from which the bullets are fired.
  • Frames 4a and 5a depict the viewed or sensed position of the boresight symbol 440 that represents the armament datum line of the aircraft. It is from this point that predicted bullet trajectory computations are made in the processor 35 as depicted by the predicted bullet pitch line 442 and 542 of frames 4b-4f and 5b-5f, respectively.
  • Figure 6 depicts a given frame of Figure 5 with increased relative error and enlarged to illustrate more clearly the situation.
  • Figure 6 depicts the present position of the boresight symbol 640 as presently stored within the processor 35 and the true position 640' of the armament datum line at which the boresight symbol should be. (Note that the boresight symbol used in these drawings is a small cross.)
  • the dashed line 660 represents the actual trajectory of the bullet's centroid when it is far enough ahead of the aircraft to eliminate parallax. This bullet trajectory line 660 when extended will cross through the correct position at which the boresight symbol should be, 640'.
  • Figure 8 shows an iterative method by which the pilot flys a right turn, followed by a left turn, then a right turn and so on. On each turn, a burst of rounds is fired and relative error is computed. On the first turn, the predicted 842 and actual 860 bullet trajectory lines coincide. There is no detected error and no correction is made (this is the beginning only to exemplify the hidden case depicted in Figure 7). On the second turn, the relative error between the actual bullet trajectory line 860' and predicted bullet trajectory line 842' is clearly shown.
  • a first correction is made by moving the boresight symbol perpendicular to the actual bullet trajectory line 860' by the computed relative error value 862' to a new position 840'.
  • the relative error is clearly shown between the actual 842 and the predicted 860" bullet trajectory lines and a second correction is made by moving the boresight symbol perpendicular to the actual bullet trajectory line 842 by the relative error value 862" to a newer position 840". This process iterates until the error is of negligible value; in actual practice, only two turns are required.
  • Figure 9 shows a non-iterative method by which the aircraft is flown in a first turn, the relative error is computed, and the boresight symbol's position is corrected by moving its position perpendicular to the actual bullet trajectory line as described for Figure 8. This is followed by a second turn that is perpendicular to the first turn and then correcting the boresight symbol position in the same manner as just described. This results in a non-iterative solution whereby boresighting results from completion of the correction for the second turn.
  • FIG. 10 A second, non-iterative method is shown in Figure 10 whereby the aircraft is flown in a first turn, the bullets are fired, and the actual bullet trajectory line is determined and stored. The aircraft is then flown in a second turn that differs from the first turn, the bullets fired, and again the actual bullet trajectory line determined.
  • the two actual bullet trajectory lines defined by equations are solved in relative error processing section 38 for their common solution which determines the correct boresight symbol position 1040'.
  • Relative error between the initial boresight symbol position 1040 and the correct boresight symbol position 1040' is not computed; the correct position of the boresight symbol 1040' relative to the gunnery system is computed.
  • FIG. 10 Also shown in Figure 10 is averaging that can occur by solving for the centroid of the bullets at a number of points along the actual trajectory of the bullets, noted by i, i+1, i+2... and j, j+1, j+2 .... These solutions are possible for a number of video frames as depicted in Figures 4 and 5. The larger number of samples will allow the relative error processing section 38 to obtain a more nearly accurate solution of the bullets' actual trajectory line 1060, 1060'.
  • FIG 11 Another non-iterative method of solution that may be programmed in the preferred embodiment of the invention is shown in Figure 11 (and Figure 12) whereby the aircraft need be flown in any one constant maneuver during the error- correction process.
  • This method predicts the time and position of the bullets' centroid based upon the aircraft maneuver and compares it to the actual time and bullets' centroid position measured and computed by this system. For each time, the actual bullet position 1171, etc. and the predicted bullet position 1181, etc. are compared and the relative error determined. For time t 1 , the actual bullet position 1181, predicted bullet position 1171, and relative error 1191 are shown. Similarly for times t 2 , t 3 ....
  • Each of the relative error vectors 1191, 1192, 1193,..., may be averaged and the resultant error vector 1190 used to correct the boresight position 1140. Averaging is not necessary by this method, but is available and will yield a better solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Claims (24)

1. Automatisches Justier-Korrektursystem zur Verwendung in einem Flugzeug mit einem Geschützsystem und einem Zielsystem dafür, enthaltend:
eine Kopf-hoch-Anzeige (20) zum Anzeigen eines Justiersymbols durch das Zielsystem, wobei das Justiersymbol einen Referenzpunkt für die Voraussage der augenblicklichen Positionen der Geschosse darstellt, die von dem Geschützsystem abgefeuert sind, gekennzeichnet durch einen Videosensor (10) zum Erzeugen einer Folge von Videosignalen, die die augenblicklichen Positionen der Geschosse darstellen,
einen Anzeige-Prozessor (30) zum Erzeugen von Positionierdaten für das Justiersymbol, wobei der Anzeige-Prozessor einen Videoverarbeitungsabschnitt (36) und Mittel aufweist zum Zuführen von Videosignalen zu dem Verarbeitungsabschnitt zum Verarbeiten und Speichern der Videosignale, die die relativen Positionen der Geschosse darstellen, und des Justiersignals, wie es durch den Videosensor abgetastet ist,
wobei der Anzeige-Prozessor (30) weiterhin einen Justiersymbolgenerator (32) und Mittel aufweist zum Zuführen der Justiersymbol-Positionierdaten, die durch den Anzeige-Prozessor generiert werden, zum Justiersymbolgenerator, um das Justiersymbol in Abhängigkeit davon zu positionieren, Mittel zum Betätigen des Justiersystems (42) und
einen Digitalprozessor (35) in dem Anzeige-Prozessor (30), der auf die Betätigungsmittel anspricht, um die augenblicklichen Positionen der Geschosse vorauszusagen und einen Fehler zwischen den vorausgesagten und den augenblicklichen Geschosspositionen zu berechnen, die durch den Videosensor abgetastet sind, wobei der Digitalprozessor ferner in der Lage ist, die Position der Justiersymboldaten einzustellen, um den berechneten Fehler zu kompensieren.
2. Korrktursystem nach Anspruch 1, wobei der Digitalprozessor einen nicht-flüchtigen Speicher (39) aufweist zum Sperchern der eingestellten Positionsdaten für das Justiersymbol.
3. Korrektursystem nach Anspruch 1, wobei der Digitalprozessor (35) zusätzlich auf die eingestellten Positionsdaten des Justiersymbols anspricht, um Waffenzuführungsberechnungen für das Geschützsystem durchzuführen.
4. Korrektursystem nach Anspruch 1, wobei der Digitalprozessor (35) zusätzlich auf den berechneten Fehler anspricht, um die Waffenzuführungsberechnungen für das Geschützsystem durchzuführen.
5. Korrektursystem nach Anspruch 1, für ein Flugzeug mit Sensoren (40) zur Lieferung von Daten an den Digitalprozessor, die die augenblickliche Bewegung des Flugzeuges darstellen, wobei der Digitalprozessor (35) auf die Bewegungsdaten anspricht, um die Bewegungsdaten als Faktor in die Berechnung der vorausgesagten augenblicklichen Geschoßpositionen einzubringen.
6. Korrektursystem nach Anspruch 1, wobei der Videosensor (10) eine Cockpit-Fernsehkamera aufweist, die Mittel zur Lieferung eines Signals an den Videoverarbeitungsabschnitt enthält, das Geschoßpositionen und die Justiersymbolposition auf der Kopf-hoch-Anzeige darstellt.
7. Korrektursystem nach Anspruch 6, wobei der Videoverarbeitungsabschnitt (36) Mittel aufweist zum Extrahieren und Separieren der Signale, die die Positionen des Justiersymbols und der Geschosse darstellen, von dem empfangenen Kamerasignal.
8. Korrektursystem nach Anspruch 7, wobei der Videoverarbeitungsabschnitt (36) Mittel aufweist zur Ausbildung eines vorbestimmten elektronischen Fensters, das im wesentlichen um die vorausgesagten augenblicklichen Geschoßpositionen herum positioniert ist, wobei das Fenster die Abschnitte des Kamerasignals außerhalb der Fenstergrenzen ausschließt, wobei die Zeit und der Speicher, die von dem Videoverarbeitungsabschnitt (36) und dem Digitalprozessor (35) zum Verarbeiten des empfangenen Kamerasignals gefordert werden, verkleinert sind.
9. Korrektursystem nach Anspruch 1, wobei wenigstens einige der Geschosse Verfolgungspatronen sind, die von dem Videosensor optisch erfaßbar sind.
10. Verfahren zum Justieren eines Geschützsystems in einem Flugzeug mit einem Zielsystem, das ein Justiersymbol (440, 540, 640) aufweist, enthaltend:
Abfeuern mehrerer Patronen (544) aus dem Geschützsystem, gekennzeichnet durch:
Abtasten der tatsächlichen Positionen der abgefeuerten Patronen relativ zu dem Justiersymbol,
Voraussagen der Position der abgefeuerten Patronen relativ zu dem Justiersymbol,
Berechnen eines Fehlervektors, der die Differenz zwischen den vorausgesagten Positionen und den tatsächlichen Positionen der abgefeuerten Patronen darstellt, und
Korrigieren des Zielsystems, um die Differenz gemäß dem Fehlervektor zu kompensieren.
11. Verfahren nach Anspruch 10, wobei das Voraussagen der Positionen der abgefeuerten Patronen die Berücksichtigung von Daten als Faktor enthält, die die augenblickliche Bewegung des Flugzeuges darstellen.
12. Verfahren nach Anspruch 11, wobei das Abtasten der tatsächlichen Positionen der abgefeuerten Patronen das Berechnen des Flächenschwerpunktes von mehreren abgefeuerten Patronen enthält und das Berechnen des Fehlervektors das Vergleichen des berechneten Flächenschwerpunktes mit einem vorausgesagten Flächenschwerpunkt enthält, der relativ zu dem Justiersymbol berechnet ist.
13. Verfahren nach Anspruch 12, wobei das Vergleichen des berechneten Flächenschwerpunktes die Durchführung eines Vergleiches für jede von mehreren augenblicklichen Positionen des berechneten Flächenschwerpunktes mit den entsprechenden augenblicklichen, vorausgesagten Flächenschwerpunktpositionen enthält.
14. Verfahren nach Anspruch 13, wobei das Korrigieren des Zielsystems enthält:
Mitteln der Vergleiche für die mehreren augenblicklichen Positionen und
Bewegen der Position des Justiersymbols in eine Richtung, in der der Fehlervektor um einen Betrag verkleinert wird, die zu dem Mittelwert der Vergleiche proportional ist.
15. Verfahren zum automatischen Justieren eines Geschützsystems in einem Flugzeug mit einem ein Justiersymbol (440, 540, 640) aufweisenden Zielsystem, enthaltend:
Abfeuern mehrerer Patronen (544) aus dem Geschützsystem, gekennzeichnet durch:
Abtasten der tatsächlichen Positionen der abgefeuerten Patronen relativ zu dem Justiersymbol,
Berechnen einer vorausgesagten Flugbahn der abgefeuerten Patronen relativ zu dem Justiersignal,
Berechnen eines Fehlervektors, der die Differenz zwischen den vorausgesagten Positionen und den tatsächlichen Positionen der abgefeuerten Patronen darstellt, und
Korrigieren des Zielsystems, um die Differenz gemäß dem Fehlervektor zu kompensieren.
16. Verfahren nach Anspruch 15, wobei das Flugzeug im Flug ist und das Abtasten der tatsächlichen Flugbahn der abgefeuerten Patronen enthält:
Abtasten der einzelnen Position von jeder abgefeuerten Patrone,
Berechnen des Flächenschwerpunktes von mehreren einzelnen Patronen,
Berechnen der Flugbahn des Flächenschwerpunktes und
Vergleichen der berechneten Flugbahn des Flächenschwerpunktes mit der vorausgesagten Flugbahn, die relativ zu dem Justiersymbol berechnet ist.
17. Verfahren nach Anspruch 16, wobei das Vergleichen der vorausgesagten Flugbahn der abgefeuerten Patronen die Berücksichtigung von Daten als Faktor enthält, die die augenblickliche Position des Flugzeuges darstellen.
18. Verfahren nach Anspruch 15, wobei das Flugzeug im Flug ist und die Ermittlung des Fehlervektors die Ausführung einer Reihe von iterativen Fluglösungen enthält, wobei jede Lösung eine entsprechende Komponente des Fehlervektors ermittelt, indem die tatsächliche Flugbahn mit der vorausgesagten Flugbahn verglichen wird.
19. Verfahren nach Anspruch 18, wobei das Errechnen der vorausgesagten Flugbahn der abgefeuerten Patronen die Berücksichtigung von Daten als Faktor enthält, die die augenblickliche Bewegung des Flugzeugs darstellen.
20. Verfahren nach Anspruch 19, wobei das Korrigieren des Zielsystems das Bewegen der Position des Justiersymbols in eine Richtung enthält, in der der Fehlervektor um einen Betrag verkleinert wird, der zu der entsprechenden Fehlervektorkomponente für jede iterative Lösung proportional ist.
21. Verfahren nach Anspruch 19, wobei das Berechnen der vorausgesagten Flugbahn der abgefeuerten Patronen die Berücksichtigung von Daten als Faktor enthält, die die augenblickliche Bewegung des Flugzeugs berücksichtigen.
22. Verfahren nach Anspruch 21, wobei das Korrigieren des Zielsystems die Bewegung der Position des Justiersymbols in eine Richtung enthält, in der der Fehlervektor um einen Betrag verkleinert wird, der zu jeder Fehlervektorkomponente proportional ist.
23. Verfahren nach Anspruch 15, wobei das Abfeuern mehrerer Patronen das Abfeuern mehrerer Verfolgungsgeschosse enthält, um die Erfassung der abgefeuerten Patronen zu erleichtern.
24. Verfahren nach Anspruch 15, wobei das Flugzeug im Flug ist und das Berechnen des Fehlervektors enthält:
Ausführen eines ersten konstanten Wendemanövers in der einen Richtung,
Berechnen einer ersten Fehlerkomponente auf der Basis des ersten Wendemanövers,
Ausführen eines zweiten konstanten Wendemanövers etwa senkrecht zu dem ersten Wendemanöver,
Berechnen einen zweiten Fehlerkomponente auf der Basis eines zweiten Wendemanövers und
Vereinigen der ersten und zweiten Komponenten, um den Fehlervektor zu liefern.
EP83109535A 1982-09-30 1983-09-24 Automatische Schussverbesserung für Flugzeuge Expired EP0105432B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42876782A 1982-09-30 1982-09-30
US428767 1999-10-28

Publications (3)

Publication Number Publication Date
EP0105432A2 EP0105432A2 (de) 1984-04-18
EP0105432A3 EP0105432A3 (en) 1986-03-12
EP0105432B1 true EP0105432B1 (de) 1990-01-24

Family

ID=23700320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83109535A Expired EP0105432B1 (de) 1982-09-30 1983-09-24 Automatische Schussverbesserung für Flugzeuge

Country Status (6)

Country Link
EP (1) EP0105432B1 (de)
JP (1) JPS5984098A (de)
KR (1) KR890000098B1 (de)
AU (1) AU571850B2 (de)
DE (1) DE3381149D1 (de)
IL (1) IL69837A (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226026A2 (de) * 1985-11-15 1987-06-24 General Electric Company Automatische Justiereinrichtungskorrektur in Flugzeugen
EP0249679A2 (de) * 1986-04-18 1987-12-23 MaK System Gesellschaft mbH Feuerleitsystem für eine Waffenanlage eines Panzerfahrzeuges
US6260466B1 (en) 1996-10-03 2001-07-17 Barr & Stroud Limited Target aiming system
WO2024052457A1 (de) * 2022-09-08 2024-03-14 Rheinmetall Electronics Gmbh Vorrichtung zum bestimmen einer winkelabweichung, fahrzeug und verfahren zur bestimmung einer winkelabweichung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977917B2 (en) 2000-03-10 2005-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for mapping an IP address to an MSISDN number within a service network
DE102005041704A1 (de) * 2005-09-02 2007-03-15 Oerlikon Contraves Ag Verfahren zur Optimierung eines Feuerauslösens einer Waffe oder eine Geschützes
JP6041547B2 (ja) * 2012-06-08 2016-12-07 三菱電機株式会社 追尾装置
CN113357974A (zh) * 2021-07-04 2021-09-07 西北工业大学 一种高精度远距离激光制导子弹

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716696A (en) * 1970-09-04 1973-02-13 Honeywell Inc Projectile stream display apparatus
US4015258A (en) * 1971-04-07 1977-03-29 Northrop Corporation Weapon aiming system
US4202246A (en) * 1973-10-05 1980-05-13 General Dynamics Pomona Division Multiple co-axial optical sight and closed loop gun control system
JPS53136400A (en) * 1977-04-30 1978-11-28 Mitsubishi Electric Corp Method for adjusting path of tank shell
JPS5592899A (en) * 1979-01-05 1980-07-14 Boeicho Gijutsu Kenkyu Honbuch Subsequent shell correction system for tank gun and others
JPS5595177A (en) * 1979-01-11 1980-07-19 Toshiba Corp Forecasting unit for future position
DE3069857D1 (en) * 1979-05-04 1985-02-07 Gunter Lowe Method of measuring shooting errors and shooting error measurement device for carrying out the method
JPS58198699A (ja) * 1982-05-14 1983-11-18 三菱電機株式会社 自動弾着観測装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226026A2 (de) * 1985-11-15 1987-06-24 General Electric Company Automatische Justiereinrichtungskorrektur in Flugzeugen
EP0226026A3 (de) * 1985-11-15 1990-04-04 General Electric Company Automatische Justiereinrichtungskorrektur in Flugzeugen
EP0249679A2 (de) * 1986-04-18 1987-12-23 MaK System Gesellschaft mbH Feuerleitsystem für eine Waffenanlage eines Panzerfahrzeuges
EP0249679A3 (en) * 1986-04-18 1990-05-23 Krupp Mak Maschinenbau Gmbh Fire guiding system for a weapon equipment of an armoured vehicle
US6260466B1 (en) 1996-10-03 2001-07-17 Barr & Stroud Limited Target aiming system
WO2024052457A1 (de) * 2022-09-08 2024-03-14 Rheinmetall Electronics Gmbh Vorrichtung zum bestimmen einer winkelabweichung, fahrzeug und verfahren zur bestimmung einer winkelabweichung

Also Published As

Publication number Publication date
JPS5984098A (ja) 1984-05-15
KR840006264A (ko) 1984-11-22
IL69837A (en) 1988-08-31
DE3381149D1 (de) 1990-03-01
KR890000098B1 (ko) 1989-03-07
EP0105432A3 (en) 1986-03-12
AU571850B2 (en) 1988-04-28
EP0105432A2 (de) 1984-04-18
AU1980683A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
US4698489A (en) Aircraft automatic boresight correction
US4015258A (en) Weapon aiming system
US4312262A (en) Relative velocity gunsight system and method
US5077609A (en) Optoelectronic system of assistance in attack and navigation missions
EP0929787B1 (de) Zielanvisierungssystem
EP0105432B1 (de) Automatische Schussverbesserung für Flugzeuge
JPH0124275B2 (de)
KR102079688B1 (ko) 대공화기 및 그의 서브 전자광학추적장치를 이용한 사격통제방법
US4606514A (en) Method for homing a projectile onto a target and for determining the ballistic trajectory thereof as well as arrangements for implementing the method
CN104089529A (zh) 使用光纤陀螺仪对战斗机武器系统进行校准的方法及设备
EP0042004B1 (de) Schiessimulationssystem
RU2007124062A (ru) Способ стрельбы боевой машины по цели (варианты) и информационно-управляющая система для его осуществления
US5274236A (en) Method and apparatus for registering two images from different sensors
CA2023659A1 (en) Method and apparatus for improving the accuracy of fire
US4145952A (en) Aircraft gun sight system and method for high angle-off attacks
RU2726460C1 (ru) Способ корректировки огня артиллерии с использованием мультикоптера
CA1199490A (en) Aircraft automatic boresight correction
US6038955A (en) Method for aiming the weapon of a weapon system and weapon system for implementing the method
EP3722749A1 (de) Navigationsverstärkungssystem und -verfahren
EP0064168B1 (de) Vorrichtung zur Kompensierung des Zitterns in einem stabilisierten Flugkörperleitsystem
JP2000356500A (ja) 小火器用照準装置
EP2746716A1 (de) Optische Vorrichtung mit einem Modus zur Gruppierung von Schüssen zur Verwendung mit präzisionsgeführten Feuerwaffen
RU2712367C2 (ru) Способ внутреннего целеуказания с индикацией целей для образцов бронетанкового вооружения
RU2243482C1 (ru) Способ стрельбы боевой машины по цели и система для его реализации
RU2707325C1 (ru) Способ прицеливания при стрельбе из пушки по маневрирующей воздушной цели

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860828

17Q First examination report despatched

Effective date: 19880606

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3381149

Country of ref document: DE

Date of ref document: 19900301

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: SAIC BREVETTI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940811

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940812

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940818

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940822

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940825

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940930

Year of fee payment: 12

EAL Se: european patent in force in sweden

Ref document number: 83109535.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950930

Ref country code: CH

Effective date: 19950930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960401

EUG Se: european patent has lapsed

Ref document number: 83109535.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST