EP1891248A1 - Austenitischer leichtbaustahl und seine verwendung - Google Patents

Austenitischer leichtbaustahl und seine verwendung

Info

Publication number
EP1891248A1
EP1891248A1 EP06722850A EP06722850A EP1891248A1 EP 1891248 A1 EP1891248 A1 EP 1891248A1 EP 06722850 A EP06722850 A EP 06722850A EP 06722850 A EP06722850 A EP 06722850A EP 1891248 A1 EP1891248 A1 EP 1891248A1
Authority
EP
European Patent Office
Prior art keywords
content
steels
chromium
austenitic
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06722850A
Other languages
German (de)
English (en)
French (fr)
Inventor
Andreas Weiss
Heiner Gutte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1891248A1 publication Critical patent/EP1891248A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the innovation relates to an austenitic lightweight steel and its use.
  • Steels with tensile strengths above 600 MPa are referred to as lightweight steels because the tensile strength per unit weight is higher than that of aluminum.
  • Stainless austenitic steels are distinguished not only by high corrosion resistance, but generally also by good cold workability.
  • the cold working as well as the energy absorbing capacity of these austenitic steels can be increased by a TRIP effect (transformation-induced plasticity). It is then achieved relatively high tensile strengths and at the same time relatively high elongation at break.
  • the alloying range in which a TRIP effect occurs in stainless, cold formable CrNi and CrNiMn steels has not previously been specified. So far, stainless cold-formable austenitic steels with TRIP effect can only be characterized by special properties.
  • these steels have a tensile strength of about 520 to 850 MPa and at the same time elongation at break of about 60 to 45%, according to [1, 2].
  • TRIP / TWIP steels twinning induced plasticity
  • LIP steels light induced plasticity
  • the TRIP / TWIP and LIP steels are also known as lightweight steels because of their increased tensile strength.
  • Austenitic TRIP / TWIP steels have tensile strengths greater than about 650 to 1100 MPa. The corresponding elongations at break are between approx. 80 and 40%, according to [1, 3, 4].
  • the chemical composition of the steels is defined in the published patent application DE 197 27 759 A [3]. After that, these steels contain manganese contents of 10 to 30% with usually additions of silicon and aluminum. They are not alloyed with chromium. A typical representative is a steel with 20% manganese, 3% silicon and 3% aluminum, according to [3, 4, 5].
  • Austenitic LIP steels have only been tested on a laboratory scale. They should reach tensile strengths of about 1000 to 1100 MPa and elongations in the range of about 60 to 50%. Data on the chemical composition of these steels are not yet published, according to [6].
  • the cold working and energy absorption capacity, the tensile strength and the elongation at break of the said steels are raised by a TRIP, TWIP or by the superposition of the TRIP and TWIP effect.
  • the product of tensile strength and maximum elongation can be used as an index to assess the cold workability of the steels.
  • the product of maximum elongation and tensile strength in the austenitic TRIP steels is in the range of approx. 25,000 to 38,000 MPa%, in the TRIP / TWIP steels over 38,000 to 57,000 MPa% and in the LIP steels above 57,000 MPa% [3-7].
  • the energy absorption capacity of the TRIP and TRIP / TWIP steels reaches values of 0.45 to 0.5 J / mm 3 . That is, in a crash stress have these steels a large stretch reserve on. [3, 4, 5]. Relevant values for the LIP steels are not published.
  • the cold workability as well as the energy absorption capacity is achieved in the austenitic TRIP and TRIP / TWIP steels by influencing the austenitic structure as a result of mechanical stress in the process of cold working.
  • the different mechanisms can be influenced in principle by the austenite stacking energy, which depends on the austenite chemical composition [5, 8].
  • niobium promotes the formation of fines and thus has a further positive influence on the mechanical properties.
  • niobium causes a setting of the carbon and thus causes an improvement of the corrosion properties.
  • Silicon contents of more than 1% are previously alloyed with austenitic steels in order to achieve heat resistance or improvement of the scale resistance in connection with high chromium contents.
  • Silicon and aluminum have high oxygen activity which can affect castability and purity. For this reason, the contents of these elements are usually minimized unless they are added to improve specific properties.
  • Silicon and aluminum are ferrite stabilizing elements. That is, the contents of these elements are limited in austenitic steels to avoid the formation of ferrite. With the exception of high-manganese TWIP steels, aluminum has not been used as an alloying element in austenitic steels. The influence of aluminum on the chromium and / or nickel equivalent has not been recorded in contrast to other accompanying and alloying elements. A chromium content greater than about 12% causes the formation of a passive layer, which is the corrosion resistance of stainless steels given. Austenitic steels with chromium contents of 12% are generally weather-resistant and resistant to corrosion. The resistance to rusting is increased in these steels.
  • High manganese austenitic TWIP steels are not alloyed with chromium. They therefore do not belong to the stainless, corrosion-resistant or weather-resistant steels.
  • Manganese is used in conventional austenitic steels as an austenite former and as a substitution element for nickel. Manganese is therefore alloyed mainly in austenitic steels for cost reasons.
  • a prerequisite for the development of deformation-induced ⁇ -martensite is that the structure consists of austenite.
  • a corresponding chromium and nickel equivalent is required for the chemical composition of the steels. That is, the chemical composition of the steels must be matched to one another with respect to the ferrite-stabilizing and austenite-stabilizing elements.
  • the stainless manganese and nitrogen alloyed austenitic steels 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) and 1.4373 (X12 CrMnNiN 17 9 5) and the steels AISI 201 and 202, which may be nitrogen-alloyed or contain no nitrogen are in terms of their Cr, Ni and Mn contents in individual sub-areas, which is covered by the patent. These steels are indicated in the steel key [7]. But they have no aluminum content.
  • the invention specified in the main claims is therefore based on the problem to provide further austenitic lightweight steels with good cold workability, a characteristic value for the cold workability greater than 30 000 MPa%, and with tensile strengths between 600 to 800 MPa and elongations at break over 50%.
  • the austenitic steel according to the invention is alloyed with silicon, aluminum and chromium and contains manganese.
  • this steel is an improvement by alloying measures, especially by the addition of silicon in the limits greater than 1, 0 to 4.0%, aluminum within the limits of 0.05 to 4% and simultaneous lowering of the chromium content to values below 18% achieved the cold workability.
  • the required chemical composition of the steel according to the invention determines.
  • the known stainless manganese and nitrogen-alloyed austenitic steels are 1.4371 (X2 CrMnNiN 17 7 5), 1.4372 (X12 CrMnNiN 17 7 5) and 1.4373 (X12 CrMnNiN 17 9 5) and the steels AISI 201 and 202, which may be nitrogen-alloyed or have no nitrogen, in sub-areas of the claim.
  • These steels are indicated in the steel key [7]. They do not contain aluminum.
  • the steel according to the invention differs from these steels moreover by higher silicon contents and moreover partly also in its application.
  • the mixed crystal strengthening effect of nitrogen in the mentioned steels is used to achieve relatively high 0.2% strain limits, unlike steels which are readily cold formable.
  • the nitrogen-alloyed steels are then preferably used as spring steels.
  • the non-nitrogen-alloyed steels of types 201 and 202 are characterized by lower 0.2% proof strengths compared to nitrogen-alloyed steels of the same type. They therefore exhibit a slightly higher cold workability, so that parts of these steels as household items, in apparatus construction, the construction industry u. ⁇ . find use.
  • the advantages achieved by the invention are, in particular, that with the lightweight structural steels according to the invention an improvement in the mechanical properties and also an increase in the cold forming and Energy absorption capacity is achieved. It succeeds in cost-effective steels, such.
  • These steels according to the invention can be cold-formed very well analogously to the chromium-free, highly manganese-containing TWIP steels.
  • the austenitic steels according to the invention contain two different steel types.
  • the first type of steel comprises austenitic stainless steels with chromium contents within the limits of approximately 12.0 to 18.0%.
  • the second type of steel includes austenitic steels with chromium contents greater than 2.0 and less than 12.0%.
  • Steels of this type are non-rusting but, due to their chromium, nickel and silicon content, have an increased resistance to rusting, so that they differ in this respect from the previous austenitic TRIP / TWIP steels, despite a similar property potential.
  • a large number of these steels can therefore be regarded as weather-resistant or corrosion-resistant.
  • Especially such steels with chromium contents of 10 to 12% have a pronounced corrosion inertia.
  • a preferred composition according to claim 2 is that the
  • such an austenitic steel with ⁇ -TRIP effect, a good cold workability and an increased resistance to corrosion according to claim 3 has a carbon content of 0.04%, a chromium content of 13%, a silicon content of 1.5%, a niobium content of 0, 15%, a nickel content of 7.9%, a manganese content of 8.1%, a nitrogen content of 0.02% and an aluminum content of 0.11%, balance essentially iron.
  • the structure of the steel consists of metastable austenite. The steel shows a pronounced ⁇ -TRIP effect. It is achieved a relatively high hardenability.
  • the 0.2% proof stress is 210 MPa and the tensile strength is 645 MPa.
  • the steel achieves a maximum elongation of 65%. That is, the dimensional figure of the product of elongation at break and tensile strength is set by a value of 38,055 MPa%. The value for the energy absorption is about 0.5 J / mm 3 .
  • the steel forms an iron, chromium and silicon-containing oxidation layer that causes weathering resistance or corrosion inertia under atmospheric conditions.
  • a austenitic stainless steel with ⁇ -TRIP effect and good cold workability has a carbon content of 0.03%, a chromium content of 15.82%, a silicon content of 1.22%, a nickel content of 7.50 %, a manganese content of 5.80% and an aluminum content of 0.11%, balance essentially iron.
  • the structure of the steel consists of metastable austenite.
  • the steel shows an austenitic structure with a pronounced TRIP effect at room temperature. It is observed a relatively low yield ratio, which is a consequence of a high solidification capacity.
  • the 0.2% proof strength is about 197 MPa and the tensile strength is 620 MPa.
  • the steel achieves a maximum elongation of 64%. That is, the measure of the product of elongation at break and tensile strength, which is the Cold formability is characterized by a value of
  • the value for the energy absorption is about 0.5 J / mm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
EP06722850A 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung Withdrawn EP1891248A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005024029A DE102005024029B3 (de) 2005-05-23 2005-05-23 Austenitischer Leichtbaustahl und seine Verwendung
PCT/DE2006/000797 WO2006125412A1 (de) 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung

Publications (1)

Publication Number Publication Date
EP1891248A1 true EP1891248A1 (de) 2008-02-27

Family

ID=36649769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06722850A Withdrawn EP1891248A1 (de) 2005-05-23 2006-05-08 Austenitischer leichtbaustahl und seine verwendung

Country Status (6)

Country Link
US (1) US20080199345A1 (zh)
EP (1) EP1891248A1 (zh)
JP (1) JP2008542528A (zh)
KR (1) KR20080034839A (zh)
DE (1) DE102005024029B3 (zh)
WO (1) WO2006125412A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006033973A1 (de) * 2006-07-20 2008-01-24 Technische Universität Bergakademie Freiberg Nichtrostender austenitischer Stahlguss und seine Verwendung
DE102007044160A1 (de) * 2006-12-12 2008-06-19 Technische Universität Bergakademie Freiberg Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung
DE102008005806A1 (de) 2008-01-17 2009-09-10 Technische Universität Bergakademie Freiberg Bauteile aus hochmanganhaltigem, festem und zähem Stahlformguss, Verfahren zu deren Herstellung sowie deren Verwendung
JP5286409B2 (ja) * 2008-11-05 2013-09-11 本田技研工業株式会社 高強度鋼板およびその製造方法
US8182963B2 (en) * 2009-07-10 2012-05-22 GM Global Technology Operations LLC Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates
US8888838B2 (en) 2009-12-31 2014-11-18 W. L. Gore & Associates, Inc. Endoprosthesis containing multi-phase ferrous steel
DE102010026808B4 (de) * 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
DE102011121679C5 (de) * 2011-12-13 2019-02-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Bauteilen aus Leichtbaustahl
ES2791887T3 (es) 2016-03-29 2020-11-06 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Acero con densidad reducida y procedimiento para la fabricación de un producto plano de acero o un producto alargado de acero a partir de un acero de este tipo
KR101903174B1 (ko) 2016-12-13 2018-10-01 주식회사 포스코 강도 및 연성이 우수한 저합금 강판
CN107475618B (zh) * 2017-07-11 2019-02-26 西南交通大学 一种高强韧低碳含铝中锰形变诱发塑性钢及制备方法
KR101952818B1 (ko) * 2017-09-25 2019-02-28 주식회사포스코 강도 및 연성이 우수한 저합금 강판 및 이의 제조방법
DE102020100640A1 (de) * 2020-01-14 2021-07-15 Stahlzentrum Freiberg e.V. Verfahren zur Verbesserung der Korrosionsbeständigkeit von Befestigungs- und/oder Bewehrungsbauteilen aus hochlegierten Stählen und Befestigungs- und/oder Bewehrungsbauteile aus hochlegierten Stählen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129854B2 (zh) 1973-04-21 1976-08-27
SE420623B (sv) * 1979-12-28 1981-10-19 Fagersta Ab Austenitiskt, utskiljningsherdbart rostfritt krom- nickel- aluminiumstal
DE19727759C2 (de) 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Verwendung eines Leichtbaustahls
DE19900199A1 (de) * 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
JP4245720B2 (ja) * 1999-03-04 2009-04-02 日新製鋼株式会社 高温酸化特性を改善した高Mnオーステナイト系ステンレス鋼材
EP1091006B1 (en) * 1999-10-04 2004-12-08 Hitachi Metals, Ltd. Process of producing steel strip or sheet comprising strain-induced martensite
SE526881C2 (sv) * 2001-12-11 2005-11-15 Sandvik Intellectual Property Utskiljningshärdbar austenitisk legering, användning av legeringen samt framställning av en produkt av legeringen
DE10215598A1 (de) * 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
KR101178775B1 (ko) * 2003-12-23 2012-09-07 막스-플랑크-인스티투트 퓌어 아이젠포르슝 게엠베하 경량 구조강의 핫 스트립의 제조 방법
DE102004061284A1 (de) * 2003-12-23 2005-07-28 Salzgitter Flachstahl Gmbh Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl
JP4606113B2 (ja) * 2004-10-15 2011-01-05 日新製鋼株式会社 比例限界応力の高いオーステナイト系ステンレス鋼材および製造法
JP4823534B2 (ja) * 2005-02-14 2011-11-24 日新製鋼株式会社 耐応力腐食割れ性に優れた低Niオーステナイト系ステンレス鋼材
JP4494245B2 (ja) * 2005-02-14 2010-06-30 日新製鋼株式会社 耐候性に優れた低Niオーステナイト系ステンレス鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006125412A1 *

Also Published As

Publication number Publication date
DE102005024029B3 (de) 2007-01-04
WO2006125412A1 (de) 2006-11-30
US20080199345A1 (en) 2008-08-21
JP2008542528A (ja) 2008-11-27
KR20080034839A (ko) 2008-04-22

Similar Documents

Publication Publication Date Title
DE102005024029B3 (de) Austenitischer Leichtbaustahl und seine Verwendung
DE102005030413C5 (de) Hochfester austenitisch-martensitischer Leichtbaustahl und seine Verwendung
DE69604341T3 (de) Martensitischer. rostfreier stahl mit guter beständigkeit gegen lochfrasskorrosion und mit hoher härte
DE102006033973A1 (de) Nichtrostender austenitischer Stahlguss und seine Verwendung
DE3117539C2 (zh)
WO2009090231A1 (de) Bauteile aus höher kohlenstoffhaltigem austenitischem stahlformguss, verfahren zu deren herstellung und deren verwendung
WO2015117934A1 (de) Hochfestes stahlflachprodukt mit bainitisch-martensitischem gefüge und verfahren zur herstellung eines solchen stahlflachprodukts
DE4212966A1 (de) Martensitischer Chrom-Stahl
DE68905066T2 (de) Hochtemperaturfestes stahlrohr mit niedrigem siliziumgehalt und mit verbesserten duktilitaets- und faehigkeitseigenschaften.
DE69527639T2 (de) Ferritischer warmfester stahl mit ausgezeichneter festigkeit bei hohen temperaturen und verfahren zu dessen herstellung
EP2976441B1 (de) Eisenbasierte formgedächtnislegierung
DE3604789C1 (de) Verguetungsstahl
DE2752082C2 (de) Austenitischer nichtrostender Stahl
DE68916235T2 (de) Legierung auf Zirkon-Basis mit erhöhter Beständigkeit gegen Korrosion durch Salpetersäure und mit guter Kriechbeständigkeit.
AT395176B (de) Korrosionsbestaendige ni-cr-si-cu-legierungen
DE10215598A1 (de) Nichtrostender Stahl, Verfahren zum Herstellen von spannungsrißfreien Formteilen und Formteil
DE202010018445U1 (de) Scherenmesser einer Schrottschere
DE19628350B4 (de) Verwendung einer rostfreien ferritisch-austenitischen Stahllegierung
WO2017167778A1 (de) Stahl mit reduzierter dichte und verfahren zur herstellung eines stahlflach- oder -langprodukts aus einem solchen stahl
DE68906708T2 (de) Austenitisch-ferritischer rostfreier stahl.
DE1533252B1 (de) Niedriglegierter stahl hoher kerbzaehigkeit fuer geschweisste konstruktionen, die dem korrodierenden einfluss von schwefelwasserstoff ausgesetzt sind
EP2809818B1 (de) Duplexstahl mit verbesserter kerbschlagzähigkeit und zerspanbarkeit
EP1382704B1 (de) Kaltarbeitsstahl mit hohem Verschleisswiderstand
DE2744047C2 (de) Verwendung eines hochfesten martensitaushärtenden Stahls für korrosionsbeständige Gegenstände
DE19758613C2 (de) Hochfeste und korrosionsbeständige Eisen-Mangan-Chrom-Legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080916

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121201