EP1875978B1 - Method of melting alloy containing high-vapor-pressure metal - Google Patents
Method of melting alloy containing high-vapor-pressure metal Download PDFInfo
- Publication number
- EP1875978B1 EP1875978B1 EP06728794.6A EP06728794A EP1875978B1 EP 1875978 B1 EP1875978 B1 EP 1875978B1 EP 06728794 A EP06728794 A EP 06728794A EP 1875978 B1 EP1875978 B1 EP 1875978B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melting
- alloy
- gas
- helium
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/06—Melting-down metal, e.g. metal particles, in the mould
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
Definitions
- This invention relates to a melting method wherein an alloy containing a metal of a low melting point, a low boiling point and a high vapor pressure such as Mg, Ca, Li, Zn, Mn, Sr or the like is produced by melting.
- the metal such as Mg, Ca, Zn, Li or the like or an alloy including such a metal is widely expected for applications as a structural material or a functional material because the weight is light and the specific strength is high as compared with a transition metal such as iron or the like or an alloy thereof.
- Mg and Ca are richly existent in earth crust and sea water and low in the cost and have no harmful influence upon human body, so that they are expected to be expanding applications.
- the metals such as Mg, Ca, Zn, Li and the like and alloys thereof are low in the melting point or boiling point and high in the vapor pressure, so that if it is intended to produce the alloys containing these metals by a melting method, there is a problem that the inside of the melting furnace is contaminated with metal fine powder generated by vaporization.
- Mg is very active, if it adheres to an inner wall or the like of the melting furnace and is exposed to an atmosphere, there is a high risk of causing fire, explosion or the like.
- the alloy containing Mg, Ca, Zn, Li or the like can be produced by a mechanical alloying method such as ball milling or the like in addition to the melting method. Since such a method is a production method without melting the starting metals, the above problem will not be caused by the generation of the metal fine powder, but there is still a problem that the contamination due to the incorporation of iron and the like from the mill pot and the deterioration of the alloy homogeneity occur. Also, the long time is taken in the production, causing a problem that the production cost is high. Therefore, this method is not suitable in the mass production.
- the inventors have made various studies in order to achieve the above objects. As a result, it has been found out that it is effective to rationalize a gas component constituting the melting atmosphere, and particularly use helium gas, and the invention has been accomplished.
- the invention lies in a method of producing an alloy containing a high vapor pressure metal by melting an alloy containing one or more of Mg, Ca, Li, Zn, Mn and Sr, characterized in that a helium containing gas is used as an atmosphere gas for the melting.
- a helium concentration in the atmosphere gas is not less than 10 vol%, and it is preferable that the atmosphere gas is a mixed gas of helium and a gas not reacting with the starting metal such as nitrogen, argon or the like.
- the pressure of the atmosphere gas is 0.01 MPa -1 MPa.
- an alloy containing a low melting point, a boiling point and a high vapor pressure metal such as Mg, Ca, Li, Zn or the like, for example, an alloy of the above metal and Al, Ni or the like can be precisely and safely produced as an alloy having a targeted chemical composition in a greater amount at a low cost without causing the risk of firing, contamination or the like by active metal fine powder being vaporized.
- the melting method of the invention using the helium containing gas as an atmosphere gas can solve the problems due to the above active metal fine powder but also has a feature that the solidification rate of the molten metal is enhanced by a high thermal conductivity inherent to the helium gas or the effect of quench-solidification is obtained. Therefore, according to the method of the invention, a special alloy conventionally produced by using a melting apparatus for an exclusive use of quench-solidification can be produced even by using the usual melting apparatus.
- the melting method according to the invention lies in a point that a helium containing gas is used as an atmosphere gas for the melting of an alloy containing at least one metal of a low melting point, a low boiling point and a high vapor pressure such as Mg, Ca, Li, Zn and the like.
- a helium containing gas is used as the melting atmosphere, it is possible to prevent metal fine powder generated by vaporization in the melting from segregation and the risk of firing or the like due to the segregate of the metal fine powder or the contamination can be largely reduced but also the alloy having the target chemical composition can be safely produced at a greater amount in a high precision.
- the above effect of the helium containing gas can be obtained due to the fact that helium is high in the thermal conductivity (about 3 times of argon), low in the density (0.1 times of argon) and long in the average free stroke (about 3 times of argon) as compared with the other inert gas.
- hydrogen has the features similar to those of helium, but hydrogen is not suitable as the melting atmosphere gas because it may react with the starting metal to form a metal hydride.
- it is intended to melt a metal not reacting with hydrogen and having a low melting point, a low boiling point and a high vapor pressure when a hydrogen containing gas is used as an atmosphere gas, the effect similar to that in the use of helium can be expected.
- Helium gas is very expensive. Therefore, the helium gas is preferably replaced partially with a cheap gas not reacting with the starting metal from a viewpoint of the cost reduction.
- the inventors have made experiments of replacing helium with various other gases and found out that when a part of helium gas is replaced with a gas not reacting with the starting metal such as nitrogen, argon or the like, the risk of firing or the like due to the segregation of the metal fine powder generated by vaporization and the contamination thereof can be fairly reduced.
- an argon gas is most preferable. Because, the argon gas is cheap and does not react with Mg, Ca, Li, Zn and the like even at a higher temperature.
- the helium content in such a mixed gas is required to be at least 10 vol%, and is preferably not less than 25 vol% and more preferably not less than 50 vol%. It is further preferably not less than 95 vol%, and may be naturally 90-100 vol%.
- the reason why the lower limit of the ratio of helium occupied as the atmosphere gas is 10 vol% is due to the fact that when it is less than 10 vol%, the aforementioned action and effect of helium are not obtained.
- a pressure of the melting atmosphere comprising the helium containing gas is 0.01 MPa - 1 MPa.
- the pressure is less than 0.01 MPa, the vaporization temperature is considerably decreased, the vaporization is promoted, and the amount of the metal fine powder generation cannot be decreased. While, when it exceeds 1 MPa, the vaporization amount decreases, but the melting point rises and the melting becomes difficult.
- the pressure range of the helium containing gas means a pressure at room temperature before the melting and there may be a case exceeding the above range when the temperature inside the furnace becomes higher in the melting procedure.
- the optimum ranges of the concentration and pressure of helium used as the atmosphere gas are mainly obtained as a result of consideration and development from a viewpoint of the cost.
- impurity gases such as oxygen, carbon dioxide, steam and the like may be included in the helium containing gas supplied as an atmosphere gas within a scope not damaging the action of the invention.
- the content is preferably not more than 1 mass%. When it exceeds 1 mass%, these gases react with Mg, Ca, Li, Zn and the like to produce an oxide, a hydroxide, a carbide and the like and hence there cannot be produced an alloy having a targeted chemical composition and a compound.
- a starting material for hydrogen storage alloy CaMg 2 1 kg in total of Mg and Ca metals are provided so as to have a molar ratio of 2:1, and these metals are charged into an induction melting type melting furnace, and thereafter the interior of the furnace is evacuated to 8x10 -3 Torr and then helium gas (concentration: 100 vol%) is introduced thereinto up to 600 Torr as an atmosphere gas. Next, the melting furnace is heated up to a temperature of 1100°C while filling the inside of the furnace with the atmosphere gas to melt the starting materials, and further kept for 30 minutes while maintaining a melting temperature of the resulting alloy at 1050°C.
- the molten alloy is poured onto a water-cooled mold platen and solidified by cooling at a cooling rate of 1000°C/sec to prepare CaMg 2 alloy.
- the melting yield and chemical composition are measured by the following methods (1) and (2).
- the mass of the starting material before melting and the mass of alloy after melting to mold are measured to determine the decreased mass by vaporization and calculate the melting yield.
- the chemical composition of the alloy after melting to mold is quantitatively analyzed by ICP emission spectroscopy.
- CaMg 2 alloy is prepared in the same manner as in Invention Example 1 except that argon gas (concentration: 100 vol%) is used as an atmosphere gas. With respect to this alloy, the melting yield and chemical composition are measured by the above methods (1) and (2) to obtain the results shown in Table 1.
- CaMg 2 alloys are prepared in the same manner as in Invention Example 1 except that the concentration of helium gas introduced as an atmosphere is changed to 75, 50 and 25 vol% (remainder is argon gas), respectively.
- the melting yield and chemical composition are measured by the above methods (1) and (2) to obtain the results shown in Table 1. As seen from these results, when the helium gas concentration exceeds 50 vol% (Invention Examples 2 and 3), the melting yield is as high as about 98% and the targeted alloy composition can be obtained in a high precision.
- FIG. 1 A relationship between the helium gas concentration and the melting yield obtained from the results of Invention Examples 1-4 and Comparative Example 1 is shown in FIG. 1 . As seen from FIG. 1 , the melting yield is improved as the helium gas concentration becomes higher.
- the measurement of X-ray diffraction intensity is carried out with respect to CaMg 2 alloys obtained in Invention Example 1 and Comparative Example 1 to confirm whether or not the alloy and compound have a targeted single-phase structure.
- the results are shown in FIG. 2 .
- the CaMg 2 alloy of Invention Example 1 is an alloy of single CaMg 2 phase structure
- the alloy of Comparative Example 1 is an alloy of two mixed phase structure consisting of CaMg 2 phase and Ca phase.
- CaAl 2 alloy is prepared in the same manner as in Invention Example 1 except that Ca and Al are used as a starting material, and the melting yield and chemical composition of the resulting CaAl 2 alloy are measured by the above methods (1) and (2) to obtain results shown in Table 1. As seen from these results, in Invention Example 5, the melting yield is as high as about 98% and the target alloy is obtained in a high precision within ⁇ 1% with respect to the targeted Al composition.
- MgNi 2 alloy is prepared in the same manner as in Invention Example 1 except that Mg and Ni are used as a starting material, and the melting yield and chemical composition of the resulting MgNi 2 alloy are measured by the above methods (1) and (2) to obtain results shown in Table 1. As seen from these results, in Invention Example 6, the melting yield is as high as about 98% and the target alloy is obtained in a high precision within ⁇ 2% with respect to the targeted Ni composition.
- CaNi 2 alloy is prepared in the same manner as in Invention Example 1 except that Ca and Ni are used as a starting material, and the melting yield and chemical composition of the resulting CaNi 2 alloy are measured by the above methods (1) and (2) to obtain results shown in Table 1. As seen from these results, in Invention Example 7, the melting yield is as high as about 98% and the target alloy is obtained in a high precision within ⁇ 2% with respect to the targeted Ni composition.
- a pressure-composition isothermal curve is measured with respect to a La-Ni based hydrogen storage alloy produced by melting in an atmosphere of 100 vol% helium gas according to the invention (Invention Example 8) and a La-Ni based hydrogen storage alloy produced by melting in an atmosphere of 100 vol% argon gas (Comparative Example 2) to obtain results shown in FIG. 3 .
- the alloy of Invention Example 8 is flat and wide in the plateau region as compared with the alloy of Comparative Example 2, and the alloy of Invention Example 8 quench-solidified with the helium gas is an alloy having an excellent homogeneity.
- the technique of the invention can be utilized as a mass production technique for alloys containing a metal of a low melting point, a low boiling point and a high vapor pressure such as Mg, Ca, Zn, Li or the like but also can be applied to the melting of single body made of each of these metals, the melting of a compound used in semiconductors or the like such as gallium-arsenic or other compounds. Furthermore, the invention is applicable to a melting technique of structural materials, functional materials, semiconductor compounds, and other compounds made from a light metal or alloy used in the new generation.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005056985 | 2005-03-02 | ||
PCT/JP2006/304525 WO2006093334A1 (ja) | 2005-03-02 | 2006-03-02 | 高蒸気圧金属含有合金の溶解方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1875978A1 EP1875978A1 (en) | 2008-01-09 |
EP1875978A4 EP1875978A4 (en) | 2008-11-05 |
EP1875978B1 true EP1875978B1 (en) | 2019-05-08 |
Family
ID=36941358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06728794.6A Active EP1875978B1 (en) | 2005-03-02 | 2006-03-02 | Method of melting alloy containing high-vapor-pressure metal |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090007728A1 (ja) |
EP (1) | EP1875978B1 (ja) |
JP (1) | JP4956826B2 (ja) |
KR (1) | KR20070107757A (ja) |
CN (1) | CN101132871B (ja) |
WO (1) | WO2006093334A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2589448B1 (en) | 2010-06-24 | 2019-08-28 | Santoku Corporation | PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY |
US10331434B2 (en) * | 2016-12-21 | 2019-06-25 | Quanta Computer Inc. | System and method for remotely updating firmware |
CN106978557A (zh) * | 2017-05-11 | 2017-07-25 | 江苏理工学院 | 一种镁锂合金及其制备方法 |
CN107227421B (zh) * | 2017-05-11 | 2019-04-09 | 江苏理工学院 | 镁锂合金及其制备方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3845805A (en) * | 1972-11-14 | 1974-11-05 | Allied Chem | Liquid quenching of free jet spun metal filaments |
US4375371A (en) * | 1981-06-12 | 1983-03-01 | Allegheny Ludlum Steel Corporation | Method for induction melting |
JPS6217144A (ja) * | 1985-07-15 | 1987-01-26 | Alum Funmatsu Yakin Gijutsu Kenkyu Kumiai | Al−Li合金の製造法 |
US4948423A (en) * | 1989-07-21 | 1990-08-14 | Energy Conversion Devices, Inc. | Alloy preparation of hydrogen storage materials |
JPH0611889B2 (ja) * | 1989-10-06 | 1994-02-16 | 住友軽金属工業株式会社 | A1―Li系合金の溶製方法 |
JPH08120365A (ja) * | 1994-10-19 | 1996-05-14 | Sanyo Electric Co Ltd | 水素吸蔵合金及びその製法 |
JPH08158043A (ja) * | 1994-12-05 | 1996-06-18 | Nisshin Steel Co Ltd | 蒸発槽へのMg供給方法 |
FR2746112B1 (fr) * | 1996-03-13 | 1998-06-05 | Procede de traitement thermique en continu de bandes metalliques dans des atmospheres de nature differente | |
JPH10156577A (ja) * | 1996-11-20 | 1998-06-16 | H K M Co:Kk | 処理室 |
AT2420U1 (de) * | 1997-11-24 | 1998-10-27 | Unitech Ag | Verfahren zum betrieb von ofenanlagen für magnesiumlegierungen |
JP2000239769A (ja) * | 1998-12-22 | 2000-09-05 | Shin Etsu Chem Co Ltd | 希土類系水素吸蔵合金及びそれを使用した電極 |
JP2003113430A (ja) * | 2001-10-03 | 2003-04-18 | Sumitomo Metal Ind Ltd | マグネシウムおよびマグネシウム合金の溶解方法および鋳造方法 |
JP4294947B2 (ja) * | 2001-12-14 | 2009-07-15 | パナソニック株式会社 | マグネシウム合金素形材の鋳造方法 |
CN1296502C (zh) * | 2001-12-14 | 2007-01-24 | 松下电器产业株式会社 | 镁合金型材毛坯、其连续铸造方法及连续铸造装置 |
JP4183959B2 (ja) * | 2002-03-22 | 2008-11-19 | 株式会社日本製鋼所 | 水素吸蔵合金の製造方法 |
JP2004195527A (ja) * | 2002-12-20 | 2004-07-15 | Seiko Epson Corp | 材料溶解装置およびこれを設置した射出成型機 |
-
2006
- 2006-03-02 EP EP06728794.6A patent/EP1875978B1/en active Active
- 2006-03-02 US US11/817,459 patent/US20090007728A1/en not_active Abandoned
- 2006-03-02 WO PCT/JP2006/304525 patent/WO2006093334A1/ja active Application Filing
- 2006-03-02 JP JP2007506056A patent/JP4956826B2/ja active Active
- 2006-03-02 CN CN2006800067151A patent/CN101132871B/zh not_active Expired - Fee Related
- 2006-03-02 KR KR1020077020769A patent/KR20070107757A/ko active Search and Examination
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP1875978A4 (en) | 2008-11-05 |
JP4956826B2 (ja) | 2012-06-20 |
CN101132871A (zh) | 2008-02-27 |
EP1875978A1 (en) | 2008-01-09 |
WO2006093334A1 (ja) | 2006-09-08 |
CN101132871B (zh) | 2011-04-20 |
US20090007728A1 (en) | 2009-01-08 |
JPWO2006093334A1 (ja) | 2008-08-07 |
KR20070107757A (ko) | 2007-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2581860C (en) | Method of controlling the oxygen content of a powder | |
EP2455501B1 (en) | Method for producing alloy ingot | |
CA2960576C (en) | Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys | |
US11230751B2 (en) | Processes for producing low nitrogen metallic chromium and chromium-containing alloys and the resulting products | |
EP1875978B1 (en) | Method of melting alloy containing high-vapor-pressure metal | |
JP4496365B2 (ja) | 熱電材料及びその製造方法 | |
KR20160033076A (ko) | 분말 야금으로 강 부품을 제조하는 방법, 및 결과적인 강 부품 | |
US10611638B2 (en) | Process for manufacturing a metal carbide, nitride, boride, or silicide in powder form | |
CA1175661A (en) | Process for aluminothermic production of chromium and chromium alloys low in nitrogen | |
EP1793007B1 (en) | Method for producing unidirectionally solidified hydrogen storage alloy | |
Villazon et al. | Melt‐synthesis of LiFePO4 over a metallic bath | |
Pieczonka et al. | Sintering atmosphere effects on the densification of Al-SiC compacts | |
CN110923476A (zh) | 三步法生产高纯金属钒锭的方法 | |
KR101727705B1 (ko) | 중성자 흡수능을 가지는 합금 제작을 위한 가돌리늄 함유 철 모합금의 제조 방법 및 가돌리늄 함유 철 모합금 | |
KR100571709B1 (ko) | 증류수를 공정 제어제로 사용하고 산화크롬의 형성억제를위해 알루미늄을 첨가하는 기계적 합금화 공정 | |
Huber et al. | Casting and Characterization of U-50Zr | |
EP4029961A1 (en) | Apparatus and method | |
EP2695953B1 (en) | Method for adding zinc to molten steel and process for producing zinc-containing steel | |
KR20190062271A (ko) | 용융 야금학적 절차에 의한 금속 간 화합물 Nb₃Sn의 제조 공정 | |
JP2006124728A (ja) | 活性金属を含む金属材料の製造方法、製造装置及びこの製造方法により得られる活性金属を含む金属材料 | |
Yamaguchi et al. | Preparation of Ultrafine AlN Particles with Hexagonal Prism Shape by Reaction between Nitrogen Plasma and Molten Al–Y Alloys | |
Zvonarev et al. | Microalloying with alkali metals of powder materials based on iron | |
JPH0137465B2 (ja) | ||
JPH1184080A (ja) | ウラン水素化物の微粉化防止方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070903 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20081007 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 23/00 20060101AFI20060913BHEP Ipc: B22D 21/02 20060101ALI20080930BHEP |
|
17Q | First examination report despatched |
Effective date: 20090220 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181002 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1129406 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006057917 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190809 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1129406 Country of ref document: AT Kind code of ref document: T Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006057917 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
26N | No opposition filed |
Effective date: 20200211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200326 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200302 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200302 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006057917 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 |