EP1841517A1 - Grobteilige mikrokapselzubereitung - Google Patents

Grobteilige mikrokapselzubereitung

Info

Publication number
EP1841517A1
EP1841517A1 EP06701380A EP06701380A EP1841517A1 EP 1841517 A1 EP1841517 A1 EP 1841517A1 EP 06701380 A EP06701380 A EP 06701380A EP 06701380 A EP06701380 A EP 06701380A EP 1841517 A1 EP1841517 A1 EP 1841517A1
Authority
EP
European Patent Office
Prior art keywords
coarse
microcapsule
monomers
weight
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06701380A
Other languages
English (en)
French (fr)
Inventor
Gabriele Lang-Wittkowski
Ekkehard Jahns
Markus Steffen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1841517A1 publication Critical patent/EP1841517A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/20Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0065Polymers characterised by their glass transition temperature (Tg)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0066Film forming polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a coarse-particled microcapsule preparation comprising microencapsulated latent heat accumulators and one or more polymeric binders, wherein the ratio of surface area to volume of the particles obeys the following relation:
  • EP-A-1 029 018 teaches the use of microcapsules having a capsule wall of a highly crosslinked methacrylic acid ester polymer and a latent heat storage core in binders such as concrete or gypsum.
  • binders such as concrete or gypsum.
  • the capsule walls since the capsule walls only have a thickness in the range of 5 to 500 nm, they are very sensitive to pressure, an effect used in their use in copying papers. However, this limits their usability.
  • DE-A-101 39 171 describes the use of microencapsulated latent heat storage materials in plasterboard. Further, the prior US application Ser. No 60/573420 the use of microencapsulated latent heat storage materials in chipboard together with melamine formaldehyde resins as a binder.
  • the microcapsules are used as powders with particle sizes in the range of 1 to 50 ⁇ m.
  • powders are often difficult to process.
  • the result is formulations with a high binder content. If the ratio of microcapsules to binder, calculated as solids in terms of their sum, is considered in the above-described documents, the proportion of microcapsules ranges up to a maximum of 30% by weight and the binder content is 70% by weight or more.
  • DE-A-102 00 316 teaches the production of plastic injection molded parts from plastic granules to which carrier material parts with latent heat accumulators are added from the injection into the mold cavity.
  • the capillary spaces of the mineral support materials have an absorbent solid structure in which the latent heat storage materials are held.
  • capillary spaces in the carrier material are ultimately open systems, so that always with temperature increases, when the latent heat storage change into the liquid phase, with the leakage of liquid wax is to be expected.
  • JP 2001098259 describes the mixing of microencapsulated latent heat storage material with water and cement and comminution of the hardened material to particle sizes> 1 mm. Such particles are used as fillings in walls and floors.
  • JP 2001303032 teaches a microcapsule extrudate of a silica gel pigment and a microcapsule dispersion whose microcapsules have a capsule core of latent heat storage material.
  • US Pat. No. 6,703,127 teaches macroparticles formed by suspending microencapsulated latent heat storage material in a solution of a thickener and curing the drops by dropping into a crosslinker solution. Such hardened drops have significantly poorer performance properties.
  • GB 870 476 describes macrocapsules containing microcapsules with a film-forming wall material, such as gelatin, which are held together in clusters by a capsule wall of such a film-forming polymer.
  • a film-forming wall material such as gelatin
  • Such macro capsules have much poorer performance properties since they • tend to swell and are sensitive to bacteria.
  • EP-A-1416027 discloses that latent heat storage material is mixed and extruded with expanded graphite and that the resulting particles can be used as a bed. Here, too, segregation and continuous emissions to the room air threaten because the used latent heat storage material is not encapsulated.
  • DE-A-100 58 101 describes latent heat accumulator body with an outer shell body made of hard plastic such as polymethyl methacrylate and a filling of latent heat storage material. These bodies are produced by means of a two-component injection method.
  • the latent heat storage material is gelatinized by the addition of block copolymers. In this way, by concluding the rolling of the body large heat storage plates are produced.
  • the latent heat storage materials are processed directly and achieved stabilization on the wax additives.
  • DE-A-100 48 536 finally teaches a dynamic latent heat storage with a gel-like thickened latent heat storage material, between the small particles of a heat transfer medium flows.
  • the operating principle is based on the fact that the heat transfer fluid evaporates and condenses on contact with the latent heat storage and releases the energy to it.
  • the problem is that the particles are softened by heat and the flow paths are narrowed.
  • gel-bonded latent heat storage materials and an additional support structure also has the consequence that the proportion of the latent heat storage material based on the total weight of the preparation is less than 50% by weight.
  • WO 200224789 is concerned with polymer blends of polyethylene obtained by mixing molten polyethylene with microencapsulated latent heat accumulators and subsequent comminution and extruding them together with polypropylene in a second processing step.
  • pellets obtained have a very low latent heat storage content, so that the heat storage capacity is low.
  • the proportion of latent heat storage material is high and thus it has a high storage energy and even better efficiency.
  • the latent heat storage preparation should be used advantageously in heat exchangers and in open systems, such as for centralized and decentralized ventilation.
  • coarse-particle is to be understood as meaning particles whose dimensions range from 200 ⁇ m to 5 cm, preferably 500 ⁇ m to 2 cm. These particles may have an amorphous, spherical or even rod-shaped form, depending on the respective production method.
  • the average diameter is 200 microns to 2 cm, preferably 500 microns to 1 cm.
  • Rod-like shapes have a maximum length of 5 cm in their longest extent, usually in the range of 1 mm to 2 cm.
  • the shortest dimension has a value of at least 200 ⁇ m, as a rule from 500 ⁇ m to 10 mm, preferably 500 ⁇ m to 5 mm.
  • the length to diameter ratio will usually not exceed the value of 10: 1, preferably 5: 1.
  • 90% by weight of the particles are> 500 ⁇ m, preferably> 700 ⁇ m, in particular> 1 mm, determined by sieving technique.
  • the particles of the present invention in one embodiment are asymmetric aggregates of powder particles having only approximately the shape of a sphere, a rod, a cylinder, and whose surface is often uneven and jagged. Such particles are often referred to as granules or agglomerate.
  • Another form of agglomerates are pellets or pellets, as known from the pharmaceutical industry.
  • the particles of the invention may have any geometric shapes.
  • geometric primitives can be spheres, cylinders, cubes, cuboids, prisms, pyramids, cones, truncated cones, and truncated pyramids.
  • Star strands, cross strands, rib strands and trilobes are also suitable.
  • the geometric bodies can be hollow as well as filled. Cavities, such as incorporated tubes, increase the surface area of the geometric body while reducing its volume.
  • FIGS. 7 to 10 each show, in addition to the body (A), a view of the body from above (B). According to the invention, the ratio of surface to volume of the particles obeys the following relation:
  • these are ⁇ 2.6, more preferably ⁇ 2.8, and especially ⁇ 3.0.
  • the terms surface and volume are to be understood as surfaces and volumes which the eye is able to visually perceive when viewing the geometric body. That is, internal volumes and surfaces resulting from finely divided pores and / or cracks in the material of the geometric body are not included.
  • the pore area of the particles according to the invention measured by mercury porosimetry according to DIN 66133 is preferably 2-100 m 2 / g, in particular 30-100 m 2 / g.
  • the coarse-particle preparations according to the invention consist of at least 90% by weight, predominantly of microcapsules and polymeric binders.
  • the preparations according to the invention comprise at least 80% by weight of microcapsules and polymeric binder. According to this embodiment, the preparation contains 2-20% by weight of graphite based on the total weight of the coarse-particle preparation.
  • the binder content is preferably 1-40% by weight, preferably 1-30% by weight, more preferably 1-25% by weight, in particular 1-20% by weight and very particularly preferably 2% 15% by weight, based on the total weight of the coarse-particle preparation.
  • preferred formulations contain 55-94% by weight of latent heat storage material, 1-40% by weight, preferably 1-30% by weight of polymeric binder calculated as solids, microcapsule wall material and 0-10% by weight of other additives.
  • preparations in particular granules of 85-99% by weight of microencapsulated latent heat accumulators, 1-15% by weight of polymeric binder calculated as solids and 0-5% by weight of other additives.
  • the coarse-particle microcapsule preparations are usually prepared by processing with water or aqueous substances, the preparations may still contain residues of water.
  • the amount of residual moisture is usually from 0 to about 2 wt .-% based on the total weight.
  • the microcapsules contained in the preparation are particles having a capsule core predominantly, more than 95% by weight, of latent heat storage materials and a polymer as capsule wall.
  • the capsule core is solid or liquid depending on the temperature.
  • the average particle size of the capsules (Z means by means of light scattering) is 0.5 to 100 ⁇ m, preferably 1 to 80 ⁇ m, in particular 1 to 50 ⁇ m.
  • the weight ratio of capsule core to capsule wall is generally from 50:50 to 95: 5.
  • Preferred is a core / wall ratio of 70:30 to 93: 7.
  • Latent heat storage materials are by definition substances which are in the Temperature range in which a heat transfer is to be made, have a Phasenübergarig.
  • the latent heat storage materials Preferably, have a solid / liquid phase transition in the temperature range from -20 to 12O 0 C.
  • the latent heat storage material is an organic, preferably lipophilic substance.
  • Suitable substances may be mentioned by way of example:
  • Cio-C 4 o-hydrocarbons such as saturated or unsaturated Cio-C 4 o-hydrocarbons, branched or preferably linear, are, for example, such as n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, n-nonadecane, n- Eicosane, n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, n-hexacosane, n-heptacosane, n-octacosane and cyclic hydrocarbons, eg cyclohexane, cyclooctane, cyclodecane;
  • aromatic hydrocarbon compounds such as benzene, naphthalene, biphenyl, o- or n-terphenyl, C 1 -C 40 -alkyl-substituted aromatic hydrocarbons, such as dodecylbenzene, tetradecylbenzene, hexadecylbenzene, hexylnaphthalene or decylnaphthalene;
  • saturated or unsaturated C 6 -C 30 -fatty acids such as lauric, stearic, oleic or behenic acid, preferably electic mixtures of decanoic acid with, for example, myristic, palmitic or lauric acid;
  • Fatty alcohols such as lauryl, stearyl, oleyl, myristyl, cetyl alcohol, mixtures such as coconut fatty alcohol and the so-called oxo alcohols, which are obtained by hydroformylation of ⁇ -olefins and further reactions;
  • o-fatty amines such as decylamine, dodecylamine, tetradecylamine or hexadecylamine;
  • Esters such as C-Ci O alkyl esters of fatty acids, such as propyl, methyl stearate or methyl, and preferably their eutectic mixtures, or methyl;
  • waxes such as montanic acid waxes, montan ester waxes, carnauba wax, polyethylene wax, oxidized waxes, polyvinyl ether wax, ethylene vinyl acetate wax or Fischer-Tropsch hard waxes;
  • halogenated hydrocarbons such as chlorinated paraffin, bromoctadecane, bromopentadecane, bromononadecane, bromeicosane, bromodocosan.
  • chlorinated paraffin bromoctadecane, bromopentadecane, bromononadecane, bromeicosane, bromodocosan.
  • mixtures of these substances are suitable, as long as it does not come to a melting point lowering outside the desired range, or the heat of fusion of the mixture is too low for a meaningful application.
  • n-alkanes for example, the use of pure n-alkanes, n-alkanes with a purity of greater than 80% or of alkane mixtures, as obtained as a technical distillate and are commercially available as such.
  • soluble compounds may be added to the capsule core-forming substances so as to prevent the freezing point depression which sometimes occurs with the nonpolar substances. It is advantageous to use, as described in US Pat. No. 5,456,852, compounds having a melting point 20 to 120 K higher than the actual core substance. Suitable compounds are the fatty acids mentioned above as lipophilic substances, fatty alcohols, fatty amides and aliphatic hydrocarbon compounds. They are added in amounts of from 0.1 to 10% by weight, based on the capsule core.
  • the latent heat storage materials are selected.
  • used for heat storage in building materials in a moderate climate preferred latent heat storage materials whose solid / liquid phase transition in the temperature range of 0 to 6O 0 C.
  • selects a rule for indoor applications individual substances or mixtures with conversion temperatures of 15 to 3O 0 C.
  • EP-A-333 described 145 as in the are mainly transformation temperatures of 30 - 60 0 C suitable.
  • Preferred latent heat storage materials are aliphatic hydrocarbons, particularly preferably those listed above by way of example.
  • aliphatic hydrocarbons having 14 to 20 carbon atoms and mixtures thereof are preferred.
  • the materials known for the microcapsules for copying papers can be used as the polymer for the capsule wall.
  • thermosetting wall materials are thermosetting polymers. Under thermosetting wall materials are to be understood that not due to the high degree of crosslinking soften, but decompose at high temperatures. Suitable thermosetting wall materials are, for example, highly crosslinked formaldehyde resins, highly crosslinked polyureas and highly crosslinked polyurethanes, and highly crosslinked acrylic and methacrylic ester polymers.
  • Formaldehyde resins are understood as meaning reaction products of formaldehyde with
  • Triazines such as melamine
  • Carbamides such as urea phenols such as phenol, m-cresol and resorcinol
  • Amino and amido compounds such as aniline, p-toluenesulfonamide, ethyleneurea and guanidine,
  • formaldehyde resins are urea-formaldehyde resins, urea-resorcinol-formaldehyde resins, urea-melamine resins and melamine-formaldehyde resins.
  • melamine-formaldehyde resins and / or their methyl ethers are preferred.
  • the resins are used as prepolymers.
  • the prepolymer is still soluble in the aqueous phase and migrates in the course of the polycondensation at the interface and encloses the
  • Capsule walls of polyureas and polyurethanes are also known from the copying papers.
  • the capsule walls are formed by reaction of NH 2 groups or OH-containing reactants with di- and / or polyisocyanates.
  • Suitable isocyanates are, for example, ethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate and 2,4- and 2,6-toluene diisocyanate.
  • polyisocyanates such as biuret derivatives, polyuretonimines and isocyanurates.
  • Suitable reactants are: hydrazine, guanidine and its salts, hydroxylamine, di- and polyamines and amino alcohols.
  • Such interfacial polyaddition processes are known, for example, from US 4,021,595, EP-A 0 392 876 and EP-A 0 535 384.
  • microcapsules whose capsule wall is a highly crosslinked methacrylic ester polymer.
  • the degree of crosslinking is achieved with a crosslinker> 10 wt .-% based on the total polymer.
  • the wall-forming polymers of 10 to 100 wt .-%, preferably 30 to 95 wt .-% of one or more C 1 -C 24 alkyl esters of acrylic and / or methacrylic acid as monomers I constructed.
  • the polymers may contain up to 80% by weight, preferably 5 to 60% by weight, in particular 10 to 50% by weight, of a bi- or polyfunctional monomer as monomers II, which is insoluble or sparingly soluble in water, incorporated in copolymerized form.
  • the polymers may contain up to 90% by weight, preferably up to 50% by weight, in particular up to 30% by weight, of other monomers III in copolymerized form.
  • Suitable monomers I are C 1 -C 24 -alkyl esters of acrylic and / or methacrylic acid. Particularly preferred monomers I are methyl, ethyl, n-propyl and n-butyl acrylate and / or the corresponding methacrylates. Iso-propyl, isobutyl, sec-butyl and tert-butyl acrylate and the corresponding methacrylates are preferred. Further, methacrylonitrile is mentioned. Generally, the methacrylates are preferred.
  • Suitable monomers II are bi- or polyfunctional monomers which are insoluble or sparingly soluble in water but have good to limited solubility in the lipophilic substance. Sparingly is less than 60 g / l to understand at 2O 0 C a solubility.
  • bi- or polyfunctional monomers is meant compounds having at least 2 non-conjugated ethylenic double bonds.
  • divinyl and polyvinyl monomers come into consideration, which cause cross-linking of the capsule wall during the polymerization.
  • Preferred bifunctional monomers are the diesters of diols with acrylic acid or methacrylic acid, furthermore the diallyl and divinyl ethers of these diols.
  • Preferred divinyl monomers are ethanediol diacrylate, divinylbenzene, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, methallyl methacrylamide and allyl methacrylate. Particular preference is given to propanediol, butanediol, pentanediol and hexanediol diacrylate or the corresponding methacrylates.
  • Preferred polyvinyl monomers are trimethylolpropane triacrylate and methacrylate, pentaerythritol triallyl ether and pentaerythritol tetraacrylate.
  • monomers Hl other monomers into consideration, preferred are monomers IHa such as vinyl acetate, vinyl propionate and vinylpyridine.
  • water-soluble monomers Illb e.g. Acrylonitrile, methacrylamide, acrylic acid, methacrylic acid, itaconic acid, maleic acid,
  • N-vinylpyrrolidone 2-hydroxyethyl acrylate and methacrylate and acrylamido-2-methylpropanesulfonic acid.
  • N- Methylolacrylamide N-methylolmethacrylamide, dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate.
  • These further ethylenically unsaturated monomers may be the monomers I, II or III hitherto not mentioned for this embodiment.
  • microcapsules of this embodiment formed Since they usually have no significant influence on the microcapsules of this embodiment formed, their proportion is preferably ⁇ 20 wt .-%, in particular ⁇ 10 wt .-%.
  • Such microcapsules and their preparation are described in EP-A-1 251 954, to which reference is expressly made.
  • microcapsules suitable for use according to the invention can be prepared by a so-called in situ polymerization.
  • microcapsules and their preparation are known from EP-A-457 154, DE-A-10 139 171, DE-A-102 30 581 and EP-A-1 321 182, to which reference is expressly made.
  • the microcapsules are prepared by preparing from the monomers, a radical initiator, a protective colloid and the lipophilic substance to be encapsulated a stable oil-in-water emulsion in which they are present as a disperse phase. Subsequently, the polymerization of the monomers is initiated by heating and controlled by further increase in temperature, wherein the resulting polymers form the capsule wall, which encloses the lipophilic substance.
  • the polymerization is carried out at 20 to 100 0 C, preferably at 40 to 8O 0 C.
  • the dispersion and polymerization temperature should be above the melting temperature of the lipophilic substances.
  • the polymerization is expediently continued for a time of up to 2 hours in order to lower residual monomer contents.
  • This can be achieved physically in a manner known per se by distillative removal (in particular via steam distillation) or by stripping with an inert gas.
  • distillative removal in particular via steam distillation
  • stripping with an inert gas can be done chemically, as described in WO 9924525, advantageously by redox-initiated polymerization, as described in DE-A-4 435 423, DE-A ⁇ 4419518 and DE-A-4435422.
  • microcapsules having a mean particle size in the range from 0.5 to 100 .mu.m, it being possible to adjust the particle size in a manner known per se by means of the shearing force, the stirring speed, the protective colloid and its concentration.
  • Preferred protective colloids are water-soluble polymers, since these lower the surface tension of the water from 73 mN / tn to a maximum of 45 to 70 mN / m and thus ensure the formation of closed capsule walls and microcapsules with preferred particle sizes between 1 and 30 .mu.m, preferably 3 and 12 .mu.m, form.
  • the microcapsules are prepared in the presence of at least one organic protective colloid, which may be both anionic and neutral. It is also possible to use anionic and nonionic protective colloids together. Preference is given to using inorganic protective colloids, optionally mixed with organic protective colloids or nonionic protective colloids.
  • Organic neutral protective colloids are cellulose derivatives such as hydroxyethylcellulose, methylhydroxyethylcellulose, methylcellulose and carboxymethylcellulose, polyvinylpyrrolidone, copolymers of vinylpyrrolidone, gelatin, gum arabic, xanthan, sodium alginate, casein, polyethylene glycols, preferably polyvinyl alcohol and partially hydrolyzed polyvinyl acetates and methylhydroxypropylcellulose.
  • Suitable anionic protective colloids are polymethacrylic acid, the copolymers of sulfoethyl acrylate and methacrylate, sulfopropyl acrylate and methacrylate, N- (sulfoethyl) -maleimide, 2-acrylamido-2-alkylsulfonic acids, styrenesulfonic acid and vinylsulfonic acid.
  • Preferred anionic protective colloids are naphthalenesulfonic acid and naphthalenesulfonic acid-formaldehyde condensates and above all polyacrylic acids and phenolsulfonic acid-formaldehyde condensates.
  • the anionic and nonionic protective colloids are generally used in amounts of from 0.1 to 10% by weight, based on the water phase of the emulsion.
  • a Pickering system can consist of the solid particles alone or in addition of auxiliaries which improve the dispersibility of the particles in water or the wettability of the particles by the lipophilic phase.
  • the inorganic solid particles may be metal salts, such as salts, oxides and hydroxides of calcium, magnesium, iron, zinc, nickel, titanium, aluminum, silicon, barium and manganese.
  • metal salts such as salts, oxides and hydroxides of calcium, magnesium, iron, zinc, nickel, titanium, aluminum, silicon, barium and manganese.
  • These include magnesium hydroxide, magnesium carbonate, magnesium oxide, calcium oxalate, calcium carbonate, barium carbonate, barium sulfate, titanium dioxide, aluminum oxide, aluminum hydroxide and zinc sulfide.
  • Silicates, bentonite, hydroxyapatite and hydrotalcites are also mentioned. Particularly preferred are highly disperse silicas, magnesium pyrophosphate and tricalcium phosphate.
  • the Pickering systems can both be added to the water phase first, as well as added to the stirred oil-in-water emulsion. Some fine, solid particles are produced by precipitation as described in EP-A-1 029 018 and EP-A-1 321 182.
  • the highly dispersed silicas can be dispersed as fine, solid particles in water. But it is also possible to use so-called colloidal dispersions of silica in water.
  • the colloidal dispersions are alkaline, aqueous mixtures of silica. In the alkaline pH range, the particles are swollen and stable in water.
  • the pH of the oil-in-water emulsion is adjusted to pH 2 to 7 with an acid.
  • the inorganic protective colloids are generally used in amounts of 0.5 to 15 wt .-%, based on the water phase.
  • the organic neutral protective colloids are used in amounts of from 0.1 to 15% by weight, preferably from 0.5 to 10% by weight, based on the water phase.
  • the dispersing conditions for preparing the stable oil-in-water emulsion are preferably chosen in a manner known per se such that the oil droplets have the size of the desired microcapsules.
  • the microcapsule dispersions obtained by the polymerization give a free-flowing capsule powder when spray-dried.
  • the spray-drying of the microcapsule dispersion can be carried out in a customary manner. In general, so Proceeding that the inlet temperature of the hot air flow in the range of 100 to 200 0 C, preferably 120 to 16O 0 C, and the outlet temperature of the hot air flow in the range of 30 to 90 0 C, preferably 60 to 80 ° C.
  • the spraying of the aqueous polymer dispersion in the hot air stream can be effected, for example, by means of single-component or multi-component nozzles or via a rotating disk.
  • the deposition of the polymer powder is usually carried out using cyclones or filter separators.
  • the sprayed aqueous polymer dispersion and the hot air stream are preferably conducted in parallel.
  • spray-auxiliaries are added to the spray-drying to facilitate spray-drying or to set certain powder properties, e.g. Low dust, free-flowing or improved redispersibility.
  • spraying aids are familiar to the person skilled in the art. Examples thereof can be found in DE-A 19 629 525, DE-A 19 629 526, DE-A 2 214 410, DE-A 2445813, EP-A 407 889 or EP-A 784 449.
  • Advantageous spray aids are, for example, water-soluble polymers of Type polyvinyl alcohol or partially hydrolyzed polyvinyl acetates, cellulose derivatives such as hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, methylhydroxyethylcellulose and methylhydroxypropylcellulose, polyvinylpyrrolidone, copolymers of vinylpyrrolidone, gelatin, preferably polyvinyl alcohol and partially hydrolyzed polyvinyl acetates and methylhydroxypropylcellulose.
  • Polymeric binders are well known. These are fluid systems which contain a disperse phase in aqueous dispersion medium consisting of a plurality of intertwined polymer chains, which are known as polymer pellets or polymer particles, in disperse distribution.
  • the weight-average diameter of the polymer particles is often in the range from 10 to 1000 nm, often 50 to 500 nm or 100 to 400 nm.
  • the polymeric binder contains the auxiliaries described below.
  • the binder polymers according to the invention preferably have thermoplastic properties. By thermoplastic is meant that the binder polymers soften without decomposition above the glass transition temperature.
  • binders binder polymers
  • Processing temperature are able to form a polymer film, i. are film-forming at these temperatures.
  • the polymers are not water-soluble. This makes it possible to use the coarse-particle preparations according to the invention in moist or aqueous systems.
  • those polymers can be used whose glass transition temperature is -60 to + 15O 0 C, often -20 to +130 0 C and often 0 to + 12O 0 C. is.
  • the glass transition temperature (T 9 ) is meant the limit of the glass transition temperature, which according to G. Kanig (Kolloid-Zeitschrift & Zeitschrift fur Polymere, Vol. 190, page 1, Equation 1) tends to increase with increasing molecular weight.
  • the glass transition temperature is determined by the DSC method (differential scanning calorimetry, 20 K / min, midpoint measurement, DIN 53 765).
  • Polymers are very particularly preferably with a glass transition temperature in the range of 40 to 120 0 C. In general, these are processed at temperatures in the range of 20 to 12O 0 C. Coarse-particle compositions obtained in this way exhibit particularly good mechanical stability and have good abrasion values.
  • the glass transition temperature of polymers which are composed of ethylenically unsaturated monomers can be controlled in a known manner via the monomer composition (TG Fox, Bull. Am. Phys. Soc. (Ser. II) 1, 123 [1956] and Ullmanns Enzyklopedia of Industrial Chemistry 5th ed., Vol. A21, Weinheim (1989) p. 169).
  • Preferred polymers are composed of ethylenically unsaturated monomers M which are generally at least 80% by weight, in particular at least 90% by weight, of ethylenically unsaturated monomers A which are selected from monomers having a water solubility ⁇ 10 g / l (25 ° C.) and 1 bar) and their mixtures with acrylonitrile and / or methacrylonitrile, the proportion of acrylonitrile and methacrylonitrile usually does not exceed 30 wt .-% and eg 1 to 30 wt .-% or 5 to 25 wt .-% of the monomers A is.
  • the polymers contain from 0.5 to 20 wt .-% of the monomers A different monomers B.
  • monomers B are all quantities for monomers in wt .-% based on 100 wt .-% of monomers M.
  • Monomers A are usually simply ethylenically unsaturated or conjugated diolefins. Examples of monomers A are:
  • Esters of an ⁇ , ß-ethylenically unsaturated C 3 -C 6 monocarboxylic acid or C 4 -C 8 - dicarboxylic acid with a Ci-C- t o -alkanol are preferably esters of acrylic acid or methacrylic acid, such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc. ;
  • vinyl aromatic compounds such as styrene, 4-chlorostyrene, 2-methylstyrene, etc .;
  • Vinyl esters of aliphatic carboxylic acids having preferably 1 to 10 carbon atoms such as vinyl acetate, vinyl propoxide, vinyl laurate, vinyl stearate, vinyl versatate, etc .; Olefins, such as ethylene or propylene;
  • conjugated diolefins such as butadiene or isoprene
  • Preferred film-forming polymers are selected from the polymer classes I to IV listed below:
  • copolymers of styrene with butadiene ie copolymers as monomer A, styrene and butadiene, and optionally (meth) acrylate of Ci-C 8 - alkanols, acrylonitrile and / or methacrylonitrile as polymerized units;
  • Acrylic acid and / or a C r Ci 0 alkyl ester of methacrylic acid in copolymerized form in particular copolymers containing as monomers A methyl methacrylate, at least one Ci-C 10 alkyl esters of acrylic acid and optionally a C 2 - Cio-alkyl esters of methacrylic acid in copolymerized form;
  • V Copolymers of styrene with acrylonitrile.
  • Typical C 1 -C 10 -alkyl esters of acrylic acid in the copolymers of class I to IV are ethyl acrylate, n-butyl acrylate, tert-butyl acrylate, n-hexyl acrylate and 2-ethylhexyl acrylate.
  • Typical copolymers of class I contain, as monomers A, 20 to 80% by weight and in particular 30 to 70% by weight of styrene and 20 to 80% by weight, in particular 30 to 70% by weight, of at least one C r C 10 Alkyl esters of acrylic acid such as n-butyl acrylate, Ethyl acrylate or 2-ethylhexyl acrylate, in each case based on the total amount of monomers A.
  • Typical copolymers of class II comprise, as monomers A, in each case based on the total amount of monomers A 1, from 30 to 85% by weight, preferably from 40 to 80% by weight and particularly preferably from 50 to 75% by weight of styrene and from 15 to 70 Wt .-%, preferably 20 to 60 wt .-% and particularly preferably 25 to 50 wt .-% butadiene, wherein 5 to 20 wt .-% of the aforementioned monomers A by (meth) acrylic acid esters of Ci-C 8 alkanols and or may be replaced by acrylonitrile or methacrylonitrile.
  • Typical copolymers of class III comprise, as monomers A, in each case based on the total amount of monomers A, from 20 to 80% by weight, preferably from 30 to 70% by weight, of methyl methacrylate and at least one further, preferably one or two, further monomers selected from Acrylklareestem of CrC 10 alkanols, especially n-butyl acrylate, 2-ethylhexyl acrylate and ethyl acrylate and optionally one
  • Typical homopolymers and copolymers of class IV comprise, as monomers A, in each case based on the total amount of monomers A, from 30 to 100% by weight, preferably from 40 to 100% by weight and particularly preferably from 50 to 100% by weight, of a vinyl ester an aliphatic carboxylic acid, in particular vinyl acetate and 0 to 70 wt .-%, preferably 0 to 60 wt .-% and particularly preferably 0 to 50 wt .-% of a C 2 -C 6 - olefin, in particular ethylene and optionally one or two further Monomers selected from (meth) acrylic acid esters of CrC 10 alkanols in an amount of 1 to 15 wt .-% copolymerized.
  • a vinyl ester an aliphatic carboxylic acid in particular vinyl acetate and 0 to 70 wt .-%, preferably 0 to 60 wt .-% and particularly preferably 0 to 50 wt .
  • the polymers of classes IV and V are particularly suitable.
  • Homopolymers of vinyl esters of aliphatic carboxylic acids, in particular of vinyl acetate, are preferred.
  • a specific embodiment are those which are stabilized with protective colloids such as polyvinylpyrrolidone and anionic emulsifiers. Such an embodiment is described in WO 02/26845, to which reference is expressly made.
  • Suitable monomers B are in principle all monomers which are different from the abovementioned monomers and copolymerizable with the monomers A. Such monomers are known in the art and usually serve to modify the properties of the polymer.
  • Preferred monomers B are selected from monoethylenically unsaturated mono- and dicarboxylic acids having 3 to 8 C atoms, in particular acrylic acid, methacrylic acid, itaconic acid, their amides such as acrylamide and methacrylamide, their N-alkylolamides such as N-methylolacrylamide and N-methylolmethacrylamide, their hydroxyl groups.
  • C 1 -C 4 -alkyl esters such as 2-hydroxyethyl acrylate, 2- and 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2- and 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate and monoethylenically unsaturated monomers with oligoalkylene oxide chains, preferably with polyethylene oxide chains with degrees of oligomerization preferably in the range from 2 to 200, for example monovinyl and monoallyl ethers of oligoethylene glycols and also esters of acrylic acid, maleic acid or methacrylic acid with oligoethylene glycols.
  • the proportion of monomers having acid groups is preferably not more than 10% by weight and more preferably not more than 5% by weight, e.g. 0.1 to 5 wt .-%, based on the monomers M.
  • Oligoalkylenoxidketten is, if contained, preferably in the range of 0.1 to 20 wt .-% and in particular in the range of 1 to 10 wt .-%, based on the monomers M.
  • the proportion of amides and N-alkylol amides is if included, preferably in the range of 0.1 to 5 wt .-%.
  • other monomers B also include crosslinking monomers, such as glycidyl ethers and esters, for example vinyl, allyl and methallyl glycidyl ethers, glycidyl acrylate and methacrylate, the diacetonylamides of the abovementioned ethylenically unsaturated carboxylic acids, for example diacetone (meth) acrylamide , and the esters of acetylacetic acid with the abovementioned hydroxyalkyl esters of ethylenically unsaturated carboxylic acids, for example acetylacetoxyethyl (meth) acrylate.
  • crosslinking monomers such as glycidyl ethers and esters, for example vinyl, allyl and methallyl glycidyl ethers, glycidyl acrylate and methacrylate
  • Monomers B furthermore include compounds which have two nonconjugated, ethylenically unsaturated bonds, for example the di- and oligoesters of polyhydric alcohols with ⁇ , ⁇ -monoethylenically unsaturated C 3 -C 10 -monocarboxylic acids, such as alkylene glycol diacrylates and dimethacrylates, for example ethylene glycol diacrylate , 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate, propylene glycol diacrylate, and also divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, methylenebisacrylamide, cyclopentadienyl acrylate, tricyclodecenyl (meth) acrylate, N, N'-divinylimidazoline 2-one or triallyl cyanurate.
  • vinylsilanes for example vinyltrialkoxysilanes. These are, if desired, used in an amount of 0.01 to 1 wt .-%, based on the total amount of monomers in the preparation of the polymers.
  • Aqueous polymer dispersions are accessible in particular by free-radically initiated aqueous emulsion polymerization of ethylenically unsaturated monomers. This method has been described many times and is therefore sufficiently known to the person skilled in the art [cf. for example, Encyclopedia of Polymer Science and Engineering, Vol. 8, pp. 659-677, John Wiley & Sons, Inc., 1987; DC Blackley, Emulsion Polymerization, pp.
  • the free-radically initiated aqueous emulsion polymerization is usually carried out by dispersing the ethylenically unsaturated monomers, frequently with the concomitant use of surface-active substances, in an aqueous medium and polymerizing them by means of at least one free-radical polymerization initiator.
  • the residual contents of unreacted monomers are also chemical and / or physical methods known to the person skilled in the art [see, for example, EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 1974,187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 and 19847115], the polymer solids content is adjusted by dilution or concentration to a desired value or the aqueous polymer dispersion further conventional additives, such as bactericidal or foam-suppressing Additives added. Frequently, the polymer solids contents of the aqueous
  • polymer powders prepared from the polymer dispersions and also aqueous dispersions obtainable by redispersing the polymer powders in water are also commercially available, eg under the trademarks ACRONAL ®, STYRONAL® ®, Butofan ®, Styrofan ® and Kollicoat ® of BASF Aktiengesellschaft, Ludwigshafen, Germany, VINNOFIL ® and VINNAPAS ® from. Wacker Chemie GmbH, Burghausen, and RHODIMAX ® from. Rhodia SA
  • Suitable surface-active substances for emulsion polymerization are the emulsifiers and protective colloids customarily used for the emulsion polymerization.
  • Preferred emulsifiers are anionic and nonionic emulsifiers which, in contrast to the protective colloids, generally have a molecular weight below 2000 g / mol and in amounts of up to 0.2 to 10% by weight, preferably 0.5 to 5% by weight. %, based on the polymer in the dispersion or on the monomers M to be polymerized.
  • Such protective colloids are already mentioned by way of example for the formation of microcapsules.
  • the anionic emulsifiers include alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C 8 -C 20 ), of sulfuric monoesters of ethoxylated alkanols (EO degree: 2 to 50, alkyl radical: C 8 to C 20 ) and ethoxylated alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 -C 20 ), of alkylsulfonic acids (alkyl radical C 8 to C 20 ), of sulfonated mono- and di-C 6 -C 8 -alkyldiphenyl ethers, as described in US Pat. No.
  • alkylarylsulfonic acids alkyl radical: C 4 -C 20
  • suitable anionic emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular substances, Georg-Thieme-Verlag, Stuttgart, 1961, pp. 192-208.
  • Suitable nonionic emulsifiers are araliphatic or aliphatic nonionic emulsifiers, for example ethoxylated mono-, di- and trialkylphenols (EO degree: 3 to 50, alkyl radical: C 4 -C 9 ), ethoxylates of long-chain alcohols (EO degree: 3 to 50, alkyl radical : C 8 -C 36 ), as well as polyethylene oxide / polypropylene oxide block copolymers.
  • ethoxylates of long-chain alkanols (alkyl radical: C 10 -C 22 , average degree of ethoxylation: 3 to 50) and particularly preferably those based on oxo alcohols and native alcohols having a linear or branched C 12 -C 18 -alkyl radical and an ethoxylation degree of 8 until 50.
  • the molecular weight of the polymers can be adjusted by adding regulators in a small amount, usually up to 2 wt .-%, based on the polymerizing monomers M.
  • Suitable regulators are, in particular, organic thio compounds, furthermore allyl alcohols and aldehydes.
  • regulators are, in particular, organic thio compounds, furthermore allyl alcohols and aldehydes.
  • organic thio compounds such as tert-dodecyl mercaptan used.
  • the polymer dispersions used are frequently made alkaline prior to their use according to the invention, preferably adjusted to pH values in the range from 7 to 10.
  • pH values in the range from 7 to 10.
  • ammonia or organic amines can be used, and preferably hydroxides, such as sodium hydroxide, potassium hydroxide or calcium hydroxide can be used.
  • the aqueous polymer dispersions are subjected in a known manner to a drying process, preferably in the presence of customary drying auxiliaries.
  • the preferred drying method is spray drying.
  • the drying aid is used in an amount of 1 to 30 wt .-%, preferably 2 to 20 wt .-%, based on the polymer content of the dispersion to be dried.
  • the spray-drying of the polymer dispersions to be dried is generally carried out as already described for the microcapsule dispersion, often in the presence of a conventional drying aid such as homopolymers and copolymers of vinylpyrrolidone, homo- and copolymers of acrylic acid and / or methacrylic acid with monomers carrying hydroxyl groups, vinylaromatic monomers, Olefins and / or (meth) acrylic acid esters, polyvinyl alcohol and in particular arylsulfonic acid-formaldehyde condensation products and mixtures thereof.
  • a conventional drying aid such as homopolymers and copolymers of vinylpyrrolidone, homo- and copolymers of acrylic acid and / or methacrylic acid with monomers carrying hydroxyl groups, vinylaromatic monomers, Olefins and / or (meth) acrylic acid esters, polyvinyl alcohol and in particular arylsulfonic acid-formaldehyde condensation products and mixtures thereof.
  • a conventional anticaking agent such as a finely divided inorganic oxide, for example, a finely divided silica or a finely divided silicate, e.g., a finely divided silicate, may be added to the polymer dispersion to be dried.
  • Add talc a conventional anticaking agent such as a finely divided inorganic oxide, for example, a finely divided silica or a finely divided silicate, e.g., a finely divided silicate
  • binder polymers For certain uses of the coarse-particled compositions of the present invention, water-stability of the binder polymers is not necessary, for example, in sealed nonaqueous systems. In such cases, binder polymers are also suitable which are water-soluble or partially water-soluble.
  • Suitable natural polymeric binders such as starch and cellulose and synthetic polymeric binders.
  • Such binders are, for example, polyvinylpyrrolidone, polyvinyl alcohol or partially hydrolysed polyvinyl acetate having a degree of hydrolysis of at least 60%, as well as copolymers of vinyl acetate with vinylpyrrolidone, furthermore graft polymers of polyvinyl acetate with polyethers, in particular ethylene oxide. Graft polymers of polyvinyl acetate with ethylene oxide have proved to be particularly advantageous. Such graft polymers are described, for example, in EP-A-1 124 541. whose teaching is expressly referred to. Such polymers are also commercially available, eg under the trade names KOLLIDON ® and Kollicoat ® from BASF Aktiengesellschaft.
  • the preparation of the coarse-particle preparation can be carried out by bringing the microcapsules together with the polymeric binder and water in a coarse-particle form, for example granulated or extruded, and then optionally dried.
  • the binder may be added to the microcapsule powder.
  • the binder may already be added as a spraying aid during the spray-drying of the microcapsules.
  • Such preferred binders are those mentioned above for the spray-drying of the microcapsules. They are usually added in an amount of 1 to 10 wt .-% based on the solids content of the microcapsule dispersion. In these cases, the addition of further binder is possible, but not usually necessary.
  • the binders used may also be the organic protective colloids used in the preparation of the microcapsules. An addition of further binders is then generally unnecessary. According to this preferred variant, from 10 to 100% by weight of one or more C 1 -C 24 -alkyl esters of acrylic and / or methacrylic acid (monomers I), from 0 to 80% by weight of a bifunctional or polyfunctional monomer (monomers II ), which is insoluble or sparingly soluble in water and 0 to 90 wt .-% of other monomers (monomer III), in each case based on the total weight of the monomers, the latent heat storage material and the organic protective colloid prepared an oil-in-water emulsion and formed the capsule wall by free radical polymerization, the resulting microcapsule dispersion spray-dried and brought into a coarse-particled form.
  • monomers I C 1 -C 24 -alkyl esters of acrylic and / or methacrylic acid
  • monomers II a bifunctional or
  • the preparation of the preparation can be carried out according to the methods known for agglomerates such as pellets, tablets and granules.
  • granules can be produced by mixer granulation.
  • Mixers are used, which are provided with rigid or rotating inserts (eg Diosna Pharmamischer) and ideally in one operation mix, granulate and dry.
  • the microcapsule powder is built up with the addition of the polymeric binder and optionally water, by the rearrangement movement to granules. These are then dried in a fluidized bed, convection or vacuum dryer and comminuted by screening machines or mills.
  • a vacuum rotary mixing dryer is particularly gentle and dust-free.
  • the microcapsules are extruded together with the polymeric binder.
  • the preparation of the coarse-particle preparation is carried out with the addition of water and the polymeric binder. It is possible to meter in the water to the microcapsule and / or binder powder.
  • the microcapsule powder is mixed directly with a binder dispersion of the desired water content.
  • the water content is 10-40 wt .-% based on the total mixture.
  • a lower water content usually leads to incomplete mixing of the two components and poor moldability.
  • Higher water contents are possible in principle, above 50 wt .-% water, the mass can no longer be extruded, but deliquesces.
  • Suitable extruders such as single- or twin-screw extruder and the so-called melt calendering or melt tableting.
  • Twin-screw extruder working on the principle of a mixing unit, which simultaneously transported forward and compressed on a nozzle tool.
  • the product in the feed zone is compressed against the heating zone.
  • the substances are dispersed and possibly degassed.
  • the mixture is discharged under pressure through a die tool.
  • the binder polymer should form a film under the processing conditions, i. it should at least partially melt or soften, but without becoming too fluid to get the microcapsule preparation into shape.
  • a suitable temperature range is the range of 25K below to about 50K above the glass transition temperature.
  • Binder polymer however, can sometimes be significantly lowered by plasticizer or solvent effects, so that in the presence of these substances, a processing up to 50 K below the glass transition temperature is possible. When using volatile plasticizers, it is thus possible to remove them after the shaping process, whereby a greater strength is achieved. Since water is a plasticizer for polar and water-soluble film-forming polymers, consideration of the glass transition temperature of the pure polymer in these cases does not apply.
  • the nozzle tool of the extruder may consist of one or more hole nozzles or a flat nozzle as desired or may have a more complex shape, for example tubular.
  • nozzles are selected with which particles are obtained whose ratio of surface to volume obeys the following relation:
  • Ij surface yVo ⁇ umen Preferred nozzles have for example a cross or Stemform, for example, 3-, 4-, 5- or 6-pronged on.
  • the temperatures in the extruder are 40 to 120 ° C. It is possible that a constant temperature prevails. It is also possible that along the transport direction of the microcapsule / binder mixture, a temperature gradient of 40 to 12O 0 C prevails. Any gradations are possible with the gradient from continuous to stepwise. The agglomeration at these temperatures has the advantage that some of the water already evaporates during the mixing and / or compression process.
  • lubricants such as stearic acid are added for extrusion.
  • Other additives of the coarse-particle microcapsule preparation may be: dyes, pigments, fragrances, antistatic agents, hydrophilizing agents and preferably graphite, in particular expanded graphite.
  • the preparation contains from 2 to 20% by weight of graphite, based on the total weight of the coarse-particle preparation.
  • Compressed graphite expanded powder or chippings can be re-expanded if needed for further use. Such a process is described in US-A 5,882,570. In this way one obtains a so-called reexpand Arthurs graphite powder (Reexpandat).
  • expanded graphite is used collectively for (i) graphite expandate, (ii) powder obtained by crushing compressed graphite expandate, (iii) powder obtained by comminuting graphite expandate, and (iv) by re-expanding crushed compacted matter Graphite expandate made Reexpandat. All forms (i) to (iv) of the expanded graphite are suitable additives of the coarse microcapsule preparation. It has
  • Graphite expandate has a bulk density of 2 to 20 g / l
  • the shredded graphite expanate has a bulk density of 20 to 150 g / l
  • the crushed compacted graphite expander has a bulk density of 60 to 200 g / l
  • the reclaimed compacted graphite expandate has a bulk density of 20 to 150 g / l.
  • expanded graphite having an average particle size of about 5 ⁇ m With expanded graphite having an average particle size of about 5 ⁇ m, the BET specific surface area is typically between 25 and 40 m 2 / g. As the diameter of the particles increases, the BET surface area of the expanded graphite decreases but remains at a relatively high level. Thus, expanded graphite with an average particle size of 5 mm still has a BET surface area of more than 10 m 2 / g.
  • expanded graphite with average particle sizes in the range from 5 ⁇ m to 5 mm is suitable. Preference is given to expanded graphite having an average particle size in the range from 5 ⁇ m to 5 mm, particularly preferably in the range from 50 ⁇ m to 1 mm.
  • microcapsule preparations according to the invention have sealed the latent heat storage material, so that no emissions to the ambient air can be detected. This allows their use not only in closed systems, but also in open systems.
  • the coarse-particle microcapsule preparations are outstandingly suitable for use in building materials as well as storage material in heat exchangers. They show good hardness and are abrasion resistant. Its coarse-grained structure allows a freely selectable storage geometry, for example, fillings for floor coverings, chemical reactors or columns, as well as in flow-through applications such as heat exchangers in solar systems, heaters in particular warm air heating and centralized and decentralized ventilation.
  • the coarse-particled microcapsules Due to the favorable ratios of surface to interstices of the particles with each other, a large heat transfer is possible, which can be dissipated by the good flow properties of any support material such as air or water quickly.
  • the coarse-particled microcapsules Based on the volume of the preparation, the coarse-particled microcapsules have a very high storage capacity and thus have a very high efficiency. Thus, they have a small footprint as well as a lower storage weight with the same storage capacity compared to conventional heat storage.
  • the coarse-particle microcapsule preparations according to the invention can advantageously be processed together with mineral or silicate binders.
  • Suitable mineral binders are well known. It is finely divided inorganic substances such as lime, gypsum, clay, loam and cement, which are converted by mixing with water in their ready-to-use form and solidify during drying as a function of time, optionally at elevated temperature.
  • the coarse-particle microcapsule preparations according to the invention are converted into the ready-to-use shaped body together with the mineral binder, water, additives such as gravel, sand, glass or mineral fibers and, if appropriate, auxiliaries.
  • additives such as gravel, sand, glass or mineral fibers and, if appropriate, auxiliaries.
  • microcapsule powder was used as obtained according to Example 1 of DE 101 63 162 and subsequent spray drying.
  • the microcapsules had a mean diameter of 7.8 microns.
  • Diosna mixer type V 50 slowly mixed with 287 g of a 55 wt.%, Aqueous styrene-acrylonitrile dispersion (see material B in Example 5) and 623 g of water.
  • the moistened mass was mixed for 6 minutes by switching on the chopper (stage 1), so that the amount of liquid was evenly distributed.
  • This mass was then extruded in an Alexanderwerk laboratory granulator type RSA with a 3.0 mm mesh screen.
  • the granules were then dried on trays. Dry extrudates with a diameter of about 3 mm and a length of 4 mm were obtained, which were hard and resistant to abrasion.
  • Machine tightly intermeshing co-rotating twin screw extruder type FTS16mm, discharge nozzle orifice nozzle diameter of 3 mm, 5 heating zones from the entry opening to the discharge nozzle, Zone 1 to 4 heated to 75 ° C, Zone 5 heated to 85 0 C.
  • the extruder screw used is up to an element (return element) approximately in the middle of conventional conveyor elements with which a mixing is ensured by a strong shear field in the gusset area.
  • the total throughput is 775 g / h, the screw speed 150 rpm.
  • the pressure build-up in the screw ensures a continuous discharge of the wetted latent heat storage powder.
  • PMMA polymethyl methacrylate
  • the pore area measured by mercury porosimetry according to DIN 66133 is 28.1 m 2 / g.
  • the extruder test set-up of the comparative example was adopted with the difference that a star-shaped discharge nozzle (analogous to FIG. 10B) was used (4 ⁇ 3 mm profile nozzle).
  • the pore area measured by mercury porosimetry acc. DIN 66133 is 39.6 m 2 / g.

Abstract

Die vorliegende Erfindung betrifft eine grobteilige Mikrokapselzubereitung enthaltend mikroverkapselte Latentwärmespeicher und ein oder mehrere polymere Bindemittel, wobei das Verhältnis von Oberfläche zu Volumen der Teilchen der folgenden Relation gehorcht (I): sowie Verfahren zu ihrer Herstellung und ihre Verwendung in Wärmetauschern und Baustoffen.

Description

Grobteilige Mikrokapselzubereitung
Beschreibung
Die vorliegende Erfindung betrifft eine grobteilige Mikrokapselzubereitung enthaltend mikroverkapselte Latentwärmespeicher und ein oder mehrere polymere Bindemittel, wobei das Verhältnis von Oberfläche zu Volumen der Teilchen der folgenden Relation gehorcht:
^Oberfläche ^ n 5 l/Volumen sowie Verfahren zu ihrer Herstellung und ihre Verwendung in Wärmetauschern und Baustoffen.
In den letzten Jahren sind als neue Materialkombination Baustoffe mit Latentwärme- speichern untersucht worden. Ihre Funktionsweise beruht auf der beim fest/flüssig- Phasenübergang auftretenden Umwandlungsenthalpie, die eine Energieaufnahme oder Energieabgabe an die Umgebung bedeutet. Sie können damit zur Temperaturkonstanthaltung in einem festgelegten Temperaturbereich verwendet werden. Da die Latentwärmespeichermaterialien je nach Temperatur auch flüssig vorliegen, können sie nicht direkt mit Baustoffen verarbeitet werden, denn Emissionen an die Raumluft sowie die Trennung vom Baustoff wären zu befürchten.
Die EP-A-1 029 018 lehrt die Verwendung von Mikrokapseln mit einer Kapselwand aus einem hochvernetzten Methacrylsäureesterpolymer und einem Latentwärmespeicher- kern in Bindebaustoffen wie Beton oder Gips. Da die Kapselwände nur eine Dicke im Bereich von 5 bis 500 nm haben, sind sie jedoch sehr druckempfindlich, ein Effekt der bei ihrer Verwendung in Durchschreibepapieren genutzt wird. Das schränkt jedoch ihre Verwendbarkeit ein.
Die DE-A-101 39 171 beschreibt die Verwendung von mikroverkapselten Latentwärmespeichermaterialien in Gipskartonplatten. Ferner lehrt die ältere US-Anmeldung Ser. No 60/573420 den Einsatz von mikroverkapselten Latentwärmespeichermaterialien in Spanplatten zusammen mit Melaminformaldehydharzen als Bindemittel.
Bei allen diesen verschiedenen Anwendungen werden die Mikrokapseln als Pulver mit Teilchengrößen im Bereich von 1 bis 50 μm eingesetzt. Pulver lassen sich jedoch oftmals schlecht verarbeiten. Die Folge sind Formulierungen mit einem hohen Bindemittelgehalt. Betrachtet man in den oben geschilderten Schriften das Verhältnis von Mikrokapseln zu Bindemittel gerechnet als Feststoff bezogen auf ihre Summe, so reicht der Mikrökapselanteil bis maximal 30 Gew.-% und der Bindemittelanteil beträgt 70 Gew.-% und mehr. Eine Optimierung durch Vergrößerung des Latentwärmespeicheranteils, der ja dem Mikrökapselanteil entspricht, war daher wünschenswert. Die DE-A-102 00 316 lehrt die Herstellung von Kunststoffspritzteilen aus Kunststoffgranulat, dem von der Einspritzung in den Formhohlraum Trägermaterialteile mit Latentwärmespeichern zugesetzt werden. Die Kapillarräume der mineralischen Trägermaterialien haben eine saugfähige Feststoffstruktur, in der die Latentwärmespeichermaterialien gehalten werden. Kapillarräume im Trägermaterial sind jedoch letztlich offene Systeme, so dass immer bei Temperaturerhöhungen, wenn die Latentwärmespeicher in die flüssige Phase wechseln, mit dem Austritt von flüssigem Wachs zu rechnen ist.
Die JP 2001098259 beschreibt das Vermischen von mikroverkapseltem Latentwärmespeichermaterial mit Wasser und Zement und Zerkleinern des ausgehärteten Materials auf Teilchengrößen > 1 mm. Derartige Teilchen werden als Schüttungen in Wänden und Fußböden eingesetzt.
Die JP 2001303032 lehrt ein Mikrokapselextrudat aus einem Silikagelpigment und einer Mikrokapseldispersion, deren Mikrokapseln einen Kapselkern aus Latentwärmespeichermaterial haben.
Die US 6703 127 lehrt Makroteilchen, die gebildet werden, indem man mikroverkapseltes Latentwärmespeichermaterial in einer Lösung eines Verdickers suspendiert und durch Eintropfen in eine Vernetzerlösung die Tropfen aushärtet. Derart ausgehärtete Tropfen haben deutlich schlechtere anwendungstechnische Eigenschaften.
Die GB 870 476 beschreibt Makrokapsel enthaltend Mikrokapseln mit einem filmbildenden Wandmaterial wie Gelatine, die durch eine Kapselwand aus einem solchen filmbildenden Polymer zu Clustern zusammengehalten werden. Derartige Makrokapseln haben viel schlechtere anwendungstechnische Eigenschaften, da sie zum Quellen neigen und empfindlich gegenüber Bakterien sind.
Der EP-A-1416027 ist zu entnehmen, dass Latentwärmespeichermaterial mit expandiertem Graphit gemischt und extrudiert wird und die erhaltenen Teilchen als Schüttung verwendet werden können. Auch hier drohen Entmischung sowie kontinuierliche Emissionen an die Raumluft, da das verwendete Latentwärmespeichermaterial nicht verkapselt ist.
Die DE-A-100 58 101 beschreibt Latentwärmespeicherkörper mit einem äußeren Schalenkörper aus Hartkunststoff wie Polymethylmethacrylat und einer Füllung aus Latentwärmespeichermaterial. Diese Körper werden mittels eines Zweikomponenten- spritzverfahrens hergestellt. Das Latentwärmespeichermaterial ist dabei durch Zusatz von Blockcopolymeren gelartig verfestigt. Auf diese Weise können durch abschließen- des Walzen des Körpers große Wärmespeicherplatten hergestellt werden. Hier, wie auch in der DE-A-102 00 316, werden die Latentwärmespeichermaterialien direkt verarbeitet und eine Stabilisierung über die Wachszusätze erzielt.
Die DE-A-100 48 536 schließlich lehrt einen dynamischen Latentwärmespeicher mit einem gelartig verdickten Latentwärmespeichermaterial, zwischen dessen kleinen Teilchen ein Wärmeträger strömt. Das Funktionsprinzip beruht darauf, dass die Wärmeträgerflüssigkeit verdampft und bei Kontakt mit dem Latentwärmespeicher kondensiert und die Energie an ihn abgibt. Problematisch ist jedoch, dass die Teilchen durch Wärmezufuhr weich werden und die Strömungswege verengt werden.
Die Verwendung von gelartig verfestigten Latentwärmespeichermaterialien sowie einer zusätzlichen Stützstruktur hat überdies zur Folge, dass der Anteil des Latentwärmespeichermaterials bezogen auf das Gesamtgewicht der Zubereitung unter 50 Gew. -% liegt.
Die WO 200224789 ist mit Polymerblends aus Polyethylen befasst, die durch Vermischen von geschmolzenem Polyethylen mit mikroverkapselten Latentwärmespeichern und anschließendem Zerkleinern erhalten werden und in einem zweiten Verarbeitungsschritt mit Polypropylen zusammen extrudiert werden. Derartig erhaltene Pellets haben jedoch einen sehr geringen Latentwärmespeicheranteil, so dass die Wärmespeicherkapazität nur gering ist.
Die ältere Anmeldung PCT/EP 2005/008354 lehrt grobteilige Mikrokapselzubereitungen mit Mikrokapselwänden aus Polymethylmethacrylat und einem Bindemittelpoiymer, das filmbildende Eigenschaften hat.
Daher war es ein Aspekt der vorliegenden Erfindung eine Latentwärmespeicherzubereitung zu finden, deren Anteil an Latentwärmespeichermaterial hoch ist und sie damit eine hohe Speicherenergie und einen noch besseren Wirkungsgrad besitzt.
Ferner sollte die Latentwärmespeicherzubereitung sich vorteilhaft in Wärmetauschern und in offenen Systemen, wie für zentrale und dezentrale Lüftung, einsetzen lassen.
Dem gemäß wurde die obengenannte grobteilige Mikrokapselzubereitung enthaltend ein oder mehrere mikroverkapselte Latentwärmespeichermaterialien und ein oder mehrere polymere Bindemittel gefunden.
Unter grobteilig sind im Rahmen der vorliegenden Erfindung Teilchen zu verstehen, deren Abmessungen sich im Bereich von 200 μm bis 5 cm, bevorzugt 500 μm bis 2 cm bewegen. Diese Teilchen können dabei eine amorphe, kugelartige bis hin zu einer stäbchenförmigen Gestalt haben, abhängig von der jeweiligen Herstellungsmethode. In Fällen von kugelartigen Gebilden beträgt der mittlere Durchmesser 200 μm bis 2 cm, vorzugsweise 500 μm bis 1 cm. Stäbchenartige Formen haben in ihrer längsten Ausdehnung einen Wert von höchstens 5 cm, in der Regel im Bereich von 1 mm bis 2 cm. Die kürzeste Ausdehnung hat einen Wert von mindestens 200 μm, in der Regel von 500 μm bis 10 mm, bevorzugt 500 μm bis 5 mm. Bei den stäbchenartigen Teilchen wird das Verhältnis von Länge zu Durchmesser üblicherweise den Wert von 10 : 1, vorzugsweise den Wert 5 : 1 nicht überschreiten.
In den bevorzugten erfindungsgemäßen Mikrokapselzubereitungen sind 90 Gew.-% der Teilchen > 500 μm, vorzugsweise >700 μm insbesondere >1mm, bestimmt durch Siebtechnik.
Die erfindungsgemäßen Teilchen sind in einer Ausführungsform asymmetrische Aggregate aus Pulverpartikeln, die die Form einer Kugel, eines Stäbchen, eines Zylinders nur ungefähr aufweisen und deren Oberfläche oftmals uneben und zackig ist. Solche Teilchen werden oftmals auch als Granulat oder Agglomerat bezeichnet. Eine andere Form der Agglomerate sind Presslinge sogenannte Pellets oder Tabletten, wie sie von der Arzneimittelherstellung her bekannt sind.
Die erfindungsgemäßen Teilchen können beliebige geometrische Formen haben. Geometrische Grundkörper können beispielsweise Kugeln, Zylinder, Würfel, Quader, Prismen, Pyramiden, Kegel, abgestumpfte Kegel und abgestumpfte Pyramiden sein. Ferner sind Sternstränge, Kreuzstränge, Rippstränge und Trilobe geeignet. Dabei können die geometrischen Körper sowohl hohl wie auch ausgefüllt sein. Hohlräume, wie eingearbeitete Röhren, vergrößern die Oberfläche des geometrischen Körpers bei gleichzeitiger Verringerung seines Volumens. Die dieser Schrift beiliegenden Figuren zeigen einige prinzipiell in Betracht kommende geometrische Körper. Die Figuren 7 bis 10 zeigen zusätzlich zum Körper (A) jeweils eine Ansicht des Körpers von oben (B). Erfindungsgemäß gehorcht das Verhältnis von Oberfläche zu Volumen der Teilchen der folgenden Relation:
Woh umen bevorzugt ≥ 2,6, besonders bevorzugt ≥ 2,8 und insbesondere ≥ 3,0.
Dabei sind unter den Begriffen Oberfläche und Volumen solche Oberflächen und Volumina zu verstehen, die das Auge bei der Betrachtung des geometrischen Körpers visuell wahrzunehmen vermag. D. h., innere Volumina und Oberflächen, die von feinteiligen Poren und/oder Rissen im Material des geometrischen Körpers herrühren, sind nicht miteinbezogen. Die durch Quecksilberporosimetrie nach DIN 66133 gemessene Porenfläche der erfindungsgemäßen Teilchen beträgt bevorzugt 2-100 m2/g, insbesondere 30-100 m2/g.
Die erfindungsgemäßen grobteiligen Zubereitungen bestehen gemäß einer Ausführungsform zu mindestens 90 Gew.~% überwiegend aus Mikrokapseln und polymerem Bindemitteln.
Nach einer anderen Ausführungsform bestehen die erfindungsgemäßen Zubereitungen zu mindestens 80 Gew.-% aus Mikrokapseln und polymerem Bindemittel. Gemäß dieser Ausführungsform enthält die Zubereitung 2 - 20 Gew.-% Graphit bezogen auf das Gesamtgewicht der grobteiligen Zubereitung.
Bevorzugt beträgt der Bindemittelgehalt, gerechnet als Feststoff, 1 - 40 Gew.-%, bevorzugt 1 - 30 Gew.-%, besonders bevorzugt 1 - 25 Gew.-%, insbesondere 1 - 20 Gew.-% und ganz besonders bevorzugt 2 - 15 Gew.-% bezogen auf das Gesamtgewicht der grobteiligen Zubereitung.
Bevorzugte Zubereitungen enthalten bezogen auf ihr Gesamtgewicht 55-94 Gew.-% Latentwärmespeichermaterial, 1 - 40 Gew.-% bevorzugt 1- 30 Gew.-% polymeres Bindemittel gerechnet als Feststoff, Mikrokapselwandmaterial sowie 0 - 10 Gew.-% sonstige Zusatzstoffe.
Besonders bevorzugt werden Zubereitungen, insbesondere Granulate aus 85 - 99 Gew.-% mikroverkapselten Latentwärmespeichern, 1 - 15 Gew.-% polymerem Bindemittel gerechnet als Feststoff und 0 - 5 Gew.-% sonstigen Zusatzstoffen.
Da die grobteiligen Mikrokapselzubereitungen meist unter Verarbeitung mit Wasser oder wässrigen Stoffen hergestellt werden, können die Zubereitungen noch Reste von Wasser enthalten. Die Menge an Restfeuchte beträgt üblicherweise von 0 bis etwa 2 Gew.-% bezogen auf das Gesamtgewicht.
Die in der Zubereitung enthaltenen Mikrokapseln sind Teilchen mit einem Kapselkern bestehend überwiegend, zu mehr als 95 Gew.-%, aus Latentwärmespeicher- materialien und einem Polymer als Kapselwand. Der Kapselkern ist dabei abhängig von der Temperatur fest oder flüssig. Die mittlere Teilchengröße der Kapseln (Z-Mittel mittels Lichtstreuung) beträgt 0,5 bis 100 μm, bevorzugt 1 bis 80 μm insbesondere 1 bis 50 μm. Das Gewichtsverhältnis von Kapselkern zu Kapselwand beträgt im allgemeinen von 50:50 bis 95:5. Bevorzugt wird ein Kern/Wand-Verhältnis von 70:30 bis 93:7.
Latentwärmespeichermaterialien sind definitionsgemäß Substanzen, die in dem Temperaturbereich, in welchem eine Wärmeübertragung vorgenommen werden soll, einen Phasenübergarig aufweisen. Vorzugsweise weisen die Latentwärmespeichermaterialien einen fest/flüssig Phasenübergang im Temperaturbereich von -20 bis 12O0C auf. In der Regel handelt es sich bei dem Latentwärmespeichermaterial um eine organische, bevorzugt lipophile Substanz.
Als geeignete Substanzen sind beispielhaft zu nennen:
- aliphatische Kohlenwasserstoffverbindungen wie gesättigte oder ungesättigte Cio-C4o-Kohlenwasserstoffe, die verzweigt oder bevorzugt linear sind, z.B. wie n-Tetradecan, n-Pentadecan, n-Hexadecan, n-Heptadecan, n-Octadecan, n- Nonadecan, n-Eicosan, n-Heneicosan, n-Docosan, n-Tricosan, n-Tetracosan, n-Pentacosan, n-Hexacosan, n-Heptacosan, n-Octacosan sowie cyclische Kohlenwasserstoffe, z.B. Cyclohexan, Cyclooctan, Cyclodecan;
- aromatische Kohlenwasserstoffverbindungen wie Benzol, Naphthalin, Biphenyl, o- oder n-Terphenyl, Ci-C40-aIkylsubstituierte aromatische Kohlenwasserstoffe wie Dodecylbenzol, Tetradecylbenzol, Hexadecylbenzol, Hexylnaphthalin oder Decylnaphthalin;
- gesättigte oder ungesättigte C6-C3o-Fettsäuren wie Laurin-, Stearin-, Öl- oder Behensäure, bevorzugt elektische Gemische aus Decansäure mit z.B. Myrist- in-, Palmitin- oder Laurinsäure;
- Fettalkohole wie Lauryl-, Stearyl-, Oleyl-, Myristyl-, Cetylalkohol, Gemische wie Kokosfettalkohol sowie die sogenannten Oxoalkohole, die man durch Hydroformylierung von α-OIefinen und weiteren Umsetzungen erhält;
- C6-C3o-Fettamine, wie Decylamin, Dodecylamin, Tetradecylamin oder Hexadecylamin;
Ester wie Ci-CiO-Alkylester von Fettsäuren wie Propylpalmitat, Methylstearat oder Methylpalmitat sowie bevorzugt ihre eutektischen Gemische oder Methylcinnamat;
- natürliche und synthetische Wachse wie Montansäurewachse, Montanesterwachse, Carnaubawachs, Polyethylenwachs, oxidierte Wachse, Polyvinyletherwachs, Ethylenvinylacetatwachs oder Hartwachse nach Fischer- Tropsch-Verfahren;
- halogenierte Kohlenwasserstoffe wie Chlorparaffin, Bromoctadecan, Brompentadecan, Bromnonadecan, Bromeicosan, Bromdocosan. Weiterhin sind Mischungen dieser Substanzen geeignet, solange es nicht zu einer Schmelzpunkterniedrigung außerhalb des gewünschten Bereichs kommt, oder die Schmelzwärme der Mischung für eine sinnvolle Anwendung zu gering wird.
Vorteilhaft ist beispielsweise die Verwendung von reinen n-Alkanen, n-Alkanen mit einer Reinheit von größer als 80% oder von Alkangemischen, wie sie als technisches Destillat anfallen und als solche handelsüblich sind.
Weiterhin kann es vorteilhaft sein, den kapselkern-bildenden Substanzen in ihnen lösliche Verbindungen zuzugeben, um so die zum Teil bei den unpolaren Substanzen auftretende Gefrierpunktserniedrigung zu verhindern. Vorteilhaft verwendet man, wie in der US-A 5 456 852 beschrieben, Verbindungen mit einem 20 bis 120 K höheren Schmelzpunkt als die eigentliche Kernsubstanz. Geeignete Verbindungen sind die oben als lipophile Substanzen erwähnten Fettsäuren, Fettalkohole, Fettamide sowie aliphatische Kohlenwasserstoffverbindungen. Sie werden in Mengen von 0,1 bis 10 Gew.-% bezogen auf den Kapselkern zugesetzt.
Je nach Temperaturbereich, in dem die Wärmespeicher gewünscht sind, werden die Latentwärmespeichermaterialien gewählt. Beispielsweise verwendet man für Wärmespeicher in Baustoffen in gemäßigtem Klima bevorzugt Latentwärmespeichermaterialien, deren fest/flüssig Phasenübergang im Temperaturbereich von 0 bis 6O0C liegt. So wählt man in der Regel für Innenraumanwendungen Einzelstoffe oder Mischungen mit Umwandlungstemperaturen von 15 bis 3O0C. Bei Solaranwendungen als Speicher- medium oder zur Überhitzungsvermeidung von transparenter Wärmedämmung, wie in der EP-A-333 145 beschrieben, sind vor allem Umwandlungstemperaturen von 30- 600C geeignet.
Bevorzugte Latentwärmespeichermaterialien sind aliphatische Kohlenwasserstoffe besonders bevorzugt die oben beispielhaft aufgezählten. Insbesondere werden aliphatische Kohlenwasserstoffe mit 14 bis 20 Kohlenstoffatomen sowie deren Gemische bevorzugt.
Als Polymer für die Kapselwand können prinzipiell die für die Mikrokapseln für Durchschreibepapiere bekannten Materialien verwendet werden. So ist es beispielsweise möglich, die Latentwärmespeichermaterialien nach den in der GB- A 870476, US 2,800,457, US 3,041 ,289 beschriebenen Verfahren in Gelatine mit anderen Polymeren zu verkapseln.
Bevorzugte Wandmaterialien für die Kapselwand der Mikrokapseln, da sehr alterungsstabil, sind duroplastische Polymere. Unter duroplastisch sind dabei Wandmaterialien zu verstehen, die aufgrund des hohen Vernetzungsgrades nicht erweichen, sondern sich bei hohen Temperaturen zersetzen. Geeignete duroplastische Wandmaterialien sind beispielsweise hochvernetzte Formaldehydharze, hochvernetzte Polyharnstoffe und hochvernetzte Polyurethane sowie hochvernetzte Acryl- und Methacrylsäureesterpolymere.
Unter Formaldehydharzen versteht man Reaktionsprodukte aus Formaldehyd mit
- Triazinen wie Melamin
- Carbamiden wie Harnstoff - Phenolen wie Phenol, m-Kresol und Resorcin
- Amino- und Amidoverbindungen wie Anilin, p-Toluolsulfonamid, Ethylenhamstoff und Guanidin,
oder ihren Mischungen.
Als Kapselwandmaterial bevorzugte Formaldehydharze sind Harnstoff-Formaldehydharze, Harnstoff-Resorcin-Formaldehydharze, Hamstoff-Melamin-Harze und Melamin-Formaldehydharze. Ebenso bevorzugt sind die Ci-C4-Alkyl~ insbesondere Methylether dieser Formaldehydharze sowie die Mischungen mit diesen Formaldehyd- harzen. Insbesondere werden Melamin-Formaldehyd-Harze und/oder deren Methylether bevorzugt.
In den von den Durchschreibepapieren her bekannten Verfahren werden die Harze als Prepolymere eingesetzt. Das Prepolymer ist noch in der wässrigen Phase löslich und wandert im Verlauf der Polykondensation an die Grenzfläche und umschließt die
Öltröpfchen. Verfahren zu Mikroverkapselung mit Formaldehydharzen sind allgemein bekannt und beispielsweise in der EP-A-562 344 und EP-A-974 394 beschrieben.
Kapselwände aus Polyharnstoffen und Polyurethanen sind ebenfalls von den Durchschreibepapieren her bekannt. Die Kapselwände entstehen durch Umsetzung von NH2-Gruppen bzw. OH-Gruppen tragenden Reaktanden mit Di- und/oder Polyisocyanaten. Geeignete Isocyanate sind beispielsweise Ethylendiisocyanat, 1 ,4- Tetramethylendiisocyanat, 1 ,6-Hexamethylendiisocyanat und 2,4- und 2,6- Toluylendiisocyanat. Ferner seien Polyisocyanate wie Derivate mit Biuretstruktur, Polyuretonimine und Isocyanurate erwähnt. Als Reaktanden kommen in Frage: Hydrazin, Guanidin und dessen Salze, Hydroxylamin, Di- und Polyamine und Aminoalkohole. Solche Grenzflächenpolyadditionsverfahren sind beispielsweise aus der US 4,021 ,595, EP-A 0 392 876 und EP-A 0 535 384 bekannt.
Bevorzugt werden Mikrokapseln, deren Kapselwand ein hochvernetztes Methacrylsäureesterpolymer ist. Der Vernetzungsgrad wird dabei mit einem Vernetzeranteil > 10 Gew.-% bezogen auf das Gesamtpolymer erzielt. In den bevorzugten Mikrokapseln sind die Wand-bildenden Polymere aus 10 bis 100 Gew.-%, vorzugsweise 30 bis 95 Gew.-% eines oder mehrerer C1-C24-Alkylester der Acryl- und/oder Methacrylsäure als Monomere I aufgebaut. Außerdem können die Polymere bis zu 80 Gew.-%, vorzugsweise 5 bis 60 Gew.-%, insbesondere 10 bis 50 Gew.-%, eines bi- oder polyfunktionellen Monomers als Monomere II, welches in Wasser nicht löslich oder schwer löslich ist, einpolymerisiert enthalten. Daneben können die Polymere bis zu 90 Gew.-%, vorzugsweise bis zu 50 Gew.-%, insbesondere bis zu 30 Gew.-% sonstige Monomere III einpolymerisiert enthalten.
Als Monomere I eignen sich C1-C24-Alkylester der Acryl- und/oder Methacrylsäure. Besonders bevorzugte Monomere I sind Methyl-, Ethyl-, n-Propyl- und n-Butylacrylat und/oder die entsprechenden Methacrylate. Bevorzugt sind iso-Propyl-, iso-Butyl-, sec.-Butyl- und tert.-Butylacrylat und die entsprechenden Methacrylate. Ferner ist Methacrylnitril zu nennen. Generell werden die Methacrylate bevorzugt.
Geeignete Monomere Il sind bi- oder polyfunktionelle Monomere, welche in Wasser nicht löslich oder schwer löslich sind, aber eine gute bis begrenzte Löslichkeit in der lipophilen Substanz haben. Unter Schwerlöslichkeit ist eine Löslichkeit kleiner 60 g/l bei 2O0C zu verstehen. Unter bi- oder polyfunktionellen Monomeren versteht man Verbindungen, die wenigstens 2 nichtkonjugierte ethylenische Doppelbindungen haben. Vornehmlich kommen Divinyl- und Polyvinylmonomere in Betracht, die eine Vernetzung der Kapselwand während der Polymerisation bewirken.
Bevorzugte bifunktionelle Monomere sind die Diester von Diolen mit Acrylsäure oder Methacrylsäure, ferner die Diallyl- und Divinylether dieser Diole.
Bevorzugte Divinylmonomere sind Ethandioldiacrylat, Divinylbenzol, Ethylenglykoldimethacrylat, 1 ,3-Butylenglykoldimethacrylat, Methallylmethacrylamid und Allylmethacrylat. Besonders bevorzugt sind Propandiol-, Butandiol-, Pentandiol- und Hexandioldiacrylat oder die entsprechenden Methacrylate.
Bevorzugte Polyvinylmonomere sind Trimethylolpropantriacrylat und -methacrylat, Pentaerythrittriallylether und Pentaerythrittetraacrylat.
Als Monomere Hl kommen sonstige Monomere in Betracht, bevorzugt sind Monomere IHa wie Vinylacetat, Vinylpropionat und Vinylpyridin.
Besonders bevorzugt sind die wasserlöslichen Monomere Illb, z.B. Acrylnitril, Methacrylamid, Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure,
Maleinsäureanhydrid, N-Vinylpyrrolidon, 2-HydroxyethyIacrylat und -methacrylat und Acrylamido-2-methylpropansulfonsäure. Daneben sind insbesondere N- Methylolacrylamid, N-Methylolmethacrylamid, Dimethylaminoethylmethacrylat und Diethylaminoethylmethacrylat zu nennen.
Nach einer weiteren bevorzugten Ausführungsform sind die Wand-bildenden Polymere aus 30 bis 90 Gew.-% Methacrylsäure, 10 bis 70 Gew.-% eines Alkylesters der (Meth)acrylsäure, bevorzugt Methylmethacrylat, tert-Butylmethacrylat, Phenylmeth- acrylat und Cyclohexylmethacrylat, und 0 bis 40 Gew.-% weitere ethylenisch ungesättigter Monomeren gebildet. Diese weiteren ethylenisch ungesättigten Monomere können die für diese Ausführungsform bisher nicht erwähnten Monomere I, Il oder III sein. Da sie in der Regel keinen wesentlichen Einfluss auf die gebildeten Mikrokapseln dieser Ausführungsform haben, ist ihr Anteil bevorzugt < 20 Gew.-% insbesondere <10 Gew.-%. Derartige Mikrokapseln sowie ihre Herstellung werden in der EP-A-1 251 954 beschrieben, auf die ausdrücklich Bezug genommen wird.
Die zur erfindungsgemäßen Verwendung geeigneten Mikrokapseln lassen sich durch eine sogenannte in-situ-Polymerisation herstellen.
Die bevorzugten Mikrokapseln sowie ihre Herstellung sind aus der EP-A-457 154, DE- A-10 139 171 , DE-A-102 30 581 und EP-A-1 321 182 bekannt, auf die ausdrücklich verwiesen wird. So stellt man die Mikrokapseln in der Weise her, dass man aus den Monomeren, einem Radikalstarter, einem Schutzkolloid und der einzukapselnden lipophilen Substanz eine stabile ÖI-in-Wasser-Emulsion herstellt, in der sie als disperse Phase vorliegen. Anschließend löst man die Polymerisation der Monomeren durch Erwärmung aus und steuert sie durch weitere Temperaturerhöhung, wobei die entstehenden Polymere die Kapselwand bilden, welche die lipophile Substanz umschließt.
In der Regel führt man die Polymerisation bei 20 bis 1000C, vorzugsweise bei 40 bis 8O0C durch. Natürlich sollte die Dispersions- und Polymerisationstemperatur oberhalb der Schmelztemperatur der lipophilen Substanzen liegen.
Nach Erreichen der Endtemperatur setzt man die Polymerisation zweckmäßigerweise noch etwa für eine Zeit von bis zu 2 Stunden fort, um Restmonomergehalte abzusenken. Im Anschluss an die eigentliche Polymerisationsreaktion bei einem Umsatz von 90 bis 99 Gew.-% ist es in der Regel vorteilhaft, die wässrigen Mikrokapseldisper- sionen weitgehend frei von Geruchsträgern, wie Restmonomere und anderen organischen flüchtigen Bestandteilen zu gestalten. Dies kann in an sich bekannter Weise physikalisch durch destillative Entfernung (insbesondere über Wasserdampfdestillation) oder durch Abstreifen mit einem inerten Gas erreicht werden. Ferner kann es chemisch geschehen, wie in der WO 9924525 beschrieben, vorteilhaft durch redoxinitiierte Polymerisation, wie in der DE-A-4 435 423, DE-A~4419518 und DE-A- 4435422 beschrieben. Man kann auf diese Weise Mikrokapseln mit einer mittleren Teilchengröße im Bereich von 0,5 bis 100 μm herstellen, wobei die Teilchengröße in an sich bekannter Weise über die Scherkraft, die Rührgeschwindigkeit, das Schutzkolloid und seine Konzentra- tion eingestellt werden kann.
Bevorzugte Schutzkolloide sind wasserlösliche Polymere, da diese die Oberflächenspannung des Wassers von 73 mN/tn maximal auf 45 bis 70 mN/m senken und somit die Ausbildung geschlossener Kapselwände gewährleisten sowie Mikrokapseln mit bevorzugten Teilchengrößen zwischen 1 und 30 μm, vorzugsweise 3 und 12 μm, ausbilden.
In der Regel werden die Mikrokapseln in Gegenwart wenigstens eines organischen Schutzkolloids hergestellt, das sowohl anionisch als auch neutral sein kann. Auch können anionische und nichtionische Schutzkolloide zusammen eingesetzt werden. Bevorzugt verwendet man anorganische Schutzkolloide gegebenenfalls in Mischung mit organischen Schutzkolloiden oder nichtionische Schutzkolloide.
Organische neutrale Schutzkolloide sind Cellulosederivate wie Hydroxyethylcellulose, Methylhydroxyethylcellulose, Methylcellulose und Carboxymethylcellulose, Polyvinyl- pyrrolidon, Copolymere des Vinylpyrrolidons, Gelatine, Gummiarabicum, Xanthan, Natriumalginat, Kasein, Polyethylenglykole, bevorzugt Polyvinylalkohol und partiell hydrolysierte Polyvinylacetate sowie Methylhydroxypropylcellulose.
Als anionische Schutzkolloide eignen sich Polymethacrylsäure, die Copolymerisate des Sulfoethylacrylats und -methacrylats, Sulfopropylacrylats und -methacrylats, des N- (Sulfoethyl)-maleinimids, der 2-Acrylamido-2-alkylsulfonsäuren, Styrolsulfonsäure sowie der Vinylsulfonsäure.
Bevorzugte anionische Schutzkolloide sind Naphthalinsulfonsäure und Naphthalin- sulfonsäure-Formaldehyd-Kondensate sowie vor allem Polyacrylsäuren und Phenol- sulfonsäure-Formaldehyd-Kondensate.
Die anionischen und nichtionischen Schutzkolloide werden in der Regel in Mengen von 0,1 bis 10 Gew.-% eingesetzt, bezogen auf die Wasserphase der Emulsion.
Bevorzugt werden anorganische Schutzkolloide, sogenannte Pickering-Systeme, die eine Stabilisierung durch sehr feine feste Partikel ermöglichen und in Wasser unlöslich, aber dispergierbar sind oder unlöslich und nicht dispergierbar in Wasser, aber benetzbar von der lipophilen Substanz sind. Die Wirkweise und ihr Einsatz ist in der EP-A-1 029 018 sowie der EP-A-1 321 182 beschrieben, auf deren Inhalte ausdrücklich Bezug genommen wird.
Ein Pickering-System kann dabei aus den festen Teilchen allein oder zusätzlich aus Hilfsstoffen bestehen, die die Dispergierbarkeit der Partikel in Wasser oder die Benetzbarkeit der Partikel durch die lipophile Phase verbessern.
Die anorganischen festen Partikel können Metallsalze sein, wie Salze, Oxide und Hydroxide von Calcium, Magnesium, Eisen, Zink, Nickel, Titan, Aluminium, Silicium, Barium und Mangan. Zu nennen sind Magnesiumhydroxid, Magnesiumcarbonat, Magnesiumoxid, Calciumoxalat, Calciumcarbonat, Bariumcarbonat, Bariumsulfat, Titandioxid, Aluminiumoxid, Aluminiumhydroxid und Zinksulfid. Silikate, Bentonit, Hydroxyapatit und Hydrotalcite seien ebenfalls genannt. Besonders bevorzugt sind hochdisperse Kieselsäuren, Magnesiumpyrophosphat und Tricalciumphosphat.
Die Pickering-Systeme können sowohl zuerst in die Wasserphase gegeben werden, als auch zu der gerührten Emulsion von Öl-in-Wasser zugegeben werden. Manche feinen, festen Partikel werden durch eine Fällung hergestellt, wie in der EP-A-1 029 018, sowie der EP-A-1 321 182 beschrieben.
Die hochdispersen Kieselsäuren können als feine, feste Teilchen in Wasser dispergiert werden. Es ist aber auch möglich, sogenannte kolloidale Dispersionen von Kieselsäure in Wasser zu verwenden. Die kolloidalen Dispersionen sind alkalische, wässrige Mischungen von Kieselsäure. Im alkalischen pH-Bereich sind die Partikel gequollen und in Wasser stabil. Für eine Verwendung dieser Dispersionen als Pickering-System ist es vorteilhaft, wenn der pH-Wert der Öl-in-Wasser Emulsion mit einer Säure auf pH 2 bis 7 eingestellt wird.
Die anorganischen Schutzkolloide werden in der Regel in Mengen von 0,5 bis 15 Gew.-%, bezogen auf die Wasserphase, eingesetzt.
Im allgemeinen werden die organischen neutralen Schutzkolloide in Mengen von 0,1 bis 15 Gew.-%, vorzugsweise von 0,5 bis 10 Gew.-% eingesetzt, bezogen auf die Wasserphase.
Vorzugsweise wählt man die Dispergierbedingungen zur Herstellung der stabilen Öl- in-Wasser Emulsion in an sich bekannter Weise so, dass die Öltröpfchen die Größe der gewünschten Mikrokapseln haben.
Die durch die Polymerisation erhaltenen Mikrokapseldispersionen ergeben bei Sprühtrocknung ein gut rieselfähiges Kapselpulver. Die Sprühtrocknung der Mikrokapseldispersion kann in üblicherweise erfolgen. Im allgemeinen wird so vorgegangen, dass die Eingangstemperatur des Warmluftstroms im Bereich von 100 bis 2000C, vorzugsweise 120 bis 16O0C, und die Ausgangstemperatur des Warmluftstroms im Bereich von 30 bis 900C, vorzugsweise 60 bis 80°C liegt. Das Versprühen der wässrigen Polymerisatdispersion im Warmiuftstrom kann beispielsweise mittels Ein- oder Mehrstoffdüsen oder über eine rotierende Scheibe erfolgen. Die Abscheidung des Polymerisatpulvers erfolgt normalerweise unter Verwendung von Zyklonen oder Filterabscheidern. Die versprühte wässrige Polymerisatdispersion und der Warmluftstrom werden vorzugsweise parallel geführt.
Gegebenenfalls setzt man zur Sprühtrocknung Sprühhilfsmittel zu, um die Sprühtrocknung zu erleichtern, oder bestimmte Pulvereigenschaften einzustellen, z.B. Staubarmut, Rieselfähigkeit oder verbesserte Redispergierbarkeit. Dem Fachmann sind eine Vielzahl von Sprühhilfsmitteln geläufig. Beispiele hierfür finden sich in DE-A 19 629 525, DE-A 19 629 526, DE-A 2 214 410, DE-A 2445813, EP-A 407 889 oder EP-A 784 449. Vorteilhafte Sprühhilfsmittel sind beispielsweise wasserlösliche Polymere vom Typ Polyvinylalkohol oder teilhydrolysierte Polyvinylacetate, Cellulosederivate wie Hydroxyethylcellulose, Carboxymethylcellulose, Methylcellulose, Methylhydroxyethylcellulose und Methylhydroxypropylcellulose, Polyvinylpyrrolidon, Copolymere des Vinylpyrrolidons, Gelatine, bevorzugt Polyvinylalkohol und partiell hydrolysierte Polyvinylacetate sowie Methylhydroxypropylcellulose.
Polymere Bindemittel sind allgemein bekannt. Es handelt sich dabei um fluide Systeme, die als disperse Phase in wässrigem Dispergiermedium aus mehreren ineinander verschlungenen Polymerisatketten bestehenden Polymerisatknäuel, die sogenannte Polymermatrix oder Polymerisatpartikel, in disperser Verteilung befindlich enthalten. Der gewichtsmittlere Durchmesser der Polymerisatpartikel liegt häufig im Bereich von 10 bis 1000 nm, oft 50 bis 500 nm oder 100 bis 400 nm. Neben dem Polymerisat (Bindemittelpolymer) enthält das polymere Bindemittel die unten beschriebenen Hilfsstoffe. Die erfindungsgemäßen Bindemittelpolymere haben bevorzugt thermoplastische Eigenschaften. Unter thermoplastisch ist dabei zu verstehen, dass die Bindemittelpolymere ohne Zersetzung oberhalb der Glasübergangstemperatur erweichen.
Erfindungsgemäß können als polymere Bindemittel (Bindemittelpolymere) grundsätzlich alle feinteiligen Polymerisate eingesetzt werden, die bei der
Verarbeitungstemperatur in der Lage sind, einen Polymerfilm zu bilden, d.h. bei diesen Temperaturen filmbildend sind. Nach einer bevorzugten Variante sind die Polymerisate nicht wasserlöslich. Dies ermöglicht eine Verwendung der erfindungsgemäßen grobteiligen Zubereitungen in feuchten oder wässrigen Systemen.
Erfindungsgemäß können solche Polymerisate eingesetzt werden, deren Glasübergangstemperatur -60 bis +15O0C, oft -20 bis +1300C und häufig 0 bis +12O0C beträgt. Mit der Glasübergangstemperatur (T9), ist der Grenzwert der Glasübergangstemperatur gemeint, dem diese gemäß G. Kanig (Kolloid-Zeitschrift & Zeitschrift für Polymere, Bd. 190, Seite 1 , Gleichung 1) mit zunehmendem Molekulargewicht zustrebt. Die Glasübergangstemperatur wird nach dem DSC-Verfahren ermittelt (Differential Scanning Calorimetry, 20 K/min, midpoint-Messung, DIN 53 765).
Ganz besonders bevorzugt werden Polymerisate mit einer Glasübergangstemperatur im Bereich von 40 bis 1200C. In der Regel werden diese bei Temperaturen im Bereich von 20 bis 12O0C verarbeitet. Derart erhaltene grobteilige Zusammensetzungen zeigen besonders gute mechanische Stabilität und haben gute Abriebwerte.
Die Glasübergangstemperatur von Polymerisaten, die aus ethylenisch ungesättigten Monomeren aufgebaut sind, kann in bekannter Weise über die Monomerzusammen- setzung gesteuert werden (T.G. Fox, Bull. Am. Phys. Soc. (Ser. II) 1, 123 [1956] und Ullmanns Enzyklopedia of Industrial Chemistry 5. Aufl., Vol. A21, Weinheim (1989) S. 169).
Bevorzugte Polymerisate sind aus ethylenisch ungesättigten Monomeren M aufgebaut, die in der Regel wenigstens 80 Gew.-%, insbesondere wenigstens 90 Gew.-%, ethylenisch ungesättigte Monomere A die ausgewählt sind unter Monomeren mit einer Wasserlöslichkeit < 10 g/l (250C und 1 bar) und deren Mischungen mit Acrylnitril und/oder Methacrylnitril, wobei der Anteil an Acrylnitril und Methacrylnitril in der Regel 30 Gew.-% nicht überschreitet und z.B. 1 bis 30 Gew.-% oder 5 bis 25 Gew.-% der Monomere A beträgt. Daneben enthalten die Polymere noch 0,5 bis 20 Gew.-% von den Monomeren A verschiedene Monomere B. Hier und im Folgenden sind alle Mengenangaben für Monomere in Gew.-% auf 100 Gew.-% Monomere M bezogen.
Monomere A sind in der Regel einfach ethylenisch ungesättigt oder konjugierte Diolefine. Beispiele für Monomere A sind:
Ester einer α,ß-ethylenisch ungesättigten C3-C6-Monocarbonsäure oder C4-C8- Dicarbonsäure mit einem Ci-C-to-Alkanol. Vorzugsweise handelt es sich dabei um Ester der Acrylsäure oder Methacrylsäure, wie Methyl(meth)acrylat, Ethyl(meth)acrylat, n-Butyl(meth)acrylat, t-Butyl(meth)acrylat, 2- Ethylhexyl(meth)acrylat etc.;
vinylaromatische Verbindungen, wie Styrol, 4-Chlorstyrol, 2-Methylstyrol etc.;
Vinylester aliphatischer Carbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, wie Vinylacetat, Vinylpropiat, Vinyllaurat, Vinylstearat, Versaticsäurevinylester etc.; Olefinen, wie Ethylen oder Propylen;
konjugierten Diolefinen, wie Butadien oder Isopren;
- Vinylchlorid oder Vinylidenchlorid.
Bevorzugte filmbildende Polymerisate sind ausgewählt unter den nachfolgend aufgeführten Polymerklassen I bis IV:
I) Copolymerisate von Styrol mit Alkyl(acrylaten), d.h. Copolymerisate, die als Monomer A Styrol und wenigstens einen C1-Ci o-Alkylester der Acrylsäure und gegebenenfalls einen oder mehrere C-i-Cio-Alkylester der Methacrylsäure einpolymerisiert enthalten;
II) Copolymerisate des Styrols mit Butadien, d.h. Copolymerisate die als Monomer A Styrol und Butadien sowie gegebenenfalls (Meth)acrylsäureester von Ci-C8- Alkanolen, Acrylnitril und/oder Methacrylnitril einpolymerisiert enthalten;
III) Homo- und Copolymerisate von A!kyl(meth)acrylaten (Reinacrylate), d.h. Homo- und Copolymerisate, die als Monomere A wenigstens einen CrCio-Alkylester der
Acrylsäure und/oder einen CrCi0-Alkylester der Methacrylsäure einpolymerisiert enthalten, insbesondere Copolymere, die als Monomere A Methylmethacrylat, wenigstens einen Ci-C10-Alkylester der Acrylsäure und gegebenenfalls einen C2- Cio-Alkylester der Methacrylsäure einpolymerisiert enthalten;
IV) Homopolymerisate von Vinylestem aliphatischer Carbonsäuren und Copolymerisate von Vinylestem aliphatischer Carbonsäuren mit Olefinen und/oder Alkyl(meth)acrylaten, d.h. Homo- und Copolymerisate, die als Monomer A wenigstens einen Vinylester einer aliphatischen Carbonsäure mit 2 bis 10 C- Atomen und gegebenenfalls ein oder mehrere C2-C6-Olefine und/oder gegebenenfalls einen oder mehrere CrCio-Alkylester der Acrylsäure und/oder der Methacrylsäure einpolymerisiert enthalten;
V) Copolymerisate von Styrol mit Acrylnitril.
Typische CrCio-Alkylester der Acrylsäure in den Copolymerisaten der Klasse I bis IV sind Ethylacrylat, n-Butylacrylat, tert.-Butylacrylat, n-Hexylacrylat und 2-Ethylhexyl acrylat.
Typische Copolymerisate der Klasse I enthalten als Monomere A 20 bis 80 Gew.~% und insbesondere 30 bis 70 Gew.-% Styrol und 20 bis 80 Gew.-%, insbesondere 30 bis 70 Gew.-%, wenigstens eines CrC10-Alkylesters der Acrylsäure wie n-Butylacrylat, Ethylacrylat oder 2-Ethylhexylacrylat, jeweils bezogen auf die Gesamtmenge der Monomere A.
Typische Copolymerisate der Klasse Il enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A1 30 bis 85 Gew.-%, vorzugsweise 40 bis 80 Gew.- % und besonders bevorzugt 50 bis 75 Gew.-% Styrol und 15 bis 70 Gew.-%, vorzugsweise 20 bis 60 Gew.-% und besonders bevorzugt 25 bis 50 Gew.-% Butadien, wobei 5 bis 20 Gew.-% der vorgenannten Monomere A durch (Meth)acrylsäureester von Ci-C8-Alkanolen und/oder durch Acrylnitril oder Methacrylnitril ersetzt sein können.
Typische Copolymerisate der Klasse III enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A, 20 bis 80 Gew.-%, vorzugsweise 30 bis 70 Gew.- % Methylmethacrylat und mindestens ein weiteres, vorzugsweise ein oder zwei weitere Monomere, ausgewählt unter Acrylsäureestem von CrC10-Alkanolen, insbesondere n- Butylacrylat, 2-Ethylhexylacrylat und Ethylacrylat und gegebenenfalls einen
Methacrylsäureester eines C2-C10-Alkanols in einer Gesamtmenge von 20 bis 80 Gew.- % und vorzugsweise 30 bis 70 Gew.-% einpolymerisiert.
Typische Homo- und Copolymerisate der Klasse IV enthalten als Monomere A, jeweils bezogen auf die Gesamtmenge der Monomere A, 30 bis 100 Gew.-%, vorzugsweise 40 bis 100 Gew.-% und besonders bevorzugt 50 bis 100 Gew.-% einen Vinylester einer aliphatischen Carbonsäure, insbesondere Vinylacetat und 0 bis 70 Gew.-%, vorzugsweise 0 bis 60 Gew.-% und besonders bevorzugt 0 bis 50 Gew.-% eines C2-C6- Olefins, insbesondere Ethylen und gegebenenfalls ein oder zwei weitere Monomere, ausgewählt unter (Meth)acrylsäureestern von CrC10-Alkanolen in einer Menge von 1 bis 15 Gew.-% einpolymerisiert.
Unter den vorgenannten Polymerisaten sind die Polymerisate der Klassen IV und V besonders geeignet.
Bevorzugt werden Homopolymerisate von Vinylestern aliphatischer Carbonsäuren, insbesondere von Vinylacetat. Eine spezielle Ausführungsform sind solche, die mit Schutzkolloiden wie Polyvinylpyrrolidon und anionischen Emulatoren stabilisiert werden. Eine solche Ausführungsform wird in der WO 02/26845 beschrieben, auf die ausdrücklich Bezug genommen wird.
Als Monomere B kommen grundsätzlich alle Monomere in Betracht, die von den vorgenannten Monomeren verschieden und mit den Monomeren A copolymerisierbar sind. Derartige Monomere sind dem Fachmann bekannt und dienen in der Regel der Modifizierung der Eigenschaften des Polymerisats. Bevorzugte Monomere B sind ausgewählt unter monoethylenisch ungesättigten Mono- und Dicarbonsäuren mit 3 bis 8 C-Atomen, insbesondere Acrylsäure, Methacrylsäure, Itaconsäure, deren Amiden wie Acrylamid und Methacrylamid, deren N-Alkylolamiden wie N-Methylolacrylamid und N-Methylolmethacrylamid, deren Hydroxy-Ci-C4-aIkyl- estern wie 2-Hydroxyethylacrylat, 2- und 3-Hydroxypropylacrylat, 4-Hydroxybutylacryiat 2-Hydroxyethylmethacrylat, 2- und 3-Hydroxypropylmethacrylat, 4-Hydroxybutylmeth- acrylat und monoethylenisch ungesättigten Monomeren mit Oligoalkylenoxid-Ketten vorzugsweise mit Polyethylenoxidketten mit Oligomerisierungsgraden vorzugsweise im Bereich von 2 bis 200, z.B. Monovinyl- und Monoallylether von Oligoethylenglykolen sowie Ester der Acrylsäure, der Maleinsäure oder der Methacrylsäure mit Oligoethylenglykolen.
Der Anteil der Monomere mit Säuregruppen beträgt vorzugsweise nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 5 Gew.-%, z.B. 0,1 bis 5 Gew.-%, bezogen auf die Monomere M. Der Anteil an Hydroxyalkylestern und Monomeren mit
Oligoalkylenoxidketten liegt, sofern enthalten, vorzugsweise im Bereich von 0,1 bis 20 Gew.-% und insbesondere im Bereich von 1 bis 10 Gew.-%, bezogen auf die Monomere M. Der Anteil der Amide und N-Alkylol-amide liegt, sofern enthalten, vorzugsweise im Bereich von 0,1 bis 5 Gew.-%. .
Neben den vorgenannten Monomeren B kommen als weitere Monomere B auch vernetzende Monomere, wie Glycidylether und -ester, z.B. Vinyl-, AIIyI- und Methaliyf- glycidylether, Glycidylacrylat und -methacrylat, die Diacetonylamide der obengenannten ethylenisch ungesättigten Carbonsäuren, z.B. Diaceton(meth)acrylamid, und die Ester der Acetylessigsäure mit den obengenannten Hydroxyalkylestern ethylenisch ungesättigter Carbonsäuren, z.B. Acetylacetoxyethyl(meth)acrylat in Betracht. Als Monomere B kommen weiterhin Verbindungen, die zwei nicht-konjugierte, ethylenisch ungesättigte Bindungen aufweisen, z.B. die Di- und Oligoester mehrwertiger Alkohole mit a,b-monoethylenisch ungesättigten C3-C10-Monocarbonsäuren wie Alkylenglykol- diacrylate und -dimethacrylate, z.B. Ethylenglykoldiacrylat, 1 ,3-Butylenglykoldiacrylat, 1 ,4-Butylenglykoldiacrylat, Propylenglykoldiacrylat, sowie weiterhin Divinylbenzol, Vinylmethacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallyl- fumarat, Methylenbisacrylamid, Cyclopentadienylacrylat, Tricyclodecenyl(meth)acrylat, N,N'-Divinylimidazolin-2-on oder Triallylcyanurat in Betracht. Der Anteil vernetzender Monomere liegt in der Regel nicht über 1 Gew.-%, bezogen auf die Gesamtmonomer- menge und wird insbesondere 0,1 Gew.-% nicht überschreiten.
Weiterhin sind als Monomere B auch Vinylsilane, z.B. Vinyltrialkoxysilane geeignet. Diese werden, sofern gewünscht, in einer Menge von 0,01 bis 1 Gew.-%, bezogen auf die Gesamtmonomermenge bei der Herstellung der Polymerisate eingesetzt. Wässrige Polymerisatdispersionen sind insbesondere durch radikalisch initiierte wässrige Emulsionspolymerisation von ethylenisch ungesättigten Monomeren zugänglich. Diese Methode ist vielfach vorbeschrieben und dem Fachmann daher hinreichend bekannt [vgl. z.B. Encyclopedia of Polymer Science and Engineering, Vol. 8, Seiten 659 bis 677, John Wiley & Sons, Inc., 1987; D.C. Blackley, Emulsion Polymerisation, Seiten 155 bis 465, Applied Science Publishers, Ltd., Essex, 1975; D.C. Blackley, Polymer Latices, 2nd Edition, Vol. 1 , Seiten 33 bis 415, Chapman & Hall, 1997; H. Warson, The Applications of Synthetic Resin Emulsions, Seiten 49 bis 244, Ernest Benn, Ltd., London, 1972; D. Diederich, Chemie in unserer Zeit 1990, 24, Seiten 135 bis 142, Verlag Chemie, Weinheim; J. Piirma, Emulsion Polymerisation, Seiten 1 bis 287, Academic Press, 1982; F. Hölscher, Dispersionen synthetischer Hochpolymerer, Seiten 1 bis 160, Springer-Verlag, Berlin, 1969 und die Patentschrift DE-A 40 03 422]. Die radikalisch initiierte wässrige Emulsionspolymerisation erfolgt üblicherweise dergestalt, dass man die ethylenisch ungesättigten Monomeren, häufig unter Mitverwendung von oberflächenaktiven Substanzen, in wässrigem Medium dispers verteilt und mittels wenigstens eines radikalischen Polymerisationsinitiators polymerisiert. Häufig werden bei den erhaltenen wässrigen Polymerisatdispersionen die Restgehalte an nicht umgesetzten Monomeren durch dem Fachmann ebenfalls bekannte chemische und/oder physikalische Methoden [siehe beispielsweise EP-A 771328, DE-A 19624299, DE-A 19621027, DE-A 19741184, DE-A 19741187, DE-A 19805122, DE-A 19828183, DE-A 19839199, DE-A 19840586 und 19847115] herabgesetzt, der Polymerisatfeststoffgehalt durch Verdünnung oder Aufkonzentration auf einen gewünschten Wert eingestellt oder der wässrigen Polymerisatdispersion weitere übliche Zusatzstoffe, wie beispielsweise bakterizide oder schaumdämpfende Additive zugesetzt. Häufig betragen die Polymerisatfeststoffgehalte der wässrigen
Polymerisatdispersionen 30 bis 80 Gew.-%, 40 bis 70 Gew.-% oder 45 bis 65 Gew.-%. Ebenso bevorzugt werden die aus den Polymerisatdispersionen hergestellten Polymerisatpulver sowie wässrige Dispersionen die durch Redispergieren der Polymerpulver in Wasser erhältlich sind. Sowohl wässrige Polymerdispersionen als auch die daraus hergestellten Pulver sind überdies kommerziell erhältlich, z.B. unter den Marken ACRONAL®, STYRONAL®, BUTOFAN®, STYROFAN® und KOLLICOAT® der BASF-Aktiengesellschaft, Ludwigshafen, Deutschland, VINNOFIL® und VINNAPAS® der Fa. Wacker Chemie-GmbH, Burghausen, und RHODIMAX® der Fa. Rhodia S.A.
Als oberflächenaktive Substanzen für die Emulsionspolymerisation kommen die üblicherweise für die Emulsionspolymerisation eingesetzten Emulgatoren und Schutzkolloide in Betracht. Bevorzugte Emulgatoren sind anionische und nichtionische Emulgatoren, die im Unterschied zu den Schutzkolloiden in der Regel ein Molekulargewicht unterhalb 2000 g/mol aufweisen und in Mengen von bis zu 0,2 bis 10 Gew.-%, vorzugsweise 0,5 bis 5 Gew.-%, bezogen auf das Polymerisat in der Dispersion bzw. auf die zu polymerisierenden Monomere M eingesetzt werden. Derartige Schutzkolloide sind beispielhaft bereits oben für die Mikrokapselbildung genannt.
Zu den anionischen Emulgatoren zählen Alkali- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8-C20), von Schwefelsäurehalbestern ethoxylierter Alkanole (EO-Grad: 2 bis 50, Alkylrest: C8 bis C20) und ethoxylierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4-C20), von Alkylsulfonsäuren (Alkylrest C8 bis C20), von sulfonierten Mono- und Di- C6-Ci8-alkyldiphenylethern, wie sie in US-A-4,269,749 beschrieben werden, und von Alkylarylsulfonsäuren (Alkylrest: C4-C20). Weitere geeignete anionische Emulgatoren finden sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961, S. 192-208.
Geeignete nichtionische Emulgatoren sind araliphatische oder aliphatische nichtionische Emulgatoren, beispielsweise ethoxylierte Mono-, Di- und Trialkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4-C9), Ethoxylate langkettiger Alkohole (EO-Grad: 3 bis 50, Alkylrest: C8-C36), sowie Polyethylenoxid/Polypropylenoxid-Blockcopolymere. Bevorzugt werden Ethoxylate langkettiger Alkanole (Alkylrest: C10-C22, mittlerer Ethoxylierungsgrad: 3 bis 50) und darunter besonders bevorzugt solche auf Basis von Oxoalkoholen und nativen Alkoholen mit einem linearen oder verzweigten C12-C18- Alkylrest und einem Ethoxilierungsgrad von 8 bis 50.
Selbstverständlich kann das Molekulargewicht der Polymere durch Zugabe von Reglern in einer geringen Menge, in der Regel bis zu 2 Gew.-%, bezogen auf die polymerisierenden Monomere M, eingestellt werden. Als Regler kommen insbesondere organische Thioverbindungen, ferner Allylalkohole und Aldehyde in Betracht. Bei der Herstellung der Butadien-enthaltenden Polymere der Klasse I werden häufig Regler in einer Menge von 0,1 bis 2 Gew.-%, vorzugsweise organische Thioverbindungen wie tert.-Dodecylmercaptan eingesetzt.
Nach Beendigung der Polymerisation werden die verwendeten Polymerdispersionen vor ihrer erfindungsgemäßen Verwendung häufig alkalisch, vorzugsweise auf pH- Werte im Bereich von 7 bis 10 eingestellt. Zur Neutralisation können Ammoniak oder organische Amine einsetzt, sowie vorzugsweise Hydroxide, wie Natriumhydroxid, Kaliumhydroxid oder Calciumhydroxid verwendet werden.
Zur Herstellung von Polymerpulvern werden die wässrigen Polymerdispersionen in bekannter Weise einem Trocknungsverfahren, vorzugsweise in Gegenwart üblicher Trocknungshilfsmittel, unterworfen. Bevorzugtes Trocknungsverfahren ist die Sprüh- trocknung. Sofern erforderlich, wird das Trocknungshilfsmittel in einer Menge von 1 bis 30 Gew.-% vorzugsweise 2 bis 20 Gew.-%, bezogen auf den Polymergehalt der zu trocknenden Dispersion eingesetzt. Die Sprühtrocknung der zu trocknenden Polymerisatdispersionen erfolgt in der Regel wie bereits für die Mikrokapseldispersion beschrieben, oftmals in Gegenwart eines üblichen Trocknungshilfsmittels wie Homo- und Copolymere des Vinylpyrrolidons, Homo- und Copolymere der Acrylsäure und/oder der Methacrylsäure mit Hydroxylgruppen tragenden Monomeren, vinylaromatischen Monomeren, Olefinen und/oder (Meth)acrylsäureestern, Polyvinylalkohol und insbesondere Arylsulfonsäure- Formaldehyd-Kondensationsprodukte sowie Gemischen davon.
Femer kann man der zu trocknenden Polymerisatdispersion während des Trocknungsvorganges ein übliches Anticaking-Mittel (Antibackmittel) wie ein feinteiliges anorganisches Oxid beispielsweise eine feinteilige Kieselsäure oder ein feinteiliges Silicat, z.B. Talkum zusetzen.
Für gewisse Verwendungen der erfindungsgemäßen grobteiligen Zubereitungen ist eine Wasserstabilität der Bindemittelpolymere nicht notwendig, beispielsweise in abgeschlossenen nichtwässrigen Systemen. In solchen Fällen sind auch Bindemittelpolymere geeignet, die wasserlöslich oder teilweise wasserlöslich sind.
Geeignet sind natürliche polymere Bindemittel wie Stärke und Cellulose sowie synthetische polymere Bindemittel. Derartige Bindemittel sind beispielsweise Polyvinyl- pyrrolidon, Polyvinylalkohol oder teilhydrolysiertes Poiyvinylacetat mit einem Hydrolysegrad von wenigsten 60 %, sowie Copolymere des Vinylacetats mit Vinyipyrrolidon, ferner Pfropfpolymere des Polyvinylacetats mit Polyethern insbesondere Ethylenoxid. Als besonders vorteilhaft haben sich Pfropfpolymere des Polyvinylacetats mit Ethylenoxid erwiesen. Solche Pfropfpolymere sind beispielsweise in der EP-A-1 124 541 . beschrieben, auf deren Lehre ausdrücklich verwiesen wird. Derartige Polymere sind überdies kommerziell erhältlich, z.B. unter den Marken KOLLIDON® und KOLLICOAT® der BASF Aktiengesellschaft.
Die Herstellung der grobteiligen Zubereitung kann derart erfolgen, dass man die Mikrokapseln zusammen mit dem polymeren Bindemittel und Wasser in eine grobteilige Form bringt, beispielsweise granuliert oder extrudiert, und anschließend gegebenenfalls trocknet. Das Bindemittel kann dem Mikrokapselpulver zugesetzt werden. Nach einer weiteren Ausführungsform kann das Bindemittel bereits als Sprühhilfsmittel während der Sprühtrocknung der Mikrokapseln zugesetzt werden. Derartig bevorzugte Bindemittel sind die oben für die Sprühtrocknung der Mikrokapseln genannten. Sie werden üblicherweise in einer Menge von 1 bis 10 Gew.-% bezogen auf den Feststoffanteil der Mikrokapseldispersion zugesetzt. In diesen Fällen ist die Zugabe von weiterem Bindemittel möglich, in der Regel aber nicht notwendig. Als Bindemittel können auch die bei der Herstellung der Mikrokapseln eingesetzten organischen Schutzkolloide wirken. Eine Zugabe weiterer Bindemittel ist dann in der Regel nicht nötig. Nach dieser bevorzugten Variante werden aus 10 bis 100 Gew.-% eines oder mehrerer Ci-C24-Alkylester der Acryf- und/oder Methacrylsäure (Monomere I), 0 bis 80 Gew.-% eines bi- oder polyfunktionellen Monomers (Monomere II), welches in Wasser nicht löslich oder schwer löslich ist und 0 bis 90 Gew.-% sonstige Monomere (Monomer III), jeweils bezogen auf das Gesamtgewicht der Monomere, dem Latentwärmespeichermaterial und dem organischen Schutzkolloid eine Öl-in-Wasser- Emulsion hergestellt und die Kapselwand durch radikalische Polymerisation gebildet, die resultierende Mikrokapseldispersion sprühgetrocknet und in eine grobteilige Form gebracht.
Die Herstellung der Zubereitung kann nach den für Agglomeraten wie Pellets, Tabletten und Granulaten bekannten Methoden erfolgen.
Erfindungsgemäß können Granulate durch Mischergranulierung hergestellt werden. Es werden Mischer eingesetzt, die mit starren oder rotierenden Einsätzen versehen sind (z. B. Diosna-Pharmamischer) und im Idealfall in einem Arbeitsgang mischen, granulieren und trocknen. Das Mikrokapselpulver wird unter Zugabe des polymeren Bindemittels und ggf. Wasser, durch die Umlagerungsbewegung zu Granulaten aufgebaut. Diese werden anschließend im Wirbelschicht-, Umluft-, oder Vakuumtrockner getrocknet und mittels Siebmaschinen oder Mühlen zerkleinert. Besonders schonend und staubfrei ist beispielsweise ein Vakuum- Rotationsmischtrockner.
Erfindungsgemäß extrudiert man die Mikrokapseln zusammen mit dem polymeren Bindemittel.
Die Herstellung der grobteiligen Zubereitung erfolgt unter Zugabe von Wasser und dem polymeren Bindemittel. Dabei ist es möglich, das Wasser zu dem Mikrokapsel- und/oder Bindemittelpulver zuzudosieren. Nach einer bevorzugten Ausführungsform vermischt man das Mikrokapselpulver direkt mit einer Bindemitteldispersion des gewünschten Wassergehaltes. Der Wassergehalt beträgt 10- 40 Gew.-% bezogen auf das Gesamtgemisch. Ein niedrigerer Wassergehalt führt in der Regel zu einer unvollständigen Durchmischung der beiden Komponenten und schlechter Formbarkeit. Höhere Wassergehalte sind prinzipiell möglich, oberhalb von 50 Gew.-% Wasser lässt sich die Masse nicht mehr extrudieren, sondern zerfließt. Bevorzugt ist ein Wassergehalt von 20 - 35 Gew.-% am Austragspunkt, da in diesem Bereich die erhaltenen Pellets bereits eine gute Festigkeit aufweisen.
Geeignet sind Extruder wie Ein- oder Zweischneckenextruder und die sogenannte Schmelzekalandrierung oder Schmelzetablettierung. Zweischneckenextruder arbeiten nach dem Prinzip eines Mischaggregats, das gleichzeitig vorwärts hin auf ein Düsenwerkzeug transportiert und verdichtet.
Nach einer bevorzugten Ausführungsform wird das Produkt in der Einzugszone gegen die Aufwärmzone verdichtet. In der Mittelzone des Extruders werden die Stoffe dispergiert und ggf. entgast. In der Endzone des Extruders wird das Gemisch unter Druck durch ein Düsenwerkzeug ausgebracht.
Man extrudiert im Temperaturbereich der Glasübergangstemperatur des Bindemittel- polymers und bevorzugt unterhalb der Erweichungs- oder Zersetzungstemperatur der Mikrokapselwand. Das Bindemittelpolymer sollte unter den Verarbeitungsbedingungen einen Film bilden, d.h. es sollte zumindest teilweise aufschmelzen oder erweichen, ohne allerdings zu dünnflüssig zu werden, um die Mikrokapselzubereitung in Form zu bringen. Ein geeigneter Temperaturbereich ist der Bereich von 25 K unterhalb bis etwa 50 K oberhalb der Glasübergangstemperatur. Der Erweichungsbereich des
Bindemittelpolymers kann allerdings durch Weichmacher- oder Lösungsmitteleffekte mitunter deutlich abgesenkt werden, so dass in Gegenwart dieser Substanzen auch eine Verarbeitung bis 50 K unterhalb der Glasübergangstemperatur möglich ist. Bei Einsatz flüchtiger Weichmacher ist es somit möglich, diese nach dem Formgebungs- prozess zu entfernen, wodurch eine größere Festigkeit erreicht wird. Da Wasser für polare und die wasserlöslichen, filmbildenden Polymere ein Weichmacher ist, gilt die Betrachtung der Glasübergangstemperatur des reinen Polymers in diesen Fällen nicht.
Das Düsenwerkzeug des Extruders kann je nach Wunsch aus einer oder mehreren Lochdüsen oder einer Flachdüse bestehen oder auch eine komplexere Form, beispielsweise rohrförmig, haben. Erfindungsgemäß wählt man Düsen, mit denen Teilchen erhalten werden, deren Verhältnis von Oberfläche zu Volumen der folgenden Relation gehorcht:
Ij Oberfläche yVoϊumen Bevorzugte Düsen weisen beispielsweise eine Kreuz- oder Stemform, beispielsweise 3-, 4-, 5- oder 6-zackig, auf.
Nach einer bevorzugten Variante betragen die Temperaturen im Extruder 40 bis 1200C. Dabei ist es möglich, dass eine konstante Temperatur vorherrscht. Ebenso ist es möglich, dass entlang der Transportrichtung der Mikrokapsel/Bindemittelmischung ein Temperaturgradient von 40 bis auf 12O0C herrscht. Dabei sind bei dem Gradienten jegliche Abstufungen möglich von kontinuierlich bis stufenweise. Die Agglomerierung bei diesen Temperaturen hat den Vorteil, dass ein Teil des Wassers bereits während des Misch- und/oder Verdichtungsprozesses verdampft.
Gegebenenfalls werden zum Extrudieren Gleitmittel wie Stearinsäure zugegeben. Sonstige Zusatzstoffe der grobteiligen Mikrokapselzubereitung können sein: Farbstoffe, Pigmente, Duftstoffe, Antistatika, Hydrophilierungsmittel und bevorzugt Graphit insbesondere expandiertes Graphit.
Gemäß einer bevorzugten Ausführungsform enthält die Zubereitung 2 - 20 Gew.-% Graphit bezogen auf das Gesamtgewicht der grobteiligen Zubereitung.
Die Herstellung von expandiertem Graphit sowie Produkten aus expandiertem Graphit ist bekannt aus der US-A 3 404 061. Für die Herstellung von expandiertem Graphit werden Graphiteinlagerungsverbindungen oder Graphitsalze, z.B. Graphithydrogensulfat oder Graphitnitrat, schockartig erhitzt. Das dabei entstehende sogenannte Graphitexpandat besteht aus wurm- oder ziehharmonikaförmigen Aggregaten.
Durch Verdichten dieses Graphitexpandats unter Druck können ohne Binderzusatz selbsttragende Graphitfolien oder -platten hergestellt werden. Zerkleinert man solch verdichtetes oder "vorverdichtetes" Graphitexpandat mit Hilfe von Schneid-, Prall- und/oder Strahlmühlen, dann erhält man je nach Zerkleinerungsgrad ein Pulver oder Häcksel aus vorverdichtetem Graphitexpandat. Diese Pulver lassen sich fein verteilt und homogen in Pressmassen einmischen. Alternativ kann Graphitexpandat auch direkt, d.h. ohne vorherige Verdichtung, zu einem in Pressmassen einmischbaren Pulver zerkleinert werden.
Pulver oder Häcksel aus verdichtetem Graphitexpandat können reexpandiert werden, wenn dies für die weitere Verwendung erforderlich ist. Ein solcher Prozess ist in der US-A 5 882 570 beschrieben. Auf diese Weise erhält man ein sog. reexpandiertes Graphitpulver (Reexpandat).
Im folgenden wird der Begriff "expandierter Graphit" zusammenfassend gebraucht für (i) Graphitexpandat, (ii) durch Zerkleinern von verdichtetem Graphitexpandat erhaltene Pulver bzw. Häcksel, (iii) durch Zerkleinern von Graphitexpandat gewonnenes Pulver, und (iv) durch Reexpandieren von zerkleinertem verdichtetem Graphitexpandat hergestelltes Reexpandat. Alle Formen (i) bis (iv) des expandierten Graphits sind geeignete Zusatzstoffe der grobteiligen Mikrokapselzubereitung. Dabei hat das
Graphitexpandat eine Schüttdichte von 2 bis 20 g/l, das zerkleinerte Graphitexpandat hat eine Schüttdichte von 20 bis 150 g/l, das zerkleinerte verdichtete Graphitexpandat eine Schüttdichte von 60 bis 200 g/l, und das reexpandierte verdichtete Graphitexpandat eine Schüttdichte von 20 bis 150 g/l.
Bei expandiertem Graphit mit einer mittleren Partikelgröße von ca. 5 μm beträgt die spezifische Oberfläche nach der BET-Methode typischerweise zwischen 25 und 40 m2/g. Mit zunehmendem Durchmesser der Teilchen nimmt die BET-Oberfläche des expandierten Graphits zwar ab, bleibt jedoch weiterhin auf einem relativ hohen Niveau. So weist expandierter Graphit mit einer mittleren Partikelgröße von 5 mm immer noch eine BET-Oberfläche von mehr als 10 m2/g auf. Für die Herstellung der erfindungsgemäßen Teilchen ist expandierter Graphit mit mittleren Partikelgrößen im Bereich von 5 μm bis 5 mm geeignet. Bevorzugt wird expandierter Graphit mit einer mittleren Teilchengröße im Bereich von 5 μm bis 5 mm, besonders bevorzugt im Bereich von 50 μm bis 1 mm.
Die erfindungsgemäßen Mikrokapselzubereitungen haben das Latentwärmespeichermaterial dicht eingeschlossen, so dass keine Emissionen an die Umgebungsluft nachweisbar sind. Dies ermöglicht ihren Einsatz nicht nur in geschlossenen Systeme, sondern darüber hinaus auch in offenen Systemen.
Die grobteiligen Mikrokapselzubereitungen eignen sich hervorragend zur Verwendung in Baustoffen sowie als Speichermaterial in Wärmetauschern. Sie zeigen eine gute Härte und sind abriebfest. Ihre grobteilige Struktur ermöglicht eine frei wählbare Speichergeometrie, beispielsweise Schüttungen für Fußbodenbeläge, chemischen Reaktoren oder Kolonnen, sowie in durchströmten Anwendungen wie Wärmetauschern in Solaranlagen, Heizungen insbesondere Warmluftheizungen und zentraler und dezentraler Lüftung.
Aufgrund der günstigen Verhältnisse von Oberfläche zu Zwischenräumen der Teilchen untereinander ist eine große Wärmeübertragung möglich, die durch die gute Durchströmbarkeit eines beliebigen Trägermaterials wie Luft oder Wasser schnell abgeführt werden kann. Bezogen auf das Volumen der Zubereitung zeigen die grobteiligen Mikrokapseln eine sehr hohe Speicherkapazität und weisen damit einen sehr hohen Wirkungsgrad auf. Damit haben sie bei gleicher Speicherleistung im Vergleich zu herkömmlichen Wärmespeichern einen geringen Platzbedarf wie auch ein niedrigeres Speichergewicht.
Die erfindungsgemäßen grobteiligen Mikrokapselzubereitungen können darüber hinaus vorteilhaft zusammen mit mineralischen oder silikatischen Bindebaustoffen verarbeitet werden. Geeignete mineralische Bindemittel sind allgemein bekannt. Es handelt sich um feinteilige anorganische Stoffe wie Kalk, Gips, Ton, Lehm und Zement, die durch Anrühren mit Wasser in ihre gebrauchsfertige Form überführt werden und sich beim Trocknen als Funktion der Zeit, gegebenenfalls unter erhöhter Temperatur verfestigen. Die erfindungsgemäßen grobteiligen Mikrokapselzubereitungen werden zusammen mit dem mineralischen Bindemittel, Wasser, Zuschlägen wie Kies, Sand, Glas oder Mineralfasern sowie gegebenenfalls Hilfsmittel in den gebrauchsfertigen Formkörper überführt. Die nachfolgenden Beispiele sollen die Erfindung näher erläutern.
Es wurde ein Mikrokapselpulver verwendet wie es gemäß Beispiel 1 der DE 101 63 162 und anschließender Sprühtrocknung erhalten wird. Die Mikrokapseln hatten einen mittleren Durchmesser von 7,8 μm.
Beispiel (nicht erfindungsgemäß)
3000 g des oben beschriebenen Mikrokapselpulvers (Schmp. 28 0C) wurden in einem
Diosna-Mischer Typ V 50 langsam mit 287 g einer 55 gew.%igen, wässrigen Styrol- Acrylnitrildispersion (siehe Material B in Beispiel 5) und 623 g Wasser versetzt. Die befeuchtete Masse wurde 6 min unter Zuschaltung des Zerhackers (Stufe 1) durchmischt, so dass die Flüssigkeitsmenge gleichmäßig verteilt vorlag. Diese Masse wurde sodann in einem Alexanderwerk Laborgranulator Typ RSA mit vertikalem Sieb der Maschenweite 3,0 mm extrudiert. DieGranulate wurden danach auf Horden getrocknet. Es wurden trockene Extrudate mit einem Durchmesser von ca. 3 mm und einer Länge von 4mm erhalten, die hart und abriebstabil waren.
Vergleichsbeispiel
Maschine: Dichtkämmender Gleichdralldoppelschneckenextruder Typ FTS16mm, Austragsdüse Lochdüse 3 mm Durchmesser, 5 Heizzonen von der Eintragsöffnung bis zur Austragsdüse, Zone 1 bis 4 auf 75°C geheizt, Zone 5 auf 850C beheizt. Die verwendete Extruderschnecke besteht bis auf ein Element (Rückförderelement) etwa in der Mitte aus herkömmlichen Förderelementen mit denen ein Einmischen durch ein starkes Scherfeld im Zwickelbereich gewährleistet wird. Der Gesamtdurchsatz beträgt 775 g/h, die Schneckendrehzahl 150 Upm. Der Druckaufbau in der Schnecke sorgt für ein kontinuierliches Austragen des benetzten Latentwärmespeicherpulvers.
Materialien:
A) sprühgetrocknetes PMMA-Mikrokapselpulver gemäß DE 197 49 731 mit einem Kern aus n-Octadecan, bestehend aus 87 Gew.-% Kern, 10 Gew.-% vernetzter PMMA-
Wand (PMMA = Polymethylmethacrylat) und 3 % Dispergiermittel Polyvinylalkohol.
B) 55 gew.-%ige, wässrige Polymerdispersion eines Polymeren aus 88 Gew.-% Styrol, 10 Gew.-% Acrylnitril und 2 Gew.-% Acrylsäure, zahlenmittleres Molekulargewicht Mn: 8000, volumenmittleres Molekulargewicht Mw:45 000, Glasübergangstemperatur Tg: 1050C.
In einem Gefäß wurden 92 g der Dispersion B), 183 g Wasser und 500 g Mikrokapselpulver A) gemischt und in den Einfülltrichter des Extruders gegeben. Diese Materialmenge wird im Laufe von einer Stunde komplett eingezogen und verarbeitet. Die Kopftemperatur des Extruders erreicht nach einigen Minuten 910C. Mit dieser Temperatur wird das Material homogen und gleichmäßig aus der Düse gefördert und durch einen wasserfreien Trockenabschlag in Granulatform von ca. 3 mm Breite und 5 mm Länge erhalten. Der theoretische Bindemittelanteil im Granulat beträgt 9,2 Gew.-%; der Paraffinanteil im Endprodukt beträgt 79 %. Das Granulat wurde anschließend im Warmluftstrom getrocknet. Das Granulat lässt sich mit gewissem Kraftaufwand mit den Fingern zerbrechen, ist aber bei Schütteln des Granulats stabil. Das Granulat ist auch nach mehrtägiger Lagerung unter Wasser stabil ohne Auflösungserscheinungen.
Die Porenfläche gemessen durch Quecksilberporosimetrie gemäß DIN 66133 beträgt 28,1 m2/g.
Beispiel 1
Der Extruder-Versuchsaufbau des Vergleichsbeispiels wurde übernommen mit dem Unterschied, dass eine Austragsdüse mit Sternform (analog Fig. 10 B) verwendet wurde (4 x 3 mm Profildüse).
Materialien:
A) sprühgetrocknetes PMMA-Mikrokapselpulver mit einem Kern aus n-Octadecan
B) B) 55 gew.-%ige, wässrige Polymerdispersion eines Polymeren aus 88 Gew.-% Styrol, 10 Gew.-% Acrylnitril und 2 Gew.-% Acrylsäure, zahlenmittleres Molekulargewicht Mn: 8000, volumenmittleres Molekulargewicht Mw: 45 000, Glasübergangstemperatur Tg: 105 0C.
In einem Gefäß wurden 900 g/h der Dispersion B), 300 g/h Wasser und 6500 g Mikrokapselpulver A) gemischt und in den Einfülltrichter des Extruders gegeben. Diese Materialmenge wurde im Laufe von einer Stunde komplett eingezogen und verarbeitet. Die Kopftemperatur des Extruders erreichte nach einigen Minuten 55 0C. Mit dieser Temperatur wurde das Material homogen und gleichmäßig aus der Düse gefördert und durch einen wasserfreien Trockenabschlag Granulate von 4 mm Länge und 3 mm Gesamtdurchmesser erhalten. Die Kanten der Granulate sind abgerundet. Der theoretische Bindemittelanteil im Granulat beträgt 4,4 Gew.-%. Das Granulat wurde anschließend im Warmluftstrom getrocknet.
Die Porenfläche gemessen durch Quecksilberporosimetrie gem. DIN 66133 beträgt 39,6 m2/g.

Claims

Patentansprüche
1. Grobteilige Mikrokapselzubereitung enthaltend ein oder mehrere mikroverkapsel- te Latentwärmespeichermaterialien und ein oder mehrere polymere Bindemittel, wobei das Verhältnis von Oberfläche zu Volumen der Teilchen der folgenden Relation gehorcht:
^Oberfläche
> 2,5.
\jVolumen
2. Grobteilige Mikrokapselzubereitung nach Anspruch 1, wobei 90 Gew.-% der Teilchen größer als 500 μm sind.
3. Grobteilige Mikrokapselzubereitung nach Anspruch 1 oder 2, wobei der Bindemittelgehalt gerechnet als Feststoff 1 - 40 Gew.-% bezogen auf das Gesamtge- wicht der grobteiligen Mikrokapselzubereitung beträgt.
4. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 3, wobei das Latentwärmespeichermaterial eine lipophile Substanz mit einem fest/flüssig Phasenübergang im Temperaturbereich von -20 bis 1200C ist.
5. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 4, wobei das Latentwärmespeichermaterial eine aliphatische Kohlenwasserstoffverbindung ist.
6. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 5, wobei die Kapselwand ein duroplastisches Polymer ist.
7. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 6, wobei die Kapselwand aufgebaut ist aus
10 bis 100 Gew.-% eines oder mehrerer CrC24-Alkylester der Acryl- und/oder
Methacrylsäure (Monomere I),
0 bis 80 Gew.-% eines bi- oder polyfunktionellen Monomers (Monomere II), welches in Wasser nicht löslich oder schwer löslich ist und 0 bis 90 Gew.-% sonstige Monomere (Monomer III)
jeweils bezogen auf das Gesamtgewicht der Monomere.
8. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 7, wobei das Bindemittelpolymer unter Verarbeitungsbedingungen filmbildende Eigenschaften hat.
9. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 8, wobei das Bindemittelpolymer eine Glasübergangstemperatur von -60 bis +150 0C hat.
10. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 9, wobei das Bindemittelpolymer aus einem oder mehreren ethylenisch ungesättigten Monomeren M durch Emulsionspolymerisation aufgebaut wird.
11. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 10, wobei das Bindemittelpolymer ein Homopolymerisat von Vinylestem aliphatischer Carbonsäuren oder ein Copolymerisat von Vinylestem aliphatischer Carbonsäuren mit Olefinen und/oder Alkyl(meth)acrylaten ist.
12. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 11 , wobei das Bindemittelpolymer ein Copolymerisat von Styrol mit Acrylnitril ist.
13. Grobteilige Mikrokapselzubereitung nach einem der Ansprüche 1 bis 12, wobei die grobteilige Zubereitung 2-20 Gew.-% Graphit bezogen auf das Gesamtgewicht der Zubereitung enthält.
14. Grobteilige Mikrokapselzubereitung nach Anspruch 13, wobei der Graphit geblähter Graphit ist.
15. Verfahren zur Herstellung grobteiliger Mikrokapselzubereitungen gemäß den Ansprüchen 1 bis 14, dadurch gekennzeichnet, dass man die Mikrokapseln zusammen mit dem polymeren Bindemittel und Wasser in eine grobteilige Form bringt und anschließend gegebenenfalls trocknet.
16. Verfahren zur Herstellung von grobteiligen Mikrokapselzubereitungen nach An- spruch 15, dadurch gekennzeichnet, dass man die Mikrokapseln zusammen mit der polymeren Bindemitteldispersion bei Temperaturen im Bereich 25 K unterhalb bis 50 K oberhalb der Glasübergangstemperatur des Bindemittelpolymers extrudiert und anschließend gegebenenfalls trocknet.
17. Verfahren zur Herstellung von grobteiligen Mikrokapselzubereitungen nach Anspruch 16, dadurch gekennzeichnet, dass man bei Temperaturen im Bereich von 60 bis 11O0C extrudiert.
18. Verfahren zur Herstellung von grobteiligen Mikrokapselzubereitungen nach An- spruch 15, dadurch gekennzeichnet, dass man durch eine Kreuz- oder Stemform extrudiert.
19. Verwendung der grobteiligen Mikrokapselzubereitung gemäß Anspruch 1 in Wärmetauschern.
20. Verwendung der grobteiligen Mikrokapselzubereitung gemäß Anspruch 1 in Baustoffen.
EP06701380A 2005-01-18 2006-01-14 Grobteilige mikrokapselzubereitung Withdrawn EP1841517A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005002411A DE102005002411A1 (de) 2005-01-18 2005-01-18 Grobteilige Mikrokapselzubereitung
PCT/EP2006/000291 WO2006077056A1 (de) 2005-01-18 2006-01-14 Grobteilige mikrokapselzubereitung

Publications (1)

Publication Number Publication Date
EP1841517A1 true EP1841517A1 (de) 2007-10-10

Family

ID=36051423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06701380A Withdrawn EP1841517A1 (de) 2005-01-18 2006-01-14 Grobteilige mikrokapselzubereitung

Country Status (8)

Country Link
US (1) US7575804B2 (de)
EP (1) EP1841517A1 (de)
JP (1) JP2008527156A (de)
KR (1) KR20070094857A (de)
CN (1) CN100566809C (de)
DE (1) DE102005002411A1 (de)
MX (1) MX2007008177A (de)
WO (1) WO2006077056A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374017B2 (ja) * 2006-10-05 2013-12-25 As R&D合同会社 蓄熱成形体
EP1930072B1 (de) * 2006-12-06 2017-05-10 Basf Se Formaldehydreduzierte Dispersionen von Mikrokapseln aus Melamin-Formaldehyd-Harzen
DE102007002797A1 (de) * 2007-01-18 2008-07-24 Alzchem Trostberg Gmbh Verwendung von mit schmelzbaren Materialien gefüllte Hohlkörper als Latentwärmespeicher
DE202007010668U1 (de) * 2007-07-30 2008-12-18 Follmann & Co. Gesellschaft Für Chemie-Werkstoffe Und -Verfahrenstechnik Mbh & Co. Kg Verbesserte Mikrokapseln
FR2936168B1 (fr) * 2008-09-25 2011-05-20 Air Liquide Fabrication d'agglomerat compose de materiau a changement de phase et presentant des proprietes controlees
JP5730295B2 (ja) 2009-06-15 2015-06-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 架橋剤として高分岐型ポリマーを有するマイクロカプセル
EP2483491A1 (de) * 2009-10-02 2012-08-08 Basf Se Gipsbauplatte enthaltend mikroverkapselte latentwärmespeichermaterialien
RU2012135463A (ru) 2010-01-19 2014-02-27 Хантсмэн Интернэшнл Ллс Включающие матрицу материалы и способ их изготовления
AT509335B1 (de) * 2010-04-06 2011-08-15 Ziegler Klausdieter Latentwärmespeicher mit klimatisierungskörpern
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US9993793B2 (en) 2010-04-28 2018-06-12 The Procter & Gamble Company Delivery particles
JP5638298B2 (ja) * 2010-07-08 2014-12-10 愛三工業株式会社 造粒蓄熱材および蒸発燃料処理装置
US8957122B2 (en) 2010-11-24 2015-02-17 Basf Se Thermoplastic molding composition comprising microencapsulated latent-heat-accumulator material
CN102127395B (zh) * 2010-12-10 2012-12-19 东南大学 一种石蜡相变储能材料及其制备方法
KR20140003571A (ko) 2011-01-24 2014-01-09 바스프 에스이 캡슐화된 살충제를 포함하는 농약 배합물
JP5869663B2 (ja) 2011-04-07 2016-02-24 ザ プロクター アンド ギャンブルカンパニー ポリアクリレートマイクロカプセルの付着が増大したシャンプー組成物
WO2012138710A2 (en) 2011-04-07 2012-10-11 The Procter & Gamble Company Personal cleansing compositions with increased deposition of polyacrylate microcapsules
CN103458871B (zh) 2011-04-07 2015-05-13 宝洁公司 具有增强的聚丙烯酸酯微胶囊的沉积的调理剂组合物
DE102011053308A1 (de) 2011-09-06 2013-03-07 Biologic Gmbh Phasenwechselmaterial-Zusammensetzung und daraus hergestelltes Latentwärmespeicherelement; Verfahren zur Herstellung eines Latentwärmespeicherelements und Verfahren zur Konditionierung eines Mediums mittels des Latentwärmespeicherelements
DE102012203924A1 (de) 2012-03-13 2013-09-19 Sgl Carbon Se Graphit und Phasenwechselmaterial enthaltende formbare Masse und Verfahren zur Herstellung eines Formkörpers aus der Masse
FR2991314B1 (fr) * 2012-05-30 2014-06-06 Saint Gobain Placo Composition de platre pour moules refractaires
EP2689836A1 (de) * 2012-07-26 2014-01-29 Basf Se Zusammensetzung aus Mikrokapseln mit Silicahülle und Herstellungsverfahren dafür
FR2995797B1 (fr) 2012-09-21 2015-12-18 Air Liquide Melange adsorbant comprenant des particules d'adsorbant et des particules de materiau a changement de phase
DE102012218378A1 (de) * 2012-10-09 2014-04-10 Wacker Chemie Ag Flächengebilde oder Formkörper enthaltend latente Wärmespeicher
KR20140070355A (ko) * 2012-11-30 2014-06-10 주식회사 유영정공 공랭식 열교환기용 팬링의 제조 방법 및 그 장치
EP2958955A1 (de) 2013-02-25 2015-12-30 Basf Se Partikelförmige mikrokapselzusammensetzung
EP3205392A1 (de) * 2016-02-12 2017-08-16 Basf Se Mikrokapseln und verfahren zur herstellung von mikrokapseln
CN107353879A (zh) * 2017-06-28 2017-11-17 芜湖启尊智能科技有限公司 一种液冷服用相变乳状液的制备方法
CN107189763A (zh) * 2017-06-28 2017-09-22 芜湖启尊智能科技有限公司 一种冷却液及其应用
KR102117062B1 (ko) * 2019-10-25 2020-06-04 철원건설 주식회사 기능성 결합재를 포함한 균열 저감형 초속경 시멘트 콘크리트 조성물 및 이를 이용한 도로 포장 보수 공법
KR102257252B1 (ko) * 2019-11-07 2021-05-28 한국과학기술연구원 캡슐 제조 방법 및 제조 장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756958A (en) * 1987-08-31 1988-07-12 Triangle Research And Development Corporation Fiber with reversible enhanced thermal storage properties and fabrics made therefrom
US4807696A (en) * 1987-12-10 1989-02-28 Triangle Research And Development Corp. Thermal energy storage apparatus using encapsulated phase change material
DE19749731A1 (de) 1997-11-11 1999-05-12 Basf Ag Verwendung von Mikrokapseln als Latentwärmespeicher
DE19819552A1 (de) * 1998-04-30 1999-11-04 Basf Ag Material mit temperaturgesteuerter Strahlungstransmission
DE19954772A1 (de) * 1999-11-15 2001-05-17 Remmers Bauchemie Gmbh Verwendung von siliciumorganischen Mikrokapseln als Latentwärmespeicher
DE10048536A1 (de) 1999-11-23 2001-05-31 Schuemann Sasol Gmbh Dynamischer Latentwärmespeicher
JP4173620B2 (ja) 2000-04-26 2008-10-29 三菱製紙株式会社 造粒物及びその加熱方法
DE10102250A1 (de) * 2000-07-21 2002-01-31 Rubitherm Gmbh Latenwärmespeichermaterial, Schallabsorber und Biofilter
WO2002026911A1 (en) * 2000-09-27 2002-04-04 Microtek Laboratories, Inc. Macrocapsules containing microencapsulated phase change materials
EP1197722A3 (de) 2000-10-10 2003-05-07 Malden Mills Industries, Inc. Heizende/wärmende Textilartikel mit einer Phasenumwandlungskomponente
DE10058101A1 (de) * 2000-11-23 2002-06-06 Rubitherm Gmbh Latentwärmespeicherkörper, Verfahren zur Herstellung eines Latentwärmespeicherkörpers, Verfahren zur Herstellung eines folienartigen Latenwärmespeicherkörpers und Verfahren zum Beschichten eines Trägermaterials
DE10200316A1 (de) 2001-01-11 2002-07-18 Rubitherm Gmbh Kunststoffteil und Verfahren zur Herstellung eines Kunststoffteiles
DE10139171A1 (de) 2001-08-16 2003-02-27 Basf Ag Verwendung von Mikrokapseln in Gipskartonplatten
DE10250249A1 (de) 2002-10-28 2004-05-13 Sgl Carbon Ag Mischungen für Wärmespeicher
JP2005061078A (ja) 2003-08-13 2005-03-10 Mitsubishi Paper Mills Ltd 蓄熱性建材
KR20070051318A (ko) 2004-08-10 2007-05-17 바스프 악티엔게젤샤프트 조립자 미소캡슐 제제

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006077056A1 *

Also Published As

Publication number Publication date
DE102005002411A1 (de) 2006-07-27
US20080166555A1 (en) 2008-07-10
CN101107064A (zh) 2008-01-16
JP2008527156A (ja) 2008-07-24
CN100566809C (zh) 2009-12-09
WO2006077056A1 (de) 2006-07-27
MX2007008177A (es) 2008-01-11
US7575804B2 (en) 2009-08-18
KR20070094857A (ko) 2007-09-21

Similar Documents

Publication Publication Date Title
EP1781752B1 (de) Grobteilige mikrokapselzubereitung
EP1841517A1 (de) Grobteilige mikrokapselzubereitung
EP1858635B1 (de) Mikrokapselpulver
EP2099557B1 (de) Mikrokapseln
EP2043773B1 (de) Polyelektrolyt-modifizierte mikrokapseln
EP1029018B1 (de) Verwendung von mikrokapseln als latentwärmespeicher
EP2234712B1 (de) Verfahren zur herstellung von mikrokapseln
EP2451849B1 (de) Mikrokapseln mit polyvinylmonomeren als vernetzer
WO2008046839A1 (de) Mikrokapseln
EP1421243A1 (de) Verwendung von mikrokapseln in gipskartonplatten
WO2011039177A1 (de) Gipsbauplatte enthaltend mikroverkapselte latentwärmespeichermaterialien
EP2958955A1 (de) Partikelförmige mikrokapselzusammensetzung
EP2906657B1 (de) Flächengebilde oder formkörper enthaltend latente wärmespeicher
WO2009040359A1 (de) Hydraulisch abbindende baustoffmischungen enthaltend mikroverkapselte lipophile substanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100318

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100729