EP1831929A1 - Gatestruktur und herstellungsverfahren dafür - Google Patents
Gatestruktur und herstellungsverfahren dafürInfo
- Publication number
- EP1831929A1 EP1831929A1 EP05810641A EP05810641A EP1831929A1 EP 1831929 A1 EP1831929 A1 EP 1831929A1 EP 05810641 A EP05810641 A EP 05810641A EP 05810641 A EP05810641 A EP 05810641A EP 1831929 A1 EP1831929 A1 EP 1831929A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- polycrystalline silicon
- grid
- gate
- metal silicide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 15
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 32
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 26
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 239000004020 conductor Substances 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000005538 encapsulation Methods 0.000 claims description 9
- 239000002019 doping agent Substances 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 5
- 229910021334 nickel silicide Inorganic materials 0.000 claims description 4
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical group [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 claims description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 3
- 230000001131 transforming effect Effects 0.000 claims description 2
- 229920005591 polysilicon Polymers 0.000 abstract description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 229910012990 NiSi2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
Definitions
- MOS transistors generally comprise a polycrystalline silicon gate.
- Figure 1 is a schematic sectional view of such a transistor.
- a transistor 2 is formed between shallow isolation zones 3, for example made of silicon oxide, commonly known as STI (Shallow Trench Isolation).
- the transistor 2 comprises a polycrystalline silicon gate 4 formed on a gate insulator 5 which may be an example of silicon oxide or a material with a high dielectric constant such as hafnium oxide.
- Lightly doped zones 8 and 9, commonly called LDD (Lightly Doped Drain), are then produced, for example by ion implantation.
- spacers 10 of insulating material, for example oxide or silicon nitride.
- Source 11 and drain 12 areas are performed, for example by ion implantation.
- Source areas 11 and drain 12 as well as on the top of the gate 4 are simultaneously developed contacts 13, 14 and 16 metal silicide, for example silicon nitride.
- the gate structure is thus composed of a stack ⁇ ment of an insulating layer, a polycrystalline silicon layer doped by ion implantation and a metal silicide layer.
- the first reason is to overcome the phenomenon of depletion of polycrystalline silicon. Indeed, the electrons of the gate 4 are repelled with respect to the gate oxide 5. A depletion zone is thus created above the oxide 5 with fewer carriers. By way of example, this zone may have a thickness of 0.4 nm. A parasitic capacitance is thus generated in series with the capacity of the gate oxide 5, the capacitance of the assembly becoming lower. Since the operating current of the transistor is proportional to this capacitance, it will be lower. The second reason is to decrease the resistance of the grid.
- Figure 2 is a schematic sectional view illus trating ⁇ a possibility to realize a fully silicided gate. We start from a structure such as that of the figure
- an insulating layer 31 made of silicon oxide, a polycrystalline silicon layer 32 and then a hard oxide mask layer are successively formed. of silicon 33.
- the three layers 31, 32 and 33 are etched successively. This results in a grid pattern 34 consisting of a stack of a gate oxide 36, an insulated gate 37 and a hard mask 38.
- the implantations of LDD zones 8 and 9 are carried out using the grid pattern 34 as a mask and then spacers 10 are made before doping source 11 and drain 12 zones using the grid pattern as mask.
- the source and drain zones 12 are metallically silicided to obtain the contact zones 13 and 14.
- the hard mask 38 before depositing a thick layer of oxide 40.
- a planarization of the layer 40 is carried out by chemical mechanical polishing CMP
- the layer 40 is etched until the grid 37 is exposed.
- nickel layer 41 before annealing for a period of time sufficient to completely silicide polycrystalline silicon 37.
- FIG. 3G is a schematic sectional view of the resulting MOS transistor whose gate 20 is completely siliconized.
- the gate structure is therefore composed of a stack of an insulating layer and a metal silicide layer.
- this manufacturing process is difficult to implement because of the high number of steps that it requires and is critical regarding the uniformity of the Supe ⁇ higher area of the grid due to the presence of a CMP planarization step. Summary of the invention
- An object of the present invention is to obtain a new structure of the fully siliconized gate MOS transistor.
- the encapsulation layer is selected from the group consisting of titanium nitride and tantalum nitride. According to one embodiment of the present invention, the thickness of the metal silicide layer is less than 25 nm.
- the thickness of the encapsulation layer is less than 20 nm.
- the gate further comprises a second layer of a metal silicide at the top of the polysilicon layer.
- the present invention also provides a process for fabri ⁇ cation of a MOS transistor gate comprising the sequential steps of forming an insulating layer of gate insulator; forming a thin polycrystalline silicon layer; implanting an N or P type dopant in the polycrystalline silicon layer; transforming the polycrystalline silicon into a metal silicide; forming a layer of a material conduc tor ⁇ encapsulation; and forming a layer of polysilicon ⁇ lens so that the total thickness of the grid have the usual thickness of a gate in a MOS transistor fabrication given technology.
- FIG. 1, previously described is a schematic sectional view of a conventional transistor comprising a polycrystalline silicon gate
- Figure 2 previously described, is a schematic sectional view of a conventional transistor comprising a metal silicide grid
- FIGS. 3A to 3G previously described, illustrate a conventional manufacturing method making it possible to obtain a totally silicided grid
- 4A to 4D illustrate a method of manufac ⁇ a gate of a MOS transistor according to the invention.
- FIGS. 4A to 4D The present invention will be described in relation to FIGS. 4A to 4D in the context of a particular method of obtaining the desired structure, it being understood that this method constitutes only one example and that those skilled in the art may devise other methods for arriving at the invention and variants of the structure according to the invention.
- a solid silicon substrate 1 or constituted by a layer of silicon on insulator or any other conventional integrated circuit substrate In the substrate 1 is defined an active region delimited by insulating zones 3.
- an insulating thin layer 31 is formed for serving as a gate oxide.
- a thin layer of polycrystalline silicon 50 is deposited.
- the layer 31 intended to serve as a gate oxide layer will have a thickness of the order of a few nanometers.
- the polycrystalline silicon layer 46 will for example have a thickness of the order of 10 to 30 nm.
- the structure is covered with a mask 51 having an opening which projects relative to the location where it is desired to form higher ⁇ the grid.
- FIG. 4B results from a succession of steps during which the mask 51 is eliminated and any known means, for example a metal layer deposited and annealed, are subjected to the silicidation of the thin layer.
- polycrystalline silicon 50 The metal is for example nickel or cobalt which has the property of rejecting at conventional silicon doping dopants such as As, B, P are then deposited.
- a layer 53 of an encapsulating conductive material is then deposited which does not react with the polycrystalline silicon, for example TiN or TaN on a sufficient thickness to provide the desired encapsulation function. After which a polycrystalline silicon layer 55 is deposited.
- the thickness of the polycrystalline silicon layer 55 is chosen so that the total thickness of the layers 50, 53, 55 corresponds to the thickness commonly used of a grid in a techno. - vector gy of manufacturing MOS transistors as described in connection with Figure 1.
- the thickness of the polycrystalline silicon layer 55 is chosen so that the total thickness of the layers 50, 53, 55 corresponds to the thickness commonly used of a grid in a techno. - vector gy of manufacturing MOS transistors as described in connection with Figure 1.
- the etched stack ⁇ gate 31, 50, 53, 55 to form a grid having the usual desired configuration.
- LDD zones 8 and 9 are implanted, side spacers 10 are formed around the grid, and then source areas 11 and drain 12 are implanted.
- source areas 11 and drain 12 are implanted.
- the upper polycrystalline silicon portion 55 of the grid will be implanted, which will therefore be made highly conductive.
- a conventional siliciding step is performed to silicide the upper part of the source 11 and drain 12 zones and obtain silicide regions 13 and 14.
- a silicic region 57 is obtained. on the top of the grid stack.
- NiSi NiSi
- the encapsulation layer overcomes this disadvantage.
- dopant ion implantation has been carried out in the polycrystalline silicon layer 50 prior to its silicidation.
- the dopant chosen is not or only slightly soluble in silicide.
- N- or P-type dopants remain and modify in a desired manner the gate extraction work for operation. optimum of an N-channel or P-channel transistor.
- the grid according to the present invention is not totally silicided as there is a region 55 of non-silicided polycrystalline silicon. In fact, this has no effect on the operation of the transistor gate according to the invention because what matters is that a layer having a metallic behavior is present in the immediate vicinity of the gate insulator 31.
- each technology particu ⁇ transistor manufacturing MOS die is characterized by the minimum gate length, and the thickness of the grid to obtain dimensions of spacers satisfactory and sufficient protection of the zone under the grid with respect to the implantations carried out for the realization of the source and drain zones.
- the gate width is of the order of 0.3 microns
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0452272 | 2004-10-05 | ||
PCT/FR2005/050812 WO2006037927A1 (fr) | 2004-10-05 | 2005-10-05 | Structure de grille et procede de fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1831929A1 true EP1831929A1 (de) | 2007-09-12 |
Family
ID=34950484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05810641A Withdrawn EP1831929A1 (de) | 2004-10-05 | 2005-10-05 | Gatestruktur und herstellungsverfahren dafür |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110095381A1 (de) |
EP (1) | EP1831929A1 (de) |
JP (1) | JP2008516437A (de) |
CN (1) | CN101061586A (de) |
TW (1) | TW200633216A (de) |
WO (1) | WO2006037927A1 (de) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4974056A (en) * | 1987-05-22 | 1990-11-27 | International Business Machines Corporation | Stacked metal silicide gate structure with barrier |
JP2874626B2 (ja) * | 1996-01-23 | 1999-03-24 | 日本電気株式会社 | 半導体装置の製造方法 |
JPH10303412A (ja) * | 1997-04-22 | 1998-11-13 | Sony Corp | 半導体装置及びその製造方法 |
JPH1117182A (ja) * | 1997-06-26 | 1999-01-22 | Sony Corp | 半導体装置およびその製造方法 |
JPH11135789A (ja) * | 1997-10-31 | 1999-05-21 | Nippon Steel Corp | 半導体装置およびその製造方法 |
JPH11261071A (ja) * | 1998-03-11 | 1999-09-24 | Sony Corp | ゲート電極およびその製造方法 |
EP1524708A3 (de) * | 1998-12-16 | 2006-07-26 | Battelle Memorial Institute | Umwelt-Sperrmaterial und Herstellungsverfahren |
US6737710B2 (en) * | 1999-06-30 | 2004-05-18 | Intel Corporation | Transistor structure having silicide source/drain extensions |
US20010045608A1 (en) * | 1999-12-29 | 2001-11-29 | Hua-Chou Tseng | Transister with a buffer layer and raised source/drain regions |
US6645798B2 (en) * | 2001-06-22 | 2003-11-11 | Micron Technology, Inc. | Metal gate engineering for surface p-channel devices |
US20030029715A1 (en) * | 2001-07-25 | 2003-02-13 | Applied Materials, Inc. | An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems |
JP3607684B2 (ja) * | 2002-03-25 | 2005-01-05 | エルピーダメモリ株式会社 | 半導体装置の製造方法 |
JP3646718B2 (ja) * | 2002-10-04 | 2005-05-11 | セイコーエプソン株式会社 | 半導体装置の製造方法 |
-
2005
- 2005-10-04 TW TW094134627A patent/TW200633216A/zh unknown
- 2005-10-05 JP JP2007535216A patent/JP2008516437A/ja active Pending
- 2005-10-05 US US11/664,853 patent/US20110095381A1/en not_active Abandoned
- 2005-10-05 EP EP05810641A patent/EP1831929A1/de not_active Withdrawn
- 2005-10-05 WO PCT/FR2005/050812 patent/WO2006037927A1/fr active Application Filing
- 2005-10-05 CN CNA2005800338712A patent/CN101061586A/zh active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2006037927A1 * |
Also Published As
Publication number | Publication date |
---|---|
TW200633216A (en) | 2006-09-16 |
JP2008516437A (ja) | 2008-05-15 |
CN101061586A (zh) | 2007-10-24 |
US20110095381A1 (en) | 2011-04-28 |
WO2006037927A1 (fr) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7112481B2 (en) | Method for forming self-aligned dual salicide in CMOS technologies | |
US6551871B2 (en) | Process of manufacturing a dual gate CMOS transistor | |
US6855641B2 (en) | CMOS transistor having different PMOS and NMOS gate electrode structures and method of fabrication thereof | |
FR2806832A1 (fr) | Transistor mos a source et drain metalliques, et procede de fabrication d'un tel transistor | |
EP0420748A1 (de) | Verfahren zur Herstellung einer Hochspannungs-MIS-integrierten Schaltung | |
JP2008522443A (ja) | Cmosデバイスにおいて自己整合デュアル・フルシリサイド・ゲートを形成するための方法 | |
EP2120258B1 (de) | Herstellungsverfahren eines Transistors mit Metallquelle und -abfluss | |
FR2894069A1 (fr) | Fabrication de transistors mos | |
FR3003691A1 (fr) | Finfet avec grille arriere | |
FR2847383A1 (fr) | Procede de fabrication d'un transistor mos de longueur de grille reduite, et circuit integre comportant un tel transistor | |
US7494857B2 (en) | Advanced activation approach for MOS devices | |
EP2562803B1 (de) | Herstellungsverfahren für ein Bauelement mit mit Hilfe einer externen Schicht verspannten Transistoren, und Bauelement | |
FR3064111A1 (fr) | Procede de fabrication simultanee de differents transistors | |
US20060014351A1 (en) | Low leakage MOS transistor | |
EP1831929A1 (de) | Gatestruktur und herstellungsverfahren dafür | |
FR2816108A1 (fr) | Procede de fabrication simultanee d'une paire de transistors a grilles isolees ayant respectivement un oxyde fin et un oxyde epais, et circuit integre correspondant comprenant une telle paire de transistors | |
FR3106696A1 (fr) | Procédé de formation d'espaceurs différentiels asymétriques pour des performances optimisées des mosfet et une co-intégration optimisée des mosfet et des sonos | |
EP0403368A1 (de) | Verfahren zum Herstellen eines integrierten Schaltkreises mit einem doppelt implantierten Feldeffekttransistor | |
KR20050029881A (ko) | 반도체 소자의 실리사이드 형성방법 | |
EP2428985B1 (de) | Verfahren zur Herstellung eines MOS-Transistors mit verspanntem Kanal | |
EP1282158A1 (de) | Herstellungsverfahren für einen Bipolartransistor in einem integrierten CMOS Schaltkreis | |
JP5117076B2 (ja) | 半導体装置の製造方法 | |
FR2892856A1 (fr) | Formation de zones de siliciure dans un dispositif semiconducteur | |
US20090206408A1 (en) | Nested and isolated transistors with reduced impedance difference | |
JP2011023452A (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070507 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RAX | Requested extension states of the european patent have changed |
Extension state: AL Payment date: 20070507 Extension state: BA Payment date: 20070507 Extension state: YU Payment date: 20070507 Extension state: HR Payment date: 20070507 Extension state: MK Payment date: 20070507 |
|
17Q | First examination report despatched |
Effective date: 20070928 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STMICROELECTRONICS (CROLLES 2) SAS Owner name: NXP B.V. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100413 |