EP1825064B1 - Procede et systeme pour controler un engin de travaux routiers - Google Patents

Procede et systeme pour controler un engin de travaux routiers Download PDF

Info

Publication number
EP1825064B1
EP1825064B1 EP05816965A EP05816965A EP1825064B1 EP 1825064 B1 EP1825064 B1 EP 1825064B1 EP 05816965 A EP05816965 A EP 05816965A EP 05816965 A EP05816965 A EP 05816965A EP 1825064 B1 EP1825064 B1 EP 1825064B1
Authority
EP
European Patent Office
Prior art keywords
height
processing machine
road processing
working part
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05816965A
Other languages
German (de)
English (en)
Other versions
EP1825064A1 (fr
Inventor
Andreas Buehlmann
Peter A. Stegmaier
Volker Kuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Priority to EP05816965A priority Critical patent/EP1825064B1/fr
Publication of EP1825064A1 publication Critical patent/EP1825064A1/fr
Application granted granted Critical
Publication of EP1825064B1 publication Critical patent/EP1825064B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ

Definitions

  • the invention relates to a method for controlling the travel of a road surface moving machine according to the preamble of claim 1, a road processing machine according to the preamble of claim 11 and a system for carrying out a method for controlling the travel of a road surface moving machine on a base surface and the working height of a height-adjustable working part according to claim 17.
  • machines are used for various work steps that travel along a given route and perform a desired processing step.
  • asphalt pavers are used to apply asphalt pavers with a vehicle and a height-adjustable trowel or screed fastened thereto.
  • the asphalt material is distributed by the vehicle along the front edge of the screed.
  • the screed sweeps and smoothes and densifies the asphalt material to provide a continuous asphalt pavement having a desired surface course.
  • the screed bar can be positioned vertically so that a desired surface profile is achieved as accurately as possible.
  • a Reference used for vertical positioning. If, as a reference line, a rope or a wire has to be stretched along the road to be paved, this is a great expense. If the base surface on which the asphalt is applied is used as a reference, it must be formed very precisely with great effort.
  • a laser beam is used as a reference, in which case the height of the screed relative to the laser is detected with a sensor attached to the screed bar and the screed bar is kept at a desired height.
  • the DE 100 60 903 describes a prior art in which the position of a reference surface is detected with a touch ski or with three spaced apart in the movement direction laser measuring heads.
  • it is proposed to arrange at one point above the screed bar three differently aligned laser distance meters which detect the distance to three measurement points one behind the other in the direction of movement.
  • the distance values are each converted into a height and a horizontal distance.
  • a height control signal is generated for the screed or other processing tool.
  • the accuracy of the height determination with the obliquely aligned laser distance meters is reduced by the mounting accuracy and the fact that at least one measuring point is located on the already applied coating.
  • an exactly constant sensor alignment is hardly achievable due to vibrations as well as large temperature and humidity fluctuations.
  • a small unrecognized change in angle already leads to a considerable error in the height calculated from the measurement assuming the wrong orientation.
  • a road processing machine is used with a height-adjustable working part together with at least one transmitter.
  • a sensor on the machine receives at least one signal of the at least one transmitter and from the received signal, a height position information is derived, which is used for vertical positioning of the height-adjustable working part.
  • a system of transmitter and sensor is about a GPS system used.
  • the reference surface is run over without processing only for detecting the reference surface layer, which is associated with a double driving effort.
  • a solution is known in which a GPS system and a tilt-adjustable rotary laser system are used for three-dimensionally controlling a construction machine.
  • the GPS system on the construction machine determines two location coordinates of the construction machine, which are transmitted to the fixed rotation laser system.
  • the current location coordinates are assigned a desired altitude and the rotating laser is aligned to mark the desired altitude for a linear laser receiver of the construction machine.
  • the laser receiver determines the current deviation of the working tool from the desired height. According to this deviation, the altitude of the working tool is adjusted.
  • This solution is very expensive because it is a GPS system, a complex rotation laser system, a radio link between these systems, a linear laser receiver and at least one controller.
  • there are problems in areas such as under bridges where the satellite signals required by the GPS system can not be received.
  • the DE 199 51 297 C1 refers to an automatic longitudinal control of a paver during the installation of a road layer. Solutions are based on tracking a prism mounted on the paver using a laser total station. This station tracks the prism by means of an alignable in all directions optics. The position of the construction machine or screed is calculated from the solid angle of the optics, the distance between the prism and the optics and the position of the total station. For precise height adjustment of the screed, the prism must be arranged as directly above the screed trailing edge as possible. However, there are then steering inaccuracies that negatively affect the course of pavement. To compensate for the effects of steering inaccuracies are slidable parts of the screed proposed transversely to the direction of travel, so that even with an inaccurate route through an optimal lateral displacement of these parts a precise application of the coating is guaranteed.
  • a road processing machine with laterally movable screed parts is mechanically complex. In construction machines without lateral adjustment, the problems resulting from the steering inaccuracy remain.
  • a positioning system such as a GPS
  • a display device which is visible to a driver of the bulldozer, indicates a difference between an existing surface contour and a sol surface contour of the construction site.
  • the display device may display a three-dimensional rotating image or a two-dimensional rotating image with a cursor to display the bulldozer.
  • a shield sensor tracks the position of the bulldozer blade and the indicator shows changes in the real surface contour as the bulldozer is moved across the job site, with the height of the shield moving between the desired and actual elevations of the surface.
  • An orientation sensor on board the bulldozer supplies a microprocessor with the orientation of the bulldozer, and a storage unit is provided for supplying surface data to the microprocessor.
  • the system integrates bulldozer and surface modification activities along with a utility pipe protection function and hydrological analysis.
  • the invention is based on the object to find a simple solution with which a height-adjustable working part of a road processing machine can be precisely positioned in the vertical direction and the steering function of the road processing machine can be improved.
  • the prism arranged on the roadworking machine horizontally away from the working part in front of the center of gravity of the roadworking machine and thus the steering function can be improved without causing the height adjustment of the working part is deteriorated.
  • the height determination at the prism must be converted into a height at the working part (screed) using at least one value of at least one reference determination.
  • an active positioning element for example a GPS device
  • An active position element should be able to determine its position with the help of other elements whose positions are known.
  • the other elements may be active or passive Act elements. If a GPS device is used as the position element, then this should also be able to determine the position in the vertical direction as accurately as possible.
  • a position element in the form of a modified GPS device yet another signal from a Vertikalpositioniersender, for example, as a rotating laser supplied, so that from the satellite signals and the further signal, the spatial position of the position element are determined very accurately in the vertical direction can.
  • an effective height difference between the position element and a point at the working part can be determined for each possible alignment position of this connection. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the position element and the point at the working part, ie an angle to the vertical or to the horizontal, is determined.
  • connection consists of at least one substantially vertical and one substantially horizontal portion, so the respective inclinations of both sections can be detected. However, if the fixed connection is rotated substantially only about a single horizontal axis, then a single tilt determination is sufficient.
  • the horizontal pivot axis of the working part leading linkage is changed by a height adjustment in height. This allows the working part to float on the warm asphalt material.
  • a height difference between the position element and the working tool must be determined with at least one value derived from a reference determination.
  • the reference determination preferably comprises an inclination determination with which the current orientation of the fixed connection is detected. If necessary, the alignment of the fixed connection can also be determined by means of two distance measurements to the base surface or to a reference height. For this purpose, the distances from two different points of the fixed connection to a reference position are determined.
  • the roadworking machine travels forward on the base surface, two points offset in the direction of travel are skewed over the same area of the base surface. If now the horizontal distance between the two points of the fixed connection is divided by the driving speed, one obtains the time interval which should elapse between a distance measurement at the first and a distance measurement at the second point. This time interval can be used to ensure that the two distance measurements are made on the same reference surface. Alternatively, the position determination with the help of total station and prism can be used.
  • the height difference between position element and working part can be determined. With a known height of the position element can be determined exactly the height of the working part or a working edge with the determined height difference. This height determination for the working part can also be carried out if there is no firm connection between the position element and the working part.
  • a position element and a first distance sensor for determining a distance to the base surface are arranged in front of the road processing machine in the direction of travel.
  • a second distance sensor is arranged offset to the first sensor in the direction of travel to the rear. This arrangement can also be used without firm connection between the working part and the position element for determining the height of the working part in straight running of the machine. In curves, the position determination can be used.
  • the height adjustment device performs only a parallel displacement of the fixed connection during adjustment, the height difference does not depend on the adjustment height.
  • the height correction is constant and it only needs to be checked that no further correction is needed. Accordingly, the reference determination is to monitor the parallel alignment.
  • the orientation of the roadworking machine or of the underlying machine can be determined with at least one inclination determination Base surface to be determined.
  • the measured slope can be used as a reference for correcting altitude. From the position of the position element and this height correction results in the current height of the working part.
  • the position element can be arranged so that the track of the road processing machine can be optimally monitored .
  • the positioning element is fastened to a location of the roadworking machine which is as far away as possible from the turning axis.
  • the positioning of the position element is selected with regard to an optimized signal utilization with respect to the determination of the travel path of the roadworking machine.
  • the position element is arranged in the direction of travel in front of the machine center of gravity laterally on the left or right edge of the machine.
  • the positioning of the position element is thus as far as possible in the direction of travel front end of the road processing machine left or right - and thus as far forward and close to the chassis.
  • the position element should be as far away from the working part as possible.
  • the working part is arranged in the rear end region of the machine, therefore the positioning element is arranged in the front end region. In an undesirable lateral swinging of the vehicle, the position element is noticeably moved away from the driving line.
  • a correction control can immediately bring the road processing machine back on the desired track. The working part essentially always stays on the desired path.
  • the position element is the generic precise control of the travel of the road processing machine at a position at least - in the direction of travel of the machine - in front of the machine center of gravity, in particular as far as possible in front of the machine center of gravity attached.
  • the attachment of the position element or the prism as far forward as possible also simplifies the design of the control algorithm, which is simpler in so far as the control of the direction of travel can be adjusted directly to the horizontal error and the longitudinal axis of the road processing machine need not be known. Their additional knowledge naturally improves the regulation.
  • the Fig. 1 and 2 1 shows a roadworking machine 2 traveling on a base surface 1.
  • the illustrated machine is a road finisher with a vehicle 3 and a working part 4 fastened thereto in a height-adjustable manner in the form of a screed.
  • the asphalt material 5 is distributed by a distributor 6 along the front edge of the working part 4.
  • the working part 4 disposed at the rear end of the road working machine 2 sweeps and smoothes the asphalt material 5 and compacts it to provide a continuous asphalt pavement 7 having a desired surface course.
  • the positioning of the working part 4 at a desired height via a slight pivotal movement of two sides of the machine pivotally mounted supports 8, the pivot bearing 9 are movable as pivot points of hydraulic cylinders as actuators 10 and adjustable in height.
  • the current position and / or direction is determined at points along the track, determines the working height of the working part and the determined position or direction of travel with a desired position or desired direction and the working height with a Nominal height to be compared.
  • a control signal should be provided with which the deviation can be compensated by a corresponding control of the roadworking machine 2. If the working height deviates from the desired height, the working part 4 should be raised or lowered by the supports 8 until the desired height is achieved.
  • a position element arranged on the roadworking machine 2 can be tracked with a laser total station 12 when it is equipped with a prism 11.
  • This station 12 tracks the prism 11 by means of an alignable in all directions optics. From the solid angle of the optics, the distance between prism 11 and optics and the position of the total station 12, the position of the prism 11 is calculated. For comparison with a desired route, the positions and / or directions along the desired route must be present as set points for the road-building machine 2 at the location where the prism 11 is located. In order to ensure a desired processing path in the working part, the curve behavior of the road-working machine 2 should be taken into account in the determination of the desired path for the prism 11, so that the working part 4 along the desired path emotional. The direction of travel can be determined from successive positions.
  • the prism 11 is as far as possible placed in front - in the embodiment, for example
  • the permissible tolerances for the working height are smaller than for the lateral alignment of the working part.
  • the current height of the working part 4 must be recorded extremely accurately.
  • the working part 4 is lower relative to the height of the prism 11 than in the case of a flat base surface 1. Lifting and lowering movements of the carrier 8 and also variable inclinations of the base surface 1 change the height difference between the prism and the working part 4 ,
  • At least one value of at least one reference determination should be used for the calculation of the working height in the working part.
  • the laser total station 12 is connected to an evaluation and control device, not shown, for evaluating the position information of the position element - here of the prism 11 - and for providing control signals for controlling the roadworking machine 2 and for controlling the height adjustment of the working part 4.
  • the at least one reference sensor for performing at least one reference determination is connected to the control device. At least a part of the connections are designed as radio links.
  • the control device is preferably arranged on the roadworking machine 2, but could possibly also be arranged at the laser total station 12. If the control device is arranged on the machine 2, the connections to sensors and actuators can be formed as line connections.
  • This connection 13 comprises, for example, a substantially horizontally extending connecting part 13a and a vertically connected connecting part 13b connected thereto. If the prism 11 is connected via a fixed connection with the working part 4, then for each possible alignment position of this connection 13 can be an effective Height difference between the prism 11 and a point at the working part 4 can be determined. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the prism and the point at the working part 4, ie an angle to the vertical or to the horizontal, is determined. For this purpose, a tilt sensor 14 aligned in the direction of the direct connection line to a part of the fixed connection 13 are attached.
  • the tilt sensor 14 is attached to the horizontally extending connecting part 13a.
  • a second tilt sensor aligned perpendicular to the first tilt sensor, is also arranged on the fixed connection, so that the inclination of the fixed connection can be detected in two different directions.
  • a transversely mounted to the direction of inclination sensor can thus provide additional information.
  • Fig. 2 in a second embodiment for reference determination in the prism 11 with a first distance measuring device 15 at least a first distance measurement to the base surface 1 and temporally offset at the working part 4 with a second distance measuring device 16 at least a second distance measurement to the base surface 1 is performed.
  • the time offset between measurements belonging together should be chosen based on the driving speed so that the two measurements are made essentially at the same reference point.
  • the prism is connected to the roadworking machine 2 via a support bar 13c.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Road Paving Machines (AREA)
  • Road Repair (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Claims (18)

  1. Procédé pour contrôler le chemin de déplacement d'un engin de travaux routier (2) se déplaçant sur une surface de base (1) et la hauteur de travail d'une partie de travail (4) disposée sur elle, de façon réglable en hauteur, dans la zone d'extrémité arrière, procédé dans lequel la position spatiale d'un élément de position (11), disposé sur l'engin de travaux routier (2), est détectée, le cas échéant une direction de déplacement étant déterminée à partir d'au moins deux positions spatiales, en particulier à deux moments, ou à partir de deux coordonnées de position, et la hauteur de travail de la partie de travail (4) est déterminée, où une comparaison est effectuée entre
    - la hauteur de travail et une hauteur de consigne, et/ou
    - la position détectée et une position de consigne et/ou
    - la direction de déplacement déterminée et une direction de consigne,
    caractérisé en ce que
    - l'élément de position (11) est disposé en une position espacée horizontalement de la partie de travail (4), en avant du centre de gravité de l'engin de travaux routier (2) en observant dans la direction de déplacement,
    o dans la direction longitudinale de l'engin de travaux routier (2), à l'extrémité avant, en observant dans la direction de déplacement, et
    o latéralement, sur l'engin de travaux routier (2), dans la zone de bordure de celui-ci,
    et
    - la hauteur de position de la position spatiale de l'élément de position (11) étant convertie par calcul en la hauteur de travail pour la partie de travail (4), en utilisant au moins une valeur d'au moins une détermination de référence.
  2. Procédé selon la revendication 1, caractérisé en ce que l'élément de position (11) est disposé en une position espacée horizontalement de la partie de travail (4), l'espacement étant de la valeur de l'étendue longitudinale totale de l'engin de travaux routier (2), dans la direction longitudinale de l'engin de travaux routier (2).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que
    - l'élément de position (11) est disposé à l'extrémité avant gauche extrême ou droite extrême.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'une liaison rigide est constituée entre l'élément de position (11) et la partie de travail (4).
  5. Procédé selon la revendication 4, caractérisé en ce qu'au moins une détermination d'inclinaison est effectuée avec un capteur d'inclinaison (14), disposé sur la liaison rigide, pour effectuer la détermination de référence.
  6. Procédé selon la revendication 5, caractérisé en ce qu'au moins deux déterminations d'inclinaison sont effectuées, au moyen de deux capteurs d'inclinaison (14) orientés différemment, disposés sur la liaison rigide, pour effectuer la détermination de référence.
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'une différence de hauteur, entre la hauteur de position de l'élément de position (11) et la hauteur de travail à la partie de travail (4), est déduite de la au moins une détermination d'inclinaison.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'au moins une première mesure de distance par rapport à la surface de base (1) et, de façon temporellement décalée, une deuxième mesure de distance par rapport à la surface de base (1), sont effectuées pour la détermination de référence pour l'élément de position (11), où, à l'aide de la vitesse de déplacement ou d'une détermination de position, le décalage temporel est choisi de manière que les deux mesures s'effectuent sensiblement au même point de référence.
  9. Procédé selon la revendication 8, caractérisé en ce que la position du point de référence est déduite de la hauteur de position de l'élément de position (11) et de la au moins une première mesure de distance et, lors du déplacement de l'engin de travaux routier (2), de préférence une hauteur de base de la surface de base (1) est détectée, au moins le long d'une ligne.
  10. Procédé selon la revendication 8, caractérisé en ce qu'au moins une hauteur de travail est déduite de la hauteur de position de l'élément de position (11), de la au moins une première mesure de distance et de la au moins une deuxième mesure de distance et, lors du déplacement de l'engin de travaux routier (2), de préférence la hauteur de travail de la partie de travail (4) est détectée, au moins le long d'une ligne.
  11. Engin de travaux routier (2), pour la mise en oeuvre d'un procédé selon la revendication 1, avec
    - une partie de travail (4), disposée de façon réglable en hauteur, dans la zone d'extrémité arrière, sur l'engin de travaux routier (2), et
    - un d'un élément de position (11), disposé sur l'engin de travaux routier (2),
    l'engin de travaux routier (2) étant déplaçable sur une surface de base (1), et la position spatiale de l'élément de position (11) étant susceptible d'être détectée depuis au moins une station,
    et l'information de position de l'élément de position (11) étant susceptible d'être évaluée par un dispositif d'évaluation et de commande, et des informations de commande, pour la commande de l'engin de travaux routier (2) et le réglage en hauteur de la partie de travail (4), étant susceptible d'être fournies,
    caractérisé en ce que
    - l'élément de position (11) est disposé de façon espacée horizontalement de la partie de travail (4), en avant du centre de gravité de l'engin de travaux routier (2) en observant dans la direction de déplacement,
    o dans la direction longitudinale de l'engin de travaux routier (2), à l'extrémité avant, en observant dans la direction de déplacement, et
    o latéralement, sur l'engin de travaux routier (2), dans la zone de bordure de celui-ci,
    et
    - à l'engin de travaux routier (2) est associé au moins un capteur de référence (14, 15, 16), pour la mise en oeuvre d'au moins une détermination de référence, la hauteur de position de la position spatiale de l'élément de position (11) étant convertie par calcul en une hauteur de travail pour la partie de travail (4), en utilisant au moins une valeur de référence dérivée du capteur de référence (14, 15, 16).
  12. Engin de travaux routier (2) selon la revendication 11, caractérisé en ce que l'élément de position (11) est disposé en une position espacée horizontalement de la partie de travail, l'espacement étant de la valeur de l'étendue longitudinale totale de l'engin de travaux routier (2), dans la direction longitudinale de l'engin de travaux routier (2).
  13. Engin de travaux routier (2) selon la revendication 11, caractérisé en ce que
    - l'élément de position (11) est disposé à l'extrémité avant gauche extrême ou droite extrême.
  14. Engin de travaux routier (2) selon l'une des revendications 11 à 13, caractérisé en ce que la partie de travail est réalisée sous forme de poutre lisseuse.
  15. Engin de travaux routier (2) selon l'une des revendications 11 à 14, caractérisé en ce qu'au moins un capteur de référence est réalisé sous forme de capteur d'inclinaison (14), à disposer sur une liaison (13) rigide entre l'élément de position (11) et la partie de travail (4), et permettant de déduire une différence de hauteur, entre la hauteur de position de l'élément de position (11) et la hauteur de travail de la partie de travail (4).
  16. Engin de travaux routier (2) selon l'une des revendications 11 à 15, caractérisé en ce qu'au moins deux capteurs de référence sont réalisés, en tant que premier et deuxième capteur de distance (15, 16), le premier capteur (15), concernant l'élément de position (11), et le deuxième (16), concernant la partie de travail (4), étant à disposer de manière que des mesures de distances par rapport à la surface de base (1) soient détectées, à l'aide de la vitesse de déplacement, de façon temporellement décalée, de manière que les deux mesures s'effectuent sensiblement au même point de référence.
  17. Système pour la mise en oeuvre d'un procédé pour contrôler le chemin de déplacement d'un engin de travaux routier (2) se déplaçant sur une surface de base (1) et la hauteur de travail d'une partie de travail (4) disposée sur elle, de façon réglable en hauteur, avec :
    - un engin de travaux routier (2), selon l'une des revendications 11 à 16,
    - une station (12), pour détecter la position spatiale de l'élément de position (11), et
    - un dispositif d'évaluation et de commande, pour évaluer l'information de position de l'élément de position (11) et pour fournir des informations de commande, pour la commande de l'engin de travaux routier (2) et le réglage en hauteur de la partie de travail (4).
  18. Système selon la revendication 17, caractérisé en ce que le dispositif d'évaluation et de commande est disposé sur l'engin de travaux routier (2).
EP05816965A 2004-12-17 2005-12-19 Procede et systeme pour controler un engin de travaux routiers Active EP1825064B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05816965A EP1825064B1 (fr) 2004-12-17 2005-12-19 Procede et systeme pour controler un engin de travaux routiers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04029963A EP1672122A1 (fr) 2004-12-17 2004-12-17 Procédé et appareil pour contrôler une machine de construction de chaussée
PCT/EP2005/056932 WO2006064062A1 (fr) 2004-12-17 2005-12-19 Procede et systeme pour controler un engin de travaux routiers
EP05816965A EP1825064B1 (fr) 2004-12-17 2005-12-19 Procede et systeme pour controler un engin de travaux routiers

Publications (2)

Publication Number Publication Date
EP1825064A1 EP1825064A1 (fr) 2007-08-29
EP1825064B1 true EP1825064B1 (fr) 2009-06-17

Family

ID=34927826

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04029963A Withdrawn EP1672122A1 (fr) 2004-12-17 2004-12-17 Procédé et appareil pour contrôler une machine de construction de chaussée
EP05816965A Active EP1825064B1 (fr) 2004-12-17 2005-12-19 Procede et systeme pour controler un engin de travaux routiers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04029963A Withdrawn EP1672122A1 (fr) 2004-12-17 2004-12-17 Procédé et appareil pour contrôler une machine de construction de chaussée

Country Status (9)

Country Link
US (1) US7643923B2 (fr)
EP (2) EP1672122A1 (fr)
JP (1) JP5390100B2 (fr)
CN (1) CN101072916B (fr)
AT (1) ATE434086T1 (fr)
AU (1) AU2005315566B2 (fr)
CA (1) CA2591563C (fr)
DE (1) DE502005007537D1 (fr)
WO (1) WO2006064062A1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855967B1 (en) * 2011-11-02 2014-10-07 Gomaco Corporation Surface data measurement system and method
US9963836B1 (en) 2005-02-23 2018-05-08 Gomaco Corporation Method for operating paving train machines
US9200414B1 (en) 2011-11-02 2015-12-01 Gomaco Corporation Stringless paving train method and apparatus
US7617061B2 (en) * 2006-11-03 2009-11-10 Topcon Positioning Systems, Inc. Method and apparatus for accurately determining height coordinates in a satellite/laser positioning system
US8070385B2 (en) 2008-07-21 2011-12-06 Caterpillar Trimble Control Technologies, Llc Paving machine control and method
US8220806B2 (en) * 2009-01-13 2012-07-17 Roger Hartel Neudeck Surface milling system
EP2256246B1 (fr) * 2009-05-20 2018-07-04 Joseph Vögele AG Ensemble de machines pour la fabrication d'une couche de revêtement routier
DE102009059106A1 (de) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
PL2366830T3 (pl) 2010-03-18 2016-11-30 System i sposób dla nanoszenia nawierzchni drogowej
CN102261032B (zh) * 2011-05-04 2012-09-26 三一重工股份有限公司 一种摊铺机及其找平控制装置
US9869063B1 (en) 2011-11-02 2018-01-16 Gomaco Corporation Stringless paving train method and apparatus
DE102012001289A1 (de) 2012-01-25 2013-07-25 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
CN104121477B (zh) * 2014-07-17 2017-03-01 上海雷尼威尔技术有限公司 车用lng气罐控制系统及方法
CN104099854B (zh) * 2014-07-31 2016-02-10 中联重科股份有限公司 找平仪调节装置及其调节方法、摊铺机
DE102014012831B4 (de) 2014-08-28 2018-10-04 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102014012825A1 (de) 2014-08-28 2016-03-03 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
DE102014012836B4 (de) 2014-08-28 2018-09-13 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine
GB201419182D0 (en) * 2014-10-28 2014-12-10 Nlink As Mobile robotic drilling apparatus and method for drilling ceillings and walls
US9869286B1 (en) * 2014-11-18 2018-01-16 Carl M. Clark Vehicle rollover safety device
US10539084B2 (en) 2014-11-18 2020-01-21 Carl M. Clark Vehicle rollover safety device utilizing a circular arc level
US9624643B2 (en) 2015-02-05 2017-04-18 Deere & Company Blade tilt system and method for a work vehicle
US9328479B1 (en) 2015-02-05 2016-05-03 Deere & Company Grade control system and method for a work vehicle
US9551130B2 (en) 2015-02-05 2017-01-24 Deere & Company Blade stabilization system and method for a work vehicle
CN107849830B (zh) * 2015-07-15 2021-04-30 住友建机株式会社 道路机械
ES2660477T3 (es) * 2015-07-30 2018-03-22 Albert Handtmann Maschinenfabrik Gmbh & Co. Kg Procedimiento y dispositivo para la nivelación simplificada de una máquina de llenado para la fabricación de embutidos
AT517924B1 (de) * 2015-11-10 2019-10-15 Dipl Ing Guenther Lehmann Markiersystem
CN106968155A (zh) * 2017-05-23 2017-07-21 山东奥邦机械设备制造有限公司 一种沥青摊铺机
DE102017010238A1 (de) * 2017-11-03 2019-05-09 Bomag Gmbh Messung der Einbauschichtdicke durch Straßenwalze
JP7022601B2 (ja) * 2018-01-23 2022-02-18 株式会社トプコン 測量装置および測量方法
US10563362B2 (en) * 2018-06-01 2020-02-18 Caterpillar Paving Products Inc. System and method for paving machine control
DE102018119962A1 (de) 2018-08-16 2020-02-20 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
CN109186544A (zh) * 2018-11-09 2019-01-11 湖南联智桥隧技术有限公司 一种临空界面高程测量的方法及装置
EP3660598B1 (fr) * 2018-11-30 2021-10-20 MOBA Mobile Automation AG Application automatique de spécification locale
CN110004800A (zh) * 2019-04-10 2019-07-12 安徽开源路桥有限责任公司 基于3d数字控制系统的沥青混凝土路面施工设备及施工方法
DE102019118059A1 (de) 2019-07-04 2021-01-07 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
CN110568844B (zh) * 2019-08-23 2022-03-29 东南大学 无人驾驶压路机直线行驶激光辅助定位系统
DE102019135225B4 (de) 2019-12-19 2023-07-20 Wirtgen Gmbh Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen
CH717191A1 (de) * 2020-03-04 2021-09-15 Kibag Bauleistungen Ag Vorrichtung zum Einbau von Gussasphalt auf einem Fahrbahnuntergrund und Verfahren zur Fertigung einer Asphaltfahrbahn.
EP3981918B1 (fr) * 2020-10-08 2024-03-13 Joseph Vögele AG Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur
EP4083322A1 (fr) 2021-04-27 2022-11-02 Leica Geosystems AG Système et procédé de commande d'un processus de construction routière
US11834797B2 (en) * 2021-09-08 2023-12-05 Caterpillar Paving Products Inc. Automatic smoothness control for asphalt paver

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807131A (en) 1987-04-28 1989-02-21 Clegg Engineering, Inc. Grading system
US4895440A (en) * 1988-08-22 1990-01-23 Spectra-Physics, Inc. Laser-based measurement system
EP0443026A4 (en) * 1989-09-14 1993-03-24 Kabushiki Kaisha Komatsu Seisakusho Blade controller of bulldozer
US5375663A (en) * 1993-04-01 1994-12-27 Spectra-Physics Laserplane, Inc. Earthmoving apparatus and method for grading land providing continuous resurveying
JP3541960B2 (ja) * 1993-12-24 2004-07-14 独立行政法人土木研究所 建設機械の3次元位置自動制御方法
US5964298A (en) * 1994-06-13 1999-10-12 Giganet, Inc. Integrated civil engineering and earthmoving system
US5549412A (en) 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5764511A (en) * 1995-06-20 1998-06-09 Caterpillar Inc. System and method for controlling slope of cut of work implement
US5612864A (en) * 1995-06-20 1997-03-18 Caterpillar Inc. Apparatus and method for determining the position of a work implement
DE19647150C2 (de) 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
SE9704397L (sv) * 1997-11-28 1998-11-16 Spectra Precision Ab Anordning och förfarande för att bestämma läget för en bearbetande del
DE10006903A1 (de) 1999-02-17 2000-11-23 Agency Ind Science Techn Verfahren zur kontinuierlichen Herstellung monomerer Komponenten aus aromatischem Polyester
DE19940404C2 (de) 1999-08-25 2001-07-12 Moba Mobile Automation Gmbh Verfahren und Vorrichtung zum dreidimensionalen Steuern einer Baumaschine
DE19951297C1 (de) 1999-10-25 2001-04-12 Moba Mobile Automation Gmbh Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht
DK1118713T3 (da) * 2000-01-19 2005-01-10 Voegele Ag J Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine
DE10025474B4 (de) * 2000-05-23 2011-03-10 Moba - Mobile Automation Gmbh Schichtdickenbestimmung durch relative Lageerfassung zwischen Traktor und Zugarm eines Straßenfertigers
DE10060903C2 (de) 2000-12-07 2002-10-31 Moba Mobile Automation Gmbh Laser-Höhenregeleinrichtung für eine Baumaschine

Also Published As

Publication number Publication date
JP2008524473A (ja) 2008-07-10
AU2005315566A1 (en) 2006-06-22
US7643923B2 (en) 2010-01-05
CA2591563A1 (fr) 2006-06-22
EP1825064A1 (fr) 2007-08-29
CN101072916A (zh) 2007-11-14
CN101072916B (zh) 2012-05-09
CA2591563C (fr) 2013-08-13
US20080208417A1 (en) 2008-08-28
EP1672122A1 (fr) 2006-06-21
AU2005315566B2 (en) 2010-07-01
ATE434086T1 (de) 2009-07-15
DE502005007537D1 (de) 2009-07-30
JP5390100B2 (ja) 2014-01-15
WO2006064062A1 (fr) 2006-06-22

Similar Documents

Publication Publication Date Title
EP1825064B1 (fr) Procede et systeme pour controler un engin de travaux routiers
EP1856329B1 (fr) Procédé pour commander une machine de génie civil et machine de génie civil avec un système de commande
EP3048199B2 (fr) Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau installée
EP1339920B1 (fr) Dispositif de reglage de hauteur au laser pour un engin de chantier
EP2687631B1 (fr) Finisseuse de route dotée d'un dispositif de mesure
EP1118713B1 (fr) Procédé de commande d'une machine de chantier ou finisseuse et finisseuse
EP2535457B1 (fr) Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
EP0964958B1 (fr) Procédé pour friser des surfaces de circulation routière
EP2535458B1 (fr) Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
EP3739122B1 (fr) Finisseuse de route et procédé de détermination de l'épaisseur de couche de route
DE102014222693B4 (de) Vorrichtung zur bestimmung der temperatur eines durch eine baumaschine aufgebrachten strassenbaumaterials sowie eine baumaschine mit einer derartigen vorrichtung
EP0542297B1 (fr) Appareil de contrôle pour un finisseur
EP2006448A1 (fr) Train de finisseuses pour la fabrication d'une couche de revêtement routier en béton ou en asphalte
EP2535456A1 (fr) Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
CH684953A5 (de) Verfahren und Einrichtung zum Ermitteln der Abweichungen der Ist-Lage eines Gleisabschnittes.
EP2025811A1 (fr) Procédé et système de contrôle pour l'application d'une couche de revêtement
EP0915203A1 (fr) Régaleuse à ballast et méthode pour placer le ballast d'une voie ferrée
EP3892777B1 (fr) Finisseuse de route et procédé à commande de profil transversal
EP3835485B1 (fr) Système de mesure pour une machine de construction
DE10025474B4 (de) Schichtdickenbestimmung durch relative Lageerfassung zwischen Traktor und Zugarm eines Straßenfertigers
DE10025462A1 (de) Schichtdickenbestimmung unter Verwendung eines Neigungssensors
DE19921761B4 (de) Verfahren und Vorrichtung zum Verstellen des Arbeitsabstandes
EP3712328B1 (fr) Machine de construction avec un système de mesure
DE3444623A1 (de) Mess- und steuersystem zur aufnahme und wiedergabe von hoehenprofilen, insbesondere im strassenbau

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEGMAIER, PETER, A.

Inventor name: BUEHLMANN, ANDREAS

Inventor name: KUCH, VOLKER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, KAMINSKI & PARTNER PATENTANWAELTE ESTABLI

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005007537

Country of ref document: DE

Date of ref document: 20090730

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LEICA GEOSYSTEMS AG

Free format text: LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH) -TRANSFER TO- LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

26N No opposition filed

Effective date: 20100318

BERE Be: lapsed

Owner name: LEICA GEOSYSTEMS A.G.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090918

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221222

Year of fee payment: 18

Ref country code: NL

Payment date: 20221222

Year of fee payment: 18

Ref country code: GB

Payment date: 20221222

Year of fee payment: 18

Ref country code: FR

Payment date: 20221222

Year of fee payment: 18

Ref country code: DE

Payment date: 20221213

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 18