EP3981918B1 - Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur - Google Patents

Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur Download PDF

Info

Publication number
EP3981918B1
EP3981918B1 EP20200791.0A EP20200791A EP3981918B1 EP 3981918 B1 EP3981918 B1 EP 3981918B1 EP 20200791 A EP20200791 A EP 20200791A EP 3981918 B1 EP3981918 B1 EP 3981918B1
Authority
EP
European Patent Office
Prior art keywords
screed
finishing machine
road finishing
measuring
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20200791.0A
Other languages
German (de)
English (en)
Other versions
EP3981918A1 (fr
Inventor
Philipp Stumpf
Ralf Weiser
Stefan Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP20200791.0A priority Critical patent/EP3981918B1/fr
Priority to CN202111158048.1A priority patent/CN114293438B/zh
Priority to CN202122364784.4U priority patent/CN216688925U/zh
Priority to BR102021020108-8A priority patent/BR102021020108A2/pt
Priority to JP2021165520A priority patent/JP2022062702A/ja
Priority to US17/497,086 priority patent/US20220112669A1/en
Publication of EP3981918A1 publication Critical patent/EP3981918A1/fr
Application granted granted Critical
Publication of EP3981918B1 publication Critical patent/EP3981918B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/008Devices for guiding or controlling the machines along a predetermined path by reference lines placed along the road, e.g. wires co-operating with feeler elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs

Definitions

  • the present invention relates to a road paver according to the preamble of claim 1.
  • the invention further relates to a method according to independent method claim 16.
  • Leveling systems for a paver screed have a tow point control loop that works taking into account a difference between a tow arm inclination detected using an inclination sensor and a target inclination value for the tow arm.
  • the target inclination value is calculated based on height monitoring carried out in the area of the rear edge of the screed. During height monitoring, distance measurements are carried out to a reference in the area of the rear edge of the screed and compared with a target distance in order to determine the inclination setpoint.
  • DE 100 25 462 A1 discloses a road paver with a layer thickness measuring device for determining a layer thickness of the paving layer produced in an area of a rear edge of the screed.
  • a height signal from a sensor that is stationarily arranged on a screed-towing arm assembly and detects a distance to the ground, as well as an inclination signal from an inclination sensor arranged on the screed-towing arm assembly is used.
  • the DE 11 2009 001 767 T5 discloses a paver that has a control for leveling the screed.
  • the control has a first sensor on the front of the paver is arranged in front of the material bunker in order to record a height to the ground.
  • the control also includes a second sensor that detects the height of the front pulling point on the plank beam in relation to the ground.
  • DE 691 26 017 T2 discloses a road paver with a leveling device, which takes into account a determined thickness of the surface produced.
  • a leveling setpoint is calculated based on the recorded thickness of the covering, with the height of the screed being adjusted when the calculated leveling setpoint deviates from a measured value that is recorded by a height sensor in front of the installation bowl.
  • EP 1 672 122 A1 discloses a road paver with a leveling device for a screed, which is operated on the basis of a target/actual value comparison between a determined working height of the screed and a set target height.
  • EP 2 535 456 A1 discloses a road paver with a measuring device mounted on it, the vectorially detectable movement of which is recorded during paving operation and taken into account when calculating the layer thickness at the rear edge of the paving screed.
  • US 4,807,131A discloses a road construction machine with a working part, the working height of which can be detected by means of a measuring device, with the working height being able to be regulated based on this.
  • the invention is based on the object of equipping a road paver with a leveling system which reliably enables improved leveling of the paving screed of the road paver using simple, practical technical means and, above all, is suitable for producing a more precise evenness of the installed paving layer. Furthermore, it is the object of the invention to provide a leveling method for a paving screed of a road paver, by means of which a flat paving layer can be produced more easily.
  • This task is solved by a road paver according to claim 1. Furthermore, this task is solved using a method according to claim 16.
  • the road paver according to the invention comprises a paving screed for producing a paving layer on a surface on which the road paver moves along in the paving direction moved along an installation route.
  • the screed is mounted in a height-adjustable manner and has a pull arm which is attached to a front pull point formed thereon by means of a leveling cylinder on the paver.
  • the paver according to the invention comprises a measuring device for carrying out a distance measurement, a storage device, a control device and a functionally connected controller device for adjusting a setting of the leveling cylinder.
  • the control unit is designed to calculate a correction value depending on at least one distance measurement of the measuring device carried out relative to the subsurface and/or to a reference, which can be carried out at a measuring point located in front of the front edge of the screed in the installation direction.
  • the correction value preferably represents an unevenness detected at the measuring point as a difference between a planum and the actual subsurface with unevenness.
  • the control unit is designed to at least temporarily store the correction value in the memory device and, when the installation operation continues, to calculate a leveling setpoint for the measuring point, taking into account the stored correction value, based on which the leveling cylinder of the screed is controlled when the front edge of the screed reaches the measuring point .
  • the control device thus reacts to an unevenness in the subsurface detected at the measuring point at a later point in time during the paving journey, namely when the front edge of the towed screed reaches the measuring point at which the unevenness in the subsurface was recorded directly based on the correction value.
  • the determination of the correction value for detecting unevenness in the subsurface, which precedes the actual control process, is based on a simple height measurement technology that is ideal for use on pavers.
  • the invention offers the advantage that inclination sensors can be dispensed with, which means that the leveling system according to the invention is designed to be more robust overall for use on construction sites.
  • the measuring device arranged in front of the screed in the invention is less influenced by the vibrating operation of the screed, so that the distances measured by the measuring device can be taken into account more precisely when leveling the screed.
  • the invention offers a cost-effective solution that can be easily installed and retrofitted to the paver. Because in the invention the control device only responds to the detected unevenness of the measuring point when the front edge of the screed reaches the measuring point, reaction times of the leveling cylinder can be better compensated, whereby an installation layer with high evenness can be produced.
  • the measuring device is preferably attached to the tension arm of the screed. Movements of the pull arm, in particular raising and lowering the pull arm, can thus be taken into account in the distance measurements. Above all, the measuring device can detect precise unevenness in the ground in front of the working area of the paving screed from the tension arm on the side of the paver, i.e. directly next to the chassis, and/or measure a distance to a reference provided along the ground on the side of the paving screed, for example as a There is a stretched guide wire next to the paver. As an alternative to the guide wire, a tensioned rope, a curb and/or an already prepared paving layer could be considered as a reference.
  • the measuring device can be attached to a tractor of the paver, the measured values of which can optionally be offset against measured values of a further measuring device, which is arranged on the traction arm or on the screed, in order to regulate a specific screed height.
  • a particularly advantageous variant provides that the measuring device is arranged in the area of the front pull point of the pull arm. This means that directly at the location of the leveling cylinder, i.e. without any noticeable influence of the tension arm inclination, a distance measurement to the subsurface and/or to the reference can be carried out, based on which precise leveling of the screed is possible.
  • the measuring device is rotatably attached to the pull arm, in particular at the front pull point of the pull arm or at least in the immediate vicinity thereof. This ensures that it maintains an equilibrium position or at least moves back into it automatically, regardless of a change in the inclination of the tension arm controlled during the leveling process. In other words, this means that the measuring device does not follow the changes in inclination of the pull arm. This means that the height measurements of the measuring device are not influenced by changes in the inclination of the tension arm, but only record changes in distance to the ground and/or to the reference.
  • a linear guide is formed on the pull arm for the measuring device, along which the measuring device can be positioned in an adjustable manner in the installation direction. This allows the distance between the measuring device and the front edge of the screed to be adjusted.
  • the measuring device can be rotatably mounted on the linear guide to ignore changes in inclination of the pull arm.
  • the measuring device has at least one first sensor for measuring a distance to the reference and at least one second sensor for measuring a distance to the ground. These two height measurements can be taken into account when calculating the correction value in order to record unevenness in the ground.
  • the measuring device has a sensor that is designed to detect both a distance to the ground and a distance to the reference. For example, a radar sensor can be used for this.
  • the first and second sensors are at the same distance from the front edge of the screed in the installation direction.
  • the two sensors can carry out height measurements at the same measuring point in the installation direction, based on which any unevenness that may be present at the measuring point can be precisely recorded as a deviation from the planum.
  • two distance measurements are carried out at the same point in front of the screed, one to the subsoil and the other to the reference, in order to determine the correction value for this measuring point based on this.
  • the first and/or the second sensor are preferably in the form of an optical or acoustic sensor, for example a laser or ultrasonic sensor.
  • the height measurements can be carried out using a transit time measurement, a phase position measurement and/or a laser triangulation.
  • the determined correction value can be visualized as a measure of an unevenness recorded in the subsoil compared to an average subsoil course (grade) on the paver, for example by means of a display on the screed operator's station. On the display, the correction factor can show small and comparatively large unevennesses in differentiated colors.
  • control device is designed to calculate the correction value for the measuring point based on the distance to the ground measured at the measuring point using the second sensor, minus the distance to the reference measured using the first sensor and further minus a preset altitude of the reference to the subgrade determine.
  • a correction value calculated using this equation for the measuring point using the control device precisely depicts the unevenness that deviates from the subsurface, i.e. an elevation or a depression in the subsurface.
  • the control device is configured to derive the leveling setpoint for the measuring point, i.e. to form the setpoint for a distance of the sensor from the reference, in an intermediate step to form a difference between a preset base leveling setpoint and the stored correction value.
  • the basic leveling setpoint provides a guideline value for the control and regulation function, on the basis of which the screed should be towed, assuming a flat, averaged surface, i.e. a fictitious surface without unevenness.
  • the correction value is used to adjust the basic leveling setpoint in the practical case that the measuring device detects an unevenness in the subsurface, whereby a more precise leveling setpoint adapted to the unevenness can be calculated for the measuring point. This means that the detected unevenness can be optimally compensated for.
  • control device is configured to calculate the leveling setpoint from the difference between the preset basic leveling setpoint and the stored correction value minus a distance to the reference currently measured by the measuring device. This leveling setpoint is then available to the control device as an input variable, based on which the leveling cylinder can be controlled to level the screed.
  • the measuring device has a plurality of sensors for measuring a distance to the ground and/or to the reference
  • the control device for this purpose is designed to form a respective average value as a basis for determining the correction value based on several distance measurements carried out at the same time to the background and / or to the reference.
  • the fact that several distance measurements to the subsurface and/or to the reference are averaged to determine the correction value creates a filter function so that smoother transitions when leveling the screed are possible because the control device thus responds to unevenness during the installation operation in a somewhat dampened manner.
  • control device is configured to multiply the calculated correction value by a compensation factor that is dependent on a geometry of the screed.
  • the compensation factor includes, for example, the weight of the screed and/or at least one operating parameter set and/or recorded thereon during operation of the screed, for example a tamper speed and/or a heating output of the screed, is taken into account.
  • the compensation factor takes into account the density of the ground on which the paver moves during paving. This would allow the flexibility of the subsurface to be taken into account when leveling the screed, meaning that any unevenness can be compensated for by operating the screed.
  • the correction factor takes into account an installation temperature of the installed installation layer that is currently measured behind the screed.
  • the paver has at least one distance measuring device for detecting a distance traveled by the front edge of the screed, the calculation of the leveling setpoint being triggerable on the control device when the distance traveled by the screed recorded by means of the distance measuring device corresponds to a distance between the measuring device and the front edge of the screed .
  • control device is designed to continuously calculate correction values during an paving journey of the paver along the paving route, to store these for the respective measuring points and to use the respective stored correction values to determine adapted leveling setpoints. This will ensures that the control device responds reliably to all unevenness in the subsurface along the installation route, so that a flat installation layer can be produced along the entire installation route.
  • the control device is preferably designed to use a GPS data-based underground data model to determine the correction value.
  • a GPS data-based underground data model can be made available to the control device using a web-based application, in particular using a cloud-based application, in order to supply the paver, in particular the control device trained on it, with updated geosubsoil data along the paving route.
  • the control device is designed to calculate the correction value taking into account a piston position of the leveling cylinder currently set at the measuring point.
  • the piston position can be represented, for example, by means of an extension path of the piston that can be detected, in particular using the measuring device. This would make it possible to detect unevenness in the subsurface even if the measuring device only carries out the distance measurement to the reference, for example to a taut guide wire, with no distance measurement to the subsurface otherwise taking place. Detecting the piston position of the leveling cylinder can replace measuring the distance to the ground. This can be advantageous for certain types of substrate, especially open-pored substrate surfaces.
  • control device is designed to set the correction value for the measuring point based on the distance to the reference measured at the measuring point using the first sensor plus the height of the reference to the subgrade plus a distance of the measuring device to the pull point height plus one set based on the piston position To determine the extension path of the leveling cylinder and minus a constructive height between the underside of the paver's chassis and the pull point of the leveling cylinder when retracted.
  • the present invention also relates to a method for leveling a paving screed of a paver, wherein a control device of the paver depends on at least one distance measurement carried out to the subsoil and / or to a reference by means of a measuring device provided on the paver, the distance measurement being carried out on a front edge in the paving direction
  • the measuring point lying on the screed is carried out, a correction value is calculated and this is stored at least temporarily in a storage device is stored and, when the paving operation continues, a leveling setpoint is calculated for the measuring point, taking into account the stored correction value, based on which at least one leveling cylinder of the screed is controlled when the front edge of the paving screed reaches the measuring point.
  • the measuring device preferably carries out at least two distance measurements at the measuring point in front of the screed, one to the reference and one to the subsurface. This means that any unevenness in the subsurface at the measuring point can be determined precisely as a deviation from the subgrade and used precisely to level the screed.
  • the leveling system according to the invention and the leveling method according to the invention can be carried out on both sides of the paver.
  • the embodiments presented previously in connection with the invention can therefore be used on both sides of the paver.
  • Figure 1 shows a paver 1, which produces a paving layer 2 on a surface 3, on which the paver 1 moves along a paving direction R during a paving journey.
  • the road paver 1 has a height-adjustable paving screed 4 for (pre-)compacting the paving layer 2.
  • the paving screed 4 is attached to a pull arm 5, which is connected at a front pull point 6 to a leveling cylinder 7 on a tractor 22 of the road paver 1.
  • the pull arm 5 serves as a lever to convert a varying leveling cylinder position into a corresponding change in the angle of attack of the screed 4, in particular to compensate for unevenness 8 in the subsurface 3.
  • Figure 2 shows an isolated, schematic representation of the screed 4, the pull arm 5 and the leveling cylinder 7.
  • a measuring device 10 is arranged on the pull arm 5 between a front edge 9 of the screed and the front pull point 6.
  • the measuring device 10 is designed to carry out at least one distance measurement to the substrate 3 and/or to a reference 11.
  • the reference 11 is constructed as a guide wire, with the reference 11 occupying an average height h 11 above the substrate 3.
  • the reference 11 is stretched to the side of the paver 1 and, as will be explained in more detail below, serves a leveling function of the screed 4.
  • the measuring device 10 has a first sensor 12 for measuring a distance y 1 to the reference and a second sensor 13 for measuring a distance y 2 to the substrate 3.
  • the first and second sensors 12, 13 are positioned in the installation direction R at an equal distance x 9 from the front edge 9 of the installation screed 4.
  • two distance measurements were carried out, one to measure the distance y 1 and one to measure the distance y 2 .
  • the measuring device 10 can detect an unevenness 8 in the subsurface 3 at the measuring point 14 below the measuring device 10 by means of the two sensors 12, 13.
  • the unevenness 8 represents a difference to a planum P.
  • Figure 2 A corresponding leveling of the screed 4 takes place when, during continued installation operation in the installation direction R, the front edge 9 of the screed 4 arrives above the unevenness 8, ie at the measuring point 14.
  • the leveling system used according to the invention reacts according to the in Figure 2 shown variant on the unevenness 8 detected by the measuring device 10 at the measuring point 14 when the front edge 9 of the screed 4 is in Figure 2 distance x 9 shown.
  • Figure 3 shows a variant for attaching the measuring device 10 Figure 2 .
  • the arrangement Figure 3 differs from Figure 2 in that the measuring device 10 is positioned directly at the front pull point 6. At this position, so to speak at the front end of the pull arm 5, the distances y 1 , y 2 detected by the two sensors 12, 13 can be used particularly advantageously to compensate for unevenness 8 when leveling the paving screed 4 to produce a flat paving layer 2, because at this point the height of the pull point 6 is recorded exactly and is not superimposed by the changes in inclination of the screed 4.
  • FIG 4 shows a schematic representation of a leveling system 15.
  • the leveling system 15 can according to Figure 2 and Figure 3 Use the recorded height measurements to level the screed 4 in order to compensate for unevenness 8 in the subsurface 3.
  • the leveling system 15 has a memory device 16, a control device 17 and a functionally connected controller device 18 for adjusting a setting of the leveling cylinder 7.
  • the control device 17 Based on the measured distances y 1 , y 2 and taking into account the established height h 11 of the reference 11 above the subgrade P, the control device 17 can determine a correction value K.
  • the control device 17 off Figure 4 is designed to calculate the correction value K for the measuring point 14 based on the distance y 2 to the ground 3 measured at the measuring point 14 using the second sensor 13 minus the distance y 1 to the reference 11 measured using the first sensor 12 and further minus the preset height h 11 of reference 11 to determine. Furthermore, the control device 17 can be configured to continuously store the correction values K determined during the installation operation along the installation route in the installation direction R in the memory device 16 for the respective measuring points 14, so that the correction values K reach the corresponding ones when the front edge 9 of the installation screed 4 is reached Measuring points 14 can be used along the installation route for leveling the installation screed 4.
  • control device 17 can display a current paving speed v E of the paver 1 by means of a speed sensor 19.
  • the installation speed v E transmitted to the control device 17 can be used to determine the distance x 9 .
  • a distance measuring device 20 for the leveling system 15 is present in order to Distance x 9 or a distance traveled by the front edge 9 of the paving screed 4 when the paver 1 moves in the paving direction R during the paving journey.
  • control device 17 is supplied with a preset basic leveling setpoint y 1-basis . Furthermore, a compensation factor c can be stored in the control device 17, which may be dependent on a geometry of the screed 4.
  • the control device 17 off Figure 4 is configured to determine for each stored correction value K the path traveled, ie the distance traveled, which the screed 4, in particular the front edge 9 formed thereon, has covered from the time of storage. As soon as the distance traveled corresponds to the distance x 9 , the correction value K is subtracted from the basic leveling setpoint y 1 basis using the control device 17. Optionally, the correction value K can be multiplied beforehand by the compensation factor c.
  • the basic leveling setpoint y 1-basis can be set manually by an operator on a control panel of the paver, so that a desired height of the screed 4 can be set accordingly for the paving operation.
  • the height of the screed 4 can be determined manually by the operator or measured by a layer thickness sensor, not shown.
  • the leveling setpoint y 1 - setpoint determined taking into account the correction value K using the control device 17 for the measuring point 14 is supplied to the control device 18. Furthermore, the control device 18 is supplied with the measured distance y 1 .
  • the controller device 18 is designed to calculate a controller variable u, which is fed to an actuator 21, based on a difference between the leveling target values y 1 -target calculated on the basis of unevenness 8 and the distance y 1 currently measured at the measuring point 14.
  • the actuator 21, for example a hydraulic drive component then sets an extension path s 7 of the leveling cylinder 7, so that a pull point height h 6 can be adjusted in order to position the screed 4, in particular its rear edge, at a desired height h bo .
  • Figure 5 essentially shows the arrangement Figure 3 , wherein the measuring device 10 according to Figure 5 only has the first sensor 12 for measuring the distance y 1 to the reference 11.
  • the correction value K can be calculated primarily based on the measured distance y 1 and based on the extension path s 7 of the leveling cylinder 7 become.
  • the correction value K can be a sum of the distance y 1 , the height h 11 to the reference 11, a distance h s of the first sensor 12 to the front pull point 6 and the extension path s 7 of the leveling cylinder 7 minus a height h zp , which indicates a constructive height of the underside of the chassis F to the front pull point 6 when the leveling cylinder 7 is retracted.
  • Figure 6 shows a schematic representation of a leveling system 15 'for the in Figure 5 arrangement shown.
  • the measured distances y 1 and the detected extension paths s 7 of the leveling cylinder 7 are continuously transmitted to the control device 17, based on which the correction value K is calculated and stored in the storage device 16 for each measuring point 14 along the installation route.
  • the correction value K can be calculated using the sum described above minus the height h zp , which is present when the leveling cylinder 7 is retracted.
  • the basic leveling setpoint y 1-setpoint held by the control device 17 is calculated minus the correction value K to the leveling setpoint y 1-setpoint , which is fed to the control device 18 as an input variable at the latest when the front edge 9 of the screed 4 is at the measuring point 14 for the measured distance y 1 has arrived, whereby the control device 18 determines the control variable u for the actuator 21 from a difference between the calculated leveling setpoint y 1-setpoint and the measured distance y 1 , which adjusts the leveling cylinder 7 accordingly in order to level the screed 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Road Paving Machines (AREA)

Claims (16)

  1. Finisseur d'asphalte (1) comprenant une poutre lisseuse (4) pour produire sur un sous-sol (3) une couche de pose (2) sur laquelle le finisseur d'asphalte (1) se déplace dans la direction de pose (R) le long d'un tronçon de pose, dans lequel la poutre lisseuse (4) est réglable en hauteur et comporte un bras de traction (5) qui est fixé au moyen d'un vérin de nivellement (7) sur le finisseur d'asphalte (1) à un point de traction avant (6) constitué sur celui-ci, au moins un dispositif de mesure (10) pour effectuer au moins une mesure de distance, un dispositif de stockage (16), un dispositif de commande (17), et un dispositif de régulation (18) connecté fonctionnellement pour adapter un réglage du vérin de nivellement (7), dans lequel le dispositif de commande (17) est conçu pour calculer, en fonction d'au moins une mesure de distance effectuée par rapport au sous-sol (3) et/ou par rapport à une référence (11) au moyen du dispositif de mesure (10), ladite mesure pouvant être effectuée à un point de mesure (14) situé devant un bord avant (9) de la poutre lisseuse (4) dans la direction de pose (R), une valeur de correction (K) et la stocker au moins temporairement dans le dispositif de stockage (17), caractérisé en ce que le dispositif de commande (17) est conçu pour calculer, en mode de pose en continu et en prenant en compte la valeur de correction (K) stockée, une valeur de consigne de nivellement (y1-Soll) pour le point de mesure (14), sur la base de laquelle le vérin de nivellement (7) de la poutre lisseuse (4) est commandé lorsque le bord avant (9) de la poutre lisseuse (4) atteint le point de mesure (14).
  2. Finisseur d'asphalte selon la revendication 1, caractérisé en ce que le dispositif de mesure (10) est fixé au bras de traction (5) de la poutre lisseuse (4).
  3. Finisseur d'asphalte selon la revendication 1 ou 2, caractérisé en ce que le dispositif de mesure (10) est agencé dans la zone du point de traction avant (6) du bras de traction (5).
  4. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de mesure (10) comporte au moins un premier capteur (12) pour mesurer une distance (y1) par rapport à la référence (11) ainsi qu'au moins un deuxième capteur (13) pour mesurer une distance (y2) par rapport au sous-sol (3).
  5. Finisseur d'asphalte selon la revendication 4, caractérisé en ce que les premier et deuxième capteurs (12, 13) se trouvent à la même distance (x9) du bord avant (9) de la poutre lisseuse (4) dans la direction de pose (R).
  6. Finisseur d'asphalte selon la revendication 4 ou 5, caractérisé en ce que le dispositif de commande (17) est conçu pour déterminer la valeur de correction (K) pour le point de mesure (14) sur la base de la valeur de la distance (y2) mesurée au point de mesure (14) par rapport au sol (3) au moyen du deuxième capteur (13) moins la distance (y1) mesurée par rapport à la référence (11) au moyen du premier capteur (12) et moins aussi une hauteur prédéfinie (h11) de la référence (11) par rapport au sous-sol (3) .
  7. Finisseur d'asphalte selon l'une des revendications précédentes 4 à 6, caractérisé en ce que le dispositif de commande (17) est configuré pour établir, dans une étape intermédiaire, une différence à partir d'une valeur de consigne de nivellement de base prédéfinie (y1-Basis) et de la valeur de correction stockée (K) afin de déduire la valeur de consigne de nivellement (y1-Soll) pour le point de mesure (14).
  8. Finisseur d'asphalte selon la revendication 7, caractérisé en ce que le dispositif de commande (17) est configuré pour calculer la valeur de consigne de nivellement (y1-Soll) à partir de la différence entre la valeur de consigne de nivellement de base prédéfinie (y1-Basis) et la valeur de correction stockée (K) moins une distance (y1) par rapport à la référence (11) mesurée actuellement au moyen du dispositif de mesure (10).
  9. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de mesure (10) comporte une pluralité de capteurs (12, 13) pour mesurer une distance (y1, y2) par rapport au sous-sol (3) et/ou par rapport à la référence (11), dans lequel le dispositif de commande (17) est conçu pour établir une valeur moyenne respective comme base pour déterminer la valeur de correction (K) sur la base d'une pluralité de mesures de distance (y1, y2) par rapport au sous-sol (3) et/ou par rapport à la référence (11) effectuées simultanément à l'aide du dispositif de mesure (10).
  10. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de commande (17) est configuré pour multiplier la valeur de correction calculée (K) par un facteur de compensation (c) dépendant d'une géométrie de la poutre lisseuse (4).
  11. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le finisseur d'asphalte (1) comporte au moins un dispositif de mesure de course (20) pour détecter un tronçon parcouru par le bord avant (9) de la poutre lisseuse (4), dans lequel le calcul de la valeur de consigne de nivellement (y1-Soll) sur la base du dispositif de commande (17) peut être déclenché si le tronçon parcouru par le bord avant (9) de la poutre lisseuse (4), détecté par le dispositif de mesure de course (20), correspond à une distance (x9) entre le dispositif de mesure (10) et le bord avant (9) de la poutre lisseuse (4).
  12. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de commande (17) est conçu pour calculer en continu, pendant un trajet de pose du finisseur d'asphalte (1) le long du tronçon de pose, des valeurs de correction (K), pour stocker celles-ci, et pour utiliser les valeurs de correction stockées respectives (K) afin de déterminer des valeurs de consigne de nivellement ajustées (y1-soll) .
  13. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de commande (17) est conçu pour mettre en œuvre un modèle de données de sous-sol basé sur des données GPS afin de déterminer la valeur de correction (K).
  14. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de commande (17) est conçu pour calculer la valeur de correction (K) en prenant en compte une position du piston du vérin de nivellement (7) actuellement réglée au point de mesure (14).
  15. Finisseur d'asphalte selon l'une des revendications précédentes, caractérisé en ce que le dispositif de mesure (10) est fixé à un tracteur (22) du finisseur d'asphalte (1), moyennant quoi ses valeurs de mesure peuvent être compensées par des valeurs de mesure d'un autre dispositif de mesure qui est agencé sur le bras de traction ou sur la poutre lisseuse, cela afin de réguler une hauteur de poutre déterminée.
  16. Procédé pour niveler une poutre lisseuse (4) d'un finisseur d'asphalte (1), dans lequel un dispositif de commande (17) du finisseur d'asphalte (1), en fonction d'au moins une mesure de distance d'un dispositif de mesure (10) effectuée par rapport au sous-sol (3) et/ou par rapport à une référence (11), la mesure de distance étant effectuée à un point de mesure (14) situé dans la direction de pose (R) devant un bord avant (9) de la poutre lisseuse (4), calcule une valeur de correction (K) et stocke celle-ci au moins temporairement dans un dispositif de stockage (16), caractérisé en ce que le dispositif de commande (17) calcule, en mode de pose en continu et en prenant en compte la valeur de correction (K) enregistrée, une valeur de consigne de nivellement (y1-Soll) pour le point de mesure (14), sur la base de laquelle au moins un vérin de nivellement (7) de la poutre lisseuse (4) est commandé, quand le bord avant (9) de la poutre lisseuse (4) atteint le point de mesure (14).
EP20200791.0A 2020-10-08 2020-10-08 Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur Active EP3981918B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20200791.0A EP3981918B1 (fr) 2020-10-08 2020-10-08 Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur
CN202111158048.1A CN114293438B (zh) 2020-10-08 2021-09-28 路面整修机以及用于找平熨平板的方法
CN202122364784.4U CN216688925U (zh) 2020-10-08 2021-09-28 路面整修机
BR102021020108-8A BR102021020108A2 (pt) 2020-10-08 2021-10-06 Máquina de acabamento de estradas e método para nivelar uma mesa
JP2021165520A JP2022062702A (ja) 2020-10-08 2021-10-07 道路仕上げ機およびスクリードのレベリング方法
US17/497,086 US20220112669A1 (en) 2020-10-08 2021-10-08 Road finishing machine and method for levelling a screed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20200791.0A EP3981918B1 (fr) 2020-10-08 2020-10-08 Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur

Publications (2)

Publication Number Publication Date
EP3981918A1 EP3981918A1 (fr) 2022-04-13
EP3981918B1 true EP3981918B1 (fr) 2024-03-13

Family

ID=72811693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20200791.0A Active EP3981918B1 (fr) 2020-10-08 2020-10-08 Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur

Country Status (5)

Country Link
US (1) US20220112669A1 (fr)
EP (1) EP3981918B1 (fr)
JP (1) JP2022062702A (fr)
CN (2) CN114293438B (fr)
BR (1) BR102021020108A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11834797B2 (en) * 2021-09-08 2023-12-05 Caterpillar Paving Products Inc. Automatic smoothness control for asphalt paver

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807131A (en) * 1987-04-28 1989-02-21 Clegg Engineering, Inc. Grading system
KR100206726B1 (ko) * 1990-11-14 1999-07-01 와시오히데오 포장 기계에 있어서의 포장 두께 제어방법 및 자동 제어의 조건 설정방법
DE19647150C2 (de) 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
DE29619831U1 (de) 1996-11-14 1997-01-09 Moba Electronic Mobil Automat Vorrichtung zum Steuern der Einbauhöhe eines Straßenfertigers
DE10025474B4 (de) 2000-05-23 2011-03-10 Moba - Mobile Automation Gmbh Schichtdickenbestimmung durch relative Lageerfassung zwischen Traktor und Zugarm eines Straßenfertigers
DE10025462A1 (de) 2000-05-23 2001-12-06 Moba Mobile Automation Gmbh Schichtdickenbestimmung unter Verwendung eines Neigungssensors
EP1672122A1 (fr) * 2004-12-17 2006-06-21 Leica Geosystems AG Procédé et appareil pour contrôler une machine de construction de chaussée
US8070385B2 (en) 2008-07-21 2011-12-06 Caterpillar Trimble Control Technologies, Llc Paving machine control and method
EP2535456B1 (fr) * 2011-06-15 2013-12-18 Joseph Vögele AG Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
EP3130939A1 (fr) * 2015-08-13 2017-02-15 Joseph Vögele AG Finisseuse de route dotée d'un dispositif d'égalisation par radar et procédé de commande
EP3498914B1 (fr) * 2017-12-13 2024-05-15 Joseph Vögele AG Ajustement de réglage de cylindre à niveler dans une finisseuse de route

Also Published As

Publication number Publication date
CN114293438B (zh) 2023-06-02
EP3981918A1 (fr) 2022-04-13
JP2022062702A (ja) 2022-04-20
CN216688925U (zh) 2022-06-07
CN114293438A (zh) 2022-04-08
BR102021020108A2 (pt) 2023-03-07
US20220112669A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP3739122B1 (fr) Finisseuse de route et procédé de détermination de l'épaisseur de couche de route
EP2025811B1 (fr) Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé
DE19647150C2 (de) Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
DE112009001767B4 (de) Straßenfertigungsmaschinen-Steuerung und Verfahren
DE102007026527B4 (de) Steuerungssystem für einen Motor-Grader, Motor-Grader und Verfahren zum Steuern eines Motor-Graders
EP1825064B1 (fr) Procede et systeme pour controler un engin de travaux routiers
DE102011001542B4 (de) Steuerung und entsprechendes Verfahren für eine Teermaschine
EP2535456B1 (fr) Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
EP3048199B2 (fr) Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau installée
EP2199466B1 (fr) Procédé destiné à l'insertion d'un revêtement de chaussée
DE102008060425B4 (de) Verfahren zum automatischen Kalibrieren eines elektrisch betätigten hydraulischen Ventils
EP1880057B1 (fr) Finisseuse servant à la mise en place, côté sol, de couches pour chaussées ou analogues
US8454266B2 (en) Method for controlling the process when producing a paving mat and road finisher
EP3498914B1 (fr) Ajustement de réglage de cylindre à niveler dans une finisseuse de route
EP0834620A1 (fr) Train de finisseuses
EP0388819A1 (fr) Finisseuse pour route
DE102017002225A1 (de) Straßenfertiger mit Steuereinheit zur Bestimmung des Gewichts und/oder der Schwerpunktlage und/oder der Breite der Bohle und Verfahren
EP3981918B1 (fr) Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur
EP3892777A1 (fr) Finisseuse de route et procédé à commande de profil transversal
EP0495171B1 (fr) Procédé pour régler l'épaisseur d'une couche à poser avec un finisseur
DE10025462A1 (de) Schichtdickenbestimmung unter Verwendung eines Neigungssensors
DE10038943A1 (de) Strassenfertiger und Einbauverfahren
EP4056760B1 (fr) Finisseuse de routes à régulation en cascade de nivellement
DE10025474B4 (de) Schichtdickenbestimmung durch relative Lageerfassung zwischen Traktor und Zugarm eines Straßenfertigers
DE102014010837A1 (de) Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220919

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007319

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN