EP2025811B1 - Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé - Google Patents

Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé Download PDF

Info

Publication number
EP2025811B1
EP2025811B1 EP07016122.9A EP07016122A EP2025811B1 EP 2025811 B1 EP2025811 B1 EP 2025811B1 EP 07016122 A EP07016122 A EP 07016122A EP 2025811 B1 EP2025811 B1 EP 2025811B1
Authority
EP
European Patent Office
Prior art keywords
stroke
paving screed
construction
regulating
screed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07016122.9A
Other languages
German (de)
English (en)
Other versions
EP2025811A1 (fr
Inventor
Jens Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to EP07016122.9A priority Critical patent/EP2025811B1/fr
Priority to US12/191,624 priority patent/US7654769B2/en
Priority to CN2008101475017A priority patent/CN101368361B/zh
Publication of EP2025811A1 publication Critical patent/EP2025811A1/fr
Application granted granted Critical
Publication of EP2025811B1 publication Critical patent/EP2025811B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • E01C19/4866Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
    • E01C19/4873Apparatus designed for railless operation
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/008Devices for guiding or controlling the machines along a predetermined path by reference lines placed along the road, e.g. wires co-operating with feeler elements

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a road finisher according to the preamble of patent claim 4.
  • height sensors are installed on the paving train at the front end, at the rear end of the paver in the transverse spreading device, and on the screed and optionally the drawbars, which are used to measure the thickness by scanning the reference (for example a guidewire or runners sliding on the surface) ,
  • the leveling cylinders are each adjusted in the direction predetermined by a deviation (too small or too thick a thickness) until the desired layer thickness is reached again.
  • the large number of height sensors requires high costs and high-quality signal processing.
  • the resulting height change relative to the respective leveling cylinder e.g. with regard to the adjustment direction of the leveling cylinder, evaluated, and the leveling cylinders are driven until the height difference has reduced to zero.
  • the detected height difference is only minimal, the leveling cylinder moves to the stop and the thickness deviation is not corrected correctly.
  • the placements of the height sensors compromise accuracy and evenness by placing multiple height sensors in the area between the screed trailing edge and the leveling cylinder and, optionally, at the level of the transverse spreading device. The achievable despite the high cost accuracy of the layer thickness is not always satisfactory. Installation-related parameters such as installation speed, body temperature, compaction produced, material consistency, and the like make the accuracy of a correction and precise thickness measurement difficult.
  • a height sensor and a pitch sensor is provided on each side of the screed on Switzerland.
  • the height sensor measures the height for reference. From a differential measured value measured at a deviation from a layer thickness nominal value, a pitch change value is derived and compared with a pitch request value to determine a control signal for a separate tension point controller.
  • the draft regulator adjusts the leveling cylinder until the angle measured by the pitch sensor reaches its setpoint.
  • An adaptive built-in ratio factor is not taken into account, but a calculation amount that depends on the distance between the screed trailing edge and the height sensor position and the calculated angle between the screed trailing edge and the position of the height sensor.
  • the position of the leveling cylinder is not determined at any time.
  • Known methods for controlling the installation height of a screed are arranged on one side at the screed trailing edge, a height sensor and the Glasholm a pitch sensor, which scan a reference on the subgrade.
  • a height monitoring module is provided for outputting a difference measurement value in the event of a deviation from the setpoint height, which value is then transmitted to a separate traction control loop and converted into an inclination change value taken from a table.
  • the longitudinal inclination angle monitored by the longitudinal inclination sensor is again brought to the longitudinal nominal inclination on the basis of values taken from a table in that the traction controller controls the leveling cylinder until the longitudinal nominal inclination is reached.
  • the position of the leveling cylinder is not detected at any time.
  • an adaptive built-in ratio factor is not taken into account, but an optimization algorithm that is based on how quickly a correction is made or how much an overshoot fails. Since the pull-point controller controls the leveling cylinder until the longitudinal setpoint inclination is reached, the leveling cylinder can go to the stop.
  • the invention has for its object to provide a method and a paver of the type mentioned above are avoided with the high accuracy installation errors due to non-met nominal thickness, the method should be executed by the simple and fast response control system.
  • the height measurement is carried out as close as possible to the decisive point for the accuracy of the screed, namely at or in the vicinity of the screed trailing edge to measure the installation height or actual height with respect to the reference and immediately upon the occurrence of a deviation from the target height to be able to react. Due to the placement of the height sensor at or near the screed trailing edge and the adjustment of the respective leveling cylinder only over a respective predetermined absolute stroke without the leveling cylinder to go to stop, a more accurate, yet level installation is possible.
  • At least one bank sensor is used on the screed, which indirectly measures the height above the bank.
  • the parameters influencing the installation are only determined by the height measurement on the screed trailing edge and / or the bank angle measurement on the screed and the adjustment of the respective leveling cylinder balanced over an absolute stroke.
  • the respective zero point of the leveling cylinder is automatically learned automatically and automatically corrects itself again and again as soon as the measured control difference value of the height sensor and / or inclination sensor has been reduced to a minimum.
  • This automatic teach-in process has the advantage that even an erroneously incorrect input of the built-in ratio factor leads to the correct result.
  • the bank angle measurement, alternative or additive either leads to the same result or supports the altitude measurement.
  • the resulting leveling cylinder setting position is selected as the zero point.
  • a current control difference value of the height sensor and / or the roll angle sensor measured relative to the reference is set to zero.
  • the actual height and / or actual bank is then measured relative to the reference. If a deviation occurs, the height sensor and / or the lateral inclination sensor determine a new current control difference value different from zero.
  • the absolute stroke required for the correction of the leveling cylinder is calculated and the leveling cylinder is only over the calculated absolute stroke starting from the zero point adjusted, in the direction in which the new current control difference value would have to be reduced to a predetermined minimum.
  • the achievement of the predetermined minimum is monitored. If the predetermined minimum is not achieved, the previously set installation ratio factor is increased or decreased by way of an adaptive built-in ratio controller until the predetermined minimum of the control difference value is reached. Once the predetermined minimum is reached, the new leveling cylinder setting position is selected as the zero point and the predetermined minimum is set to zero and adopted in the control system.
  • control system is ready for a new control cycle.
  • the control system thus operates self-learning and the correction is relatively quickly and accurately performed, and without the risk that the leveling cylinder, for example, at a small control differential value, for lack of a sufficiently meaningful control variable, moves too far and on stop, and the height deviation either not at all or overcorrected ,
  • the control system is simple, responsive, and surprisingly works very reliably with a few sensors on the screed.
  • a constant ratio between a lift increment of the leveling cylinder and the lifting stroke or lowering stroke or transverse stroke of the screed at the reference measuring point e.g. at or in the area of the screed trailing edge.
  • Fig. 1 shows a side view of a paving train, consisting of a paver with at least one towbar towed to Switzerlandholmen.
  • the in Fig. 1 Road paver F shown has a chassis on a chassis 1 and on the chassis at the front end of a bunker 3 built-in. Behind the built-in bunker 3 is a primary drive source 4, for example, a diesel engine, installed in the chassis, behind which is a cab with a control panel 5.
  • the paver F has a computerized control device with an integrated or connected control system R.
  • the control system R or the control device is equipped with a self-learning built-in ratio controller R1, which then increases or decreases a previously entered installation ratio factor for consideration in the control system R, if a corrective action by a controlled leveling cylinder Z is not or, for example, not after a certain time, leads to the desired result.
  • a computing section CB is provided. As is customary in road finishers, a so-called leveling system can be provided as a superordinate unit for screed control.
  • leveling cylinders Z eg hydraulic cylinders, double-acting
  • the screed B is attached to the Tow bars 6 firmly mounted.
  • At least one lateral inclination sensor N which is linked to the control or the control system R, can be installed on the screed B.
  • the bank of the screed B can be varied using the inclination sensor N.
  • the height sensors H At the screed B in the vicinity of the screed trailing edge 7 on one side at least one or both sides of height sensors H are installed, the height as the distance to a installed on a Planum M reference RZ, eg a guidewire measures or measure up. In an alternative, not shown, the height sensors H could work with runners sliding on the planum.
  • the leveling cylinder Z adjusts the traction point P after activation via the control system R, in each case starting from a current zero point NP in the direction of the double arrow 8 upwards or downwards in order to adjust and / or correct the thickness D of a ceiling layer S by means of the screed B is installed on the Planum M.
  • the bank sensor N if present, measures the bank of the screed B relative to the bank M or reference RZ.
  • a transverse distribution device 9 is provided between the rear end of the chassis 1 and the screed B, for example a distributor screw.
  • the screed B is in the embodiment shown a Ausziehbohle whose working width is variable.
  • a screed center and Ausziehbohlenmaschine each have a screed plate 11, in front of the screed plate a tamper 10, and on or behind the screed plate 11, a high compression device 12, for example with one or more e.g. hydraulically acted pressure bars on.
  • the screed B Before the start of installation, the screed B, for example, by underlying planks, adjusted to the desired target layer thickness D, where appropriate, the adjustment is carried out using previously or previously determined parameters.
  • the leveling cylinders Z are also adjusted in order to set the desired layer thickness or nominal height of the layer surface above the plane M determining angle of attack of the screed and / or its transverse slope, which is later dragged floating on the built-in ceiling layer S.
  • the current height position of the leveling cylinder Z in the control system R as leveling cylinder zero point NP set.
  • the control difference value of the height sensors H and / or of the bank angle sensor N which they detect by sensing the reference RZ with respect to the desired value, is likewise set to zero.
  • the paver F travels while the building material (bituminous or concrete building material) is dropped from the built-in bunker 3 with a conveying device (not shown) in the chassis in front of the transverse distribution device, distributed and then installed by the screed B.
  • the determined control difference value in the control system R is converted into an absolute stroke for the leveling cylinder Z, taking into account the inputted installation ratio factor.
  • the installation ratio factor takes into account how the height of the screed B (or the layer thickness) on the screed trailing edge 7 changes at a certain stroke increment of the leveling cylinder Z. If the layer thickness increases, then the angle of attack of the screed B must be set flatter. If the layer thickness decreases compared to the target layer thickness D, then the angle of attack of the screed B must be set steeper.
  • the layer thickness would have to be corrected again to the target layer thickness. This is monitored by further height measurements of the height sensors H and inclination measurements of the lateral inclination sensor N until the control difference value becomes zero or a predetermined minimum, confirming that the infeed absolute stroke of the leveling cylinder Z was correct. Then the new height position of the leveling cylinder Z in the control system R is selected as the new zero point NP. If a deviation occurs again later, the procedure is repeated accordingly.
  • the previously set installation ratio factor is increased or decreased via a learning integration ratio controller R1 in the control device or in the control system R until the expected minimum of the control difference value is reached.
  • the two leveling cylinders Z are set to different height positions and these height positions are selected as their zero points NP.
  • the bank sensor N cooperating with the control or the control system R can be used, or in the simplest case a spirit level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Claims (4)

  1. Procédé de pose d'une couche de revêtement (S) sur une plateforme de chaussée (M) à l'aide d'une table lisseuse de pose de revêtement (B) tractée par un finisseur de route (F) au moyen de longerons de traction (6), procédé d'après lequel on mesure la hauteur réelle de la table lisseuse de pose de revêtement (B) au-dessus de la plateforme de chaussée (M), au moyen de capteurs de hauteur (H) placés au niveau ou au voisinage du bord arrière de la table lisseuse de pose de revêtement, et/ou l'inclinaison réelle de la table lisseuse de pose de revêtement (B), au moyen d'au moins un capteur d'inclinaison transversale (N) sur le train de pose de revêtement constitué par le finisseur de route et la table lisseuse de pose de revêtement, au regard d'une référence (RZ) agencée sur la plateforme de chaussée (M), sous la forme d'une valeur différentielle de régulation, et dans le cas de l'apparition d'un écart on règle, par l'intermédiaire d'un système de régulation (R) intégré à un dispositif de commande informatisé (5), des vérins de nivellement (Z) déplaçant des points de traction (P) des longerons de traction (6) dans la direction de la hauteur, pour corriger l'écart,
    caractérisé
    en ce que pour la correction, dans une boucle de régulation fermée, chaque vérin de nivellement (Z) est réglé à partir d'un point zéro (NP) sélectionné du vérin de nivellement (Z), sur uniquement une course absolue, qui est calculée à partir de la valeur différentielle de régulation de valeurs mesurées au niveau d'un point de référence, et d'un facteur de conditions de pose ayant été saisi et prenant en considération au moins le bras de levier (X) entre le point de traction (P) et le point de mesure de référence,
    en ce que la nouvelle position de réglage de vérin de nivellement résultant de ladite course absolue, est sélectionnée automatiquement par autoapprentissage, en tant que nouveau point zéro (NP) pour une phase de réglage suivante de même type,
    en ce qu'avant le début de la pose de revêtement, sur la base de la table lisseuse de pose de revêtement (B) ajustée à l'épaisseur de couche de consigne ou de paramètres mémorisés précédemment par apprentissage, dans le système de régulation (R) on sélectionne la position de réglage de vérin de nivellement en tant que point zéro (NP) du vérin de nivellement (Z), et une valeur différentielle de réglage actuelle des capteurs de hauteur (H) et/ou du capteur d'inclinaison transversale (N) par rapport à la référence (RZ) est mise à zéro,
    en ce que pendant la pose de revêtement, on mesure la hauteur réelle par l'intermédiaire des capteurs de hauteur (H) et/ou l'inclinaison réelle par l'intermédiaire du capteur d'inclinaison transversale (N) relativement à une valeur de consigne absolue par rapport à la référence (RZ), et lors de l'apparition d'un écart par rapport à la valeur de consigne de la hauteur et/ou de l'inclinaison, on détermine une nouvelle valeur différentielle de régulation actuelle différente de zéro,
    en ce qu'à partir de la nouvelle valeur différentielle de régulation actuelle, on calcule, à l'aide du facteur de conditions de pose saisi, la course absolue pour le vérin de nivellement (Z),
    et en ce que le vérin de nivellement (Z) est réglé à partir du point zéro (NP) sélectionné, seulement sur la course absolue, qui a été calculée, dans une direction réduisant la nouvelle valeur différentielle de régulation jusqu'à un minimum prédéterminé,
    procédé d'après lequel lors de la poursuite de la pose on surveille l'obtention du minimum prédéterminé en poursuivant la mesure de référence, et
    dans le cas où le minimum prédéterminé n'est pas atteint, on augmente ou on diminue, par l'intermédiaire d'un régulateur (R1) susceptible d'apprentissage, le facteur de conditions de pose précédemment réglé, jusqu'à atteindre le minimum attendu de la valeur différentielle de régulation,
    ou bien lorsque le minimum prédéterminé est atteint, on sélectionne la nouvelle position de réglage de vérin de nivellement en tant que nouveau point zéro (NP), et le minimum atteint est pris en compte dans le système de régulation (R).
  2. Procédé selon la revendication 1, caractérisé en ce que pour la pose d'une couche de revêtement (S) avec une surface supérieure inclinée par rapport à la plateforme de chaussée (M), les points zéro (NP) des deux vérins de nivellement (Z) sont choisis à des positions de hauteur réglées différentes.
  3. Procédé selon la revendication 1, caractérisé en ce qu'en guise de facteur de conditions de pose saisi, on sélectionne un rapport constant entre un incrément de course de déplacement du vérin de nivellement (Z) et la course de soulèvement ou bien d'abaissement ou bien encore d'inclinaison produite ou à attendre de cet incrément de course de déplacement lors de la pose, de la table lisseuse de pose de revêtement (B) au point de mesure de référence, de préférence au niveau ou dans la zone du bord arrière (7) de la table lisseuse de pose de revêtement (B).
  4. Finisseur de route comprenant une table lisseuse de pose de revêtement (B) tractée par des longerons de traction (6) et pouvant être réglée au moyen de vérins de nivellement, et un système de régulation (R), pour la mise en oeuvre du procédé selon l'une des revendications 1 - 3, caractérisé en ce que le système de régulation (R) est combiné à au moins un capteur de hauteur (H) placé au niveau ou à proximité du bord arrière (7) de la table lisseuse de pose de revêtement et/ou à un capteur d'inclinaison transversale (N) installé sur la table lisseuse de pose de revêtement (B), et le système de régulation (R) comprend un régulateur de conditions de pose de revêtement (R1) à autoapprentissage, pour augmenter ou diminuer un facteur de conditions de pose ayant été saisi, qui prend en considération au moins le bras de levier (X) entre un point de traction (P) et le point de mesure de référence, et une section de calcul (CB) pour calculer une course absolue pouvant être exécutée pour une correction d'écart pour les vérins de nivellement (Z), sur la base d'une valeur différentielle de régulation mesurée par rapport à une référence (RZ), et du facteur de conditions de pose.
EP07016122.9A 2007-08-16 2007-08-16 Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé Active EP2025811B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07016122.9A EP2025811B1 (fr) 2007-08-16 2007-08-16 Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé
US12/191,624 US7654769B2 (en) 2007-08-16 2008-08-14 Method and regulating system for producing a cover layer
CN2008101475017A CN101368361B (zh) 2007-08-16 2008-08-15 铺设覆盖层的方法和调节系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07016122.9A EP2025811B1 (fr) 2007-08-16 2007-08-16 Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé

Publications (2)

Publication Number Publication Date
EP2025811A1 EP2025811A1 (fr) 2009-02-18
EP2025811B1 true EP2025811B1 (fr) 2019-04-24

Family

ID=38984544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016122.9A Active EP2025811B1 (fr) 2007-08-16 2007-08-16 Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé

Country Status (3)

Country Link
US (1) US7654769B2 (fr)
EP (1) EP2025811B1 (fr)
CN (1) CN101368361B (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199466B1 (fr) * 2008-12-16 2011-07-13 Joseph Vögele AG Procédé destiné à l'insertion d'un revêtement de chaussée
BE1018770A3 (nl) 2009-06-04 2011-08-02 Hoogmartens Wegenbouw Asfalteringsmachine met geintegreerde voegaanbrenger.
EP2366831B1 (fr) * 2010-03-18 2014-12-24 Joseph Vögele AG Procédé de commande du procédé lors de la application d'un revêtement routier et finisseuse de route
US8371769B2 (en) * 2010-04-14 2013-02-12 Caterpillar Trimble Control Technologies Llc Paving machine control and method
CN102011360B (zh) * 2010-11-28 2015-04-01 宗焕清 公路沥青路面的施工方法
EP2620549B1 (fr) * 2012-01-26 2014-05-14 Joseph Vögele AG Finisseuse de route dotée de dispositifs de transport pouvant être commandés
US9482014B2 (en) * 2012-04-04 2016-11-01 Elmich Pte Ltd. Chock for paver support
CN102991590B (zh) * 2012-12-17 2016-05-25 三一重工股份有限公司 驾驶室及工程机械
US8747022B1 (en) 2013-01-22 2014-06-10 Caterpillar Paving Products Inc. Screed tow point assembly for a paver
CN103528555A (zh) * 2013-11-01 2014-01-22 山东科技大学 一种沥青路面松铺层高程与厚度实时监测装置
US9200415B2 (en) 2013-11-19 2015-12-01 Caterpillar Paving Products Inc. Paving machine with automatically adjustable screed assembly
EP3431925A1 (fr) * 2014-03-18 2019-01-23 MOBA Mobile Automation AG Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau déposée
US9873990B2 (en) * 2015-07-30 2018-01-23 Caterpillar Paving Products Inc. Paving machine having production monitoring system
CN111133151B (zh) * 2017-10-06 2022-03-01 沃尔沃建筑设备公司 熨平板装置
US11078634B2 (en) * 2019-11-05 2021-08-03 Caterpillar Paving Products Inc. Variable tamper bar amplitude for asphalt pavers
CN113032860B (zh) * 2019-12-07 2022-12-27 中交二公局城市建设发展有限公司 铺路材料剂量调配平台及方法
CN111206473A (zh) * 2020-02-12 2020-05-29 珠海市联港中投建筑装饰工程有限公司 一种沥青智能铺路机
PL4056760T3 (pl) * 2021-03-12 2024-02-19 Joseph Vögele AG Układarka z regulację poziomowania kaskadowego
EP4083322A1 (fr) * 2021-04-27 2022-11-02 Leica Geosystems AG Système et procédé de commande d'un processus de construction routière
TR2021018355A2 (tr) * 2021-11-24 2021-12-21 Geometri Makina Elektrik Insaat Muehendislik Sanayi Ve Ticaret Ltd Sirketi Asfalt çeki̇rdek fi̇ni̇şeri̇
DE102022201294A1 (de) * 2022-02-08 2023-08-10 Moba Mobile Automation Aktiengesellschaft Nivelliersystem für eine Baumaschine
CN114892481A (zh) * 2022-06-15 2022-08-12 四川公路桥梁建设集团有限公司 一种路面3d智能摊铺控制方法、设备、系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3604878A (en) * 1977-05-17 1979-11-15 Integrated Tech Ltd Paving machines
DE3823917A1 (de) * 1988-07-14 1990-01-18 Berger Bau Gmbh Fertiger fuer grosse arbeitsbreiten und hohe einbauleistungen fuer den asphalt- und betonstrassenbau
US5752783A (en) * 1996-02-20 1998-05-19 Blaw-Knox Construction Equipment Corporation Paver with radar screed control
DE19647150C2 (de) * 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
DE19709131C2 (de) * 1997-03-06 2003-02-20 Abg Allg Baumaschinen Gmbh Deckenfertiger
JP3514995B2 (ja) * 1998-12-18 2004-04-05 前田道路株式会社 コンクリートフィニッシャ
US6749364B1 (en) * 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
US6318928B1 (en) * 2000-01-07 2001-11-20 Astec Industries, Inc. Method and apparatus for electrically heating a screed assembly in a paving machine
DE10025462A1 (de) * 2000-05-23 2001-12-06 Moba Mobile Automation Gmbh Schichtdickenbestimmung unter Verwendung eines Neigungssensors
JP3548129B2 (ja) * 2000-08-23 2004-07-28 株式会社Nippoコーポレーション アスファルト敷均装置及びアスファルト敷均方法
JP3980322B2 (ja) * 2001-10-25 2007-09-26 株式会社Nippoコーポレーション 複数層同時舗装における敷均厚さ制御方法及びその装置
US6796616B2 (en) * 2002-06-26 2004-09-28 Jeffrey K. Harman Mining system
DE102004016419A1 (de) * 2004-04-02 2005-10-20 Joseph Voegele Ag Fertiger und Verfahren zum gleichzeitigen Einbauen mehrerer Einbaugut-Lagen
US7172363B2 (en) * 2004-08-31 2007-02-06 Caterpillar Paving Products Inc Paving machine output monitoring system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2025811A1 (fr) 2009-02-18
US7654769B2 (en) 2010-02-02
US20090047069A1 (en) 2009-02-19
CN101368361B (zh) 2012-06-27
CN101368361A (zh) 2009-02-18

Similar Documents

Publication Publication Date Title
EP2025811B1 (fr) Procédé pour l'application d'une couche de revêtement et finisseuse pour exécuter ce procédé
EP3048199B2 (fr) Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau installée
EP2199466B1 (fr) Procédé destiné à l'insertion d'un revêtement de chaussée
EP3498914B1 (fr) Ajustement de réglage de cylindre à niveler dans une finisseuse de route
DE102011001542B4 (de) Steuerung und entsprechendes Verfahren für eine Teermaschine
EP2927372B1 (fr) Engin automobile et procédé de commande d'un engin automobile
DE19647150C2 (de) Vorrichtung und Verfahren zum Steuern der Einbauhöhe eines Straßenfertigers
EP3739122A1 (fr) Finisseuse de route et procédé de détermination de l'épaisseur de couche de route
DE102017002225A1 (de) Straßenfertiger mit Steuereinheit zur Bestimmung des Gewichts und/oder der Schwerpunktlage und/oder der Breite der Bohle und Verfahren
EP3130939A1 (fr) Finisseuse de route dotée d'un dispositif d'égalisation par radar et procédé de commande
EP0388819A1 (fr) Finisseuse pour route
EP3401442A1 (fr) Finisseuse de route ayant une compensation de braquage et procédé de commande
EP2325393A1 (fr) Procédé et finisseuse de route pour la fabrication d'un revêtement de route
EP0495171B1 (fr) Procédé pour régler l'épaisseur d'une couche à poser avec un finisseur
DE10025462A1 (de) Schichtdickenbestimmung unter Verwendung eines Neigungssensors
DE10025474B4 (de) Schichtdickenbestimmung durch relative Lageerfassung zwischen Traktor und Zugarm eines Straßenfertigers
EP3981918B1 (fr) Finisseur routier ainsi que procédé de nivellement de la table d'un finisseur
EP4056760B1 (fr) Finisseuse de routes à régulation en cascade de nivellement
DE102014010837A1 (de) Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger
DE102021107447A1 (de) Verfahren und systeme zum bestimmen eines anstellwinkels und einer querneigung eines fertigers
DE102014018113A1 (de) Straßenfertiger und Verfahren zur Herstellung eines Straßenbelags
DE102018005533A1 (de) Verfahren zur Herstellung eines Straßenbelags mit einem Straßenfertiger
DE29619831U1 (de) Vorrichtung zum Steuern der Einbauhöhe eines Straßenfertigers
DE102022115776A1 (de) Verfahren zur Herstellung eines Straßenbelags
DE102022122747A1 (de) Optimale einstellung des bohlenanstellwinkels und automatische anpassung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

AKX Designation fees paid

Designated state(s): DE IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOSEPH VOEGELE AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOSEPH VOEGELE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016648

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016648

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240823

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240827

Year of fee payment: 18