EP1118713B1 - Procédé de commande d'une machine de chantier ou finisseuse et finisseuse - Google Patents

Procédé de commande d'une machine de chantier ou finisseuse et finisseuse Download PDF

Info

Publication number
EP1118713B1
EP1118713B1 EP00101014A EP00101014A EP1118713B1 EP 1118713 B1 EP1118713 B1 EP 1118713B1 EP 00101014 A EP00101014 A EP 00101014A EP 00101014 A EP00101014 A EP 00101014A EP 1118713 B1 EP1118713 B1 EP 1118713B1
Authority
EP
European Patent Office
Prior art keywords
screed
drive unit
planned
width
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00101014A
Other languages
German (de)
English (en)
Other versions
EP1118713A1 (fr
Inventor
Henning Dr. Meyer
Erich Resch
Peter Prof.Dr.-Ing. Pickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to AT00101014T priority Critical patent/ATE279584T1/de
Priority to DE2000508220 priority patent/DE50008220D1/de
Priority to EP00101014A priority patent/EP1118713B1/fr
Priority to DK00101014T priority patent/DK1118713T3/da
Priority to JP2001011974A priority patent/JP2001262611A/ja
Publication of EP1118713A1 publication Critical patent/EP1118713A1/fr
Application granted granted Critical
Publication of EP1118713B1 publication Critical patent/EP1118713B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/841Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
    • E02F3/842Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine using electromagnetic, optical or photoelectric beams, e.g. laser beams
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a paver according to claim 12.
  • Construction machines affected here include road pavers, graders, Crawlers, slipform pavers and traffic area recycling machines where the working device works the subsoil to a planned route to shape, with the driving unit acting as a carrier of the working device, the necessary Applying propulsive force and taking the direction and an adjustment the longitudinal and / or cross slope and / or working width of the working device is possible on the drive unit.
  • the screed With a paver, the screed has the material evenly over the Spread, compact and smooth the width. Using a sensor The screed is leveled with the control system Setpoint values adjusted in height and / or bank angle. When using a extending screed the working width can also be adjusted. Usually will guide wires representing the desired height and course (EP-B-542 297) stretched along the planned route, which are scanned by sensors, to get information about leveling the screed. The high effort for adjusting the guide wires is disadvantageous. So far, the others have been similar Construction machines of the group mentioned above controlled. Some construction machines are automatically steered, with a guide wire providing directional information. at Automatic steering is not absolutely necessary for grades and caterpillars; however the working device is still along the planned route Taxes.
  • the paver is made of Hand directed.
  • the screed is leveled using two guide wires without guide wires stationary telescopes for observing height marks on the screed and via control devices on the telescopes, which the adjustment devices control the screed.
  • a machine model is created with which the position of the construction machine is defined in a digital terrain model.
  • the actual data can be compared with target data from the planning.
  • Position deviations determined in the process are used to control control elements.
  • slip shift ready e.g. the steering cylinders and the lifting cylinders of the height adjustment of the support frame controlled.
  • Automatic guidance of the construction machine in the field and leveling of the working device still need a guide wire or a similar reference element for deriving directional information and therefore a considerable measurement effort.
  • precise steering is difficult and steering errors can affect the accuracy of the settings of the working device significantly affect if primarily the driving unit and secondarily the processing device of the driving unit is tracked.
  • Construction machines are made using a geodetic positioning system from a comparison of the derived actual work position and a planned one Target work position position deviations determined and from the position deviations Generated correction signals for the control elements of the working device, to actuate the control elements on the basis of the correction signals, to the actual working position to bring to the target working position and the working device in the to run the planned route.
  • the driving unit of the construction machine controlled by hand.
  • the invention has for its object a method of the type mentioned to create with the working device a construction machine without guide wires or Earth-based reference elements with high working accuracy automatically in one the planned route is mobile, and an automatically precisely controllable one Specify paver.
  • the working device is first of the construction machine exactly in the planned route.
  • stringlines or earthbound Reference elements are not required.
  • the planned The route was created very precisely because the work fixture was used with the positioning system led transversely to the direction of travel and in their height and inclination is, and the driving unit only in the second line of the working device can be. Thereby the knowledge is taken into account that it is for high work accuracy it is important to control the work equipment primarily, and only secondarily the driving unit, since steering movements of the driving unit and made via the driving unit Adjustments of the working device would be too imprecise.
  • the position of the working device is determined via the measuring point determined and are used in the control in addition to the position information of the measuring point additional information relevant to the location of the working device, for example via sensors, procured and used for control.
  • The is used for the automatic steering of the driving unit guided working device for reference.
  • Automatic width control is advisable the screed using the planned data of obstacles, for example Gullies or the like, the control elements of the screed for driving around of the obstacle. It is possible to overcome an obstacle with either Bypass working width, or the working width in the area of the obstacle to reduce or enlarge only on one side.
  • the automatic width control has no influence on the automatic control of the screed along the planned route. With the automatic width control, one-sided or double-sided parking or alternative bays or constrictions shape, the automatic width control of the guide of the Screed is superimposed along the planned route.
  • Sensors detect oncoming obstacles, such as gullies, and control the control elements of the extendable screed to close the obstacles bypassed.
  • the paver is to perform a fully automatic Control along the planned route with the help of a geodetic positioning system designed. Regardless of where the measurement point is supporting mast (on the drive unit or on the working device), is always the real or virtual reference point on the screed or at one for the planned one
  • the route determines the relevant element and this reference point controlled that the screed forms the planned route.
  • the driving unit can also be steered automatically. That for the design element is a lower outer edge, for example the screed or the rear end point of this lower outer edge, the should be routed along the planned outline of the route.
  • the working width is independent of the driving movement of the driving unit Control elements of the screed parts in the transverse direction in the planned route adjustable, and the transverse and longitudinal inclinations of the screed are remotely controlled adjustable.
  • the mast carrying the measuring point is on a spar of the screed appropriate.
  • the actual working position is controlled with additional information determined, for example, representing strokes of the control elements Signals and / or calculated direction vectors.
  • a Direction sensor or a GPS-based system measured direction information be taken into account in the automatic steering. But that's always the case precise guidance of the working device in the foreground and becomes the driving unit of the Work device tracked. This can result in inaccurate steering movements not on the positioning of the working device in the planned route impact or simply be compensated.
  • special direction vectors are determined, from which correction signals for automatic steering of the driving unit.
  • the measurement point is expediently arranged on the screed to always keep the location, for example to know a lower outer plank edge.
  • the measuring point can also be at the Driving unit or be arranged on a spar of the screed, then using Known machine-specific information or information derived from sensors from the measuring point the position of the screed or the outer one Edge of the screed calculated.
  • the other screed part is either adjusted in exactly the opposite direction to a screed section, in order to achieve a constant working width, or is even adjusted individually, to achieve a working width that varies according to plan.
  • the Longitudinal and / or transverse inclination of the screed in accordance with the planned specifications adjusted to keep the extending screed exactly in the planned route to drive.
  • the measuring point can either be on the screed, expediently even on a screed section, on the drive unit or on a spar of the screed be arranged.
  • the method according to the invention can be used with a grader in order to the rotatability of the graders in the planned route drive.
  • the line of motion of the other end of the group of degrees is by calculation known at any time.
  • Dozer blade can be guided exactly in the planned route.
  • slipform paver the slipform and / or the screed guided in the planned route. It can be changed or unchangeable Working width.
  • a traffic area recycling device its working device guided in the planned route.
  • a geodetic position determination system is used for a route section Stationary total station installed near the planned route, i.e. a kind of theodolite with appropriate equipment and actuators, if necessary combined with the process computer or one with the process computer linked calculator.
  • a stationary or moving GPS system are used, using a DGPS system to increase accuracy recommends working with a stationary reference station in order to get the procured Precise or calibrate position data.
  • the data transfer or the transmission of measurements and correction signals can be wireless, e.g. through radio or laser transmission, or via one or more cable harnesses.
  • Construction machine A is, for example, a paver with a driving unit M and a working device B, namely one on bars 1 towed screed with constant working width.
  • the construction machine A is self-driving.
  • the transverse and longitudinal slopes of the screed are included Adjustable elements, as well as the height of the screed above the Subgrade.
  • the screed is in a linear guide 2 on the spars 1 transverse to Direction of travel back and forth adjustable, by means of at least one control element 3, for example a hydraulic cylinder, which is controlled by a controller C1 becomes.
  • a controller C for functions of the driving unit M is provided, e.g. for the driving speed, the steering angle etc. From the Control C2 off may also have functions in and on the screed controllable.
  • a system computer CPU is on the driving unit M provided (Fig. 2).
  • the screed has sensors 4 for the longitudinal and / or transverse inclination the control C2 and / or the system computer CPU are connected.
  • a measuring point P for example at one at one End 5 of the screed stationed mast 6, which carries a prism 18, the measuring point P defined.
  • the driving unit M can be steered in the direction of a double arrow 15. On The driving unit M is provided with a real or virtual reference point 9.
  • the procedure below for automatically controlling the paver is also for other self-propelled construction machines with at least one each Appropriate working device.
  • Such construction machines are without the scope want to restrict the invention, for example with paver Extending screeds (high compaction screed or normal screed), graders with graders, Slipform paver with supporting frame, slipforms and at least one Screed, traffic area recycling equipment and caterpillars with drawn or pushed Dozer blade.
  • a geodetic Positioning system G used which via a signal and information transmitting Route 17 is connected to the system computer CPU.
  • the system computer could be arranged externally of the construction machine A and with the control communicate with the construction machine.
  • GPS differential GPS
  • the actual position of the actual point P is turned on in a step S1 the screed B in the x, y, z directions. If necessary, a second measuring point provided on the screed or on the construction machine and be scanned.
  • the route that the screed is to follow in the terrain is specified with regard to of the target position of the measuring point P, i.e. it becomes a digital one in a step S2 Prepared terrain model.
  • the course of the planned route is, for example determined by the course of the edges, the thickness, the inclination and the width of a ceiling layer to be installed on a subgrade, the driving unit drives on the formation and the screed above the specifications of the formation is managed.
  • Step S4 takes place with the planning data from step S2 and the spatial machine model a target-actual comparison from step S3, for example by calculation in the CPU system computer.
  • step S5 Become such Adjustments made, then the respective change in position in a step S6 of the screed relative to the driving unit M.
  • step S7 is off the result of step S6 determines a directional deviation, expediently in the form of a direction vector 8 between the measuring point P and the virtual one or real measuring point 9 on the driving unit M.
  • step S8 the steering of the driving unit M is controlled by a longitudinal movement in the direction of the double arrow 15 the driving unit M, e.g. according to the Target values from the planning data, automatically steer and the working device to track.
  • the automatic control of a construction machine A is based of a paver with a so-called extending screed.
  • the the Extending screed representing working device B is on the spars 1 of the driving unit M hauled and is in its height above the formation, and in its transverse and / or Longitudinal inclinations adjustable. It has one connected to the spars 1 Screed base body 10 of predetermined working width and two extending screed parts 11, 12, which can be extended and retracted relative to the basic screed body 10 via adjusting elements 3 ', 3 " are.
  • the measuring point P is attached to a mast 13 in an elevated position, the one on a screed part 11, preferably in the outer End, is fixed.
  • the height of the measuring point P is selected so that the Total station T of the geodetic positioning system G also via terrain-related Elevations or construction site-related obstacles "see” the measuring point.
  • Each screed part 11, 12 can be transverse to the direction of a double arrow 7 Move the direction of travel back and forth.
  • the height settings are made in the direction of a Double arrow 14.
  • Steering movements of the driving unit M are in the direction of a Double arrow 15 controlled.
  • the virtual or real measuring point 9 on the driving unit M is used to generate a direction vector 8 between the measuring points P, 9.
  • Die Total station T scans the actual position of the measuring point P, for example using laser beams and communicates with the system computer, not shown. In the total station For example, a high-performance theodolite 16 is provided.
  • the total station T can work independently from a GPS system. But it can be useful be using position information from a GPS or DGPS system.
  • step S2 target values for the position of the Measuring point P or the target working position generated. Is the measuring point at the end of the Extending screed part 11, then its position represents the actual working position the decisive element of the extending screed for the route, e.g. the outer, lower edge of the screed part 11. Is the Measuring point P further inside, then in this case its transverse distance from the outside lower edge of the screed part 11 as a constant value for determining the Actual work position taken into account.
  • step S3 a spatial machine model created, for example, the working device B, with information from the sensor 4 and a height sensor for the height of the screed. This spatial machine model is converted into digital with its actual working position Terrain model set, which is generated from target values of the planning data. in the Step S4 becomes a positional deviation between the actual position of the measuring point P or the actual working position and the target position.
  • step S5 an adjustment is made on the basis of the calculated position deviation the screed.
  • the screed part 11 is in the direction of Double arrow 7 adjusted by a certain amount transversely and relative to the driving unit M. is then to form a planned route with a constant working width in step S9 the other, opposite screed part 12 is adjusted in opposite directions, i.e. when extending one screed part 11, the other screed part 12 retracted accordingly, and vice versa.
  • it is a varying one Drive working width then the other screed part 12 is controlled individually, where its respective location based on the machine-specific data or Sensor signals is determined and set.
  • step S6 the one that occurs due to the adjustment of the one screed part 11 Change in position of measuring point P compared to measuring point 9 of the driving unit M captured.
  • step S7 the change in position or the directional deviation or the direction vector 8 is determined, in comparison to the previous relative position of the two measuring points P, 9.
  • step S8 the steering of the driving unit M is controlled by the Tracking unit M of the extending screed.
  • the automatic steering of the Driving unit can also relative or absolute directional deviations measured against a planned reference direction and taken into account by a compass, a direction sensor or a GPS system measured direction information.
  • the scanning of the measuring point P becomes the actual working position the working device, e.g. the screed, or one for the planned one Line of relevant elements of the working device, e.g. one Extending screed part outer edge, captured to the working device exactly in the planned Route to drive.
  • the measuring point is directly on the relevant element arranged the working device so that it exactly its movements follows, then the measuring point largely represents the actual working position.
  • the Measuring point on the driving unit or, for example, the screed spar fixedly arranged, then machine-specific to determine the actual work position
  • Data also taken into account to determine the respective position from the actual position Obtain actual work position. In the latter case, this can be done using direction vectors take place, so that for example the outer lower edge of the screed or even the rear end of the edge exactly along a line of the planned one Route is maintained.
  • the opposite can also be used as a starting point Edge.
  • Fig. 5 In the machine configuration in Fig. 5 is based on a paver with an over Spars 1 towed extending screed B the measuring point P on a mast 13 arranged in an elevated position on a spar 1. It will be real or virtual Measuring point 19 at the outer lower edge of one screed part 11 or even the position of the rear end 20 of that edge, e.g. about one Direction vector 25 and with corresponding measurements of the sensor 4 or one Screed height sensor (not shown). This real or virtual measuring point 19 and the end point 20 are routed in the planned route e.g. by adjusting movements in the direction of the double arrows 7, 14.
  • the other screed part 12 becomes exactly the opposite direction depending on whether a constant working width is to be traveled adjusted, or individually if the working width varies according to plan.
  • the real or virtual further measuring point is on the driving unit M of the construction machine A. 9 is provided so that a direction vector between the measurement points 9 and P. 8 can be calculated, for automatic steering (steering movements in the direction of the double arrow 15) of the driving unit M is used to move the driving unit M of the working device B to track.
  • an automatic width control of the working device B here an extendable screed of a paver to be explained.
  • This automatic Width control can be completely independent of an automatic guidance control the construction machine A are used or this is superimposed to Obstacles H in the planned route must be taken into account.
  • FIG. 7 shows how an automatic width control of the working device B, here the extendable screed of a paver, with the help of the geodetic Position determination system, here a total station T, made becomes.
  • the exact coordinates for the location and size of an obstacle H are in the contain planned data that are processed by the controller. Further is the course of, for example, the planned edge line 22 with an alternative bay 22 'known.
  • the measuring point P is arranged on a spar 1 as in FIG. 5.
  • Direction vectors 25 and 8 are used to determine the actual working position of the Measuring point 19, 20 and the actual position of measuring point 9 on the driving unit M.
  • each with a geodetic positioning system worked. In practice, this means that at least two such geodetic positioning systems exist have to be because one is used to control each section of the route will be adjusted during the subsequent route section got to.
  • the automatic control could be in a route section the construction machine with two geodetic positioning systems working simultaneously be made, the one for example the working device and the other controls the driving unit. Then would be for the continuous A total of four geodetic positioning systems are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Road Paving Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Road Repair (AREA)
  • Operation Control Of Excavators (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Claims (13)

  1. Procédé de commande d'une machine de chantier automotrice (A) telle qu'une finisseuse avec au moins une poutre incorporée, ou un engin à chenilles avec une lame de déblayement, ou une niveleuse avec une lame de nivellement ou une machine à coffrages glissants avec des coffrages glissants et au moins une poutre ou une machine de recyclage de surfaces de circulation dans un tracé conforme à un projet planifié, la machine de chantier comprenant une unité de déplacement (M) et au moins un dispositif de travail (B) qui est mobile par rapport à l'unité de déplacement à l'aide d'éléments d'asservissement (3, 3', 3"), alors qu'avec ce procédé des signaux de correction sont dérivés à l'aide d'une comparaison de positions réelles déterminées et de positions de consigne et sont traités pour la commande, les étapes de procédé étant les suivantes :
    la position réelle d'un point de mesure (P) disposé sur l'unité de déplacement (M) ou sur le dispositif de travail (B) est déterminée au moyen d'un système de détermination de position géodésique (G, T) pour une machine de chantier se déplaçant dans le tracé conforme à un projet planifié,
    la position de travail réelle du dispositif de travail (B) est déterminée sur la base de la position réelle et avec des informations de position spécifiques à la machine,
    les divergences de positions sont constatées à partir d'une comparaison de la position de travail réelle dérivée et d'une position de travail de consigne conforme à un projet planifié,
    les signaux de correction pour les éléments d'asservissement du dispositif de travail sont générés à partir des divergences de positions,
    les éléments d'asservissement sont actionnés sur la base des signaux de correction pour faire coïncider la position de travail réelle et la position de travail de consigne et pour guider le dispositif de travail dans le tracé conforme à un projet planifié.
       caractérisé par les étapes de travail supplémentaires suivantes :
    des informations de direction sont déterminées en partant de la position de travail de consigne et avec des informations de position spécifiques à la machine et concernant la position relative entre le dispositif de travail et l'unité de déplacement (M),
    sur la base des informations de direction, l'unité de déplacement (M) est guidée automatiquement dans le tracé conforme à un projet planifié et sa position est ajustée par rapport au dispositif de travail (B).
  2. Procédé selon la revendication 1, caractérisé en ce que la divergence de direction relative ou absolue par rapport à une direction de référence conforme à un projet planifié est mesurée pour le guidage automatique de l'unité de déplacement (M).
  3. Procédé selon la revendication 1, caractérisé en ce qu'il est tenu compte, pour le guidage automatique de l'unité de déplacement (M), d'informations de direction calculées en supplément, dérivées d'un modèle de terrain digital ou mesurées, par exemple mesurées par un compas, par un capteur de direction ou par un système assisté par GPS.
  4. Procédé selon au moins l'une quelconque des revendications précédentes, caractérisé en ce que des données générées, conformes à un projet planifié, spécifiques à la machine et géodésiques sont traitées par au moins un calculateur de traitement (Unité Centrale de Traitement-CPU) stationnaire ou prévu sur la machine de chantier (A).
  5. Procédé selon la revendication 1, caractérisé en ce que les informations de direction pour le guidage automatique de l'unité de déplacement (M) sont déterminées sous forme de vecteurs de direction (8, 25) rapportés au point de mesure (P).
  6. Procédé selon au moins l'une quelconque des revendications précédentes, caractérisé en ce que, dans le cas d'une finisseuse avec une poutre incorporée tractée d'une largeur de travail invariable, le point de mesure (P) est disposé sur la poutre incorporée (B) et la poutre incorporée est déplacée à l'aide des signaux de correction et avec au moins un élément d'asservissement linéaire (3) dans un sens et dans l'autre dans un guide transversal linéaire (2), par exemple de l'unité de déplacement (M), et en ce qu'en outre l'inclinaison longitudinale ou transversale de la poutre incorporée est réglée selon des prescriptions conformes à un projet planifié, par exemple dans le modèle de terrain digital.
  7. Procédé selon au moins l'une quelconque des revendications 1 à 5, caractérisé en ce que, dans le cas d'une finisseuse avec une poutre incorporée extractible qui comprend des parties de poutres extractibles (11, 12) et un dispositif de réglage de largeur (3', 3"), le dispositif de réglage de largeur (3', 3") est activé par des signaux de correction, en ce que, pour obtenir une largeur de travail restant constante en fonction du tracé conforme à un projet planifié, l'autre partie de poutre extractible (12) est déplacée exactement en sens inverse de l'une des parties de madrier extractible (11) par le dispositif de réglage de la largeur (3") ou, pour obtenir une largeur de travail variant en fonction du tracé conforme à un projet planifié, l'autre partie de poutre extractible (12) est déplacée individuellement par rapport à l'une des parties de poutre extractible (11) et en ce que l'inclinaison longitudinale et/ou transversale de la poutre incorporée sont réglées conformément à des prescriptions imposées en conformité avec un projet planifié.
  8. Procédé selon la revendication 1, caractérisé en ce que la position réelle de travail d'un élément (20) du dispositif de travail (B), qui est déterminant pour le tracé conforme à un projet planifié, est définie comme position réelle de travail du dispositif de travail (B), et ceci au moyen du point de mesure (P) disposé de manière fixe sur l'unité de déplacement (M) et d'informations déterminées spécifiques à la machine et concernant la position relative respective entre le point de mesure (P) et l'élément déterminant (20).
  9. Procédé selon la revendication 1, caractérisé en ce que la position de travail réelle du dispositif de travail (B) est déterminée à l'aide du point de mesure (P), lequel est disposé de manière fixe sur le dispositif de travail dans une position relative déterminée par rapport à au moins un élément déterminant pour le tracé conforme à un projet planifié.
  10. Procédé selon la revendication 1, caractérisé en ce que, dans le cas d'une finisseuse en tant que machine de chantier (A) avec une poutre incorporée extractible en tant que dispositif de travail, le contournement au moins d'un obstacle conforme à un projet planifié (H) dans le cheminement du tracé conforme à un projet planifié a lieu sur la base de la position de travail réelle déterminée à l'aide du système de déterminations de position géodésique par une commande automatique de la largeur de la poutre incorporée extractible (B), et ceci en réduisant la largeur de travail de manière passagère seulement sur le côté de l'obstacle (H).
  11. Procédé selon la revendication 10, caractérisé en ce que la commande automatique de la largeur de la poutre incorporée extractible est obtenue à l'aide de capteurs (23) disposés sur la finisseuse, qui constatent un obstacle (H) arrivant le long du tracé conforme à un projet planifié et qui, en fonction de la largeur et de la longueur constatées de l'obstacle (H), activent des éléments d'asservissement (3', 3") de la poutre incorporée extractible.
  12. Finisseuse avec une unité de déplacement (M), avec une poutre incorporée tractée et accouplée à l'unité de déplacement (M) par l'intermédiaire de longerons (1) et avec des capteurs d'inclinaison longitudinale et latérale (4) placés sur la poutre incorporée, dans laquelle la poutre incorporée ayant une largeur de travail fixe peut être déplacée dans un sens et dans l'autre dans un guidage transversal linéaire à l'aide d'éléments d'asservissement (3) ou comprend des parties de poutres extractibles (11, 12) pouvant être rentrées et sorties à l'aide d'éléments d'asservissement (3', 3") pour modifier la largeur de travail et dans laquelle la finisseuse peut être commandée conformément au procédé de la revendication 1, caractérisée en ce que sur la finisseuse un mât (13) se trouvant en position debout et portant un point de mesure (P) prévu pour un système de détermination de position stationnaire, géodésique et comprenant au moins un calculateur de traitement (Unité Centrale de Traitement-CPU) est prévu sur un montant (1) et au moins un point de référence réel ou virtuel (9, 19, 20) pour générer au moins un vecteur de direction (8, 25) entre le point de mesure (P) et le point de référence (9, 19, 21) pour le guidage automatique de l'unité de déplacement (M) munie d'un système de guidage pouvant être activé est prévu sur l'unité de déplacement (M) ou sur l'unité de déplacement et sur la poutre incorporée.
  13. Finisseuse selon la revendication 12, caractérisée en ce que le point de référence réel (19) est l'extrémité (20) située le plus en arrière en direction de déplacement d'un rebord extérieur inférieur de poutre incorporée ou d'un rebord lisseur en tôle.
EP00101014A 2000-01-19 2000-01-19 Procédé de commande d'une machine de chantier ou finisseuse et finisseuse Expired - Lifetime EP1118713B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT00101014T ATE279584T1 (de) 2000-01-19 2000-01-19 Verfahren zum steuern einer baumaschine bzw. eines strassenfertigers und strassenfertiger
DE2000508220 DE50008220D1 (de) 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger
EP00101014A EP1118713B1 (fr) 2000-01-19 2000-01-19 Procédé de commande d'une machine de chantier ou finisseuse et finisseuse
DK00101014T DK1118713T3 (da) 2000-01-19 2000-01-19 Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine
JP2001011974A JP2001262611A (ja) 2000-01-19 2001-01-19 自走式建設機械を計画されたルートにおいて制御する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00101014A EP1118713B1 (fr) 2000-01-19 2000-01-19 Procédé de commande d'une machine de chantier ou finisseuse et finisseuse

Publications (2)

Publication Number Publication Date
EP1118713A1 EP1118713A1 (fr) 2001-07-25
EP1118713B1 true EP1118713B1 (fr) 2004-10-13

Family

ID=8167660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00101014A Expired - Lifetime EP1118713B1 (fr) 2000-01-19 2000-01-19 Procédé de commande d'une machine de chantier ou finisseuse et finisseuse

Country Status (5)

Country Link
EP (1) EP1118713B1 (fr)
JP (1) JP2001262611A (fr)
AT (1) ATE279584T1 (fr)
DE (1) DE50008220D1 (fr)
DK (1) DK1118713T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422389A (en) * 2005-01-24 2006-07-26 Strainstall Group Ltd Ground engineering apparatus and method
US9550522B2 (en) 2015-02-19 2017-01-24 Caterpillar Paving Products Inc. Compactor turning speed limiter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358645A1 (de) * 2003-12-15 2005-07-14 Joseph Voegele Ag Verfahren zum Steuern eines Straßenfertigers
EP1672122A1 (fr) * 2004-12-17 2006-06-21 Leica Geosystems AG Procédé et appareil pour contrôler une machine de construction de chaussée
DE102005007153A1 (de) * 2005-02-16 2006-08-24 Bjj Kleinmaschinen Gmbh Vorrichtung zur Bearbeitung einer Reitbahn
US8406963B2 (en) 2009-08-18 2013-03-26 Caterpillar Inc. Implement control system for a machine
DE102009059106A1 (de) 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
DE102012001289A1 (de) 2012-01-25 2013-07-25 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
DE102014010837A1 (de) * 2014-07-24 2016-01-28 Dynapac Gmbh Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger
DE102014012825A1 (de) 2014-08-28 2016-03-03 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
DE102014012836B4 (de) 2014-08-28 2018-09-13 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine
DE102014012831B4 (de) 2014-08-28 2018-10-04 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US9551115B2 (en) 2014-12-19 2017-01-24 Wirtgen Gmbh Transition on the fly
JP2017115387A (ja) * 2015-12-24 2017-06-29 株式会社Nippo 建設機械自動制御システム
JP6701002B2 (ja) * 2016-06-23 2020-05-27 株式会社クボタ 走行支援システム及び作業車
WO2018051742A1 (fr) * 2016-09-16 2018-03-22 株式会社小松製作所 Système de commande pour engin de chantier, procédé de commande de système de commande pour engin de chantier, et engin de chantier
US10253461B2 (en) * 2016-12-07 2019-04-09 Wirtgen Gmbh Variable width automatic transition
EP3434825A1 (fr) * 2017-07-27 2019-01-30 Joseph Vögele AG Assistance de direction pour une finisseuse de route
DE102017012010A1 (de) 2017-12-22 2019-06-27 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102018119962A1 (de) 2018-08-16 2020-02-20 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
EP3874296A1 (fr) 2018-11-02 2021-09-08 MOBA Mobile Automation AG Système de capteurs pour un finisseur de route
DE102019118059A1 (de) 2019-07-04 2021-01-07 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
DE102019135225B4 (de) 2019-12-19 2023-07-20 Wirtgen Gmbh Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen
CN113581175B (zh) * 2021-08-19 2022-12-09 日照公路建设有限公司 一种道路施工中多机型工程机械联动作业方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1205339A (fr) 1957-06-18 1960-02-02 Impresa Pizzarotti & Co Procédé pour la construction d'une route et appareil pour l'application de ce procédé
DE9214769U1 (de) 1991-11-15 1993-04-01 MOBA - Electronic Gesellschaft für Mobil-Automation mbH, 65604 Elz Ultraschallsensor-Regeleinrichtung für einen Straßenfertiger
US5549412A (en) * 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5925085A (en) * 1996-10-23 1999-07-20 Caterpillar Inc. Apparatus and method for determining and displaying the position of a work implement
DE29918747U1 (de) * 1999-10-25 2000-02-24 MOBA - Mobile Automation GmbH, 65604 Elz Vorrichtung zum Steuern eines Straßenfertigers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422389A (en) * 2005-01-24 2006-07-26 Strainstall Group Ltd Ground engineering apparatus and method
US9550522B2 (en) 2015-02-19 2017-01-24 Caterpillar Paving Products Inc. Compactor turning speed limiter

Also Published As

Publication number Publication date
JP2001262611A (ja) 2001-09-26
ATE279584T1 (de) 2004-10-15
EP1118713A1 (fr) 2001-07-25
DK1118713T3 (da) 2005-01-10
DE50008220D1 (de) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1118713B1 (fr) Procédé de commande d'une machine de chantier ou finisseuse et finisseuse
EP1856329B1 (fr) Procédé pour commander une machine de génie civil et machine de génie civil avec un système de commande
EP1825064B1 (fr) Procede et systeme pour controler un engin de travaux routiers
EP3741914B1 (fr) Train de machines comprenant une fraiseuse routière et une finisseuse de route et procédé de fonctionnement d'une fraiseuse routière et d'une finisseuse de route
DE69934756T2 (de) Vorrichtung und Verfahren zum dreidimensionalen Profilieren
DE69834187T2 (de) Kontrolle der schräglage in querrichtung einer mobilen maschine
DE102011001542B4 (de) Steuerung und entsprechendes Verfahren für eine Teermaschine
EP3587667B1 (fr) Finisseuse de route pourvue de projecteur comme aide de navigation
EP3048199B2 (fr) Finisseuse de route dotée d'un dispositif de détection de l'épaisseur de couche et procédé de détection de l'épaisseur d'une couche de matériau installée
EP3502821B1 (fr) Engin de construction et procédé de commande d'un engin de construction
EP2155968B1 (fr) Train de finisseuses pour la fabrication d'une couche de revêtement routier en béton ou en asphalte
DE69411064T2 (de) Kontrollgerät für einen Strassenfertiger
EP4056758B1 (fr) Procédé de fabrication d'un revêtement routier et système d'asphaltage
EP2562309A1 (fr) Finisseuse de route dotée d'un dispositif de mesure
DE2009427C3 (de) Gleisloser Straßenfertiger zum Verbreitern bereits vorhandener Straßendecken
EP1613812A1 (fr) Systeme et procede de compactage de sol automatise
DE112009001767T5 (de) Straßenfertigungsmaschinen-Steuerung und Verfahren
DE102019121416A1 (de) Navigationssystem für eine maschine
DE102021106005A1 (de) Auf der relativen geschwindigkeit basiertes aktorgeschwindigkeitskalibriersystem
EP3732945B1 (fr) Technique de la génération d'un profil de terrain à l'aide d'une machine agricole
DE29918747U1 (de) Vorrichtung zum Steuern eines Straßenfertigers
DE19951296C2 (de) Vorrichtung und Verfahren zum Steuern eines Strassenfertigers
DE19921761B4 (de) Verfahren und Vorrichtung zum Verstellen des Arbeitsabstandes
DE19951297C1 (de) Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht
DE102014010837A1 (de) Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008220

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050120

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: JOSEPH VOGELE A.G.

Effective date: 20050131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: JOSEPH *VOGELE A.G.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50008220

Country of ref document: DE

Owner name: JOSEPH VOEGELE AG, DE

Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Effective date: 20120217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190129

Year of fee payment: 20

Ref country code: NL

Payment date: 20190129

Year of fee payment: 20

Ref country code: DE

Payment date: 20190129

Year of fee payment: 20

Ref country code: IT

Payment date: 20190131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190129

Year of fee payment: 20

Ref country code: DK

Payment date: 20190129

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50008220

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20200119

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200118

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG