EP1118713B1 - Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger - Google Patents
Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger Download PDFInfo
- Publication number
- EP1118713B1 EP1118713B1 EP00101014A EP00101014A EP1118713B1 EP 1118713 B1 EP1118713 B1 EP 1118713B1 EP 00101014 A EP00101014 A EP 00101014A EP 00101014 A EP00101014 A EP 00101014A EP 1118713 B1 EP1118713 B1 EP 1118713B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screed
- drive unit
- planned
- width
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000010276 construction Methods 0.000 title claims description 35
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000012937 correction Methods 0.000 claims abstract description 12
- 239000013598 vector Substances 0.000 claims description 12
- 238000003079 width control Methods 0.000 claims description 11
- 238000004064 recycling Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 230000033001 locomotion Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029305 taxis Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2045—Guiding machines along a predetermined path
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/004—Devices for guiding or controlling the machines along a predetermined path
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/841—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
- E02F3/842—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine using electromagnetic, optical or photoelectric beams, e.g. laser beams
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
- E02F3/847—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
Definitions
- the invention relates to a method according to the preamble of patent claim 1 and a paver according to claim 12.
- Construction machines affected here include road pavers, graders, Crawlers, slipform pavers and traffic area recycling machines where the working device works the subsoil to a planned route to shape, with the driving unit acting as a carrier of the working device, the necessary Applying propulsive force and taking the direction and an adjustment the longitudinal and / or cross slope and / or working width of the working device is possible on the drive unit.
- the screed With a paver, the screed has the material evenly over the Spread, compact and smooth the width. Using a sensor The screed is leveled with the control system Setpoint values adjusted in height and / or bank angle. When using a extending screed the working width can also be adjusted. Usually will guide wires representing the desired height and course (EP-B-542 297) stretched along the planned route, which are scanned by sensors, to get information about leveling the screed. The high effort for adjusting the guide wires is disadvantageous. So far, the others have been similar Construction machines of the group mentioned above controlled. Some construction machines are automatically steered, with a guide wire providing directional information. at Automatic steering is not absolutely necessary for grades and caterpillars; however the working device is still along the planned route Taxes.
- the paver is made of Hand directed.
- the screed is leveled using two guide wires without guide wires stationary telescopes for observing height marks on the screed and via control devices on the telescopes, which the adjustment devices control the screed.
- a machine model is created with which the position of the construction machine is defined in a digital terrain model.
- the actual data can be compared with target data from the planning.
- Position deviations determined in the process are used to control control elements.
- slip shift ready e.g. the steering cylinders and the lifting cylinders of the height adjustment of the support frame controlled.
- Automatic guidance of the construction machine in the field and leveling of the working device still need a guide wire or a similar reference element for deriving directional information and therefore a considerable measurement effort.
- precise steering is difficult and steering errors can affect the accuracy of the settings of the working device significantly affect if primarily the driving unit and secondarily the processing device of the driving unit is tracked.
- Construction machines are made using a geodetic positioning system from a comparison of the derived actual work position and a planned one Target work position position deviations determined and from the position deviations Generated correction signals for the control elements of the working device, to actuate the control elements on the basis of the correction signals, to the actual working position to bring to the target working position and the working device in the to run the planned route.
- the driving unit of the construction machine controlled by hand.
- the invention has for its object a method of the type mentioned to create with the working device a construction machine without guide wires or Earth-based reference elements with high working accuracy automatically in one the planned route is mobile, and an automatically precisely controllable one Specify paver.
- the working device is first of the construction machine exactly in the planned route.
- stringlines or earthbound Reference elements are not required.
- the planned The route was created very precisely because the work fixture was used with the positioning system led transversely to the direction of travel and in their height and inclination is, and the driving unit only in the second line of the working device can be. Thereby the knowledge is taken into account that it is for high work accuracy it is important to control the work equipment primarily, and only secondarily the driving unit, since steering movements of the driving unit and made via the driving unit Adjustments of the working device would be too imprecise.
- the position of the working device is determined via the measuring point determined and are used in the control in addition to the position information of the measuring point additional information relevant to the location of the working device, for example via sensors, procured and used for control.
- The is used for the automatic steering of the driving unit guided working device for reference.
- Automatic width control is advisable the screed using the planned data of obstacles, for example Gullies or the like, the control elements of the screed for driving around of the obstacle. It is possible to overcome an obstacle with either Bypass working width, or the working width in the area of the obstacle to reduce or enlarge only on one side.
- the automatic width control has no influence on the automatic control of the screed along the planned route. With the automatic width control, one-sided or double-sided parking or alternative bays or constrictions shape, the automatic width control of the guide of the Screed is superimposed along the planned route.
- Sensors detect oncoming obstacles, such as gullies, and control the control elements of the extendable screed to close the obstacles bypassed.
- the paver is to perform a fully automatic Control along the planned route with the help of a geodetic positioning system designed. Regardless of where the measurement point is supporting mast (on the drive unit or on the working device), is always the real or virtual reference point on the screed or at one for the planned one
- the route determines the relevant element and this reference point controlled that the screed forms the planned route.
- the driving unit can also be steered automatically. That for the design element is a lower outer edge, for example the screed or the rear end point of this lower outer edge, the should be routed along the planned outline of the route.
- the working width is independent of the driving movement of the driving unit Control elements of the screed parts in the transverse direction in the planned route adjustable, and the transverse and longitudinal inclinations of the screed are remotely controlled adjustable.
- the mast carrying the measuring point is on a spar of the screed appropriate.
- the actual working position is controlled with additional information determined, for example, representing strokes of the control elements Signals and / or calculated direction vectors.
- a Direction sensor or a GPS-based system measured direction information be taken into account in the automatic steering. But that's always the case precise guidance of the working device in the foreground and becomes the driving unit of the Work device tracked. This can result in inaccurate steering movements not on the positioning of the working device in the planned route impact or simply be compensated.
- special direction vectors are determined, from which correction signals for automatic steering of the driving unit.
- the measurement point is expediently arranged on the screed to always keep the location, for example to know a lower outer plank edge.
- the measuring point can also be at the Driving unit or be arranged on a spar of the screed, then using Known machine-specific information or information derived from sensors from the measuring point the position of the screed or the outer one Edge of the screed calculated.
- the other screed part is either adjusted in exactly the opposite direction to a screed section, in order to achieve a constant working width, or is even adjusted individually, to achieve a working width that varies according to plan.
- the Longitudinal and / or transverse inclination of the screed in accordance with the planned specifications adjusted to keep the extending screed exactly in the planned route to drive.
- the measuring point can either be on the screed, expediently even on a screed section, on the drive unit or on a spar of the screed be arranged.
- the method according to the invention can be used with a grader in order to the rotatability of the graders in the planned route drive.
- the line of motion of the other end of the group of degrees is by calculation known at any time.
- Dozer blade can be guided exactly in the planned route.
- slipform paver the slipform and / or the screed guided in the planned route. It can be changed or unchangeable Working width.
- a traffic area recycling device its working device guided in the planned route.
- a geodetic position determination system is used for a route section Stationary total station installed near the planned route, i.e. a kind of theodolite with appropriate equipment and actuators, if necessary combined with the process computer or one with the process computer linked calculator.
- a stationary or moving GPS system are used, using a DGPS system to increase accuracy recommends working with a stationary reference station in order to get the procured Precise or calibrate position data.
- the data transfer or the transmission of measurements and correction signals can be wireless, e.g. through radio or laser transmission, or via one or more cable harnesses.
- Construction machine A is, for example, a paver with a driving unit M and a working device B, namely one on bars 1 towed screed with constant working width.
- the construction machine A is self-driving.
- the transverse and longitudinal slopes of the screed are included Adjustable elements, as well as the height of the screed above the Subgrade.
- the screed is in a linear guide 2 on the spars 1 transverse to Direction of travel back and forth adjustable, by means of at least one control element 3, for example a hydraulic cylinder, which is controlled by a controller C1 becomes.
- a controller C for functions of the driving unit M is provided, e.g. for the driving speed, the steering angle etc. From the Control C2 off may also have functions in and on the screed controllable.
- a system computer CPU is on the driving unit M provided (Fig. 2).
- the screed has sensors 4 for the longitudinal and / or transverse inclination the control C2 and / or the system computer CPU are connected.
- a measuring point P for example at one at one End 5 of the screed stationed mast 6, which carries a prism 18, the measuring point P defined.
- the driving unit M can be steered in the direction of a double arrow 15. On The driving unit M is provided with a real or virtual reference point 9.
- the procedure below for automatically controlling the paver is also for other self-propelled construction machines with at least one each Appropriate working device.
- Such construction machines are without the scope want to restrict the invention, for example with paver Extending screeds (high compaction screed or normal screed), graders with graders, Slipform paver with supporting frame, slipforms and at least one Screed, traffic area recycling equipment and caterpillars with drawn or pushed Dozer blade.
- a geodetic Positioning system G used which via a signal and information transmitting Route 17 is connected to the system computer CPU.
- the system computer could be arranged externally of the construction machine A and with the control communicate with the construction machine.
- GPS differential GPS
- the actual position of the actual point P is turned on in a step S1 the screed B in the x, y, z directions. If necessary, a second measuring point provided on the screed or on the construction machine and be scanned.
- the route that the screed is to follow in the terrain is specified with regard to of the target position of the measuring point P, i.e. it becomes a digital one in a step S2 Prepared terrain model.
- the course of the planned route is, for example determined by the course of the edges, the thickness, the inclination and the width of a ceiling layer to be installed on a subgrade, the driving unit drives on the formation and the screed above the specifications of the formation is managed.
- Step S4 takes place with the planning data from step S2 and the spatial machine model a target-actual comparison from step S3, for example by calculation in the CPU system computer.
- step S5 Become such Adjustments made, then the respective change in position in a step S6 of the screed relative to the driving unit M.
- step S7 is off the result of step S6 determines a directional deviation, expediently in the form of a direction vector 8 between the measuring point P and the virtual one or real measuring point 9 on the driving unit M.
- step S8 the steering of the driving unit M is controlled by a longitudinal movement in the direction of the double arrow 15 the driving unit M, e.g. according to the Target values from the planning data, automatically steer and the working device to track.
- the automatic control of a construction machine A is based of a paver with a so-called extending screed.
- the the Extending screed representing working device B is on the spars 1 of the driving unit M hauled and is in its height above the formation, and in its transverse and / or Longitudinal inclinations adjustable. It has one connected to the spars 1 Screed base body 10 of predetermined working width and two extending screed parts 11, 12, which can be extended and retracted relative to the basic screed body 10 via adjusting elements 3 ', 3 " are.
- the measuring point P is attached to a mast 13 in an elevated position, the one on a screed part 11, preferably in the outer End, is fixed.
- the height of the measuring point P is selected so that the Total station T of the geodetic positioning system G also via terrain-related Elevations or construction site-related obstacles "see” the measuring point.
- Each screed part 11, 12 can be transverse to the direction of a double arrow 7 Move the direction of travel back and forth.
- the height settings are made in the direction of a Double arrow 14.
- Steering movements of the driving unit M are in the direction of a Double arrow 15 controlled.
- the virtual or real measuring point 9 on the driving unit M is used to generate a direction vector 8 between the measuring points P, 9.
- Die Total station T scans the actual position of the measuring point P, for example using laser beams and communicates with the system computer, not shown. In the total station For example, a high-performance theodolite 16 is provided.
- the total station T can work independently from a GPS system. But it can be useful be using position information from a GPS or DGPS system.
- step S2 target values for the position of the Measuring point P or the target working position generated. Is the measuring point at the end of the Extending screed part 11, then its position represents the actual working position the decisive element of the extending screed for the route, e.g. the outer, lower edge of the screed part 11. Is the Measuring point P further inside, then in this case its transverse distance from the outside lower edge of the screed part 11 as a constant value for determining the Actual work position taken into account.
- step S3 a spatial machine model created, for example, the working device B, with information from the sensor 4 and a height sensor for the height of the screed. This spatial machine model is converted into digital with its actual working position Terrain model set, which is generated from target values of the planning data. in the Step S4 becomes a positional deviation between the actual position of the measuring point P or the actual working position and the target position.
- step S5 an adjustment is made on the basis of the calculated position deviation the screed.
- the screed part 11 is in the direction of Double arrow 7 adjusted by a certain amount transversely and relative to the driving unit M. is then to form a planned route with a constant working width in step S9 the other, opposite screed part 12 is adjusted in opposite directions, i.e. when extending one screed part 11, the other screed part 12 retracted accordingly, and vice versa.
- it is a varying one Drive working width then the other screed part 12 is controlled individually, where its respective location based on the machine-specific data or Sensor signals is determined and set.
- step S6 the one that occurs due to the adjustment of the one screed part 11 Change in position of measuring point P compared to measuring point 9 of the driving unit M captured.
- step S7 the change in position or the directional deviation or the direction vector 8 is determined, in comparison to the previous relative position of the two measuring points P, 9.
- step S8 the steering of the driving unit M is controlled by the Tracking unit M of the extending screed.
- the automatic steering of the Driving unit can also relative or absolute directional deviations measured against a planned reference direction and taken into account by a compass, a direction sensor or a GPS system measured direction information.
- the scanning of the measuring point P becomes the actual working position the working device, e.g. the screed, or one for the planned one Line of relevant elements of the working device, e.g. one Extending screed part outer edge, captured to the working device exactly in the planned Route to drive.
- the measuring point is directly on the relevant element arranged the working device so that it exactly its movements follows, then the measuring point largely represents the actual working position.
- the Measuring point on the driving unit or, for example, the screed spar fixedly arranged, then machine-specific to determine the actual work position
- Data also taken into account to determine the respective position from the actual position Obtain actual work position. In the latter case, this can be done using direction vectors take place, so that for example the outer lower edge of the screed or even the rear end of the edge exactly along a line of the planned one Route is maintained.
- the opposite can also be used as a starting point Edge.
- Fig. 5 In the machine configuration in Fig. 5 is based on a paver with an over Spars 1 towed extending screed B the measuring point P on a mast 13 arranged in an elevated position on a spar 1. It will be real or virtual Measuring point 19 at the outer lower edge of one screed part 11 or even the position of the rear end 20 of that edge, e.g. about one Direction vector 25 and with corresponding measurements of the sensor 4 or one Screed height sensor (not shown). This real or virtual measuring point 19 and the end point 20 are routed in the planned route e.g. by adjusting movements in the direction of the double arrows 7, 14.
- the other screed part 12 becomes exactly the opposite direction depending on whether a constant working width is to be traveled adjusted, or individually if the working width varies according to plan.
- the real or virtual further measuring point is on the driving unit M of the construction machine A. 9 is provided so that a direction vector between the measurement points 9 and P. 8 can be calculated, for automatic steering (steering movements in the direction of the double arrow 15) of the driving unit M is used to move the driving unit M of the working device B to track.
- an automatic width control of the working device B here an extendable screed of a paver to be explained.
- This automatic Width control can be completely independent of an automatic guidance control the construction machine A are used or this is superimposed to Obstacles H in the planned route must be taken into account.
- FIG. 7 shows how an automatic width control of the working device B, here the extendable screed of a paver, with the help of the geodetic Position determination system, here a total station T, made becomes.
- the exact coordinates for the location and size of an obstacle H are in the contain planned data that are processed by the controller. Further is the course of, for example, the planned edge line 22 with an alternative bay 22 'known.
- the measuring point P is arranged on a spar 1 as in FIG. 5.
- Direction vectors 25 and 8 are used to determine the actual working position of the Measuring point 19, 20 and the actual position of measuring point 9 on the driving unit M.
- each with a geodetic positioning system worked. In practice, this means that at least two such geodetic positioning systems exist have to be because one is used to control each section of the route will be adjusted during the subsequent route section got to.
- the automatic control could be in a route section the construction machine with two geodetic positioning systems working simultaneously be made, the one for example the working device and the other controls the driving unit. Then would be for the continuous A total of four geodetic positioning systems are required.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Road Paving Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Operation Control Of Excavators (AREA)
- Road Repair (AREA)
- Traffic Control Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Description
- Fig. 1
- einen Funktionsplan des erfindungsgemäßen Verfahrens bei einer Baumaschine in Form eines Straßenfertigers mit einer Einbaubohle konstanter Arbeitsbreite,
- Fig. 2
- eine schaubildartige Maschinenkonfiguration des Straßenfertiges zum Funktionsplan der Fig. 1,
- Fig. 3
- einen Funktionsplan zur Durchführung des Verfahrens bei einer als Straßenfertiger mit einer Ausziehbohle ausgebildeten Baumaschine,
- Fig. 4
- eine Maschinenkonfiguration zum Straßenfertiger passend zum Funktionsplan der Fig. 3,
- Fig. 5
- eine Maschinenkonfiguration als Beispiel einer Baumaschine mit an der Fahreinheit angebrachtem Messpunkt, nämlich einem Straßenfertiger mit einer Ausziehbohle,
- Fig. 6
- eine schematische Draufsicht auf einen Straßenfertiger in einer planungsgemäßen Trasse mit Hindernissen, die durch eine automatische Breitensteuerung der Ausziehbohle berücksichtigt werden, und
- Fig. 7
- eine schematische Draufsicht auf einen in einer planungsgemäßen Trasse fahrenden Straßenfertiger mit Ausziehbohle, dessen Ausziehbohle mit variabler Arbeitsbreite arbeitet.
Claims (13)
- Verfahren zum Steuern einer selbstfahrenden Baumaschine (A), wie eines Straßenfertigers mit wenigstens einer Einbaubohle, oder einer Raupe mit einem Räumschild, einem Grader mit einer Graderschar, oder eines Gleitschalungsfertigers mit Gleitschalungen und wenigstens einer Bohle, oder einer Verkehrsflächen-Recyclingmaschine, in einer planungsgemäßen Trasse, wobei die Baumaschine eine Fahreinheit (M) und wenigstens eine mittels Stellelementen (3, 3', 3") relativ zur Fahreinheit bewegliche Arbeitsvorrichtung (B) aufweist, bei welchem Verfahren durch Vergleichen von ermittelten Ist-Positionen und Soll-Positionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, mit folgenden Schritten:mit einem geodätischen Positionsbestimmungssystem (G, T) wird bei in der planungsgemäßen Trasse fahrender Baumaschine die Ist-Position eines an der Fahreinheit (M) oder an der Arbeitsvorrichtung (B) angeordneten Messpunktes (P) bestimmt,anhand der Ist-Position und mit maschinenspezifischen Lage-Informationen wird die Ist-Arbeitsposition der Arbeitsvorrichtung (B) ermittelt,aus einem Vergleich der abgeleiteten Ist-Arbeitsposition und einer planungsgemäßen Soll-Arbeitsposition werden Positionsabweichungen festgestellt,aus den Positionsabweichungen werden die Korrektursignale für die Stellelemente der Arbeitsvorrichtung generiert,die Stellelemente werden anhand der Korrektursignale betätigt, um die Ist-Arbeitsposition zur Soll-Arbeitsposition zu bringen und die Arbeitsvorrichtung in der planungsgemäßen Trasse zu führen, gekennzeichnet durch folgende weitere Schritte:ausgehend von der Soll-Arbeitsposition und mit maschinenspezifischen Lage-Informationen zur Relativlage zwischen der Arbeitsvorrichtung und der Fahreinheit (M) werden Richtungsinformationen ermittelt,auf der Basis der Richtungsinformationen wird die Fahreinheit (M) in der planungsgemäßen Trasse automatisch gelenkt und der Arbeitsvorrichtung (B) nachgeführt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) die relative oder die absolute Richtungsabweichung gegenüber einer planungsgemäßen Bezugsrichtung gemessen wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) zusätzlich errechnete, aus einem digitalen Geländemodell abgeleitete, oder gemessene, z.B. von einem Kompass, einem Richtungssensor, einem GPS-gestützten System, gemessene, Richtungsinformationen berücksichtigt werden.
- Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass generierte planungsgemäße, maschinenspezifische und geodätische Daten mit wenigstens einem stationär oder in der Baumaschine (A) vorgesehennen Systemrechner CPU verarbeitet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Richtungsinformationen zur automatischen Lenkung der Fahreinheit (M) in Form von auf den Messpunkt (P) bezogenen Richtungsvektoren (8, 25) ermittelt werden.
- Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer geschleppten Einbaubohle mit unveränderlicher Arbeitsbreite der Messpunkt (P) an der Einbaubohle (B) angeordnet und die Einbaubohle mit den Korrektursignalen in einer Linear-Querführung (2), z.B. der Fahreinheit (M), mit wenigstens einem Linear-Stellelement (3) hin- und herverstellt wird, und dass zusätzlich die Längs- oder Querneigung der Einbaubohle entsprechend planungsgemäßer Vorgaben, z.B. im digitalen Geländemodell, verstellt wird bzw. werden.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer eine Breitenverstelleinrichtung (3', 3") aufweisenden Auszieh-Einbaubohle mit Ausziehbohlenteilen (11, 12) die Breitenverstelleinrichtung (3', 3") mit den Korrektursignalen angesteuert wird, dass für eine planungsgemäß gleichbleibende Arbeitsbreite der Trasse der andere Ausziehbohlenteil (12) von der Breitenverstelleinrichtung (3") exakt gegensinnig zum einen Ausziehbohlenteil (11) oder für eine planungsgemäß variierende Arbeitsbreite der andere Ausziehbohlenteil (12) individuell relativ zum einen Ausziehbohlenteil (11) verstellt wird, und dass die Längs- und/oder Querneigung der Einbaubohle entsprechend planungsgemäßer Vorgaben verstellt wird, bzw. werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Ist-Arbeitsposition der Arbeitsvorrichtung (B) die Ist-Arbeitsposition eines für die planungsgemäße Trasse maßgeblichen Elements (20) der Arbeitsvonichtung (B) mittels des fest an der Fahreinheit (M) angebrachten Messpunkts (P) und ermittelten maschinenspezifischen Informationen zur jeweiligen Relativlage zwischen dem Messpunkt (P) und dem maßgeblichen Element (20) ermittelt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ist-Arbeitsposition der Arbeitsvorrichtung (B) mittels des Messpunkts (P) bestimmt wird, der in einer festgelegten Relativlage zu wenigstens einem für die planungsgemäße Trasse maßgeblichen Element fest an der Arbeitsvorrichtung angebracht ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einem Straßenfertiger als die Baumaschine (A) mit einer Auszieh-Einbaubohle als die Arbeitsvorrichtung auf der Basis der mit Hilfe des geodätischen Positionsbestimmungssystems ermittelten Ist-Arbeitsposition zum Umfahren wenigstens eines planungsgemäßer Hindemisses (H) im Verlauf der planungsgemäßen Trasse eine automatische Breitensteuerung der Auszieh-/Einbaubohle (B) durch Reduzieren der Arbeitsbreite vorübergehend nur an der Seite des Hindernisses (H) vorgenommen wird.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die automatische Breitensteuerung der Auszieh-/Einbaubohle mit Hilfe von an dem Straßenfertiger angeordneten Sensoren (23) vorgenommen wird, die ein entlang der planungsgemäßen Trasse entgegenkommendes Hindemis (H) feststellen und Stellelemente (3', 3") der Auszieh-/Einbaubohle entsprechend der festgestellten Breite und Länge des Hindernisses (H) ansteuern.
- Straßenfertiger mit einer Fahreinheit (M), einer über Holme (1) an die Fahreinheit (M) gekoppelten, geschleppten Einbaubohle, und mit Längs- und Quemeigungssensoren (4) an der Einbaubohle, wobei die Einbaubohle mit fester Arbeitsbreite in einer Linearquerführung mit Stellelementen (3) hin- und herverstellbar ist, oder zur Veränderung der Arbeitsbreite mit Stellelementen (3', 3") aus- und einfahrbare Ausziehbohlenteile (11, 12) aufweist, und wobei der Straßenfertiger gemäß des Verfahrens von Anspruch 1 steuerbar ist, dadurch gekennzeichnet, dass an dem Straßenfertiger an einem Holm (1) ein aufrechter, einen für ein stationäres, geodätisches, wenigstens einen Prozessrechner (CPU) umfassendes Positionsbestimmungssystem vorgesehenen Messpunkt (P) tragender Mast (13) und an der Fahreinheit (M) bzw. an der Fahreinheit und an der Einbaubohle wenigstens ein realer oder virtueller Referenzpunkt (9, 19, 20) zum Generieren wenigstens eines Richtungsvektors (8, 25) zwischen dem Messpunkt (P) und dem Referenzpunkt (9, 19, 21) zur automatischen Lenkung der mit einer ansteuerbaren Lenkung versehenen Fahreinheit (M) vorgesehen sind.
- Straßenfertiger nach Anspruch 12, dadurch gekennzeichnet, dass der reale Referenzpunkt (19) das in Fahrtrichtung hinterste Ende (20) einer unteren äußeren Einbaubohlenkante bzw. Glättblechkante ist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK00101014T DK1118713T3 (da) | 2000-01-19 | 2000-01-19 | Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine |
DE2000508220 DE50008220D1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
AT00101014T ATE279584T1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum steuern einer baumaschine bzw. eines strassenfertigers und strassenfertiger |
EP00101014A EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
JP2001011974A JP2001262611A (ja) | 2000-01-19 | 2001-01-19 | 自走式建設機械を計画されたルートにおいて制御する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00101014A EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1118713A1 EP1118713A1 (de) | 2001-07-25 |
EP1118713B1 true EP1118713B1 (de) | 2004-10-13 |
Family
ID=8167660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00101014A Expired - Lifetime EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1118713B1 (de) |
JP (1) | JP2001262611A (de) |
AT (1) | ATE279584T1 (de) |
DE (1) | DE50008220D1 (de) |
DK (1) | DK1118713T3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2422389A (en) * | 2005-01-24 | 2006-07-26 | Strainstall Group Ltd | Ground engineering apparatus and method |
US9550522B2 (en) | 2015-02-19 | 2017-01-24 | Caterpillar Paving Products Inc. | Compactor turning speed limiter |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358645A1 (de) * | 2003-12-15 | 2005-07-14 | Joseph Voegele Ag | Verfahren zum Steuern eines Straßenfertigers |
EP1672122A1 (de) * | 2004-12-17 | 2006-06-21 | Leica Geosystems AG | Verfahren und Vorrichtung vom Kontrollieren einer Strassenbearbeitungsmaschine |
DE102005007153A1 (de) * | 2005-02-16 | 2006-08-24 | Bjj Kleinmaschinen Gmbh | Vorrichtung zur Bearbeitung einer Reitbahn |
US8406963B2 (en) | 2009-08-18 | 2013-03-26 | Caterpillar Inc. | Implement control system for a machine |
DE102009059106A1 (de) * | 2009-12-18 | 2011-06-22 | Wirtgen GmbH, 53578 | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
DE102012001289A1 (de) | 2012-01-25 | 2013-07-25 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
US8989968B2 (en) | 2012-10-12 | 2015-03-24 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US9096977B2 (en) | 2013-05-23 | 2015-08-04 | Wirtgen Gmbh | Milling machine with location indicator system |
DE102014010837A1 (de) * | 2014-07-24 | 2016-01-28 | Dynapac Gmbh | Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger |
DE102014012836B4 (de) | 2014-08-28 | 2018-09-13 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zur Visualisierung des Bearbeitungsumfeldes einer sich im Gelände bewegenden Baumaschine |
DE102014012831B4 (de) | 2014-08-28 | 2018-10-04 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102014012825A1 (de) | 2014-08-28 | 2016-03-03 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
US9551115B2 (en) | 2014-12-19 | 2017-01-24 | Wirtgen Gmbh | Transition on the fly |
JP2017115387A (ja) * | 2015-12-24 | 2017-06-29 | 株式会社Nippo | 建設機械自動制御システム |
JP6701002B2 (ja) * | 2016-06-23 | 2020-05-27 | 株式会社クボタ | 走行支援システム及び作業車 |
WO2018051742A1 (ja) | 2016-09-16 | 2018-03-22 | 株式会社小松製作所 | 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 |
US10253461B2 (en) * | 2016-12-07 | 2019-04-09 | Wirtgen Gmbh | Variable width automatic transition |
EP3434825A1 (de) * | 2017-07-27 | 2019-01-30 | Joseph Vögele AG | Lenkassistenz für einen strassenfertiger |
DE102017012010A1 (de) * | 2017-12-22 | 2019-06-27 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102018119962A1 (de) | 2018-08-16 | 2020-02-20 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
EP3874296A1 (de) | 2018-11-02 | 2021-09-08 | MOBA Mobile Automation AG | SENSORSYSTEM FÜR EINEN STRAßENFERTIGER |
DE102019118059A1 (de) | 2019-07-04 | 2021-01-07 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
DE102019135225B4 (de) | 2019-12-19 | 2023-07-20 | Wirtgen Gmbh | Verfahren zum Abfräsen von Verkehrsflächen mit einer Fräswalze, sowie Fräsmaschine zur Durchführung des Verfahrens zum Abfräsen von Verkehrsflächen |
CN113581175B (zh) * | 2021-08-19 | 2022-12-09 | 日照公路建设有限公司 | 一种道路施工中多机型工程机械联动作业方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1205339A (fr) | 1957-06-18 | 1960-02-02 | Impresa Pizzarotti & Co | Procédé pour la construction d'une route et appareil pour l'application de ce procédé |
DE9214769U1 (de) | 1991-11-15 | 1993-04-01 | MOBA - Electronic Gesellschaft für Mobil-Automation mbH, 65604 Elz | Ultraschallsensor-Regeleinrichtung für einen Straßenfertiger |
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5925085A (en) * | 1996-10-23 | 1999-07-20 | Caterpillar Inc. | Apparatus and method for determining and displaying the position of a work implement |
DE29918747U1 (de) * | 1999-10-25 | 2000-02-24 | MOBA - Mobile Automation GmbH, 65604 Elz | Vorrichtung zum Steuern eines Straßenfertigers |
-
2000
- 2000-01-19 AT AT00101014T patent/ATE279584T1/de not_active IP Right Cessation
- 2000-01-19 DE DE2000508220 patent/DE50008220D1/de not_active Expired - Lifetime
- 2000-01-19 EP EP00101014A patent/EP1118713B1/de not_active Expired - Lifetime
- 2000-01-19 DK DK00101014T patent/DK1118713T3/da active
-
2001
- 2001-01-19 JP JP2001011974A patent/JP2001262611A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2422389A (en) * | 2005-01-24 | 2006-07-26 | Strainstall Group Ltd | Ground engineering apparatus and method |
US9550522B2 (en) | 2015-02-19 | 2017-01-24 | Caterpillar Paving Products Inc. | Compactor turning speed limiter |
Also Published As
Publication number | Publication date |
---|---|
EP1118713A1 (de) | 2001-07-25 |
ATE279584T1 (de) | 2004-10-15 |
DK1118713T3 (da) | 2005-01-10 |
DE50008220D1 (de) | 2004-11-18 |
JP2001262611A (ja) | 2001-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1118713B1 (de) | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger | |
EP1856329B1 (de) | Verfahren zur Steuerung einer Baumaschine und Baumaschine mit einem Steuerungssystem | |
EP1825064B1 (de) | Verfahren und vorrichtung zum kontrollieren einer strassenbearbeitungsmaschine | |
DE69934756T2 (de) | Vorrichtung und Verfahren zum dreidimensionalen Profilieren | |
DE69834187T2 (de) | Kontrolle der schräglage in querrichtung einer mobilen maschine | |
DE102011001542B4 (de) | Steuerung und entsprechendes Verfahren für eine Teermaschine | |
EP3048199B2 (de) | Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht | |
EP3402928B1 (de) | Strassenfertiger mit projektor als navigationshilfe | |
EP3502821B1 (de) | Selbstfahrende baumaschine und verfahren zum steuern einer selbstfahrenden baumaschine | |
EP2155968B1 (de) | Einbauzug zum erstellen einer beton- oder asphalt-belagschicht | |
DE69411064T2 (de) | Kontrollgerät für einen Strassenfertiger | |
EP4056758B1 (de) | Verfahren zum fertigen eines strassenbelags und asphaltiersystem | |
EP2562309A1 (de) | Straßenfertiger mit Messvorrichtung | |
DE2009427C3 (de) | Gleisloser Straßenfertiger zum Verbreitern bereits vorhandener Straßendecken | |
EP1613812A1 (de) | System und verfahren zur automatisierten bodenverdichtung | |
DE112009001767T5 (de) | Straßenfertigungsmaschinen-Steuerung und Verfahren | |
DE102019121416A1 (de) | Navigationssystem für eine maschine | |
EP3835485B1 (de) | Messsystem für eine baumaschine | |
DE102021106005A1 (de) | Auf der relativen geschwindigkeit basiertes aktorgeschwindigkeitskalibriersystem | |
EP3732945B1 (de) | Technik zur erzeugung eines geländeprofils mit einer landmaschine | |
DE29918747U1 (de) | Vorrichtung zum Steuern eines Straßenfertigers | |
DE19951296C2 (de) | Vorrichtung und Verfahren zum Steuern eines Strassenfertigers | |
DE19921761B4 (de) | Verfahren und Vorrichtung zum Verstellen des Arbeitsabstandes | |
DE19951297C1 (de) | Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht | |
EP4056760B1 (de) | Strassenfertiger mit nivellierkaskadenregelung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20030909 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BUGNION S.A. |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50008220 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050120 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: JOSEPH VOGELE A.G. Effective date: 20050131 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: JOSEPH *VOGELE A.G. Effective date: 20050131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050313 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50008220 Country of ref document: DE Owner name: JOSEPH VOEGELE AG, DE Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE Effective date: 20120217 Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE Effective date: 20120217 Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE Effective date: 20120217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190129 Year of fee payment: 20 Ref country code: NL Payment date: 20190129 Year of fee payment: 20 Ref country code: DE Payment date: 20190129 Year of fee payment: 20 Ref country code: IT Payment date: 20190131 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190129 Year of fee payment: 20 Ref country code: DK Payment date: 20190129 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50008220 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20200119 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20200118 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |