WO2018051742A1 - 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 - Google Patents
作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 Download PDFInfo
- Publication number
- WO2018051742A1 WO2018051742A1 PCT/JP2017/029913 JP2017029913W WO2018051742A1 WO 2018051742 A1 WO2018051742 A1 WO 2018051742A1 JP 2017029913 W JP2017029913 W JP 2017029913W WO 2018051742 A1 WO2018051742 A1 WO 2018051742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- windrow
- leveling
- work vehicle
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000005259 measurement Methods 0.000 claims abstract description 52
- 238000004891 communication Methods 0.000 claims description 20
- 238000009412 basement excavation Methods 0.000 description 95
- 238000012545 processing Methods 0.000 description 70
- 238000012986 modification Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 102220486681 Putative uncharacterized protein PRO1854_S10A_mutation Human genes 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 102220171488 rs760746448 Human genes 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
- E02F9/262—Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/7636—Graders with the scraper blade mounted under the tractor chassis
- E02F3/7645—Graders with the scraper blade mounted under the tractor chassis with the scraper blade being pivotable about a horizontal axis disposed parallel to the blade
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/841—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
- E02F3/842—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine using electromagnetic, optical or photoelectric beams, e.g. laser beams
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0242—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/7636—Graders with the scraper blade mounted under the tractor chassis
- E02F3/764—Graders with the scraper blade mounted under the tractor chassis with the scraper blade being pivotable about a vertical axis
Definitions
- the present invention relates to a work vehicle control system, a work vehicle control system control method, and a work vehicle, and more particularly to a work path of a motor grader.
- repair vehicles for repairing road surfaces are known.
- a motor grader having a blade is generally used as the repair vehicle.
- Japanese Patent Laid-Open No. 2010-242345 discloses a method of detecting a road surface state according to a sensor provided in a dump truck and repairing the road surface with a repair vehicle based on the detected road surface state information.
- the motor grader has a blade, and a windrow is formed on the side of the motor grader during the leveling work by the blade for repairing the road surface.
- An object of the present invention is to provide a work system, a work system control method, and a work vehicle capable of appropriately leveling a windrow generated by leveling work. is there.
- a control system for a work vehicle includes a position measurement unit that measures a position of a windrow generated by leveling work, and a work route setting unit that sets a work route based on the position of the windrow measured by the position measurement unit And a travel control unit that controls the work vehicle to travel along the work route set by the work route setting unit.
- the position measuring unit is provided in the work vehicle.
- the work route setting unit sets the position of the windrow to a work route that is located within the work range of the work machine.
- the apparatus further includes a work machine control unit that controls the work machine based on the position of the windrow measured by the position measurement unit on the work route set by the work route setting unit.
- the position measuring unit further measures the width of the windrow, and the work implement control unit controls the work implement based on the width of the windrow.
- the position measurement unit further measures the height of the windrow, and the work machine control unit controls the work machine based on the height of the windrow.
- a communication unit is further provided that transmits information about the windrow measured by the position measurement unit to an external device.
- a control method of a control system for a work vehicle having a work machine includes a step of measuring a position of a windrow generated by leveling work, a step of setting a work route based on the measured position of the windrow, And a step of controlling the work vehicle to travel along the set work route.
- the step of setting a route sets a work route in which the position of the windrow is located within the work range of the work implement.
- the method further includes a step of controlling the work machine based on the measured position of the windrow on the set work route.
- the step of measuring includes the step of further measuring the width of the windrow.
- the step of controlling the work machine includes the step of controlling the work machine based on the width of the windrow.
- the step of measuring includes the step of further measuring the height of the windrow.
- the step of controlling the work machine includes the step of controlling the work machine based on the height of the windrow.
- the method further includes a step of transmitting information about the measured windrow to an external device.
- a work vehicle includes a work machine, a position measuring unit that measures a position of a windrow generated by leveling work, and a work path setting that sets a work path based on the position of the windrow measured by the position measuring unit. And a travel control unit that controls the vehicle to travel along the work route set by the work route setting unit.
- the work route setting unit sets the position of the windrow to a work route located within the work range of the work implement.
- the apparatus further includes a work machine control unit that controls the work machine based on the position of the windrow measured by the position measurement unit on the work route set by the work route setting unit.
- the position measuring unit further measures the width of the windrow, and the work implement control unit controls the work implement based on the width of the windrow.
- the position measurement unit further measures the height of the windrow, and the work machine control unit controls the work machine based on the height of the windrow.
- a communication unit is further provided that transmits information about the windrow measured by the position measurement unit to an external device.
- the present invention can appropriately level the windrow generated by the leveling work.
- FIG. 1 is a perspective view schematically showing a configuration of a work vehicle 100 based on Embodiment 1.
- FIG. 1 is a side view schematically showing a configuration of a work vehicle 100 based on Embodiment 1.
- FIG. It is the figure which looked at the excavation work in the leveling work of the work vehicle 100 based on Embodiment 1 from the side. It is the figure which looked at the excavation work in the leveling work of the work vehicle 100 based on Embodiment 1 from the upper surface. It is the figure which looked at the leveling work in the leveling work of the work vehicle 100 based on Embodiment 1 from the side.
- FIG. 1 It is the figure which looked at the leveling work in the leveling work of the work vehicle 100 based on Embodiment 1 from the upper surface. It is a figure explaining the cross-sectional shape of the leveling work based on Embodiment 1.
- FIG. It is a figure explaining the functional block of the base station 10 and the working vehicle 100 based on Embodiment 1.
- FIG. It is a figure explaining the flow which performs the leveling process of the work vehicle 100 based on Embodiment 1.
- FIG. It is a figure for demonstrating the blade propulsion angle based on the modification of Embodiment 1.
- FIG. It is a figure explaining the flow which performs the leveling process of the work vehicle 100 based on the modification of Embodiment 1.
- FIG. 10 is a flowchart illustrating a blade setting subroutine based on a modification of the first embodiment. It is a flowchart which performs the leveling process of the work vehicle 100 based on Embodiment 2.
- FIG. It is a figure explaining the outline
- FIG. It is a figure explaining the outline
- FIG. 1 is a diagram illustrating an overview of a work vehicle control system 1 based on the first embodiment.
- the work vehicle control system 1 includes a base station 10, a work vehicle 100, and a dump truck 200. Further, a leveling area AR is shown, and in this example, the work vehicle 100 executes leveling work starting from the points P0, P1, P2, and P3 of the leveling area AR. The positions of the points P0, P1, P2, and P3 in the leveling area AR are set based on information from the base station 10.
- the work vehicle that has started the leveling work from the point P0 executes the leveling work along the work routes S0 and S1. The same applies to other points.
- FIG. 2 is a perspective view schematically showing a configuration of work vehicle 100 based on the first embodiment.
- FIG. 3 is a side view schematically showing a configuration of work vehicle 100 based on the first embodiment. 2 and 3, a work vehicle 100 according to the first embodiment includes a front wheel 11 that is a traveling wheel, a rear wheel 12 that is a traveling wheel, a body frame 2, a cab 3, and a work implement 4. And a ripper device 8.
- the work vehicle 100 includes components such as an engine disposed in the engine room 6.
- the work machine 4 includes a blade 42.
- the work vehicle 100 can perform operations such as leveling work, snow removal work, light cutting, and material mixing with the blade 42.
- traveling wheel which consists of the front wheel 11 of each wheel on one side and the rear wheel 12 of each wheel on one side is shown, the number and arrangement of the front wheels and the rear wheels are not limited to this.
- the direction in which the work vehicle 100 travels straight is referred to as the front-rear direction of the work vehicle 100.
- the side on which the front wheels 11 are disposed with respect to the work implement 4 is defined as the front direction.
- the side on which the rear wheel 12 is disposed with respect to the work machine 4 is defined as the rear direction.
- the left-right direction or side of work vehicle 100 is a direction orthogonal to the front-rear direction in plan view. When viewed from the front, the right and left sides in the left-right direction are the right direction and the left direction, respectively.
- the vertical direction of the work vehicle 100 is a direction orthogonal to a plane defined by the front-rear direction and the left-right direction. In the vertical direction, the side with the ground is the lower side, and the side with the sky is the upper side.
- the front-rear direction is indicated by an arrow X in the figure
- the left-right direction is indicated by an arrow Y in the figure
- the vertical direction is indicated by an arrow Z in the figure.
- the vehicle body frame 2 includes a rear frame 21 and a front frame 22.
- the rear frame 21 supports an exterior cover 25 and components such as an engine disposed in the engine compartment 6.
- the exterior cover 25 covers the engine chamber 6.
- the position measuring unit 102 is attached to the front frame 22.
- the position measuring unit 102 is provided so as to be able to measure the state on the side of the work vehicle 100. As a result, it is possible to easily measure the windrow formed on the side of the work vehicle 100.
- the attachment position of the position measuring unit 102 is not limited to the above position, and is particularly limited as long as it can measure the windrow formed on the side of the work vehicle 100 or the side of the blade 42. Not. For example, it may be provided on the upper surface of the cab 3.
- each of the two rear wheels 12 described above is attached to the rear frame 21 so as to be rotationally driven by a driving force from the engine.
- the front frame 22 is attached in front of the rear frame 21.
- the two front wheels 11 described above are rotatably attached to the front end portion of the front frame 22.
- the rear wheel drive system will be described as an example, but it is also possible to adopt an all-wheel drive system in which each of the front wheels 11 and the rear wheels 12 is rotationally driven by a driving force from the engine.
- the cab 3 has an indoor space for an operator to board, and is disposed in front of the rear frame 21.
- the cab 3 may be arranged on the front frame 22 side.
- operation sections such as a handle for turning operation, a shift lever, an operation lever of the work machine 4, a brake, and an accelerator pedal.
- the direction of the front wheel 11 is changed by operating the handle.
- the ripper device 8 is a working machine provided for performing excavation work or the like on the ground, and is attached to the rear end of the vehicle body.
- a steering lever also referred to as joystick steering
- the turning operation is performed by lever operation. It is possible to make it possible.
- a configuration in which both a handle and a steering lever are provided is also possible.
- the work machine 4 mainly has a draw bar 40, a turning circle 41, a blade 42, a hydraulic motor 49, and various cylinders 44 to 48.
- the front end portion of the draw bar 40 is swingably attached to the front end portion of the front frame 22.
- the rear end portion of the draw bar 40 is supported on the front frame 22 by a pair of lift cylinders 44 and 45.
- the pair of lift cylinders 44 and 45 By extending and contracting the pair of lift cylinders 44 and 45, the rear end portion of the draw bar 40 can be moved up and down with respect to the front frame 22. Therefore, when the lift cylinders 44 and 45 are both reduced, the height of the blade 42 with respect to the front frame 22 and the front wheel 11 is adjusted upward. Further, when the lift cylinders 44 and 45 are both extended, the height of the blade 42 with respect to the front frame 22 and the front wheel 11 is adjusted downward.
- draw bar 40 can swing up and down around an axis along the vehicle traveling direction by different expansion and contraction of the lift cylinders 44 and 45.
- a drawbar shift cylinder 46 is attached to the front frame 22 and the side end of the drawbar 40.
- the draw bar 40 can move to the left and right with respect to the front frame 22 by the expansion and contraction of the draw bar shift cylinder 46.
- the turning circle 41 is attached to the rear end portion of the draw bar 40 so as to be capable of turning (rotating).
- the turning circle 41 can be driven to turn clockwise or counterclockwise by the hydraulic motor 49 when viewed from above the vehicle with respect to the draw bar 40.
- the blade propulsion angle of the blade 42 is adjusted by the turning drive of the turning circle 41.
- the blade propulsion angle will be described later.
- the blade 42 is disposed between the front wheel 11 and the rear wheel 12.
- the blade 42 is disposed between the front end of the vehicle body frame 2 (or the front end of the front frame 22) and the rear end of the vehicle body frame 2.
- the blade 42 is supported by the turning circle 41.
- the blade 42 is supported by the front frame 22 via the turning circle 41 and the draw bar 40.
- the blade 42 is supported so as to be movable in the left-right direction with respect to the turning circle 41.
- the blade shift cylinder 47 is attached to the turning circle 41 and the blade 42, and is disposed along the longitudinal direction of the blade 42.
- the blade shift cylinder 47 allows the blade 42 to move in the left-right direction with respect to the turning circle 41.
- the blade 42 is movable in a direction that intersects the longitudinal direction of the front frame 22.
- the blade 42 is supported with respect to the turning circle 41 so as to be swingable about an axis extending in the longitudinal direction of the blade 42.
- the tilt cylinder 48 is attached to the turning circle 41 and the blade 42. By extending and retracting the tilt cylinder 48, the blade 42 can swing about the axis extending in the longitudinal direction of the blade 42 with respect to the turning circle 41, and the inclination angle of the blade 42 with respect to the vehicle traveling direction can be changed. .
- the blade 42 moves up and down with respect to the vehicle, swings about the axis along the traveling direction of the vehicle, changes in the inclination angle with respect to the front-rear direction, and left-right direction via the draw bar 40 and the turning circle 41. And swinging about an axis extending in the longitudinal direction of the blade 42 is possible.
- FIG. 4 is a side view of the excavation work in the leveling work of the work vehicle 100 based on the first embodiment.
- FIG. 5 is a top view of the excavation work in the leveling work of the work vehicle 100 based on the first embodiment.
- the work vehicle 100 executes excavation work for scraping off the unevenness of the road surface of the leveling area AR with the blade 42 as leveling work. Due to the excavation work, a windrow WR is generated on the side of the blade 42.
- a position measuring unit 102 is attached to the upper surface side of the front frame 22 of the work vehicle 100.
- the position measuring unit 102 measures the windrow WR generated on the side of the blade 42.
- the position measurement unit 102 is, for example, a millimeter wave sensor, and radiates a transmission wave on the road surface on the side of the blade 42 of the work vehicle 100 at the radiation unit.
- the light receiving unit receives the reflected wave from the road surface. If there are irregularities or obstacles on the road surface, the return of the reflected wave is faster if it is a projection, and the return of the reflected wave is delayed if it is a hollow. It is possible to detect the road surface condition by detecting the difference with the return time of the reflected wave when traveling on flat ground. In this example, it is possible to detect the windrow WR.
- the present invention is not limited to a millimeter wave sensor, and a laser scanner that receives a reflected laser beam by irradiating a laser beam with a laser scanner can also be used.
- the windrow WR can be detected using an imaging device such as a camera.
- FIG. 6 is a side view of the leveling work in the leveling work of the work vehicle 100 based on the first embodiment.
- FIG. 7 is a top view of the leveling work in the leveling work of the work vehicle 100 based on the first embodiment.
- the work vehicle 100 executes a leveling operation of flattening the road surface by flattening the windrow WR generated by the excavation work by the blade 42 as the leveling work.
- FIG. 8 is a diagram illustrating a cross-sectional shape of the leveling work based on the first embodiment. As shown in FIG. 8 (A), unevenness occurs on the road surface based on the wheel of the dump truck. If the uneven surface of the road is left unattended, the dump truck will be affected by vibration, running resistance, etc., and a leveling work for repairing the road surface as required is required.
- the work vehicle 100 executes an excavation work for scraping the uneven state of the road surface as a leveling work. At that time, scraped earth and sand are formed on the side of the work vehicle 100 as a windrow WR. Moreover, it will be in the state dug a little from the leveling ground by excavation work.
- the work vehicle 100 executes a leveling operation to flatten and flatten the windrow WR as a leveling operation. At that time, the soil of the windrow WR is flattened so as to fill the region dug by the excavation work. As a result, a leveling surface is formed.
- the leveling work of the leveling area AR is executed by repeating the process.
- FIG. 9 is a diagram illustrating functional blocks of the base station 10 and the work vehicle 100 based on the first embodiment.
- the base station 10 includes a CPU (Central Processing Unit) 12, a storage unit 14, and a communication unit 16.
- the storage unit 14 stores various programs necessary for the work vehicle control system 1.
- the CPU 12 executes various processes based on a program stored in the storage unit 14. As an example, the CPU 12 transmits information regarding the leveling area AR for the work vehicle 100 to perform leveling work via the communication unit 16.
- the information includes information on the range of the leveling area AR and information on the point P that is the starting point for starting leveling.
- Work vehicle 100 includes a position measurement unit 102, a CPU 104, a storage unit 106, a communication unit 108, and a GNSS (Global Navigation Satellite System) receiver 109.
- the GNSS receiver 109 is, for example, an antenna for GPS (Global Positioning System).
- the storage unit 106 is used as an area for storing a program for executing various operations in the work vehicle 100 and storing necessary data.
- the CPU 104 executes various processes based on a program stored in the storage unit 106.
- the position measuring unit 102 measures information on the road surface condition around the work vehicle 100. Specifically, information on the road surface condition on the side of the work vehicle 100 is measured. In this example, the position measuring unit 102 measures the position of the windrow WR generated by the leveling work.
- the GNSS receiver 109 receives vehicle body position information indicating the position of the work vehicle 100 and outputs it to the CPU 104.
- the communication unit 108 is provided so as to be communicable with the base station 10, receives information transmitted from the base station 10, and outputs the information to the CPU 104. It is also possible to transmit data to an external device via the communication unit 108 in accordance with an instruction from the CPU 104.
- the CPU 104 includes an excavation processing unit 111, a leveling processing unit 112, a travel control unit 113, a work implement control unit 114, and a position control unit 115.
- the position control unit 115 acquires information on the leveling area AR and each point P transmitted from the base station 10 via the communication unit 108. In addition, the position control unit 115 acquires position information of the work vehicle 100 from the GNSS receiver 109. The position control unit 115 sets the range of leveling work based on the information of the leveling area AR. Further, the position control unit 115 instructs the travel control unit 113 to move the work vehicle 100 to the position of the point P based on the position information from the GNSS receiver 109. The traveling control unit 113 executes traveling control for driving the work vehicle 100 to reach the point P by driving at least one of the front wheels 11 and / or the rear wheels 12 in accordance with an instruction from the position control unit 115.
- the excavation processing unit 111 executes processing related to leveling work in the leveling area AR with the point P0 as a starting point. Specifically, the excavation processing unit 111 sets the excavation work route S0 in the leveling area AR from the point P as a starting point. The excavation processing unit 111 instructs the traveling control unit 113 to move the set excavation work route S0.
- the traveling control unit 113 causes the work vehicle 100 to travel along the excavation work route S0 set by the excavation processing unit 111.
- the excavation processing unit 111 instructs the work machine control unit 114, and the work machine control unit 114 follows the instruction from the excavation processing unit 111, the blade inclination angle, the blade horizontal movement, the blade propulsion angle in the excavation work path S0. Adjust at least one of the above.
- the excavation work described above is executed by the work vehicle 100 traveling on the excavation work path S0.
- the excavation processing unit 111 determines that the traveling of the excavation work route S0 is completed based on the position information from the GNSS receiver 109, the excavation processing unit 111 instructs the leveling processing unit 112 to perform the leveling work.
- the leveling processing unit 112 sets the leveling work route S1 in the leveling area AR with the point P as the end point.
- the leveling processing unit 112 instructs the travel control unit 113 to move the set leveling work route S1.
- the traveling control unit 113 causes the work vehicle 100 to travel along the leveling work path S1 set by the leveling processing unit 112.
- the leveling processing unit 112 instructs the work machine control unit 114, and the work machine control unit 114 follows the instruction from the leveling processing unit 112, the blade inclination angle in the leveling work path S1, the movement of the blade in the left-right direction, Adjust at least one of the blade propulsion angle and the like.
- the leveling work described above is executed when the work vehicle 100 travels along the leveling work path S1.
- the leveling processing unit 112 determines that the traveling of the leveling work path S1 is completed based on the position information from the GNSS receiver 109, the leveling processing unit 112 instructs the excavation processing unit 111 to execute the excavation work.
- the excavation processing unit 111 executes excavation work from the next point P1, and repeats the above processing. Thereby, the leveling work of the leveling area AR is sequentially performed.
- FIG. 10 is a diagram illustrating a flow for executing the leveling process of the work vehicle 100 based on the first embodiment.
- the work vehicle 100 acquires information on the leveling area AR (step S2). Specifically, the position control unit 115 acquires information on the leveling area AR via the communication unit 108. Further, the position control unit 115 acquires information on the point P that is the starting point of the leveling work together with information on the leveling area AR.
- Work vehicle 100 sets an excavation point (step S3).
- the position control unit 115 sets an excavation point based on the acquired information. As an example, the position control unit 115 sets the point P0 as an excavation point.
- the work vehicle 100 moves to the excavation point (step S4).
- the position control unit 115 instructs the travel control unit 113 to move to the point P0.
- the traveling control unit 113 determines the position of the front wheels 11 and / or the rear wheels 12 so that the work vehicle 100 moves to the point P0 based on the point P0 set by the position control unit 115 and the information acquired by the GNSS receiver 109.
- Automatic driving control is performed in which at least one of the two is driven and moved.
- the excavation processing unit 111 sets an excavation work route in the leveling area AR with the point P0 as a starting point.
- the excavation work route S0 is set.
- the work vehicle 100 sets a blade (step S7).
- the excavation processing unit 111 instructs the work machine control unit 114 to set a blade.
- the work implement control unit 114 adjusts at least one of the blade inclination angle, the left-right movement of the blade, the blade propulsion angle, and the like in the excavation work path S0 in accordance with instructions from the excavation processing unit 111.
- the work machine control unit 114 adjusts the blade propulsion angle so that the windrow WR formed by the excavation work is on the left side of the work vehicle 100.
- the blade propulsion angle is adjusted such that the right end portion of the blade 42 is forward and the left end portion is rearward with respect to the traveling direction of the work vehicle 100.
- the work vehicle 100 starts automatic traveling (step S8).
- the excavation processing unit 111 instructs the travel control unit 113 to execute automatic travel along the excavation work route S0.
- the travel control unit 113 causes the work vehicle 100 to travel along the excavation work route S0.
- the work vehicle 100 acquires windrow information (step S10).
- the excavation processing unit 111 instructs the position measurement unit 102, and the position measurement unit 102 measures a windrow formed on the left side of the work vehicle 100 that automatically travels along the excavation work path S0.
- the position measurement unit 102 outputs the windrow information, which is a measurement result, to the CPU 104.
- the work vehicle 100 determines whether or not the work on the excavation work route has been completed (step S11).
- the traveling control unit 113 automatically travels along the excavation work path S0, and notifies the excavation processing unit 111 that the work has been completed when the end of the excavation work path S0 is reached.
- the excavation processing unit 111 can determine that the work on the excavation work path has been completed according to the notification from the travel control unit 113.
- step S11 when it is determined that the work on the excavation work route has not been completed (NO in step S11), the work vehicle 100 returns to step S8 and repeats the above processing.
- step S11 the work vehicle 100 determines in step S11 that the work on the excavation work route has been completed (YES in step S11)
- the work vehicle 100 sets a leveling work route (step S12).
- the excavation processing unit 111 instructs the leveling processing unit 112 to execute the leveling process.
- the leveling processor 112 sets the leveling work route in the leveling area AR with the point P0 as the end point. In this example, the route including the windrow measured by the position measuring unit 102 is set as the leveling work route.
- the leveling processing unit 112 sets the leveling work path as a path where the windrow measured by the position measurement unit 102 is located within the work range of the blade 42 of the work vehicle 100.
- the work vehicle 100 sets a blade (step S13).
- the leveling processor 112 instructs the work implement controller 114 to set the blade.
- the work implement control unit 114 adjusts at least one of the blade inclination angle, the left-right movement of the blade, the blade propulsion angle, and the like in the leveling work path S1 in accordance with an instruction from the leveling processing unit 112.
- the work machine control unit 114 adjusts the blade propulsion angle so that the dug area on the left side of the work vehicle 100 is backfilled by the leveling work to flatten and flatten the windrow WR. .
- the blade propulsion angle is adjusted such that the right end portion of the blade 42 is forward and the left end portion is rearward with respect to the traveling direction of the work vehicle 100.
- the work vehicle 100 starts automatic traveling (step S14).
- the leveling processing unit 112 instructs the traveling control unit 113 to execute automatic traveling along the leveling work route S1.
- the traveling control unit 113 causes the work vehicle 100 to travel along the leveling work route S1.
- the work vehicle 100 determines whether or not the work on the leveling work path has been completed (step S15).
- the traveling control unit 113 automatically travels along the leveling work route S1 and notifies the leveling processing unit 112 that the work has been completed when it reaches the end of the leveling work route S1.
- the leveling processing unit 112 can determine that the work on the leveling work route has been completed according to the notification from the travel control unit 113.
- step S16 the work vehicle 100 determines whether or not the processing is completed.
- step S16 If the work vehicle 100 determines in step S16 that the process has been completed (YES in step S16), the leveling process is terminated (END).
- step S16 determines whether the process is not completed (NO in step S16).
- the work vehicle 100 sets the next excavation point (step S17).
- the leveling processor 112 instructs the position controller 115.
- the position control unit 115 sets an excavation point based on the acquired information. As an example, the position control unit 115 sets the next point P1 as an excavation point.
- the position control unit 115 instructs the travel control unit 113 to move to the point P1 as the next excavation point.
- the traveling control unit 113 determines the position of the front wheels 11 and / or the rear wheels 12 so that the work vehicle 100 moves to the point P1 based on the point P1 set by the position control unit 115 and the information acquired by the GNSS receiver 109.
- Automatic driving control is performed in which at least one of the two is driven and moved. Since the subsequent processing is the same, detailed description thereof will not be repeated.
- the position measuring unit 102 is attached to the work vehicle 100.
- the windrow may be measured by another device.
- the position measuring unit 102 may be attached to another external measurement vehicle such as a dump truck to measure the windrow.
- the position measuring unit 102 may be attached to an unmanned aircraft such as a drone to measure the windrow.
- the CPU 12 of the base station 10 provided so as to be communicable with the base station 10 may execute the processing, and the work vehicle 100 may perform excavation work and leveling work according to instructions from the base station 10.
- another external server provided so as to be communicable with the work vehicle 100 may execute the process.
- FIG. 11 is a diagram for explaining blade propulsion angles based on a modification of the first embodiment. As shown in FIGS. 11A and 11B, the blade 42 rotates around the rotation shaft 910 by the turning drive of the turning circle 41.
- the front wheel 11 is connected to the axle.
- the axle is orthogonal to the central axis 920 of the front frame 22.
- the blade propulsion angle ⁇ is an angle formed by the vehicle body traveling direction and the blade 42. Precisely, the blade propulsion angle ⁇ is an angle formed by the vehicle body traveling direction (forward direction) and the blade 42 when the work vehicle 100 is traveling straight.
- the blade propulsion angle ⁇ can be said to be an angle formed by the central axis 920 of the front frame 22 and the blade 42.
- the blade propulsion angle ⁇ is typically set between 45 degrees and 60 degrees. Note that the blade propulsion angle ⁇ ranges from 0 degrees to 90 degrees.
- the blade propulsion angle ⁇ is adjusted according to the load based on the amount of the windrow WR. Specifically, when the load applied to the blade 42 is large, the blade propulsion angle ⁇ is set small. On the other hand, when the load applied to the blade 42 is small, the blade propulsion angle ⁇ is increased.
- FIG. 12 is a diagram illustrating a flow for executing the leveling process of the work vehicle 100 based on the modification of the first embodiment.
- step S13 is replaced with step S13A. Since other flows are the same, detailed description thereof will not be repeated.
- FIG. 13 is a flowchart for explaining a blade setting subroutine based on a modification of the first embodiment.
- step S22 it is determined whether or not the amount of windrow is large (step S22). Whether the amount of windrow is large is determined based on the information of the windrow WR measured by the position measurement unit 102. Specifically, the work machine control unit 114 can determine whether or not the amount of windrow is large by measuring the width of the windrow WR measured by the position measurement unit 102. For example, when the width of the windrow WR is wide, it can be determined that the amount of windrow is large, and when the width is narrow, it can be determined that the amount of windrow is small.
- step S22 If it is determined in step S22 that the amount of windrow is large, the blade propulsion angle is decreased (step S24). Then, the process ends (return).
- step S22 determines whether the amount of windrow is large. If it is determined in step S22 that the amount of windrow is not large, the blade propulsion angle is increased (step S26). Then, the process ends (return).
- FIG. 14 is a flowchart for executing the leveling process of the work vehicle 100 based on the second embodiment.
- the flowchart of FIG. 14 differs from the flowchart of FIG. 10 in that step S10A is further added. Since other flows are the same, detailed description thereof will not be repeated.
- step S10A the work vehicle 100 transmits the acquired information about the windrow (windrow information) to the external device. Then, the process proceeds to step S11. Since other configurations are the same as those described with reference to FIG. 10, detailed description thereof will not be repeated.
- step S10A the excavation processing unit 111 transmits the windrow information measured by the position measurement unit 102 to the external device via the communication unit 108.
- the data is transmitted to a dump truck 200 traveling around the area shown in FIG. 1 as an example of an external device.
- the windrow information includes information regarding the position where the windrow has occurred.
- the dump truck 200 acquires the windrow information transmitted from the work vehicle 100.
- the dump truck 200 can grasp the position where the windrow is generated by acquiring the windrow information. Therefore, the dump truck 200 can avoid the region where the windrow is generated and prevent the region from being the traveling region. For example, it is possible to alert the driver of the dump truck 200 not to travel in the area by displaying information on the windrow on the screen.
- the leveling work is efficiently performed by acquiring the windrow information and resetting the travel route so as not to travel the area. Is possible.
- the transmission is not limited to the dump truck 200 and may be transmitted to the base station 10 and transmitted from the base station 10 to the dump truck 200.
- the configuration has been described in which the windrow information is acquired and the acquired windrow information is transmitted to the external device.
- the windrow information may be transmitted to the external device every predetermined period. .
- the communication load can be reduced.
- the windrow information is transmitted to the dump truck as an external device.
- the windrow information may be transmitted to another work vehicle as an external device.
- FIG. 15 is a diagram illustrating an outline of a work vehicle control system 1 # based on the second embodiment.
- the work vehicle control system 1 # includes a base station 10, a work vehicle 100, and a work vehicle 100P. Further, a leveling area AR is shown, and in this example, the work vehicle 100 executes leveling work starting from the points P0, P1, P2, and P3 of the leveling area AR. The positions of the points P0, P1, P2, and P3 in the leveling area AR are set based on information from the base station 10.
- the leveling work is executed by a plurality of work vehicles.
- a certain work vehicle 100 that has started the leveling work from the point P0 performs the leveling work along the work route S0.
- the work vehicle 100 transmits windrow information generated by the leveling work to the work vehicle 100P.
- the work vehicle 100P sets a work route S1 based on windrow information generated by the leveling work of the work vehicle 100, and executes the leveling work along the set work route S1.
- This method makes it possible to execute the leveling work in the leveling area AR at an early stage. The same applies to other points.
- FIG. 16 is a diagram for explaining an outline of a work vehicle control system 1A according to another embodiment.
- the work vehicle control system 1 ⁇ / b> A includes a base station 10 and a work vehicle 100. Further, a leveling area AR is shown, and in this example, the work vehicle 100 executes leveling work with reference to the points P0, P1, P2, and P3 of the leveling area AR. The positions of the points P0, P1, P2, and P3 in the leveling area AR are set based on information from the base station 10.
- the leveling work is executed by one work vehicle.
- the excavation processing unit 111 executes processing related to leveling work in the leveling area AR with the point P0 as a starting point. Specifically, the excavation processing unit 111 sets excavation work routes S0A, S0B,... In the leveling area AR with the point P as a starting point.
- the excavation processing unit 111 instructs the travel control unit 113 to move the set excavation work routes S0A and S0B.
- a work vehicle 100 that has started leveling work (excavation work) from the point P0 performs leveling work (excavation work) to the point P1 along the excavation work path S0A. Further, the work vehicle 100 that has started the leveling work (excavation work) from the point P2 executes the leveling work (excavation work) to the point P3 along the excavation work path S0B. The leveling work (excavation work) is repeated, and the leveling work (excavation work) is repeated for the entire leveling area AR.
- windrows are formed by leveling work (excavation work) in the entire leveling area AR.
- the work vehicle 100 acquires windrow information generated by leveling work (excavation work).
- the excavation processing unit 111 determines that the travel of the excavation work routes S0A, S0B,... In the entire leveling area AR is completed based on the position information from the GNSS receiver 109, the excavation processing unit 111 causes the leveling processing unit 112 to Instruct them to perform the work.
- the leveling processing unit 112 sets leveling work paths S1A, S1B,... In the leveling area AR with the point P as the end point based on the acquired windrow information.
- the leveling processing unit 112 instructs the traveling control unit 113 to move the set leveling work routes S1A and S1B.
- the traveling control unit 113 travels along the leveling work routes S1A, S1B,... Set by the leveling processing unit 112.
- the leveling processing unit 112 instructs the work machine control unit 114, and the work machine control unit 114 follows the instruction from the leveling processing unit 112, the blade inclination angle in the leveling work path S1, the movement of the blade in the left-right direction, Adjust at least one of the blade propulsion angle and the like.
- the leveling work (leveling work) is sequentially executed in the entire leveling area AR.
- a leveling work (excavation work) is performed on the entire leveling area AR, a windrow generated by the excavation work is measured, and a path including the windrow generated in the entire leveling area AR is set as a leveling work path. . Then, by automatically traveling along the leveling work route, it is possible to properly level (wind level) the windrow generated by the leveling work.
- the control system for the work vehicle 100 having the work machine 4 includes a position measurement unit 102, a leveling processing unit 112, and a travel control unit 113.
- the position measuring unit 102 measures the windrow WR generated by excavation work during leveling work.
- the leveling processing unit 112 sets a path including the windrow WR measured by the position measuring unit 102 for the leveling work path by the blade 42 of the work machine 4.
- the travel control unit 113 controls the work vehicle 100 to travel along the leveling work route set by the leveling processing unit 112.
- the leveling work path is set to a path including the windrow WR measured by the position measuring unit 102, it is possible to properly level the windrow generated by the excavation work in the leveling work.
- the work vehicle 100 is provided with a position measurement unit 102.
- the position measuring unit 102 By providing the position measuring unit 102 in the work vehicle 100, it is possible to easily measure windrows generated by excavation work.
- the leveling processing unit 112 sets a path in which the windrow measured by the position measuring unit 102 is within the work range of the blade 42 of the work machine 4 for the leveling work path by the blade 42 of the work machine 4.
- the work machine control unit 114 is provided in the control system of the work vehicle 100 of the present embodiment as shown in FIG.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the windrow WR measured by the position measurement unit 102 for the leveling work path set by the leveling processing unit 112.
- the work machine control unit 114 controls the blades 42 of the work vehicle 100 based on the windrow WR measured by the position measurement unit 102 for the leveling work path set by the leveling processing unit 112. It is possible to perform leveling work according to the situation.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the width of the windrow WR measured by the position measurement unit 102.
- the work machine control unit 114 determines that the amount of windrow is large when the width is wide based on the width of the windrow WR measured by the position measurement unit 102, and determines the amount of windrow when the width is narrow. It is possible to determine that there is little, and it is possible to execute an efficient leveling work by controlling the blade 42 according to the load applied to the blade 42.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the height of the windrow WR measured by the position measurement unit 102.
- the work machine control unit 114 determines that the amount of windrow is large, and when the height is low. It is possible to determine that the amount of windrow is small, and it is possible to execute an efficient leveling work by controlling the blade 42 according to the load applied to the blade 42.
- the communication system 108 is provided in the control system of the work vehicle 100 of this embodiment as shown in FIG.
- the communication unit 108 transmits information about the windrow measured by the position measurement unit 102 to the external device.
- the external device Since the communication unit 108 transmits information related to windrows to the external device, the external device receives the information.
- the external device can execute efficient ground leveling work by executing control based on the received information about the windrow.
- the CPU 12 for controlling the work vehicle 100 having the work machine 4 measures the step of measuring the windrow WR generated by the excavation work by the blade 42 of the work machine 4 and the leveling work path by the work machine 4. Then, a step of setting a route including the measured windrow WR and a step of controlling the work vehicle 100 to travel along the set leveling work route are executed.
- the leveling work path is set to a path including the measured windrow WR, it is possible to properly level the windrow generated by the excavation work in the leveling work.
- the CPU 12 sets a path in which the windrow WR measured for the leveling work path by the blade 42 of the work machine 4 is located within the work range of the blade 42 of the work machine 4 as a step of setting the path.
- the CPU 12 executes a step of controlling the blade 42 of the work machine 4 based on the windrow measured for the leveling work path by the blade 42 of the work machine 4.
- the blade 42 of the work implement 4 is controlled based on the windrow WR measured with respect to the leveling work path, it is possible to execute leveling work according to the state of the windrow WR.
- the CPU 12 executes a step of controlling the blade 42 of the work machine 4 based on the measured width of the windrow as a step of controlling the blade 42 of the work machine 4.
- the CPU 12 can determine that the amount of windrow is large when the width is wide, and can determine that the amount of windrow is small when it is determined that the width is narrow. Yes, it is possible to execute an efficient leveling work by controlling the blade 42 in accordance with the load applied to the blade 42.
- the CPU 12 executes a step of controlling the blade 42 of the work machine 4 based on the measured height of the windrow as a step of controlling the blade 42 of the work machine 4.
- the CPU 12 determines that the amount of windrow is large if the height is high based on the measured height of the windrow WR, and determines that the amount of windrow is small if the height is determined to be low. It is possible to perform an efficient leveling work by controlling the blade 42 in accordance with the load applied to the blade 42.
- CPU12 performs the step which transmits the information regarding the measured windrow to an external device.
- the external device receives the information in order to transmit the information about the windrow to the external device.
- the external device can execute efficient ground leveling work by executing control based on the received information about the windrow.
- the work vehicle 100 includes the work machine 4, a position measurement unit 102 that measures a windrow generated by leveling work, and a windrow that is measured by the position measurement unit 102 with respect to a work route by the work machine 4.
- a leveling processing unit 112 that is set as a route, and a travel control unit 113 that controls to travel along the work route set by the leveling processing unit 112 are provided.
- the leveling work path is set to a path including the windrow WR measured by the position measuring unit 102, it is possible to properly level the windrow generated by the excavation work in the leveling work.
- the work vehicle 100 is provided with a position measurement unit 102.
- the position measuring unit 102 By providing the position measuring unit 102 in the work vehicle 100, it is possible to easily measure windrows generated by excavation work.
- the leveling processing unit 112 sets a path in which the windrow measured by the position measuring unit 102 is within the work range of the blade 42 of the work machine 4 for the leveling work path by the blade 42 of the work machine 4.
- the work machine control unit 114 is provided in the work vehicle 100 of the present embodiment.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the windrow WR measured by the position measurement unit 102 for the leveling work path set by the leveling processing unit 112.
- the work machine control unit 114 controls the blades 42 of the work vehicle 100 based on the windrow WR measured by the position measurement unit 102 for the leveling work path set by the leveling processing unit 112. It is possible to perform leveling work according to the situation.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the width of the windrow WR measured by the position measurement unit 102.
- the work machine control unit 114 determines that the amount of windrow is large when the width is wide based on the width of the windrow WR measured by the position measurement unit 102, and determines the amount of windrow when the width is narrow. It is possible to determine that there is little, and it is possible to execute an efficient leveling work by controlling the blade 42 according to the load applied to the blade 42.
- the work machine control unit 114 controls the blade 42 of the work machine 4 based on the height of the windrow WR measured by the position measurement unit 102.
- the work machine control unit 114 determines that the amount of windrow is large, and when the height is low. It is possible to determine that the amount of windrow is small, and it is possible to execute an efficient leveling work by controlling the blade 42 according to the load applied to the blade 42.
- a communication unit 108 is provided as shown in FIG.
- the communication unit 108 transmits information about the windrow measured by the position measurement unit 102 to the external device. Since the communication unit 108 transmits information related to windrows to the external device, the external device receives the information.
- the external device can execute efficient ground leveling work by executing control based on the received information about the windrow.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Operation Control Of Excavators (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
作業機を有する作業車両の制御システムであって、整地作業により生じたウインドロウの位置を計測する位置計測部と、位置計測部で計測されたウインドロウの位置に基づいて作業経路を設定する作業経路設定部と、作業経路設定部により設定された作業経路に沿って作業車両を走行させるように制御する走行制御部とを備える。
Description
本発明は、作業車両の制御システム、作業車両の制御システムの制御方法および作業車両に関し、特に、モータグレーダの作業経路に関する。
従来より、路面を補修する補修車両が知られている。たとえば、当該補修車両として、ブレードを有するモータグレーダが一般的である。
たとえば、特開2010-242345号公報においては、ダンプトラックに設けられたセンサに従って路面状態を検出し、検出した路面状態の情報に基づいて補修車両により路面を補修する方式が示されている。
一方で、モータグレーダはブレードを有しており、路面を補修するブレードによる整地作業の際にモータグレーダの側方側にウインドロウが形成される。
したがって、整地作業においては当該ウインドロウを適切に整地することが求められる。
本発明の目的は、上記の点に鑑みてなされたものであって、整地作業により生じるウインドロウを適切に整地することが可能な作業システム、作業システムの制御方法および作業車両を提供することにある。
ある局面に従う作業車両の制御システムは、整地作業により生じたウインドロウの位置を計測する位置計測部と、位置計測部で計測されたウインドロウの位置に基づいて作業経路を設定する作業経路設定部と、作業経路設定部により設定された作業経路に沿って作業車両を走行させるように制御する走行制御部とを備える。
好ましくは、位置計測部は、作業車両に設けられる。
好ましくは、作業経路設定部は、ウインドロウの位置が作業機の作業範囲内に位置する作業経路に設定する。
好ましくは、作業経路設定部は、ウインドロウの位置が作業機の作業範囲内に位置する作業経路に設定する。
好ましくは、作業経路設定部で設定された作業経路上において、位置計測部で計測されたウインドロウの位置に基づいて作業機を制御する作業機制御部をさらに備える。
好ましくは、位置計測部は、ウインドロウの幅をさらに計測し、作業機制御部は、ウインドロウの幅に基づいて作業機を制御する。
好ましくは、位置計測部は、ウインドロウの高さをさらに計測し、作業機制御部は、ウインドロウの高さに基づいて作業機を制御する。
好ましくは、位置計測部で計測されたウインドロウに関する情報を外部装置に送信する通信部をさらに備える。
ある局面に従う作業機を有する作業車両の制御システムの制御方法は、整地作業により生じたウインドロウの位置を計測するステップと、計測されたウインドロウの位置に基づいて作業経路を設定するステップと、設定された作業経路に沿って作業車両を走行させるように制御するステップとを備える。
好ましくは、経路を設定するステップは、ウインドロウの位置が作業機の作業範囲内に位置する作業経路を設定する。
好ましくは、設定された作業経路上において、計測されたウインドロウの位置に基づいて作業機を制御するステップをさらに備える。
好ましくは、計測するステップは、ウインドロウの幅をさらに計測するステップを含む。作業機を制御するステップは、ウインドロウの幅に基づいて作業機を制御するステップを含む。
好ましくは、計測するステップは、ウインドロウの高さをさらに計測するステップを含む。作業機を制御するステップは、ウインドロウの高さに基づいて作業機を制御するステップを含む。
好ましくは、計測されたウインドロウに関する情報を外部装置に送信するステップをさらに備える。
ある局面に従う作業車両は、作業機と、整地作業により生じたウインドロウの位置を計測する位置計測部と、位置計測部で計測されたウインドロウの位置に基づいて作業経路を設定する作業経路設定部と、作業経路設定部により設定された作業経路に沿って走行させるように制御する走行制御部とを備える。
好ましくは、作業経路設定部は、ウインドロウの位置が作業機の作業範囲内に位置する作業経路に設定する。
好ましくは、作業経路設定部で設定された作業経路上において、位置計測部で計測されたウインドロウの位置に基づいて作業機を制御する作業機制御部をさらに備える。
好ましくは、位置計測部は、ウインドロウの幅をさらに計測し、作業機制御部は、ウインドロウの幅に基づいて作業機を制御する。
好ましくは、位置計測部は、ウインドロウの高さをさらに計測し、作業機制御部は、ウインドロウの高さに基づいて作業機を制御する。
好ましくは、位置計測部で計測されたウインドロウに関する情報を外部装置に送信する通信部をさらに備える。
本発明は、整地作業により生じるウインドロウを適切に整地することが可能である。
以下、実施形態について図に基づいて説明する。なお、以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
(実施形態1)
<A.全体システム構成>
図1は、実施形態1に基づく作業車両の制御システム1の概要を説明する図である。
<A.全体システム構成>
図1は、実施形態1に基づく作業車両の制御システム1の概要を説明する図である。
図1に示されるように作業車両の制御システム1は、基地局10と、作業車両100と、ダンプトラック200とを含む。また、整地エリアARが示されており、本例においては、整地エリアARの各地点P0、P1、P2、P3を起点として作業車両100が整地作業を実行する。整地エリアARの各地点P0,P1,P2,P3の位置は、基地局10からの情報に基づいて設定される。
たとえば、地点P0から整地作業を開始した作業車両は、作業経路S0およびS1に沿って整地作業を実行する。他の地点についても同様である。
本例においては、作業車両100の一例としてモータグレーダについて説明する。
図2は、実施形態1に基づく作業車両100の構成を概略的に示す斜視図である。
図2は、実施形態1に基づく作業車両100の構成を概略的に示す斜視図である。
図3は、実施形態1に基づく作業車両100の構成を概略的に示す側面図である。
図2および図3を参照して、実施形態1に基づく作業車両100は、走行輪である前輪11と、走行輪である後輪12と、車体フレーム2と、運転室3と、作業機4と、リッパー装置8とを主に備えている。また、作業車両100は、エンジン室6に配置されたエンジンなどの構成部品を備える。作業機4は、ブレード42を含む。
図2および図3を参照して、実施形態1に基づく作業車両100は、走行輪である前輪11と、走行輪である後輪12と、車体フレーム2と、運転室3と、作業機4と、リッパー装置8とを主に備えている。また、作業車両100は、エンジン室6に配置されたエンジンなどの構成部品を備える。作業機4は、ブレード42を含む。
作業車両100は、ブレード42で整地作業、除雪作業、軽切削、材料混合などの作業を行なうことができる。
片側1輪ずつの前輪11と片側1輪ずつの後輪12とからなる走行輪を示しているが、前輪および後輪の数および配置はこれに限られない。
なお、以下の図の説明において、作業車両100が直進走行する方向を、作業車両100の前後方向という。作業車両100の前後方向において、作業機4に対して前輪11が配置されている側を、前方向とする。作業車両100の前後方向において、作業機4に対して後輪12が配置されている側を、後方向とする。作業車両100の左右方向、または側方とは、平面視において前後方向と直交する方向である。前方向を見て左右方向の右側、左側が、それぞれ右方向、左方向である。作業車両100の上下方向とは、前後方向および左右方向によって定められる平面に直交する方向である。上下方向において地面のある側が下側、空のある側が上側である。
以下の図においては、前後方向を図中矢印X、左右方向を図中矢印Y、上下方向を図中矢印Zで示している。
車体フレーム2は、リアフレーム21と、フロントフレーム22とを含んでいる。リアフレーム21は、外装カバー25と、エンジン室6に配置されたエンジンなどの構成部品とを支持している。外装カバー25はエンジン室6を覆っている。
フロントフレーム22には、位置計測部102が取り付けられている。位置計測部102は、作業車両100の側方側の状態を計測可能に設けられている。これにより容易に作業車両100の側方側に形成されるウインドロウを計測することが可能である。
位置計測部102の取付位置は、上記の位置に限定されるものではなく、作業車両100の側方側あるいはブレード42の側方側に形成されるウインドロウを計測できる位置であれば、特に限定されない。たとえば、運転室3の上面に設けられていてもよい。
リアフレーム21には、上記のたとえば2つの後輪12の各々がエンジンからの駆動力によって回転駆動可能に取付けられている。フロントフレーム22は、リアフレーム21の前方に取り付けられている。フロントフレーム22の前端部には、上記のたとえば2つの前輪11が回転可能に取り付けられている。なお、本例においては、後輪駆動方式を一例として説明するが、前輪11および後輪12の各々がエンジンからの駆動力によって回転駆動する全輪駆動方式とすることも可能である。
運転室3は、オペレータが搭乗するための室内空間を有しており、リアフレーム21の前方に配置されている。なお、運転室3は、フロントフレーム22側に配置されていても良い。
運転室3の内部には、旋回操作のためのハンドル、シフトレバー、作業機4の操作レバー、ブレーキ、アクセルペダルなどの操作部が設けられている。
ハンドルを操作することにより前輪11の向きが変更される。
リッパー装置8は、地面の掘削作業等を行うために設けられた作業機であって、車体部の後端に取り付けられている。
リッパー装置8は、地面の掘削作業等を行うために設けられた作業機であって、車体部の後端に取り付けられている。
なお、本例においては、運転室3が設けられた構成について説明するが、運転室3が設けられない自律走行が可能な作業車両とすることも可能である。
なお、本例においては、旋回操作のためにハンドルを操作する場合について説明するが、特にこれに限られず、ハンドルの代わりにステアリングレバー(ジョイスティックスステアリングとも称する)を設けて、レバー操作により旋回操作を可能としても良い。あるいは、ハンドルとステアリングレバーとを両方を設ける構成とすることも可能である。
作業機4は、ドローバ40と、旋回サークル41と、ブレード42と、油圧モータ49と、各種のシリンダ44~48とを主に有している。
ドローバ40の前端部は、フロントフレーム22の先端部に揺動可能に取付けられている。ドローバ40の後端部は、一対のリフトシリンダ44,45によってフロントフレーム22に支持されている。この一対のリフトシリンダ44,45の伸縮によって、ドローバ40の後端部がフロントフレーム22に対して上下に昇降可能である。したがって、リフトシリンダ44,45がともに縮小することにより、フロントフレーム22および前輪11に対するブレード42の高さは上方向に調整される。また、リフトシリンダ44,45がともに伸長することにより、フロントフレーム22および前輪11に対するブレード42の高さは下方向に調整される。
また、ドローバ40は、リフトシリンダ44,45の異なった伸縮によって、車両進行方向に沿った軸を中心に上下に揺動可能である。
フロントフレーム22とドローバ40の側端部とには、ドローバシフトシリンダ46が取り付けられている。このドローバシフトシリンダ46の伸縮によって、ドローバ40は、フロントフレーム22に対して左右に移動可能である。
旋回サークル41は、ドローバ40の後端部に旋回(回転)可能に取付けられている。旋回サークル41は、油圧モータ49によって、ドローバ40に対し車両上方から見て時計方向または反時計方向に旋回駆動可能である。旋回サークル41の旋回駆動によって、ブレード42のブレード推進角が調整される。
ブレード推進角については後述する。
ブレード42は、前輪11と後輪12との間に配置されている。ブレード42は、車体フレーム2の前端(または、フロントフレーム22の前端)と車体フレーム2の後端との間に配置されている。ブレード42は、旋回サークル41に支持されている。ブレード42は、旋回サークル41およびドローバ40を介して、フロントフレーム22に支持されている。
ブレード42は、前輪11と後輪12との間に配置されている。ブレード42は、車体フレーム2の前端(または、フロントフレーム22の前端)と車体フレーム2の後端との間に配置されている。ブレード42は、旋回サークル41に支持されている。ブレード42は、旋回サークル41およびドローバ40を介して、フロントフレーム22に支持されている。
ブレード42は、旋回サークル41に対して左右方向に移動可能に支持されている。具体的には、ブレードシフトシリンダ47が、旋回サークル41およびブレード42に取り付けられており、ブレード42の長手方向に沿って配置されている。このブレードシフトシリンダ47によって、ブレード42は旋回サークル41に対して左右方向に移動可能である。ブレード42は、フロントフレーム22の長手方向に交差する方向に移動可能である。
ブレード42は、旋回サークル41に対して、ブレード42の長手方向に延びる軸を中心に揺動可能に支持されている。具体的には、チルトシリンダ48が、旋回サークル41およびブレード42に取り付けられている。このチルトシリンダ48を伸縮させることによって、ブレード42は旋回サークル41に対してブレード42の長手方向に延びる軸を中心に揺動して、車両進行方向に対するブレード42の傾斜角度を変更することができる。
以上のように、ブレード42は、ドローバ40と旋回サークル41とを介して、車両に対する上下の昇降、車両進行方向に沿った軸を中心とする揺動、前後方向に対する傾斜角度の変更、左右方向の移動、および、ブレード42の長手方向に延びる軸を中心とする揺動を行なうことが可能に構成されている。
<B:整地作業>
図4は、実施形態1に基づく作業車両100の整地作業における掘削作業を側方視した図である。
図4は、実施形態1に基づく作業車両100の整地作業における掘削作業を側方視した図である。
図5は、実施形態1に基づく作業車両100の整地作業における掘削作業を上面視した図である。
図4および図5に示されるように、作業車両100は、整地作業としてブレード42により整地エリアARの路面の凹凸状態を削り取る掘削作業を実行する。当該掘削作業によりブレード42の側方側にウインドロウWRが生じる。
また、図4に示されるように作業車両100のフロントフレーム22の上面側には位置計測部102が取り付けられている。位置計測部102は、ブレード42の側方側に生じるウインドロウWRを計測する。位置計測部102は、一例としてミリ波センサであり、放射部で作業車両100のブレード42の側方側の路面に送信波を照射する。受光部で路面からの反射波を受光する。路面に凹凸や障害物が有る場合、突起物であれば反射波の戻りが早くなり、窪み穴であれば反射波の戻りが遅くなる。平地を走行している場合の反射波の戻り時間との差を検出することにより路面状態を検出することが可能である。本例においては、ウインドロウWRを検出することが可能である。
なお、ミリ波センサに限られずレーザスキャナでレーザビームを照射して反射されたレーザビームを受信するレーザスキャナを用いることも可能である。あるいは、カメラ等の撮像装置を用いてウインドロウWRを検出することも可能である。
図6は、実施形態1に基づく作業車両100の整地作業における均し作業を側方視した図である。
図7は、実施形態1に基づく作業車両100の整地作業における均し作業を上面視した図である。
図6および図7に示されるように、作業車両100は、整地作業として掘削作業により生じたウインドロウWRをブレード42により平らにして路面を平坦化する均し作業を実行する。
図8は、実施形態1に基づく整地作業の断面形状を説明する図である。
図8(A)に示されるように、ダンプトラックの車輪の轍等に基づいて路面に凹凸が生じる。路面の凹凸状態を放置するとダンプトラックに対して振動や走行抵抗等の影響を与えることになり、必要に応じて路面を補修する整地作業が求められる。
図8(A)に示されるように、ダンプトラックの車輪の轍等に基づいて路面に凹凸が生じる。路面の凹凸状態を放置するとダンプトラックに対して振動や走行抵抗等の影響を与えることになり、必要に応じて路面を補修する整地作業が求められる。
図8(B)に示されるように、作業車両100は、整地作業として路面の凹凸状態を削り取る掘削作業を実行する。その際、削り取った土砂が作業車両100の側方側にウインドロウWRとして形成される。また、掘削作業により整地面から少し掘り込んだ状態となる。
図8(C)に示されるように、作業車両100は、整地作業としてウインドロウWRを平らにして平坦化する均し作業を実行する。その際、ウインドロウWRの土砂は掘削作業により掘り込んだ状態の領域を埋めるようにして平坦化する。これにより整地面が形成される。当該処理を繰り返すことにより整地エリアARの整地作業が実行される。
<C:動作説明>
図9は、実施形態1に基づく基地局10および作業車両100の機能ブロックを説明する図である。
図9は、実施形態1に基づく基地局10および作業車両100の機能ブロックを説明する図である。
図9に示されるように、基地局10は、CPU(Central Processing Unit)12と、記憶部14と、通信部16とを含む。記憶部14は、作業車両の制御システム1に必要な各種のプログラムを格納する。CPU12は、記憶部14に格納されているプログラムに基づいて各種処理を実行する。一例として、CPU12は、通信部16を介して作業車両100が整地作業を実行するための整地エリアARに関する情報を送信する。
当該情報には、整地エリアARの範囲に関する情報とともに、整地を開始する起点となる地点Pの情報も含まれているものとする。
作業車両100は、位置計測部102と、CPU104と、記憶部106と、通信部108と、GNSS(Global Navigation Satellite System)レシーバ109とを含む。GNSSレシーバ109は、例えばGPS(Global Positioning System)用のアンテナである。
記憶部106は、作業車両100における各種の動作を実行するためのプログラムを格納するとともに必要なデータを記憶する領域として用いられる。
CPU104は、記憶部106に格納されているプログラムに基づいて各種処理を実行する。
位置計測部102は、作業車両100の周囲の路面状況に関する情報を計測する。具体的には、作業車両100の側方の路面状況に関する情報を計測する。本例においては、位置計測部102は、整地作業により生じたウインドロウWRの位置を計測する。
GNSSレシーバ109は、作業車両100の位置を示す車体位置情報を受信して、CPU104に出力する。
通信部108は、基地局10と通信可能に設けられており、基地局10から送信された情報を受信して、CPU104に出力する。また、CPU104からの指示に従って通信部108を介して外部装置にデータを送信することも可能である。
本例において、CPU104は、掘削処理部111と、均し処理部112と、走行制御部113と、作業機制御部114と、位置制御部115とを含む。
位置制御部115は、通信部108を介して、基地局10から送信された整地エリアARおよび各地点Pの情報を取得する。また、位置制御部115は、GNSSレシーバ109から作業車両100の位置情報を取得する。位置制御部115は、整地エリアARの情報に基づいて整地作業の範囲を設定する。また、位置制御部115は、GNSSレシーバ109による位置情報に基づいて作業車両100が地点Pの位置に移動するように走行制御部113に指示する。走行制御部113は、位置制御部115からの指示に従って前輪11および/または後輪12の少なくともいずれか一方を駆動して作業車両100が地点Pに到達するように移動させる走行制御を実行する。
掘削処理部111は、地点P0を起点として整地エリアARにおける整地作業に関する処理を実行する。具体的には、掘削処理部111は、地点Pを起点として整地エリアARにおける掘削作業経路S0を設定する。掘削処理部111は、設定した掘削作業経路S0を移動するように走行制御部113に指示する。
走行制御部113は、掘削処理部111が設定した掘削作業経路S0に沿って作業車両100を走行させる。
掘削処理部111は、作業機制御部114に指示し、作業機制御部114は、掘削処理部111からの指示に従って掘削作業経路S0におけるブレードの傾斜角度、ブレードの左右方向の移動、ブレード推進角等の少なくともいずれかを調整する。
作業車両100が掘削作業経路S0を走行することにより上記で説明した掘削作業が実行される。
掘削処理部111は、GNSSレシーバ109からの位置情報に基づいて掘削作業経路S0の走行が完了したと判断した場合には、均し処理部112に均し作業を実行するように指示する。
均し処理部112は、地点Pを終点とした整地エリアARにおける均し作業経路S1を設定する。均し処理部112は、設定した均し作業経路S1を移動するように走行制御部113に指示する。
走行制御部113は、均し処理部112が設定した均し作業経路S1に沿って作業車両100を走行させる。
均し処理部112は、作業機制御部114に指示し、作業機制御部114は、均し処理部112からの指示に従って均し作業経路S1におけるブレードの傾斜角度、ブレードの左右方向の移動、ブレード推進角等の少なくともいずれかを調整する。
作業車両100が均し作業経路S1を走行することにより上記で説明した均し作業が実行される。
均し処理部112は、GNSSレシーバ109からの位置情報に基づいて均し作業経路S1の走行が完了したと判断した場合には、掘削処理部111に掘削作業を実行するように指示する。掘削処理部111は、次の地点P1からの掘削作業を実行し、上記処理を繰り返す。これにより整地エリアARの整地作業が順次実行される。
<D:フロー>
図10は、実施形態1に基づく作業車両100の整地処理を実行するフローを説明する図である。
図10は、実施形態1に基づく作業車両100の整地処理を実行するフローを説明する図である。
図10に示されるように、作業車両100は、整地エリアARの情報を取得する(ステップS2)。具体的には、位置制御部115は、通信部108を介して整地エリアARの情報を取得する。また、位置制御部115は、整地エリアARの情報とともに整地作業の起点となる地点Pの情報を取得する。
作業車両100は、掘削地点を設定する(ステップS3)。位置制御部115は、取得した情報に基づいて掘削地点を設定する。一例として、位置制御部115は、地点P0を掘削地点に設定する。
次に、作業車両100は、掘削地点に移動する(ステップS4)。位置制御部115は、地点P0に移動するように走行制御部113に指示する。走行制御部113は、位置制御部115で設定された地点P0と、GNSSレシーバ109で取得される情報とに基づいて地点P0に作業車両100が移動するように前輪11および/または後輪12の少なくともいずれか一方を駆動して移動させる自動走行制御を実行する。
次に、作業車両100は、掘削作業経路を設定する(ステップS6)。掘削処理部111は、地点P0を起点として整地エリアARにおける掘削作業経路を設定する。一例として掘削作業経路S0を設定する。
次に、作業車両100は、ブレードを設定する(ステップS7)。掘削処理部111は、作業機制御部114にブレードの設定を指示する。作業機制御部114は、掘削処理部111の指示に従って掘削作業経路S0におけるブレードの傾斜角度、ブレードの左右方向の移動、ブレード推進角等の少なくともいずれかを調整する。一例として、作業機制御部114は、掘削作業により形成されるウインドロウWRが作業車両100の左側方側となるようにブレード推進角を調整する。作業車両100の進行方向に対してブレード42の右端部が前方、左端部が後方となるようにブレード推進角が調整される。
次に、作業車両100は、自動走行を開始する(ステップS8)。掘削処理部111は、走行制御部113に対して掘削作業経路S0に沿って自動走行を実行するように指示する。走行制御部113は、掘削作業経路S0に沿って作業車両100を走行させる。
次に、作業車両100は、ウインドロウ情報を取得する(ステップS10)。掘削処理部111は、位置計測部102に指示し、位置計測部102は、掘削作業経路S0に沿って自動走行する作業車両100の左側方側に形成されるウインドロウを計測する。位置計測部102は、計測結果であるウインドロウ情報をCPU104に出力する。
次に、作業車両100は、掘削作業経路の作業が終了したかどうかを判断する(ステップS11)。走行制御部113は、掘削作業経路S0に沿って自動走行し、掘削作業経路S0の端部に到達した場合に掘削処理部111に作業が終了したことを通知する。掘削処理部111は、走行制御部113からの通知に従って掘削作業経路の作業が終了したことを判断することが可能である。
ステップS11において、作業車両100は、掘削作業経路の作業が終了していないと判断した場合(ステップS11においてNO)には、ステップS8に戻り、上記処理を繰り返す。
一方、ステップS11において、作業車両100は、掘削作業経路の作業が終了したと判断した場合(ステップS11においてYES)には、均し作業経路を設定する(ステップS12)。掘削処理部111は、均し処理部112に均し処理を実行するように指示する。均し処理部112は、地点P0を終点として整地エリアARにおける均し作業経路を設定する。本例においては、位置計測部102で計測したウインドロウを含む経路を均し作業経路に設定する。均し処理部112は、均し作業経路を位置計測部102で計測されたウインドロウが作業車両100のブレード42の作業範囲内に位置する経路に設定する。
次に、作業車両100は、ブレードを設定する(ステップS13)。均し処理部112は、作業機制御部114にブレードの設定を指示する。作業機制御部114は、均し処理部112の指示に従って均し作業経路S1におけるブレードの傾斜角度、ブレードの左右方向の移動、ブレード推進角等の少なくともいずれかを調整する。一例として、作業機制御部114は、ウインドロウWRを平らにして平坦化する均し作業により作業車両100の左側方側の掘り込んだ状態の領域が埋め戻されるようにブレード推進角を調整する。作業車両100の進行方向に対してブレード42の右端部が前方、左端部が後方となるようにブレード推進角が調整される。
次に、作業車両100は、自動走行を開始する(ステップS14)。均し処理部112は、走行制御部113に対して均し作業経路S1に沿って自動走行を実行するように指示する。走行制御部113は、均し作業経路S1に沿って作業車両100を走行させる。
次に、作業車両100は、均し作業経路の作業が終了したかどうかを判断する(ステップS15)。走行制御部113は、均し作業経路S1に沿って自動走行し、均し作業経路S1の端部に到達した場合に均し処理部112に作業が終了したことを通知する。均し処理部112は、走行制御部113からの通知に従って均し作業経路の作業が終了したことを判断することが可能である。
次に、作業車両100は、処理が終了したかどうかを判断する(ステップS16)。作業車両100は、整地エリアARの整地作業が完了したかどうかを判断する。
ステップS16において、作業車両100は、処理が終了したと判断した場合(ステップS16においてYES)は、整地処理を終了する(エンド)。
一方、ステップS16において、作業車両100は、処理が終了しないと判断した場合(ステップS16においてNO)は、次の掘削地点を設定する(ステップS17)。均し処理部112は、位置制御部115に指示する。位置制御部115は、取得した情報に基づいて掘削地点を設定する。一例として、位置制御部115は、次の地点P1を掘削地点に設定する。
そして、ステップS4に戻り、上記処理を繰り返す。位置制御部115は、次の掘削地点として地点P1に移動するように走行制御部113に指示する。走行制御部113は、位置制御部115で設定された地点P1と、GNSSレシーバ109で取得される情報とに基づいて地点P1に作業車両100が移動するように前輪11および/または後輪12の少なくともいずれか一方を駆動して移動させる自動走行制御を実行する。以降の処理につては同様であるのでその詳細な説明については繰り返さない。
当該方式により、整地作業により生じたウインドロウを計測し、モータグレーダのブレードによる均し作業経路について位置計測部102で計測されたウインドロウを含む経路に設定することが可能である。そして、均し作業経路に沿って自動走行することにより、整地作業により生じるウインドロウを適切に整地(均し処理)することが可能である。
なお、本例においては、作業車両100に取り付けられた位置計測部102により整地作業により生じたウインドロウを計測する方式について説明したが、特に位置計測部102は、作業車両100に取り付けられている必要はなく、他の装置によりウインドロウを計測するようにしても良い。具体的には、他の外部計測車、たとえばダンプトラック等に位置計測部102を取り付けて、ウインドロウを計測するようにしても良い。また、ドローン等の無人航空機に位置計測部102を取り付けてウインドロウを計測するようにしても良い。
また、本例においては、作業車両100のCPU104の掘削処理部111、均し処理部112において掘削作業経路および均し作業経路を設定する方式について説明したが、特にこれに限られず、作業車両100と通信可能に設けられた基地局10のCPU12が当該処理を実行し、基地局10からの指示に従って作業車両100が掘削作業および均し作業を実行するようにしても良い。また、作業車両100と通信可能に設けられた他の外部サーバが、当該処理を実行するようにしても良い。
(変形例)
実施形態1の変形例においては、ウインドロウの状態に応じてブレードを制御する方式について説明する。
実施形態1の変形例においては、ウインドロウの状態に応じてブレードを制御する方式について説明する。
図11は、実施形態1の変形例に基づくブレード推進角を説明するための図である。
図11(A),(B)に示されるように、ブレード42は、旋回サークル41の旋回駆動により回転軸910を中心に回転する。
図11(A),(B)に示されるように、ブレード42は、旋回サークル41の旋回駆動により回転軸910を中心に回転する。
なお、ブレード42の右端が左端よりも前方となるようにブレード42の角度が制御される場合について説明する。
前輪11は、車軸に接続されている。車軸は、フロントフレーム22の中心軸920と直交している。
ブレード推進角θは、車体進行方向とブレード42のなす角度である。正確には、ブレード推進角θは、作業車両100が直進しているときにおける、車体進行方向(前方向)とブレード42のなす角度である。ブレード推進角θは、フロントフレーム22の中心軸920とブレード42とのなす角度と言える。ブレード推進角θは、標準的には、45度~60度の間に設定される。なお、ブレード推進角θの範囲は、0度以上90度以下とする。
本例においては、ウインドロウWRの量に基づく負荷に従ってブレード推進角θを調整する。具体的には、ブレード42にかかる負荷が大きい場合にはブレード推進角θを小さく設定する。一方、ブレード42にかかる負荷が小さい場合にはブレード推進角θを大きくする。
図12は、実施形態1の変形例に基づく作業車両100の整地処理を実行するフローを説明する図である。
図12のフロー図は、図10のフロー図と比較して、ステップS13のブレード設定をステップS13Aに置換した点が異なる。その他のフローについては同様であるのでその詳細な説明については繰り返さない。
図13は、実施形態1の変形例に基づくブレード設定のサブルーチンについて説明するフロー図である。
図13に示されるように、ウインドロウ量が多いか否かを判断する(ステップS22)。ウインドロウ量が多いか否かは、位置計測部102で計測したウインドロウWRの情報に基づいて判断する。具体的には、作業機制御部114は、位置計測部102で計測したウインドロウWRの幅を計測することによりウインドロウ量が多いか否かを判断することが可能である。たとえば、ウインドロウWRの幅が広い場合にはウインドロウ量が多いと判断し、幅が狭いと判断した場合にはウインドロウ量が少ないと判断することが可能である。
また、ウインドロウWRの高さを考慮してウインドロウ量が多いか否かを判断するようにしても良い。たとえば、ウインドロウWRの高さに基づいて高さが高い場合にはウインドロウ量が多いと判断し、高さが低いと判断した場合にはウインドロウ量が少ないと判断することが可能である。あるいは、ウインドロウWRの高さおよび幅の両方に基づいてウインドロウ量が多いか否かを判断するようにしても良い。
ステップS22において、ウインドロウ量が多いと判断した場合には、ブレード推進角を小さくする(ステップS24)。そして、処理を終了する(リターン)。
一方、ステップS22において、ウインドロウ量が多くないと判断した場合には、ブレード推進角を大きくする(ステップS26)。そして、処理を終了する(リターン)。
当該方式によりブレード推進角をウインドロウ量に応じて調整する。ウインドロウ量が多い場合にはブレード推進角を小さくすることによりブレード42にかかる負荷を軽減することが可能である。ウインドロウ量が少ない場合にはブレード推進角を大きくすることにより整地範囲を拡げることが可能である。負荷に応じた効率的な整地作業を実行することが可能である。
なお、本例においては、計測したウインドロウ量に基づいてブレード推進角を調整する場合について説明したが、ブレード推進角に限られずブレードの傾斜角度あるいはブレードの左右方向の移動等のブレードの調整制御に用いることも当然に可能である。
(実施形態2)
上記の実施形態1においては、作業車両100がウインドロウを計測して、当該計測したウインドロウに基づいて作業経路を設定して、整地作業を実行する方式について説明した。
上記の実施形態1においては、作業車両100がウインドロウを計測して、当該計測したウインドロウに基づいて作業経路を設定して、整地作業を実行する方式について説明した。
本実施形態2においては、ウインドロウに関する情報を他の装置が利用する場合について説明する。
図14は、実施形態2に基づく作業車両100の整地処理を実行するフロー図である。
図14のフロー図は、図10のフロー図と比較して、ステップS10Aをさらに追加した点が異なる。その他のフローについては同様であるのでその詳細な説明については繰り返さない。
図14のフロー図は、図10のフロー図と比較して、ステップS10Aをさらに追加した点が異なる。その他のフローについては同様であるのでその詳細な説明については繰り返さない。
ステップS10Aにおいて、作業車両100は、取得したウインドロウに関する情報(ウインドロウ情報)を外部装置に送信する。そして、ステップS11に進む。その他の構成については図10で説明したのと同様であるのでその詳細な説明については繰り返さない。
ステップS10Aにおいて、掘削処理部111は、位置計測部102で計測されたウインドロウ情報を通信部108を介して外部装置に送信する。本例においては、外部装置の一例として図1に示される周囲を走行しているダンプトラック200に送信する。なお、ウインドロウ情報にはウインドロウが生じた位置に関する情報が含まれているものとする。
これにより、ダンプトラック200は、作業車両100から送信されたウインドロウ情報を取得する。ダンプトラック200は、ウインドロウ情報の取得によりどの位置にウインドロウが生じているかを把握することが可能である。したがって、ダンプトラック200は、ウインドロウが生じている領域を回避して、当該領域を走行領域としないようにすることが可能である。たとえば、画面にウインドロウに関する情報を表示することによりダンプトラック200の運転者に当該領域の走行をしないように注意を促すことが可能である。
あるいは、ダンプトラック200が無人で走行する無人ダンプトラックの場合には、当該ウインドロウ情報を取得して当該領域を走行しないように、走行経路を再設定することにより、整地作業を効率的に実行することが可能である。
なお、ダンプトラック200に限られず基地局10に送信し、基地局10からダンプトラック200に送信するようにしてもよい。
なお、本例においては、ウインドロウ情報を取得して、取得したウインドロウ情報を外部装置に送信する構成について説明したが、所定期間毎にウインドロウ情報を外部装置に送信するようにしても良い。これにより通信負荷を軽減することが可能である。
また、本例においては、ウインドロウ情報を外部装置としてダンプトラックに送信する場合について主に説明したが、外部装置として他の作業車両に送信するようにしても良い。
図15は、実施形態2に基づく作業車両の制御システム1#の概要を説明する図である。
図15に示されるように作業車両の制御システム1#は、基地局10と、作業車両100と、作業車両100Pとを含む。また、整地エリアARが示されており、本例においては、整地エリアARの各地点P0、P1、P2、P3を起点として作業車両100が整地作業を実行する。整地エリアARの各地点P0,P1,P2,P3の位置は、基地局10からの情報に基づいて設定される。
本例においては、複数台の作業車両により整地作業を実行する。
たとえば、地点P0から整地作業を開始したある作業車両100は、作業経路S0に沿って整地作業を実行する。
たとえば、地点P0から整地作業を開始したある作業車両100は、作業経路S0に沿って整地作業を実行する。
そして、作業車両100は、整地作業により生じたウインドロウ情報を作業車両100Pに送信する。作業車両100Pは、作業車両100の整地作業により生じたウインドロウ情報に基づいて作業経路S1を設定し、設定された作業経路S1に沿って整地作業を実行する。
当該方式により整地エリアARの整地作業を早期に実行することが可能となる。他の地点についても同様である。
(他の実施形態)
上記の実施形態1においては、作業車両100が整地作業における掘削作業と均し作業とを交互に繰り返す方式について説明した。一方で、交互に繰り返すのではなく、整地エリアARの全領域に対して掘削作業を実行し、その後、整地エリアARに生じたウインドロウに対して均し作業を実行するようにしても良い。
上記の実施形態1においては、作業車両100が整地作業における掘削作業と均し作業とを交互に繰り返す方式について説明した。一方で、交互に繰り返すのではなく、整地エリアARの全領域に対して掘削作業を実行し、その後、整地エリアARに生じたウインドロウに対して均し作業を実行するようにしても良い。
図16は、他の実施形態に基づく作業車両の制御システム1Aの概要を説明する図である。
図16に示されるように作業車両の制御システム1Aは、基地局10と、作業車両100とを含む。また、整地エリアARが示されており、本例においては、整地エリアARの各地点P0、P1、P2、P3を基準として作業車両100が整地作業を実行する。整地エリアARの各地点P0,P1,P2,P3の位置は、基地局10からの情報に基づいて設定される。
なお、本例においては、地点P0~P3までの位置が示されているが、さらに複数の地点が設けられているものとする。
本例においては、1台の作業車両により整地作業を実行する。
掘削処理部111は、地点P0を起点として整地エリアARにおける整地作業に関する処理を実行する。具体的には、掘削処理部111は、地点Pを起点として整地エリアARにおける掘削作業経路S0A,S0B,・・・を設定する。掘削処理部111は、設定した掘削作業経路S0A,S0Bを移動するように走行制御部113に指示する。
掘削処理部111は、地点P0を起点として整地エリアARにおける整地作業に関する処理を実行する。具体的には、掘削処理部111は、地点Pを起点として整地エリアARにおける掘削作業経路S0A,S0B,・・・を設定する。掘削処理部111は、設定した掘削作業経路S0A,S0Bを移動するように走行制御部113に指示する。
たとえば、地点P0から整地作業(掘削作業)を開始したある作業車両100は、掘削作業経路S0Aに沿って地点P1まで整地作業(掘削作業)を実行する。また、地点P2から整地作業(掘削作業)を開始した作業車両100は、掘削作業経路S0Bに沿って地点P3まで整地作業(掘削作業)を実行する。当該整地作業(掘削作業)を繰り返し、整地エリアARの全体について整地作業(掘削作業)を繰り返す。
これにより、整地エリアAR全体において、整地作業(掘削作業)によりウインドロウが形成される。作業車両100は、整地作業(掘削作業)により生じたウインドロウ情報を取得する。
掘削処理部111は、GNSSレシーバ109からの位置情報に基づいて整地エリアAR全体における掘削作業経路S0A,S0B,・・・の走行が完了したと判断した場合には、均し処理部112に均し作業を実行するように指示する。
均し処理部112は、取得したウインドロウ情報に基づいて、地点Pを終点とした整地エリアARにおける均し作業経路S1A,S1B,・・・を設定する。均し処理部112は、設定した均し作業経路S1A,S1Bを移動するように走行制御部113に指示する。
走行制御部113は、均し処理部112が設定した均し作業経路S1A,S1B,・・・に沿って走行する。
均し処理部112は、作業機制御部114に指示し、作業機制御部114は、均し処理部112からの指示に従って均し作業経路S1におけるブレードの傾斜角度、ブレードの左右方向の移動、ブレード推進角等の少なくともいずれかを調整する。
作業車両100が均し作業経路S1A,S1Bを走行することにより上記で説明した均し作業が実行される。
これにより、整地エリアAR全体において、整地作業(均し作業)が順次実行される。
整地エリアAR全体に対して、整地作業(掘削作業)を実行し、当該掘削作業により生じたウインドロウを計測し、整地エリアAR全体に生じたウインドロウを含む経路を均し作業経路に設定する。そして、均し作業経路に沿って自動走行することにより、整地作業により生じるウインドロウを適切に整地(均し処理)することが可能である。
整地エリアAR全体に対して、整地作業(掘削作業)を実行し、当該掘削作業により生じたウインドロウを計測し、整地エリアAR全体に生じたウインドロウを含む経路を均し作業経路に設定する。そして、均し作業経路に沿って自動走行することにより、整地作業により生じるウインドロウを適切に整地(均し処理)することが可能である。
<作用効果>
次に、本実施形態の作業効果について説明する。
次に、本実施形態の作業効果について説明する。
本実施形態の作業機4を有する作業車両100の制御システムには、図9に示すように、位置計測部102と、均し処理部112と、走行制御部113とが設けられる。位置計測部102は、整地作業において掘削作業により生じたウインドロウWRを計測する。均し処理部112は、作業機4のブレード42による均し作業経路について位置計測部102で計測されたウインドロウWRを含む経路に設定する。走行制御部113は、均し処理部112により設定された均し作業経路に沿って作業車両100を走行させるように制御する。
均し作業経路について、位置計測部102で計測されたウインドロウWRを含む経路に設定するため整地作業において掘削作業により生じたウインドロウを適切に整地することが可能である。
図2に示すように、作業車両100には、位置計測部102が設けられる。
作業車両100に位置計測部102が設けられることにより掘削作業により生じたウインドロウを容易に計測することが可能である。
作業車両100に位置計測部102が設けられることにより掘削作業により生じたウインドロウを容易に計測することが可能である。
均し処理部112は、作業機4のブレード42による均し作業経路について位置計測部102で計測されたウインドロウが作業機4のブレード42の作業範囲内に位置する経路に設定する。
ブレード42の作業範囲内にウインドロウが含まれることによりウインドロウを確実に平坦化することが可能である。
本実施形態の作業車両100の制御システムには、図9に示すように、作業機制御部114が設けられる。作業機制御部114は、均し処理部112で設定された均し作業経路について位置計測部102で計測されたウインドロウWRに基づいて作業機4のブレード42を制御する。
作業機制御部114は、均し処理部112で設定された均し作業経路について位置計測部102で計測されたウインドロウWRに基づいて作業車両100のブレード42を制御するためウインドロウWRの状態に応じた整地作業を実行することが可能である。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの幅に基づいて作業機4のブレード42を制御する。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの幅に基づいて幅が広い場合にはウインドロウ量が多いと判断し、幅が狭いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの高さに基づいて作業機4のブレード42を制御する。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの高さに基づいて高さが高い場合にはウインドロウ量が多いと判断し、高さが低いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
本実施形態の作業車両100の制御システムには、図9に示すように通信部108が設けられる。通信部108は、位置計測部102で計測したウインドロウに関する情報を外部装置に送信する。
通信部108は、ウインドロウに関する情報を外部装置に送信するため外部装置は当該情報を受信する。外部装置は、受信したウインドロウに関する情報に基づく制御を実行することにより効率的な整地作業を実行することが可能である。
本実施形態の作業機4を有する作業車両100を制御するためのCPU12は、作業機4のブレード42による掘削作業により生じたウインドロウWRを計測するステップと、作業機4による均し作業経路について、計測されたウインドロウWRを含む経路に設定するステップと、設定された均し作業経路に沿って作業車両100を走行させるように制御するステップとを実行する。
均し作業経路について、計測されたウインドロウWRを含む経路に設定するため整地作業において掘削作業により生じたウインドロウを適切に整地することが可能である。
CPU12は、経路を設定するステップとして、作業機4のブレード42による均し作業経路について計測されたウインドロウWRが作業機4のブレード42の作業範囲内に位置する経路を設定する。
ブレード42の作業範囲内にウインドロウが含まれることによりウインドロウを確実に平坦化することが可能である。
CPU12は、作業機4のブレード42による均し作業経路について計測されたウインドロウに基づいて作業機4のブレード42を制御するステップを実行する。
均し作業経路について計測されたウインドロウWRに基づいて作業機4のブレード42を制御するためウインドロウWRの状態に応じた整地作業を実行することが可能である。
CPU12は、作業機4のブレード42を制御するステップとして、計測されたウインドロウの幅に基づいて作業機4のブレード42を制御するステップを実行する。
CPU12は、計測されたウインドロウWRの幅に基づいて幅が広い場合にはウインドロウ量が多いと判断し、幅が狭いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
CPU12は、作業機4のブレード42を制御するステップとして、計測されたウインドロウの高さに基づいて作業機4のブレード42を制御するステップを実行する。
CPU12は、計測されたウインドロウWRの高さに基づいて高さが高い場合にはウインドロウ量が多いと判断し、高さが低いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
CPU12は、計測されたウインドロウに関する情報を外部装置に送信するステップを実行する。
ウインドロウに関する情報を外部装置に送信するため外部装置は当該情報を受信する。外部装置は、受信したウインドロウに関する情報に基づく制御を実行することにより効率的な整地作業を実行することが可能である。
本実施形態の作業車両100には、作業機4と、整地作業により生じたウインドロウを計測する位置計測部102と、作業機4による作業経路について位置計測部102で計測されたウインドロウを含む経路に設定する均し処理部112と、均し処理部112により設定された作業経路に沿って走行させるように制御する走行制御部113とを備える。
均し作業経路について、位置計測部102で計測されたウインドロウWRを含む経路に設定するため整地作業において掘削作業により生じたウインドロウを適切に整地することが可能である。
図2に示すように、作業車両100には、位置計測部102が設けられる。
作業車両100に位置計測部102が設けられることにより掘削作業により生じたウインドロウを容易に計測することが可能である。
作業車両100に位置計測部102が設けられることにより掘削作業により生じたウインドロウを容易に計測することが可能である。
均し処理部112は、作業機4のブレード42による均し作業経路について位置計測部102で計測されたウインドロウが作業機4のブレード42の作業範囲内に位置する経路に設定する。
ブレード42の作業範囲内にウインドロウが含まれることによりウインドロウを確実に平坦化することが可能である。
本実施形態の作業車両100には、図9に示すように、作業機制御部114が設けられる。作業機制御部114は、均し処理部112で設定された均し作業経路について位置計測部102で計測されたウインドロウWRに基づいて作業機4のブレード42を制御する。
作業機制御部114は、均し処理部112で設定された均し作業経路について位置計測部102で計測されたウインドロウWRに基づいて作業車両100のブレード42を制御するためウインドロウWRの状態に応じた整地作業を実行することが可能である。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの幅に基づいて作業機4のブレード42を制御する。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの幅に基づいて幅が広い場合にはウインドロウ量が多いと判断し、幅が狭いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの高さに基づいて作業機4のブレード42を制御する。
作業機制御部114は、位置計測部102で計測されたウインドロウWRの高さに基づいて高さが高い場合にはウインドロウ量が多いと判断し、高さが低いと判断した場合にはウインドロウ量が少ないと判断することが可能であり、ブレード42にかかる負荷に応じてブレード42を制御することにより効率的な整地作業を実行することが可能である。
本実施形態の作業車両100には、図9に示すように通信部108が設けられる。通信部108は、位置計測部102で計測したウインドロウに関する情報を外部装置に送信する。通信部108は、ウインドロウに関する情報を外部装置に送信するため外部装置は当該情報を受信する。外部装置は、受信したウインドロウに関する情報に基づく制御を実行することにより効率的な整地作業を実行することが可能である。
今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1# 作業車両の制御システム、2 車体フレーム、4 作業機、6 エンジン室、10 基地局、11 前輪、12 後輪、14,106 記憶部、16,108 通信部、21 リアフレーム、22 フロントフレーム、25 外装カバー、40 ドローバ、41 旋回サークル、42 ブレード、44,45 リフトシリンダ、46 ドローバシフトシリンダ、47 ブレードシフトシリンダ、48 チルトシリンダ、49 油圧モータ、100,100P 作業車両、102 位置計測部、111 掘削処理部、112 均し処理部、113 走行制御部、114 作業機制御部、115 位置制御部、200 ダンプトラック。
Claims (19)
- 整地作業により生じたウインドロウの位置を計測する位置計測部と、
前記位置計測部で計測されたウインドロウの位置に基づいて作業経路を設定する作業経路設定部と、
前記作業経路設定部により設定された作業経路に沿って作業車両を走行させるように制御する走行制御部とを備える、作業車両の制御システム。 - 前記位置計測部は、前記作業車両に設けられる、請求項1記載の作業車両の制御システム。
- 前記作業経路設定部は、前記ウインドロウの位置が前記作業機の作業範囲内に位置する作業経路に設定する、請求項1記載の作業車両の制御システム。
- 前記作業経路設定部で設定された作業経路上において、前記位置計測部で計測されたウインドロウの位置に基づいて前記作業機を制御する作業機制御部をさらに備える、請求項1記載の作業車両の制御システム。
- 前記位置計測部は、前記ウインドロウの幅をさらに計測し、
前記作業機制御部は、前記ウインドロウの幅に基づいて前記作業機を制御する、請求項4記載の作業車両の制御システム。 - 前記位置計測部は、前記ウインドロウの高さをさらに計測し、
前記作業機制御部は、前記ウインドロウの高さに基づいて前記作業機を制御する、請求項4または5記載の作業車両の制御システム。 - 前記位置計測部で計測されたウインドロウに関する情報を外部装置に送信する通信部をさらに備える、請求項1または2記載の作業車両の制御システム。
- 作業機を有する作業車両の制御システムの制御方法であって、
整地作業により生じたウインドロウの位置を計測するステップと、
前記計測されたウインドロウの位置に基づいて作業経路を設定するステップと、
前記設定された作業経路に沿って前記作業車両を走行させるように制御するステップとを備える、作業車両の制御システムの制御方法。 - 前記経路を設定するステップは、前記ウインドロウの位置が前記作業機の作業範囲内に位置する作業経路を設定する、請求項8記載の作業車両の制御システムの制御方法。
- 前記設定された作業経路上において、前記計測されたウインドロウの位置に基づいて前記作業機を制御するステップをさらに備える、請求項8記載の作業車両の制御システムの制御方法。
- 前記計測するステップは、前記ウインドロウの幅をさらに計測するステップを含み、
前記作業機を制御するステップは、前記ウインドロウの幅に基づいて前記作業機を制御するステップを含む、請求項10記載の作業車両の制御システムの制御方法。 - 前記計測するステップは、前記ウインドロウの高さをさらに計測するステップを含み、
前記作業機を制御するステップは、前記ウインドロウの高さに基づいて前記作業機を制御するステップを含む、請求項10または11記載の作業車両の制御システムの制御方法。 - 前記計測されたウインドロウに関する情報を外部装置に送信するステップをさらに備える、請求項8記載の作業車両の制御システムの制御方法。
- 作業機と、
整地作業により生じたウインドロウの位置を計測する位置計測部と、
前記位置計測部で計測されたウインドロウの位置に基づいて作業経路を設定する作業経路設定部と、
前記作業経路設定部により設定された作業経路に沿って走行させるように制御する走行制御部とを備える、作業車両。 - 前記作業経路設定部は、前記ウインドロウの位置が前記作業機の作業範囲内に位置する作業経路に設定する、請求項14記載の作業車両。
- 前記作業経路設定部で設定された作業経路上において、前記位置計測部で計測されたウインドロウの位置に基づいて前記作業機を制御する作業機制御部をさらに備える、請求項14記載の作業車両。
- 前記位置計測部は、前記ウインドロウの幅をさらに計測し、
前記作業機制御部は、前記ウインドロウの幅に基づいて前記作業機を制御する、請求項16記載の作業車両。 - 前記位置計測部は、前記ウインドロウの高さをさらに計測し、
前記作業機制御部は、前記ウインドロウの高さに基づいて前記作業機を制御する、請求項16または17記載の作業車両。 - 前記位置計測部で計測されたウインドロウに関する情報を外部装置に送信する通信部をさらに備える、請求項14または15記載の作業車両。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/087,740 US10975552B2 (en) | 2016-09-16 | 2017-08-22 | Control system and method for work vehicle |
JP2018539595A JP6827473B2 (ja) | 2016-09-16 | 2017-08-22 | 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 |
CN201780016385.2A CN108779621B (zh) | 2016-09-16 | 2017-08-22 | 作业车辆的控制系统、作业车辆的控制系统的控制方法以及作业车辆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016181388 | 2016-09-16 | ||
JP2016-181388 | 2016-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051742A1 true WO2018051742A1 (ja) | 2018-03-22 |
Family
ID=61619076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029913 WO2018051742A1 (ja) | 2016-09-16 | 2017-08-22 | 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10975552B2 (ja) |
JP (1) | JP6827473B2 (ja) |
CN (1) | CN108779621B (ja) |
WO (1) | WO2018051742A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110703637A (zh) * | 2018-07-09 | 2020-01-17 | 迪尔公司 | 作业机械平整控制系统 |
JP2020165834A (ja) * | 2019-03-29 | 2020-10-08 | 日立建機株式会社 | 作業車両 |
WO2021131645A1 (ja) * | 2019-12-26 | 2021-07-01 | 株式会社小松製作所 | 作業機械を制御するためのシステムおよび方法 |
US11193255B2 (en) | 2019-07-31 | 2021-12-07 | Deere & Company | System and method for maximizing productivity of a work vehicle |
WO2022130756A1 (ja) * | 2020-12-18 | 2022-06-23 | 株式会社小松製作所 | 複数の作業機械を制御するためのシステム及び方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6754594B2 (ja) * | 2016-03-23 | 2020-09-16 | 株式会社小松製作所 | モータグレーダ |
US11186957B2 (en) * | 2018-07-27 | 2021-11-30 | Caterpillar Paving Products Inc. | System and method for cold planer control |
JP7312563B2 (ja) * | 2019-02-19 | 2023-07-21 | 株式会社小松製作所 | 作業機械の制御システム、及び制御方法 |
US11718975B2 (en) | 2019-10-03 | 2023-08-08 | Deere & Companv | Work vehicle material management using moldboard gates |
US12024862B2 (en) | 2020-02-07 | 2024-07-02 | Caterpillar Inc. | System and method of autonomously clearing a windrow |
US11629477B2 (en) * | 2020-06-02 | 2023-04-18 | Deere & Company | Self-propelled work vehicle and control method for blade stabilization accounting for chassis movement |
US11774959B2 (en) | 2020-07-30 | 2023-10-03 | Caterpillar Paving Products Inc. | Systems and methods for providing machine configuration recommendations |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01231807A (ja) * | 1988-03-10 | 1989-09-18 | Iseki & Co Ltd | 移動作業車の誘導装置 |
JP2004076499A (ja) * | 2002-08-21 | 2004-03-11 | Komatsu Ltd | 作業車両の作業機制御方法及び作業機制御装置 |
JP2009209681A (ja) * | 1998-08-12 | 2009-09-17 | Caterpillar Inc | 移動機械により移動される経路を決定する方法および装置 |
US20150240453A1 (en) * | 2014-02-21 | 2015-08-27 | Caterpillar Inc. | Adaptive Control System and Method for Machine Implements |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE279584T1 (de) | 2000-01-19 | 2004-10-15 | Joseph Voegele Ag | Verfahren zum steuern einer baumaschine bzw. eines strassenfertigers und strassenfertiger |
CN2900630Y (zh) | 2006-04-25 | 2007-05-16 | 孙志勇 | 用于平地机的前置铲平装置 |
US9303386B2 (en) * | 2009-03-29 | 2016-04-05 | Stephen T. Schmidt | Tool attachments on an auto-powered mobile machine |
JP2010242345A (ja) | 2009-04-03 | 2010-10-28 | Hitachi Constr Mach Co Ltd | 路面補修システム |
US8924067B2 (en) | 2010-10-12 | 2014-12-30 | Caterpillar Inc. | Autonomous machine control system |
JP5952611B2 (ja) | 2012-03-28 | 2016-07-13 | 国立研究開発法人農業・食品産業技術総合研究機構 | 走行制御装置 |
US9051711B2 (en) | 2013-09-05 | 2015-06-09 | Caterpillar Inc. | Path detection-based steering command filtering method for motor grader automatic articulation feature |
JP6368964B2 (ja) | 2014-03-26 | 2018-08-08 | ヤンマー株式会社 | 作業車両の制御装置 |
US10634492B2 (en) * | 2016-08-31 | 2020-04-28 | Deere & Company | Methods and apparatus to track a blade |
US11142890B2 (en) * | 2018-08-08 | 2021-10-12 | Deere & Company | System and method of soil management for an implement |
-
2017
- 2017-08-22 WO PCT/JP2017/029913 patent/WO2018051742A1/ja active Application Filing
- 2017-08-22 US US16/087,740 patent/US10975552B2/en active Active
- 2017-08-22 JP JP2018539595A patent/JP6827473B2/ja active Active
- 2017-08-22 CN CN201780016385.2A patent/CN108779621B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01231807A (ja) * | 1988-03-10 | 1989-09-18 | Iseki & Co Ltd | 移動作業車の誘導装置 |
JP2009209681A (ja) * | 1998-08-12 | 2009-09-17 | Caterpillar Inc | 移動機械により移動される経路を決定する方法および装置 |
JP2004076499A (ja) * | 2002-08-21 | 2004-03-11 | Komatsu Ltd | 作業車両の作業機制御方法及び作業機制御装置 |
US20150240453A1 (en) * | 2014-02-21 | 2015-08-27 | Caterpillar Inc. | Adaptive Control System and Method for Machine Implements |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110703637A (zh) * | 2018-07-09 | 2020-01-17 | 迪尔公司 | 作业机械平整控制系统 |
US10697153B2 (en) | 2018-07-09 | 2020-06-30 | Deere & Company | Work machine grading control system |
JP2020165834A (ja) * | 2019-03-29 | 2020-10-08 | 日立建機株式会社 | 作業車両 |
JP7374602B2 (ja) | 2019-03-29 | 2023-11-07 | 日立建機株式会社 | 作業車両 |
US11193255B2 (en) | 2019-07-31 | 2021-12-07 | Deere & Company | System and method for maximizing productivity of a work vehicle |
WO2021131645A1 (ja) * | 2019-12-26 | 2021-07-01 | 株式会社小松製作所 | 作業機械を制御するためのシステムおよび方法 |
AU2020414620B2 (en) * | 2019-12-26 | 2023-05-25 | Komatsu Ltd. | System and method for controlling work machine |
WO2022130756A1 (ja) * | 2020-12-18 | 2022-06-23 | 株式会社小松製作所 | 複数の作業機械を制御するためのシステム及び方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6827473B2 (ja) | 2021-02-10 |
CN108779621B (zh) | 2021-01-01 |
US20190106862A1 (en) | 2019-04-11 |
US10975552B2 (en) | 2021-04-13 |
JPWO2018051742A1 (ja) | 2019-06-27 |
CN108779621A (zh) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018051742A1 (ja) | 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 | |
JP6749256B2 (ja) | 作業車の位置計測装置 | |
JP6666180B2 (ja) | モータグレーダの制御方法およびモータグレーダ | |
US8548680B2 (en) | Steering system with automated articulation control | |
JP6860387B2 (ja) | 作業車 | |
JP6613185B2 (ja) | モータグレーダの制御方法、モータグレーダおよびモータグレーダの作業管理システム | |
US20150019086A1 (en) | Blade control device, working machine and blade control method | |
US10400425B2 (en) | Transport control for work vehicles | |
JP7408761B2 (ja) | 作業機械の制御装置および制御方法 | |
WO2021106938A1 (ja) | 作業機械の制御システム、作業機械、作業機械の制御方法 | |
JP2019170312A (ja) | 作業車両用の自動走行システム | |
JP7490127B2 (ja) | モータグレーダおよび表示制御方法 | |
WO2021065136A1 (ja) | 制御システム、作業車両の制御方法、および、作業車両 | |
WO2019030828A1 (ja) | 作業車両の制御システム、方法、及び作業車両 | |
JP7197342B2 (ja) | 作業機械、作業機械を含むシステム、および作業機械の制御方法 | |
JP2017186875A5 (ja) | ||
WO2021065135A1 (ja) | 制御システム、作業車両の制御方法、および、作業車両 | |
JP2023147640A (ja) | 作業車両 | |
JP7042769B2 (ja) | トラクタ | |
US20220064910A1 (en) | Work machine, method for controlling work machine, and execution management device | |
JP2022152454A (ja) | 作業機械の走行システムおよび作業機械の制御方法 | |
JP7247240B2 (ja) | 作業車両用の自動走行システム | |
WO2020203804A1 (ja) | 作業車両、作業車両の制御装置、および作業車両の方向特定方法 | |
JP2022157015A (ja) | 建設機械 | |
KR20230146985A (ko) | 작업 방법, 작업 차량 및 작업 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018539595 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17850648 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17850648 Country of ref document: EP Kind code of ref document: A1 |