EP1118713A1 - Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger - Google Patents

Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger Download PDF

Info

Publication number
EP1118713A1
EP1118713A1 EP00101014A EP00101014A EP1118713A1 EP 1118713 A1 EP1118713 A1 EP 1118713A1 EP 00101014 A EP00101014 A EP 00101014A EP 00101014 A EP00101014 A EP 00101014A EP 1118713 A1 EP1118713 A1 EP 1118713A1
Authority
EP
European Patent Office
Prior art keywords
screed
working
driving unit
width
working device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00101014A
Other languages
English (en)
French (fr)
Other versions
EP1118713B1 (de
Inventor
Henning Dr. Meyer
Erich Resch
Peter Prof.Dr.-Ing. Pickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to DK00101014T priority Critical patent/DK1118713T3/da
Priority to DE2000508220 priority patent/DE50008220D1/de
Priority to AT00101014T priority patent/ATE279584T1/de
Priority to EP00101014A priority patent/EP1118713B1/de
Priority to JP2001011974A priority patent/JP2001262611A/ja
Publication of EP1118713A1 publication Critical patent/EP1118713A1/de
Application granted granted Critical
Publication of EP1118713B1 publication Critical patent/EP1118713B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/841Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
    • E02F3/842Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine using electromagnetic, optical or photoelectric beams, e.g. laser beams
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/84Drives or control devices therefor, e.g. hydraulic drive systems
    • E02F3/844Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
    • E02F3/847Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams

Definitions

  • the invention relates to a method according to the preamble of patent claim 1, 11 and 12 and a paver according to claim 13.
  • Construction machines affected here include road pavers, graders, Crawlers, slipform pavers and traffic area recycling machines where the working device works the subsoil to a planned route to form, with the driving unit acting as a carrier of the working device, the necessary Applying propulsive force and taking the direction and an adjustment the longitudinal and / or transverse slope and / or working width of the working device is possible on the driving unit.
  • the screed With a paver, the screed has the material evenly over the Spread, compact and smooth the width. Using a sensor The screed is leveled with the control system The target values are adjusted in height and / or cross slope. When using a extending screed the working width can also be adjusted.
  • guide wires representing the desired height and course (EP-B-542 297) stretched along the planned route, which are scanned by sensors, to get information on leveling the screed.
  • the high effort for adjusting the guide wires is disadvantageous. So far, the others have been similar Construction machines of the above-mentioned group controlled. Some construction machines are automatically steered, with a guide wire providing directional information. At Automatic steering is not absolutely necessary for graders and caterpillars; however the working device is still along the planned route Taxes.
  • the paver is made of Hand directed.
  • the screed is leveled using two guide wires without guide wires stationary telescopes for observing height marks on the screed and via control devices on the telescopes, which the adjustment devices control the screed.
  • a Measuring point recorded on the driving unit.
  • a machine model is created with which the position of the construction machine is defined in a digital terrain model.
  • the actual data can be compared with target data from the planning.
  • Position deviations determined in the process are used to control control elements.
  • For slip shift pavers e.g. the steering cylinders and the lifting cylinders of the height adjustment of the support frame controlled.
  • Automatic guidance of the construction machine in the field and leveling of the working device still need a guidewire or similar reference element for deriving directional information and thus a considerable measurement effort.
  • precise steering is difficult and steering errors can affect the accuracy of the settings of the working device significantly impair if the driving unit is primarily guided and the working device is secondary the driving unit is tracked.
  • the invention has for its object a method of the type mentioned to create with the working device a construction machine without guide wires or Earth-based reference elements with high working accuracy automatically in one the planned route is mobile, and an automatically precisely controllable one Specify paver.
  • the task is with the features of claim 1, the sibling Claims 12 and 13, and the independent claim 14 solved.
  • the working device of the construction machine exactly in the planned route. Guide wires or earthbound Reference elements are not required. Nevertheless, the planned The route was created very precisely because the work fixture was used with the positioning system or an element of the Working device guided transversely to the direction of travel and in its height and inclined position is, and the driving unit only in the second line of the working device can be. Thereby the knowledge is taken into account that it is for high work accuracy it is important to control the work equipment primarily, and only secondarily the driving unit, since steering movements of the driving unit and made via the driving unit Adjustments of the working device would be too imprecise.
  • the position of the working device or that for the planned one is determined via the measuring point
  • the route determines the essential element of the work equipment and in addition to the position information of the measuring point additional information relevant to the location of the working device, for example via sensors, procured and used for control.
  • automatic width control takes place the screed using the planned data of obstacles, for example Gullies or the like, the control elements of the screed for driving around of the obstacle. It is possible to overcome an obstacle with either Bypass working width, or the working width in the area of the obstacle to reduce or enlarge only on one side.
  • the automatic width control has no influence on the automatic control of the screed along the planned route. With the automatic width control, one-sided or double-sided parking or alternative bays or traffic route constrictions shape, the automatic width control of the guide of the Screed is superimposed along the planned route. This method for automatic width control is of independent inventive importance.
  • the paver according to claim 14 is for performing a fully automatic Control along the planned route with the help of a geodetic positioning system designed. Regardless of where the measurement point is supporting mast (on the drive unit or on the working device), is always the real or virtual reference point on the screed or at one for the planned one
  • the route determines the relevant element and this reference point controlled that the screed forms the planned route.
  • the driving unit can also be steered automatically. That for the design element is a lower outer edge, for example the screed or the rear end point of this lower outer edge, the should be routed along the planned edge line of the route. Largely the working width is independent of the driving movement of the driving unit Control elements of the screed parts in the transverse direction in the planned route adjustable, and the transverse and longitudinal inclinations of the screed are also remotely controlled adjustable.
  • the position of this element is a constant for the control. Changes this relative position, e.g. in the transverse direction, the measurement point is opened again the element for controlling the construction machine that is decisive for the planned route closed (claim 3).
  • the actual working position for control purposes via the measuring point determined, taking into account machine-specific information. For example, a calculation is made in the construction machine Sensors determined where the element of the working device that is decisive for the route is located precisely around this element and therefore the working device to run in the planned route.
  • relative or automatic steering of the driving unit measured absolute directional deviations from a planned reference direction, and, if they exceed a tolerance range, for automatic Steering used.
  • a Direction sensor or a GPS-based system measured direction information be taken into account in the automatic steering. But that's always the case precise guidance of the working device in the foreground and becomes the driving unit of the Work device tracked. This can result in inaccurate steering movements not on the positioning of the working device in the planned route impact or simply be compensated.
  • the spatial actual working position of the working device to determine a work device model in a the planned one
  • To set the digital terrain model containing the route and from a comparison Derive control or correction signals for the control elements of the working device and to control the working device.
  • sensors for longitudinal and / or Bank of the working device are used, the necessary additional information deliver.
  • the abundance of the total data obtained for the control processed with at least one system computer, the stationary or in the construction machine itself can be provided.
  • special direction vectors are determined, from which correction signals for automatic steering of the driving unit.
  • the measurement point is expediently arranged on the screed to always keep the location, for example knowing a lower outer plank edge.
  • the measuring point can also be at the Driving unit or be arranged on a spar of the screed, then using Known machine-specific information or information derived from sensors from the measuring point the position of the screed or the outer one Edge of the screed calculated (claim 10).
  • the other screed part is either adjusted in exactly the opposite direction to a screed section, in order to achieve a constant working width, or is even adjusted individually, to achieve a working width that varies according to plan.
  • the Longitudinal and / or transverse inclination of the screed in accordance with the planned specifications adjusted to keep the extending screed exactly in the planned route to drive.
  • the measuring point can either be on the screed, expediently even on a screed section, on the drive unit or on a spar of the screed be arranged (claim 11).
  • the mast carrying the measuring point arranged on the screed which can be adjusted with the working width that cannot be changed, so that control movements required for control are clearly traceable.
  • the mast carrying the measuring point is on a screed part arranged. Control movements caused to control are so directly traceable via the measuring point.
  • the mast carrying the measuring point is on a spar of the screed appropriate.
  • the actual working position is controlled with additional information determined, for example, representing strokes of the control elements Signals and / or calculated direction vectors.
  • the arrangement of the measuring point on a mast offers the advantage, the measuring point even with uneven terrain or obstacles with the geodetic positioning system to "see”. For this, the mast should appear or tower over obstacles caused by the construction site.
  • the method according to the invention can be used with a grader in order to the rotatability of the graders in the planned route drive.
  • the line of motion of the other end of the group of degrees is by calculation known at any time.
  • a caterpillar with a pushed or pulled Dozer blade can be guided exactly in the planned route.
  • the slipform and / or the screed guided in the planned route It can be changed or unchangeable Working width.
  • a geodetic position determination system is used for a route section Total station installed in the vicinity of the planned route, i.e. a kind of theodolite with appropriate equipment and actuators, if necessary combined with the process computer or one with the process computer linked calculator.
  • a stationary or moving GPS system can be used are used, using a DGPS system to increase accuracy recommends that you work with a stationary reference station to get the procured Precise or calibrate position data.
  • the data transfer or the transmission of measurements and correction signals can be wireless, e.g. through radio or laser transmission, or via one or more cable harnesses.
  • Construction machine A is, for example, a paver with a driving unit M and a working device B, namely one on bars 1 towed screed with constant working width.
  • the construction machine A is self-driving.
  • the transverse and longitudinal slopes of the screed are included Adjustable elements, as well as the height of the screed above the Flat surface.
  • the screed is in a linear guide 2 on the spars 1 transverse to Direction of travel back and forth adjustable, by means of at least one control element 3, for example a hydraulic cylinder which is controlled via a control C1 becomes.
  • a controller C for functions of the driving unit M is provided, e.g. for the driving speed, the steering angle etc. From the Control C2 off may also have functions in and on the screed controllable.
  • a system computer CPU is on the driving unit M provided (Fig. 2).
  • the screed has sensors 4 for the longitudinal and / or transverse inclination the control C2 and / or the system computer CPU are connected.
  • a measuring point P for example at one at one End 5 of the screed stationed mast 6, which carries a prism 18, the measuring point P defined.
  • the driving unit M can be steered in the direction of a double arrow 15. On The driving unit M is provided with a real or virtual reference point 9.
  • the procedure below for automatically controlling the paver is also for other self-propelled construction machines with at least one each Appropriate working device.
  • construction machines are without the scope want to restrict the invention, for example with pavers Extending screeds (high compaction screed or normal screed), graders with graders, Slipform paver with supporting frame, slipforms and at least one Screed, traffic area recycling equipment and caterpillars with drawn or pushed Dozer blade.
  • a geodetic Positioning system G used which via a signal and information transmitting Route 17 is connected to the system computer CPU.
  • the system computer could be arranged externally of the construction machine A and with the controller communicate with the construction machine.
  • GPS differential GPS
  • the actual position of the actual point P is turned on in a step S1 the screed B in the x, y, z directions. If necessary, a second measuring point provided on the screed or on the construction machine and be scanned.
  • the route that the screed is to follow in the field is specified with regard to the target position of the measuring point P is generated, i.e. it becomes a digital one in a step S2 Prepared terrain model.
  • the course of the planned route is, for example determined by the course of the edges, the thickness, the inclination and the width of a ceiling layer to be installed on a subgrade, the driving unit drives on the formation and the screed above the specifications of the formation is managed.
  • Step S4 takes place with the planning data from step S2 and the spatial machine model a target-actual comparison from step S3, for example by calculation in the CPU system computer.
  • step S5 Become such Adjustments made, then the respective change in position in step S6 of the screed relative to the driving unit M.
  • step S7 is off the result of step S6 determines a directional deviation, expediently in the form of a direction vector 8 between the measuring point P and the virtual one or real measuring point 9 on the driving unit M.
  • step S8 the steering of the driving unit M is controlled by a longitudinal movement in the direction of the double arrow 15, the driving unit M, e.g. according to the Target values from the planning data, automatically steer and the working device track.
  • the automatic control of a construction machine A is based of a paver with a so-called extending screed.
  • the the Extending screed representing working device B is on the spars 1 of the driving unit M towed and is above the level in its height, and in its transverse and / or longitudinal inclinations adjustable. It has one connected to the spars 1 Screed base body 10 of predetermined working width and two extending screed parts 11, 12, which can be extended and retracted relative to the basic screed body 10 via adjusting elements 3 ', 3 " are.
  • the measuring point P is attached to a mast 13 in an elevated position, the one on a screed part 11, preferably in the outer End, is firmly mounted.
  • the height of the measuring point P is selected so that the Total station T of the geodetic positioning system G also via terrain-related Elevations or construction site-related obstacles "see” the measuring point.
  • Each screed part 11, 12 can be transverse to the direction of a double arrow 7 Move the direction of travel back and forth.
  • the height settings are made in the direction of a Double arrow 14.
  • Steering movements of the driving unit M are in the direction of a Double arrow 15 controlled.
  • the virtual or real measuring point 9 on the driving unit M is used to generate a direction vector 8 between the measuring points P, 9.
  • Die Total station T scans the actual position of measuring point P, for example using laser beams and communicates with the system computer, not shown. In the total station For example, a high-performance theodolite 16 is provided.
  • the total station T can work independently from a GPS system. But it can be useful be using position information from a GPS or DGPS system.
  • step S2 target values for the position of the Measuring point P or the target working position generated. Is the measuring point at the end of the Extending screed part 11, then its position represents the actual working position the decisive element of the extending screed for the route, e.g. the outer, lower edge of the screed part 11. Is the Measuring point P further inside, then in this case its transverse distance from the outside lower edge of the screed part 11 as a constant value for determining the Actual work position taken into account.
  • step S3 a spatial machine model created, for example, the working device B, with information from the sensor 4 and a height sensor for the height of the screed. This spatial machine model is converted into digital with its actual working position Terrain model set, which is generated from target values of the planning data. in the Step S4 becomes a position deviation between the actual position of the measuring point P or the actual working position and the target position.
  • step S5 an adjustment is made on the basis of the calculated position deviation the screed.
  • the screed part 11 is in the direction of Double arrow 7 adjusted transversely and relative to the driving unit M by a certain amount.
  • the other, opposite screed part 12 is adjusted in opposite directions, i.e. when one screed part 11 is extended, the other screed part becomes 12 retracted accordingly, and vice versa.
  • the other screed part 12 is controlled individually, where its respective location based on the machine-specific data or Sensor signals is determined and set.
  • step S6 the one that occurs due to the adjustment of the one screed part 11 Change in position of measuring point P compared to measuring point 9 of the driving unit M captured.
  • step S7 the change in position or the directional deviation or the direction vector 8 is determined, specifically in comparison to the previous relative position of the two measuring points P, 9.
  • step S8 the steering of the driving unit M is controlled by the Tracking unit M of the extending screed.
  • the automatic steering of the Driving unit can also relative or absolute directional deviations measured and taken into account in relation to a planned reference direction by a compass, a direction sensor or a GPS system measured direction information.
  • the scanning of measuring point P becomes the actual working position the working device, e.g. the screed, or one for the planned one Line of relevant elements of the working device, e.g. one Extending screed part outer edge, captured to the working device exactly in the planned Route to drive.
  • the measuring point directly on the relevant element arranged the working device so that it exactly its movements follows, then the measuring point largely represents the actual working position.
  • the Measuring point on the driving unit or, for example, the screed spar fixedly arranged, then machine-specific to determine the actual work position
  • Data also taken into account to determine the respective position from the actual position Obtain actual work position. In the latter case, this can be done using direction vectors done so that, for example, the outer lower edge of the screed or even the rear end of the edge exactly along a line of the planned one Route is maintained.
  • the opposite can also be used as a starting point Edge.
  • Fig. 5 In the machine configuration in Fig. 5 is based on a paver with a Spars 1 towed extending screed B the measuring point P on a mast 13 arranged in an elevated position on a spar 1. It becomes real or virtual Measuring point 19 at the outer lower edge of one screed part 11 or even the position of the rear end 20 of that edge, e.g. about one Direction vector 25 and with corresponding measurements of the sensor 4 or one Screed height sensor (not shown). This real or virtual measuring point 19 and the end point 20 are routed in the planned route e.g. by movements in the direction of the double arrows 7, 14. The other screed part 12 becomes exactly the opposite direction depending on whether a constant working width is to be traveled adjusted, or individually if the working width varies according to plan.
  • the real or virtual further measuring point is on the driving unit M of the construction machine A. 9 is provided, so that a direction vector between the measurement points 9 and P. 8 can be calculated, for automatic steering (steering movements in the direction of the double arrow 15) of the driving unit M is used to move the driving unit M of the working device B to track.
  • FIG. 6 is an automatic width control of the working device B, here an extendable screed of a paver to be explained.
  • This automatic Width control can be completely independent of an automatic guidance control the construction machine A are used or this is superimposed to Obstacles H in the planned route must be taken into account.
  • FIG. 7 shows how an automatic width control of the working device B, here the extendable screed of a paver, with the help of the geodetic Position determination system, here a total station T, made becomes.
  • the exact coordinates for the location and size of an obstacle H are in the contain planned data that are processed by the controller. Further is the course of, for example, the planned edge line 22 with an alternative bay 22 'known.
  • the measuring point P is arranged on a spar 1 as in FIG. 5.
  • Direction vectors 25 and 8 are used to determine the actual working position of the Measuring point 19, 20 and the actual position of measuring point 9 on the driving unit M.
  • the planned data of the obstacle H and over the process computer CPU corresponding to the measuring point 19, 20 of the one screed part 11 the dotted line 21 around the left-hand obstacle H.
  • the evasive bay 22 ' becomes the actuating element based on the planned data 3 "of the other screed part 12 is adjusted to the evasive bay 22 ' to form.
  • the driving unit M can continue to be steered automatically so that the obstacle H and the avoidance bay 22 'only by adjusting the screed parts 11, 12 are deliberately steered to the right, in combination with appropriate Adjustment movements of the two screed parts 11, 12.
  • automatic width control of the extending screed B is strict controlled according to planned information on obstacles H or the like, with continuous determination of the actual working position of the measuring point 19, 20 via the measuring point P.
  • each with a geodetic positioning system worked. In practice, this means that at least two such geodetic positioning systems exist have to be because one is used to control each section of the route will be adjusted while that for the subsequent route section got to.
  • the automatic control could be in a route section the construction machine with two geodetic positioning systems working simultaneously be made, the one for example the working device and the other controls the driving unit. Then would be for the continuous A total of four geodetic positioning systems are required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Road Paving Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Operation Control Of Excavators (AREA)
  • Road Repair (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

Ein Verfahren zum Steuern einer selbstfahrenden Baumaschine in einer planungsgemäßen Trasse, bei dem durch Vergleichen von ermittelten Ist-Positionen und SollPositionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, wird mittels eines geodätischen Positionsbestimmungssystems die Ist-Arbeitsposition einer relativ zu einer Fahreinheit der Baumaschine verstellbaren Arbeitsvorrichtung ermittelt und mit einer planungsgemäßen Soll-Arbeitsposition verglichen, um die Korrektursignale abzuleiten. Auf diese Weise wird die Arbeitsvorrichtung exakt in der planungsgemäßen Trasse geführt. Weiterhin werden aus der Ist-Arbeitsposition Richtungsinformationen für die Fahreinheit abgeleitet, um die Fahreinheit der gesteuerten Arbeitsvorrichtung nachzuführen. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren gemäß Oberbegriff des Patentanspruchs 1, 11 und 12 sowie einen Straßenfertiger gemäß Anspruch 13.
Zu hier betroffenen Baumaschinen zählen unter anderem Straßenfertiger, Grader, Raupen, Gleitschalungsfertiger und Verkehrflächen-Recycling-Maschinen, bei denen die Arbeitsvorrichtung den Untergrund bearbeitet, um eine planungsgemäße Trasse zu formen, wobei die Fahreinheit als Träger der Arbeitsvorrichtung fungiert, die notwendige Vortriebskraft aufbringt und die Richtungsführung übernimmt und eine Verstellung der Längs- und/oder Querneigung und/oder Arbeitsbreite der Arbeitsvorrichtung an der Fahreinheit möglich ist.
Bei einem Straßenfertiger hat die Einbaubohle das Material gleichmäßig über die Breite zu verteilen, zu verdichten und zu glätten. Mit Hilfe einer Sensoren benutzenden Nivelliervorrichtung wird die Einbaubohle mit für die Regelung vorgegebenen Soll-Werten in der Höhe und/oder Querneigung verstellt. Bei Verwendung einer Auszieh-Einbaubohle lässt sich auch die Arbeitsbreite verstellen. Üblicherweise werden die gewünschte Höhe und den Verlauf repräsentierende Leitdrähte (EP-B-542 297) entlang der planungsgemäßen Trasse gespannt, die von Sensoren abgetastet werden, um Informationen zur Nivellierung der Einbaubohle zu erhalten. Der hohe Aufwand zum Justieren der Leitdrähte ist nachteilig. Ähnlich werden bisher auch die anderen Baumaschinen der oben erwähnten Gruppe gesteuert. Manche Baumaschinen werden automatisch gelenkt, wobei ein Leitdraht Richtungsinformationen liefert. Bei Gradern und Raupen ist eine automatische Lenkung nicht unbedingt erforderlich; jedoch ist dennoch deren Arbeitsvorrichtung der planungsgemäßen Trasse entlang zu steuern.
Bei einem aus DE-B-11 51 531 bekannten Verfahren wird der Straßenfertiger von Hand gelenkt. Die Nivellierung der Einbaubohle erfolgt ohne Leitdrähte mittels zweier stationär positionierter Fernrohre zum Beobachten von Höhenmarken an der Einbaubohle und über Steuereinrichtungen bei den Fernrohren, welche die Verstellvorrichtungen der Einbaubohle ansteuern.
In der Praxis werden auch folgende Verfahren angewandt:
Mit einem geodätischen Gerät wie einer Totalstation oder einem GPS-System wird ein Messpunkt an der Fahreinheit erfasst. Unter Berücksichtigung weiterer Messgrößen, wie Maschinenlängs- und -querneigung wird ein Maschinenmodell erstellt, mit dem die Lage der Baumaschine in einem digitalen Geländemodell definiert wird. Die Ist-Daten werden kann mit Soll-Daten aus der Planung verglichen. Dabei ermittelte Positionsabweichungen werden zur Steuerung von Stellelementen verwendet. Bei Gleitschaltungsfertigern werden z.B. die Lenkzylinder sowie die Hubzylinder der Höhenverstellung des Tragrahmens gesteuert. Eine automatische Führung der Baumaschine im Gelände und die Nivellierung der Arbeitsvorrichtung benötigen nach wie vor zum Ableiten von Richtungsinformationen einen Leitdraht oder ein ähnliches Referenzelement und somit einen erheblichen vermessungstechnischen Aufwand. Speziell bei auf Raupen fahrenden Baumaschinen ist eine präzise Lenkung schwierig und können Lenkabweichungen die Genauigkeit der Einstellungen der Arbeitsvorrichtung erheblich beeinträchtigen, wenn primär die Fahreinheit geführt und sekundär die Arbeitsvorrichtung der Fahreinheit nachgeführt wird.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit dem die Arbeitsvorrichtung eine Baumaschine ohne Leitdrähte oder erdgebundene Referenzelemente mit hoher Arbeitsgenauigkeit automatisch in einer planungsgemäßen Trasse fahrbar ist, und einen automatisch genau steuerbaren Straßenfertiger anzugeben.
Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1, der nebengeordneten Ansprüche 12 und 13, und des nebengeordneten Anspruchs 14 gelöst.
Mittels des geodätischen Positionsbestimmungssystems wird die Arbeitsvorrichtung der Baumaschine exakt in der planungsgemäßen Trasse geführt. Leitdrähte oder erdgebundene Referenzelemente werden nicht benötigt. Dennoch wird die planungsgemäße Trasse sehr genau erstellt, weil mit dem Positionsbestimmungssystem die Arbeitsvorrichtung oder ein für die planungsgemäße Trasse maßgebliches Element der Arbeitsvorrichtung quer zur Fahrtrichtung und in seiner Höhen- und Schräglage geführt wird, und die Fahreinheit erst in zweiter Linie der Arbeitsvorrichtung nachgeführt werden kann. Dabei wird die Erkenntnis berücksichtigt, dass es für hohe Arbeitsgenauigkeit wichtig ist, primär die Arbeitsvorrichtung zu steuern, und erst in zweiter Linie die Fahreinheit, da Lenkbewegungen der Fahreinheit und über die Fahreinheit vorgenommene Verstellungen der Arbeitsvorrichtung zu ungenau wären. Unabhängig davon, ob sich der Messpunkt an der Fahreinheit, an der Arbeitsvorrichtung oder am für die planungsgemäße Trasse maßgeblichen Element der Arbeitsvorrichtung befindet, wird jeweils über den Messpunkt die Lage der Arbeitsvorrichtung oder des für die planungsgemäße Trasse maßgeblichen Elements der Arbeitsvorrichtung bestimmt und werden bei der Steuerung zusätzlich zu den Positionsinformationen des Messpunkts für die Lage der Arbeitsvorrichtung relevante Zusatzinformationen, beispielsweise über Sensoren, beschafft und zur Steuerung benutzt.
Für die automatische Lenkung der Fahreinheit dient hingegen gemäß Anspruch 2 die geführte Arbeitsvorrichtung als Referenz.
Bei dem Verfahren gemäß Anspruch 12 erfolgt eine automatische Breitensteuerung der Einbaubohle unter Nutzen der planungsgemäßen Daten von Hindernissen, beispielsweise Gullys oder dgl., wobei die Stellelemente der Einbaubohle zum Umfahren des Hindernisses betätigt werden. Es ist möglich, eine Hindernis entweder mit gleichbleibender Arbeitsbreite zu umfahren, oder die Arbeitsbreite im Bereich des Hindernisses nur einseitig zu reduzieren oder zu vergrößern. Die automatische Breitensteuerung nimmt keinen Einfluss auf die automatische Steuerung der Einbaubohle entlang der planungsgemäßen Trasse. Bei der automatischen Breitensteuerung lassen sich einseitige oder doppelseitige Park- oder Ausweichbuchten oder Verkehrsweg-Einschnürungen formen, wobei die automatische Breitensteuerung der Führung der Einbaubohle entlang der planungsgemäßen Trasse überlagert wird. Dieses Verfahren zur automatischen Breitensteuerung ist von eigenständiger erfinderischer Bedeutung.
Dies gilt auch für das Verfahren gemäß Anspruch 13. An dem Fertiger angeordnete Sensoren detektieren entgegenkommende Hindernisse, wie beispielsweise Gullys, und steuern die Stellelemente der Auszieh-Einbaubohle an, um die Hindernisse zu umfahren. Das geodätische Positionsbestimmungssystem braucht dabei nicht notwendigerweise Einfluss zu nehmen. Dies bedeutet auch, dass die automatische Breitensteuerung mit am Straßenfertiger angeordneten Sensoren auch ohne automatische Steuerung der Einbaubohle mit Hilfe des geodätischen Positionsbestimmungssystems zweckmäßig ist.
Der Straßenfertiger gemäß Anspruch 14 ist zum Durchführen einer vollautomatischen Steuerung entlang der planungsgemäßen Trasse mit Hilfe eines geodätischen Positionsbestimmungssystems ausgelegt. Unabhängig davon, wo sich der den Messpunkt tragende Mast befindet (an der Fahreinheit oder an der Arbeitsvorrichtung), wird stets der reale oder virtuelle Referenzpunkt an der Einbaubohle oder an einem für die planungsgemäße Trasse maßgeblichen Element bestimmt und dieser Referenzpunkt so gesteuert, dass die Einbaubohle die planungsgemäße Trasse formt. Durch Ableiten von Richtungsvektoren unter Nutzen des Messpunkts und des jeweiligen Referenzpunkts lässt sich darauf aufbauend auch die Fahreinheit automatisch lenken. Das für die planungsgemäße Trasse maßgebliche Element ist beispielsweise eine untere Außenkante der Einbaubohle oder der hintere Endpunkt dieser unteren Außenkante, der entlang der planungsgemäßen Randlinie der Trasse geführt werden soll. Weitgehend unabhängig von der Fahrbewegung der Fahreinheit, ist die Arbeitsbreite mittels der Stellelemente der Ausziehbohlenteile in Querrichtung in der planungsgemäßen Trasse einstellbar, und sind auch die Quer- und Längsneigungen der Einbaubohle ferngesteuert einstellbar.
Ist der Messpunkt in einer festgelegten Relativlage zu dem wenigstens einen für die planungsgemäße Trasse maßgeblichen Element der Arbeitsvorrichtung an dieser angebracht, dann ist die Lage dieses Elements eine Konstante für die Steuerung. Ändert sich diese Relativlage, z.B. in Querrichtung, so wird erneut über den Messpunkt auf das für die planungsgemäße Trasse maßgebliche Element zur Steuerung der Baumaschine geschlossen (Anspruch 3).
Ähnlich wird gemäß Anspruch 4 über den Messpunkt die Ist-Arbeitsposition zur Steuerung bestimmt, wobei maschinenspezifische Informationen mitberücksichtigt werden. Beispielsweise wird auf rechnerischem Weg über in der Baumaschine vorgesehene Sensoren festgestellt, wo sich das für die Trasse maßgebliche Element der Arbeitsvorrichtung gerade befindet, um dieses Element und damit die Arbeitsvorrichtung genau in der planungsgemäßen Trasse zu führen.
Gemäß Anspruch 5 werden zur automatischen Lenkung der Fahreinheit relative oder absolute Richtungsabweichungen von einer planungsgemäßen Bezugsrichtung gemessen, und, sofern sie einen Toleranzbereich überschreiten, zur automatischen Lenkung eingesetzt.
Alternativ oder additiv können gemäß Anspruch 6 auch zusätzlich errechnete oder aus einem digitalen Geländemodell abgeleitete bzw. von einem Kompass, einem Richtungssensor oder einem GPS-gestützten System gemessene Richtungsinformationen bei der automatischen Lenkung berücksichtigt werden. Stets ist dabei aber die genaue Führung der Arbeitsvorrichtung im Vordergrund und wird die Fahreinheit der Arbeitsvorrichtung nachgeführt. Dadurch können sich ungenaue Lenkbewegungen nicht auf die Positionierung der Arbeitsvorrichtung in der planungsgemäßen Trasse auswirken oder einfach kompensiert werden.
Da die planungsgemäße Trasse einen sich im Raum ändernden Verlauf haben kann, ist es gemäß Anspruch 7 zweckmäßig, die räumliche Ist-Arbeitsposition der Arbeitsvorrichtung zu bestimmen, ein Arbeitsvorrichtungsmodell in ein die planungsgemäße Trasse enthaltendes digitales Geländemodell zu setzen, und aus einem Vergleich Stell- oder Korrektursignale für die Stellelemente der Arbeitsvorrichtung abzuleiten und die Arbeitsvorrichtung zu steuern. Dabei können Sensoren zur Längs- und/oder Querneigung der Arbeitsvorrichtung benutzt werden, die notwendige Zusatzinformationen liefern.
Gemäß Anspruch 8 wird die Fülle der insgesamt für die Steuerung beschafften Daten mit wenigstens einem Systemrechner verarbeitet, der stationär oder in der Baumaschine selbst vorgesehen sein kann.
Gemäß Anspruch 9 werden spezielle Richtungsvektoren ermittelt, aus denen Korrektursignale zur automatischen Lenkung der Fahreinheit abgeleitet werden.
Bei einem Straßenfertiger mit einer Einbaubohle mit unveränderlicher Arbeitsbreite, die in einer Linearquerführung hin- und herverstellbar ist, werden bei der automatischen Führung der Einbaubohle entlang der planungsgemäßen Trasse zusätzlich auch die Längs- und/oder Querneigung der Einbaubohle verstellt. Der Messpunkt ist zweckmäßigerweise an der Einbaubohle angeordnet, um stets die Lage beispielsweise einer unteren äußeren Bohlenkante zu kennen. Der Messpunkt kann auch an der Fahreinheit oder an einem Holm der Einbaubohle angeordnet sein, wobei dann mittels bekannter maschinenspezifischer Informationen oder von Sensoren abgeleiteter Informationen vom Messpunkt aus die Position der Einbaubohle oder der äußeren Randkante der Einbaubohle berechnet (Anspruch 10).
Bei einem Straßenfertiger mit einer Auszieh-Einbaubohle wird mit den abgeleiteten Korrektursignalen die Breitenverstelleinrichtung angesteuert, um zunächst einen Ausziehbohlenteil genau in der planungsgemäßen Trasse zu führen. Der andere Ausziehbohlenteil wird entweder exakt gegensinnig zum einen Ausziehbohlenteil verstellt, um eine gleichbleibende Arbeitsbreite zu erzielen, oder wird sogar individuell verstellt, um eine planungsgemäß variierende Arbeitsbreite zu erzielen. Dabei werden die Längs- und/oder Quemeigung der Einbaubohle entsprechend planungsgemäßer Vorgaben verstellt, um die Ausziehbohle insgesamt exakt in der planungsgemäßen Trasse zu fahren. Der Messpunkt kann entweder an der Einbaubohle, zweckmäßigerweise sogar auf einem Ausziehbohlenteil, an der Fahreinheit oder an einem Holm der Auszieh-Einbaubohle angeordnet sein (Anspruch 11).
Bei dem Straßenfertiger gemäß Anspruch 15 ist der den Messpunkt tragende Mast auf der mit unveränderbarer Arbeitsbreite querverstellbaren Einbaubohle angeordnet, so dass zur Steuerung erforderliche Stellbewegungen deutlich mitverfolgbar sind.
Alternativ ist gemäß Anspruch 16 der den Messpunkt tragende Mast auf einem Ausziehbohlenteil angeordnet. Zur Steuerung veranlasste Stellbewegungen werden so unmittelbar über den Messpunkt mitverfolgbar.
Gemäß Anspruch 17 ist der den Messpunkt tragende Mast auf einem Holm der Einbaubohle angebracht. Zur Steuerung wird mit Zusatzinformationen die jeweilige Ist-Arbeitsposition bestimmt, beispielsweise über Hübe der Stellelemente repräsentierende Signale und/oder errechnete Richtungsvektoren.
In jedem Fall kann es zweckmäßig sein, bei einem Straßenfertiger den für die Ist-Arbeitsposition maßgeblichen Referenzpunkt an die untere Außenkante der Einbaubohle oder sogar das hinterste Ende dieser unteren äußeren Kante zu legen, weil diese den einen äußeren Rand der Trasse bzw. Deckenschicht erstellt.
Die Anordnung des Messpunktes auf einem Mast bietet den Vorteil, den Messpunkt auch bei Geländeunebenheiten oder Hindernissen mit dem geodätischem Positionsbestimmungssystem "sehen" zu können. Dazu sollte der Mast auftauchende oder baustellenbedingte Hindernisse überragen.
Bei den vorbeschriebenen Verfahrensvarianten und Ausführungsformen ist jeweils von nur einem geodätischen Positionsbestimmungssystem ausgegangen worden, das zum gesteuerten Führen der Arbeitsvorrichtung und auch der Fahreinheit benutzt wird. Es wäre jedoch denkbar, zwei geodätische Positionsbestimmungssysteme zu benutzen, beispielsweise um die Arbeitsvorrichtung und die Fahreinheit getrennt zu steuern. Diese Lösung wäre jedoch sehr aufwendig.
Das erfindungsgemäße Verfahren kann bei einem Grader eingesetzt werden, um über die Drehverstellbarkeit der Graderschar diese in der planungsgemäßen Trasse zu fahren. Die Bewegungslinie des jeweils anderen Endes der Graderschar ist durch Berechnung jederzeit bekannt. Bei einer Raupe mit einem geschobenen oder gezogenen Räumschild lässt sich der Räumschild exakt in der planungsgemäßen Trasse führen. Bei einem Gleitschalungsfertiger wird die Gleitschalung und/oder die Einbaubohle in der planungsgemäßen Trasse geführt. Dabei kann mit veränderbarer oder unveränderbarer Arbeitsbreite gefahren werden. Ähnlich wird bei einem Verkehrsflächen-Recycling-Gerät dessen Arbeitsvorrichtung in der planungsgemäßen Trasse geführt. .Auch hierbei kann mit fester oder variabler Arbeitsbreite gearbeitet werden.
Als geodätisches Positionsbestimmungssystem wird für einen Trassenabschnitt eine in der Nähe der planungsgemäßen Trasse stationär eingerichtete Totalstation eingesetzt, d.h. eine Art Theodolit mit entsprechender Ausstattung und Stellmotoren, gegebenenfalls kombiniert mit dem Prozessrechner oder einem mit dem Prozessrechner verknüpften Rechner. Als Alternative kann ein stationäres oder mitfahrendes GPS-System eingesetzt werden, wobei sie zur Erhöhung der Genauigkeit ein DGPS-System empfiehlt, das mit einer stationären Referenzstation arbeitet, um die beschafften Positionsdaten zu präzisieren bzw. kalibrieren. Die Datenübertragung oder die Übertragung von Messungen und Korrektursignalen kann drahtlos, z.B. durch Radio- oder Laserübertragung, oder auch über einen oder mehrere Kabelstränge erfolgen.
Anhand der Zeichnung werden Ausführungsformen der Erfindung erläutert. Es zeigen:
Fig. 1
einen Funktionsplan des erfindungsgemäßen Verfahrens bei einer Baumaschine in Form eines Straßenfertigers mit einer Einbaubohle konstanter Arbeitsbreite,
Fig. 2
eine schaubildartige Maschinenkonfiguration des Straßenfertiges zum Funktionsplan der Fig. 1,
Fig. 3
einen Funktionsplan zur Durchführung des Verfahrens bei einer als Straßenfertiger mit einer Ausziehbohle ausgebildeten Baumaschine,
Fig. 4
eine Maschinenkonfiguration zum Straßenfertiger passend zum Funktionsplan der Fig. 3,
Fig. 5
eine Maschinenkonfiguration als Beispiel einer Baumaschine mit an der Fahreinheit angebrachtem Messpunkt, nämlich einem Straßenfertiger mit einer Ausziehbohle,
Fig. 6
eine schematische Draufsicht auf einen Straßenfertiger in einer planungsgemäßen Trasse mit Hindernissen, die durch eine automatische Breitensteuerung der Ausziehbohle berücksichtigt werden, und
Fig. 7
eine schematische Draufsicht auf einen in einer planungsgemäßen Trasse fahrenden Straßenfertiger mit Ausziehbohle, dessen Auszieh-bohle mit variabler Arbeitsbreite arbeitet.
Anhand der Fig. 1 und 2 wird ein Verfahren zum Steuern einer selbstfahrenden Baumaschine A auf der Basis eines Funktionsplans (Fig. 1) und einer in Fig. 2 gezeigten Maschinenkonfiguration erläutert. Die Baumaschine A ist beispielsweise ein Straßenfertiger mit einer Fahreinheit M und einer Arbeitsvorrichtung B, nämlich einer an Holmen 1 geschleppten Einbaubohle mit unveränderlicher Arbeitsbreite. Die Baumaschine A ist selbstfahrend. Die Quer- und Längsneigungen der Einbaubohle sind mit Stellelementen verstellbar, wie auch die Höhenlage der Einbaubohle oberhalb des Planums. Die Einbaubohle ist in einer Linearführung 2 an den Holmen 1 quer zur Fahrtrichtung hin- und herverstellbar, und zwar mittels wenigstens eines Stellelementes 3, beispielsweise eines Hydraulikzylinders, der über eine Steuerung C1 angesteuert wird. In der Fahreinheit M ist ferner eine Steuerung C für Funktionen der Fahreinheit M vorgesehen, z.B. für die Fahrgeschwindigkeit, den Lenkwinkel etc. Von der Steuerung C2 aus sind gegebenenfalls auch Funktionen in und an der Einbaubohle steuerbar. Ferner ist bei der gezeigten Ausführungsform ein Systemrechner CPU an der Fahreinheit M vorgesehen (Fig. 2).
Die Einbaubohle weist Sensoren 4 für die Längs- und/oder Querneigung auf, die an die Steuerung C2 und/oder den Systemrechner CPU angeschlossen sind. An der Einbaubohle ist ein Messpunkt P fest angebracht, beispielsweise an einem bei einem Ende 5 der Einbaubohle stationierten Mast 6, der ein Prisma 18 trägt, das den Messpunkt P definiert. Die Fahreinheit M ist in Richtung eines Doppelpfeils 15 lenkbar. An der Fahreinheit M ist ein realer oder virtueller Referenzpunkt 9 vorgesehen.
Das nachstehend erläuterte Verfahren zum automatischen Steuern des Straßenfertigers ist auch für andere selbstfahrende Baumaschinen mit jeweils wenigstens einer Arbeitsvorrichtung zweckmäßig. Solche Baumaschinen sind, ohne den Anwendungsbereich der Erfindung einschränken zu wollen, beispielsweise Straßenfertiger mit Ausziehbohlen (Hochverdichtungsbohle oder normale Einbaubohle), Grader mit Graderschar, Gleitschalungsfertiger mit Tragrahmen, Gleitschalungen und wenigstens einer Bohle, Verkehrsflächen-Recycling-Geräte und Raupen mit gezogenem oder geschobenem Räumschild.
Zur Steuerung der Baumaschine A anhand des Messpunktes P wird ein geodätisches Positionsbestimmungssystem G eingesetzt, das über eine signal- und informationsübertragende Strecke 17 mit dem Systemrechner CPU verbunden ist. Der Systemrechner könnte extern der Baumaschine A angeordnet sein und mit der Steuerung der Baumaschine kommunizieren.
Beispiele für geodätische Positionsbestimmungssysteme, die hier zweckmäßig sind, wären das bekannte GPS-System, das satellitengeführt arbeitet, das DGPS-System, das satellitengeführt und mit einer stationären Referenzstation zur Präzisierung der Positionsbestimmungen arbeitet (DGPS = Differenzial-GPS), oder eine Totalstation, die stationär in der Nähe der Baustelle oder der planungsgemäßen Trasse, beispielsweise innerhalb eines Bereiches von 5 km angeordnet ist und nach Art eines Hochleistungs-Theodoliten mit Laserabtastung des Messpunkts P arbeitet.
Im Funktionsplan in Fig. 1 wird in einem Schritt S1 die Ist-Position des Ist-Punkts P an der Einbaubohle B in den x-, y, z-Richtungen bestimmt. Gegebenenfalls kann ein zweiter Messpunkt an der Einbaubohle oder an der Baumaschine vorgesehen und abgetastet werden.
Aus den bekannten, planungsgemäßen Daten bzw. dem planungsgemäßen Verlauf der Trasse, dem die Einbaubohle im Gelände folgen soll, werden Vorgaben bezüglich der Soll-Position des Messpunkts P generiert, d.h., es wird in einem Schritt S2 ein digitales Geländemodell vorbereitet. Der Verlauf der planungsgemäßen Trasse ist beispielsweise bestimmt durch die Verläufe der Randkanten, die Dicke, die Neigung und die Breite einer auf einem Planum einzubauenden Deckenschicht, wobei die Fahreinheit auf dem Planum fährt und die Einbaubohle den Vorgaben entsprechend oberhalb des Planums geführt wird.
Ferner wird unter Verwenden maschinenspezifischer Informationen, beispielsweise der Signale der Sensoren 4 und von Signalen, die die Höheneinstellung der Einbaubohle über dem Planum repräsentieren ein räumliches Maschinenmodell erstellt. Im Schritt S4 erfolgt mit den Planungsdaten aus dem Schritt S2 und dem räumlichen Maschinenmodell aus dem Schritt S3 ein Soll-lst-Vergleich, und zwar beispielsweise durch Berechnung im Systemrechner CPU.
Aufgrund einer festgestellten Positionsabweichung erfolgt dann eine Steuerung der Arbeitsvorrichtung, in diesem Fall der Einbaubohle. Dabei wird die Einbaubohle quer zur Fahrtrichtung in der Linearführung 2 verstellt wird. Gleichzeitig können anhand der Signale der Sensoren 4 und über die Steuerung C2 auch Längs- und/oder Querneigungs-Verstellungen und Höheneinstellungen der Einbaubohle den Soll-Werten entsprechend vorgenommen werden. Dies erfolgt in einem Schritt S5. Werden solche Verstellungen vorgenommen, dann wird in einem Schritt S6 die jeweilige Lageänderung der Einbaubohle relativ zur Fahreinheit M erfasst. In einem Schritt S7 wird aus dem Resultat des Schritts S6 eine Richtungsabweichung ermittelt, zweckmäßigerweise in Form eines Richtungsvektors 8 zwischen dem Messpunkt P und dem virtuellen oder realen Messpunkt 9 an der Fahreinheit M.
Im Schritt S8 wird die Lenkung der Fahreinheit M angesteuert, um durch eine Längsbewegung in Richtung des Doppelpfeils 15 die Fahreinheit M, z.B. entsprechend den Soll-Werten aus den Planungsdaten, automatisch zu lenken und der Arbeitsvorrichtung nachzuführen.
Anhand der Fig. 3 und 4 wird die automatische Steuerung einer Baumaschine A anhand eines Straßenfertigers mit einer sogenannten Ausziehbohle erläutert. Die die Arbeitsvorrichtung B darstellende Auszieh-Bohle wird an den Holmen 1 von der Fahreinheit M geschleppt und ist in ihrer Höhe über dem Planum, und in ihren Quer- und/oder Längsneigungen verstellbar. Sie weist einen mit den Holmen 1 verbundene Bohlengrundkörper 10 vorbestimmter Arbeitsbreite und zwei Ausziehbohlenteile 11, 12 auf, die über Stellelemente 3', 3" relativ zum Grundbohlenkörper 10 ein- und ausfahrbar sind. Der Messpunkt P ist in überhöhter Position an einem Mast 13 angebracht, der an dem einen Ausziehbohlenteil 11, vorzugsweise bei dessen äußerem Ende, fest montiert ist. Die Höhenlage des Messpunktes P ist so gewählt, dass die Totalstation T des geodätischen Positionsbestimmungssystems G auch über geländebedingte Erhöhungen oder baustellenbedingte Hindernisse den Messpunkt "sieht". Jeder Ausziehbohlenteil 11, 12 lässt sich in Richtung eines Doppelpfeils 7 quer zur Fahrtrichtung hin- und herverstellen. Die Höheneinstellungen erfolgen in Richtung eines Doppelpfeils 14. Lenkbewegungen der Fahreinheit M werden in Richtung eines Doppelpfeils 15 gesteuert. Der virtuelle bzw. reale Messpunkt 9 an der Fahreinheit M dient zum Generieren eines Richtungsvektors 8 zwischen den Messpunkten P, 9. Die Totalstation T tastet die Ist-Position des Messpunkts P beispielsweise über Laserstrahlen ab und kommuniziert mit dem nicht gezeigten Systemrechner. In der Totalstation T ist beispielsweise ein Hochleistungs-Theodolit 16 vorgesehen. Die Totalstation T kann unabängig von einem GPS-System arbeiten. Es kann aber zweckmäßig sein, Positionsinformationen eines GPS- oder eines DGPS-Systems zu verwenden.
Im Schritt S2 werden anhand von Planungsdaten Soll-Werte für die Position des Messpunkts P bzw. die Soll-Arbeitsposition generiert. Ist der Messpunkt am Ende des Ausziehbohlenteils 11 angeordnet, dann repräsentiert seine Position die Ist-Arbeitsposition des für die Trasse maßgeblichen Elements der Auszieh-Einbaubohle, z.B. der äußeren, unteren Randkante des Ausziehbohlenteils 11. Befindet sich der Messpunkt P weiter innen, dann wird in diesem Fall sein Querabstand von dem äußeren unteren Rand des Ausziehbohlenteils 11 als konstanter Wert zur Bestimmung der Ist-Arbeitsposition berücksichtigt. Im Schritt S3 wird ein räumliches Maschinenmodell erstellt, beispielsweise der Arbeitsvorrichtung B, wobei auch Informationen vom Sensor 4 und eines Höhensensors zur Höhenlage der Einbaubohle berücksichtigt werden. Dieses räumliche Maschinenmodell wird mit seiner Ist-Arbeitsposition in digitales Geländemodell gesetzt, das aus Soll-Werten der Planungsdaten generiert ist. Im Schritt S4 wird eine Positionsabweichung zwischen der Ist-Position des Messpunkts P bzw. der Ist-Arbeitsposition und der Soll-Position errechnet.
Im Schritt S5 wird auf der Basis der errechneten Positionsabweichung eine Verstellung der Einbaubohle vorgenommen. Der Ausziehbohlenteil 11 wird in Richtung des Doppelpfeils 7 um ein bestimmtes Maß quer und relativ zur Fahreinheit M verstellt. Ist eine planungsgemäße Trasse mit gleichbleibender Arbeitsbreite zu formen, dann wird im Schritt S9 der andere, gegenüberliegende Ausziehbohlenteil 12 gegensinnig verstellt, d.h. bei Ausfahren des einen Ausziehbohlenteils 11 wird der andere Ausziehbohlenteil 12 entsprechend eingefahren, und umgekehrt. Ist hingegen eine variierende Arbeitsbreite zu fahren, dann wird der andere Ausziehbohlenteil 12 individuell gesteuert, wobei seine jeweilige Lage aufgrund der maschinenspezifischen Daten oder Sensorsignale bestimmt und eingestellt wird.
Im Schritt S6 wird die durch die Verstellung des einen Ausziehbohlenteils 11 aufgetretene Lageänderung des Messpunkts P gegenüber dem Messpunkt 9 der Fahreinheit M erfasst.
Im Schritt S7 wird aus der erfassten Lageänderung die Richtungsabweichung bzw. der Richtungsvektor 8 ermittelt, und zwar im Vergleich zu der vorhergehenden Relativposition der beiden Messpunkte P, 9.
Im Schritt S8 wird schließlich die Lenkung der Fahreinheit M angesteuert, um die Fahreinheit M der Ausziehbohle nachzuführen. Bei der automatischen Lenkung der Fahreinheit können zusätzlich auch relative oder absolute Richtungsabweichungen gegenüber einer planungsgemäßen Bezugsrichtung gemessen und berücksichtigt werden, bzw. von einem Kompass, einem Richtungssensor oder von einem GPS-System gemessene Richtungsinformationen.
Im Grunde genommen wird durch die Abtastung des Messpunktes P die Ist-Arbeitsposition der Arbeitsvorrichtung, z.B. der Einbaubohle, oder eines für die planungsgemäße Trasse maßgeblichen Elements der Arbeitsvorrichtung, z.B. eines Ausziehbohlenteil-Außenrandes, erfasst, um die Arbeitsvorrichtung genau in der planungsgemäßen Trasse zu fahren. Ist der Messpunkt direkt auf dem maßgeblichen Element der Arbeitsvorrichtung angeordnet, so dass er dessen Bewegungen exakt folgt, dann repräsentiert der Messpunkt weitestgehend die Ist-Arbeitsposition. Ist der Messpunkt hingegen auf der Fahreinheit oder beispielsweise dem Holm der Einbaubohle fest angeordnet, dann werden zum Ermitteln der Ist-Arbeitsposition maschinenspezifische Daten mitberücksichtigt, um aus der Ist-Position des Messpunktes die jeweilige Ist-Arbeitsposition zu erhalten. Im letztgenannten Fall kann dies über Richtungsvektoren erfolgen, so dass beispielsweise die äußere untere Kante der Einbaubohle oder sogar das hintere Ende der Kante exakt entlang einer Linie der planungsgemäßen Trasse geführt wird. Davon ausgehend lässt sich auch die gegenüberliegende Kante führen.
In der Maschinenkonfiguration in Fig. 5 ist anhand eines Straßenfertigers mit einer über Holme 1 geschleppten Auszieh-Einbaubohle B der Messpunkt P auf einem Mast 13 in überhöhter Position an einem Holm 1 angeordnet. Es wird ein realer oder virtueller Messpunkt 19 bei der äußeren unteren Kante des einen Ausziehbohlenteils 11 oder sogar die Position des hinteren Endes 20 dieser Kante bestimmt, z.B. über einen Richtungsvektor 25 und mit entsprechenden Messungen des Sensors 4 bzw. eines Höhensensors der Einbaubohle (nicht gezeigt). Dieser reale oder virtuelle Messpunkt 19 bzw. der Endpunkt 20 werden in der planungsgemäßen Trasse geführt, und zwar z.B. durch Stellbewegungen in Richtung der Doppelpfeile 7, 14. Der andere Ausziehbohlenteil 12 wird abhängig davon, ob konstante Arbeitsbreite zu fahren ist, exakt gegensinnig verstellt, oder bei variierender planungsgemäßer Arbeitsbreite individuell. An der Fahreinheit M der Baumaschine A ist der reale oder virtuelle weitere Messpunkt 9 vorgesehen, so dass zwischen den Messpunkten 9 und P ein Richtungsvektor 8 errechenbar ist, der zum automatischen Lenken (Lenkbewegungen in Richtung des Doppelpfeils 15) der Fahreinheit M benutzt wird, um die Fahreinheit M der Arbeitsvorrichtung B nachzuführen.
Anhand Fig. 6 soll eine automatische Breitensteuerung der Arbeitsvorrichtung B, hier eine Auszieh-Einbaubohle eines Straßenfertigers, erläutert werden. Diese automatische Breitensteuerung kann ganz unabhängig von einer automatischen Führungssteuerung der Baumaschine A eingesetzt werden oder wird dieser überlagert, um Hindernisse H in der planungsgemäßen Trasse zu berücksichtigen. An dem Straßenfertiger A, beispielsweise an den Ausziehbohlenteilen 11, 12, sind Sensoren 23, z.B. Ultraschallsensoren, angeordnet, die das Planum im Hinblick auf auftauchende Hindernisse H abtasten. Dies erfolgt, während der Straßenfertiger fährt, ggfs. sogar mit der Totalstation T und dem auf dem Ausziehbohlenteil 11 angebrachten Messpunkt P automatisch gesteuert wird. Stellt beispielsweise einer der Sensoren 23 ein entgegenkommendes linksseitiges Hindernis H, z.B. einen Gully, fest, so wird das Stellelement 3' unter Berücksichtigung der Fahrgeschwindigkeit der Fahreinheit M angesteuert, um den einen Ausziehbohlenteil 11 entsprechend der gepunkteten Linie 21 um das Hindernis H herumzuführen. Entsprechend wird der andere Ausziehbohlenteil 12 von seinem Sensor 23 um rechtsseitig vorhandene Hindernisse herumgeführt. Zweckmäßigerweise wird diese bordeigene Breitensteuerung mit der automatischen Steuerung kombiniert, d.h., die Stellbewegungen des jeweiligen Ausziehbohlenteils 11 oder 12 beim Umfahren eines Hindernisses H werden bei der automatischen Steuerung ignoriert, damit die Einbaubohle dennoch entlang der planungsgemäße Trasse fährt, beispielsweise entlang einer Trassenrandlinie 22. Abtastbereiche 24 der Sensoren 23, die additiv oder alternativ auch an der Fahreinheit M angeordnet sein könnten, sind ausreichend tief und weit ausgelegt. Gegebenenfalls ist eine Mehrzahl von Sensoren vorgesehen, um genaue Aufschlüsse über die Position, Breite und Länge der Hindernisse zu gewinnen.
In Fig. 7 ist schließlich gezeigt, wie eine automatische Breitensteuerung der Arbeitsvorrichtung B, hier der Auszieh-Einbaubohle eines Straßenfertigers, mit Hilfe des geodätischen Positionsbestimmungssystems, hier einer Totalstation T, vorgenommen wird. Die genauen Koordinaten zur Lage und Größe eines Hindernisses H sind in den planungsgemäßen Daten enthalten, die bei der Steuerung verarbeitet werden. Ferner ist der Verlauf beispielsweise der planungsgemäßen Randlinie 22 mit einer Ausweichbucht 22' bekannt. Der Messpunkt P ist wie in Fig. 5 an einem Holm 1 angeordnet. Richtungsvektoren 25 und 8, dienen zur Bestimmung der Ist-Arbeitsposition des Messpunktes 19, 20 und der Ist-Position des Messpunktes 9 an der Fahreinheit M. Zusätzlich wird anhand der planungsgemäßen Daten des Hindernisses H und über den Prozessrechner CPU der Messpunkt 19, 20 des einen Ausziehbohlenteils 11 entsprechend der gepunkteten Linie 21 um das linksseitige Hindernis H herumgeführt. In der Ausweichbucht 22' wird hingegen anhand der planungsgemäßen Daten das Stellelement 3" des anderen Ausziehbohlenteils 12 verstellt, um die Ausweichbucht 22' zu formen. Dabei kann die Fahreinheit M weiterhin automatisch so gelenkt werden, dass das Hindernis H und die Ausweichbucht 22' nur durch die Verstellungen der Ausziehbohlenteile 11, 12 bewusst nach rechts gelenkt werden, in Kombination mit entsprechenden Stellbewegungen beider Ausziehbohlenteile 11, 12. Bei der anhand Fig. 7 beschriebenen automatischen Breitensteuerung der Auszieh-Einbaubohle B wird strikt nach planungsgemäß abgelegten Informationen zu Hindernissen H oder dgl. gesteuert, und zwar unter fortlaufender Bestimmung der Ist-Arbeitsposition des Messpunktes 19, 20 über den Messpunkt P.
Bei den vorstehenden Verfahrens- und Ausführungsvarianten wird jeweils mit einem geodätischen Positionsbestimmungssystem gearbeitet. Dies bedeutet in der Praxis, dass mindestens zwei solcher geodätischer Positionsbestimmungssysteme vorhanden sein müssen, weil jeweils eines zur Steuerung in einem Trassenabschnitt gebraucht wird, während das für den anschließenden Trassenabschnitt einjustiert werden muss. Als Alternative könnte in einem Trassenabschnitt die automatische Steuerung der Baumaschine mit zwei gleichzeitig arbeitenden geodätischen Positionsbestimmungssystemen vorgenommen werden, wobei das eine beispielsweise die Arbeitsvorrichtung und das andere die Fahreinheit steuert. Dann wären für das kontinuierliche Arbeiten insgesamt vier geodätische Positionsbestimmungssysteme erforderlich.

Claims (18)

  1. Verfahren zum Steuern einer selbstfahrenden Baumaschine (A), wie eines Straßenfertigers mit wenigstens einer Einbaubohle, oder einer Raupe mit einem Räumschild, einem Grader mit einer Graderschar, oder eines Gleitschalungsfertigers mit Gleitschalungen und wenigstens einer Bohle, oder einer Verkehrsflächen-Recyclingmaschine, in einer planungsgemäßen Trasse, wobei die Baumaschine eine Fahreinheit (M) und wenigstens eine mittels Stellelementen (3, 3', 3") relativ zur Fahreinheit bewegliche Arbeitsvorrichtung (B) aufweist, bei welchem Verfahren durch Vergleichen von ermittelten Ist-Positionen und Soll-Positionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, gekennzeichnet durch folgende Schritte:
    mit einem geodätischen Positionsbestimmungssystem (G, T) wird bei in der planungsgemäßen Trasse fahrender Baumaschine die Ist-Position eines an der Fahreinheit (M) oder an der Arbeitsvorrichtung (B) angeordneten Messpunktes (P) bestimmt,
    anhand der Ist-Position und mit maschinenspezifischen Lage-Informationen wird die Ist-Arbeitsposition der Arbeitsvorrichtung (B) oder eines für die planungsgemäße Trasse maßgeblichen Elements (20) der Arbeitsvorrichtung ermittelt,
    aus einem Vergleich der abgeleiteten Ist-Arbeitsposition und einer planungsgemäßen Soll-Arbeitsposition werden Positionsabweichungen festgestellt,
    aus den Positionsabweichungen werden die Korrektursignale für die Stellelemente der Arbeitsvorrichtung generiert,
    die Stellelemente werden anhand der Korrektursignale betätigt, um die Ist-Arbeitsposition zur Soll-Arbeitsposition zu bringen und die Arbeitsvorrichtung in der planungsgemäßen Trasse zu führen.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:
    ausgehend von der Soll-Arbeitsposition und mit maschinenspezifischen Lage-Informationen zur Relativlage zwischen der Arbeitsvorrichtung und der Fahreinheit (M) werden Richtungsinformationen ermittelt,
    auf der Basis der Richtungsinformationen wird die Fahreinheit (M) in der planungsgemäßen Trasse automatisch gelenkt und der Arbeitsvorrichtung (B) nachgeführt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ist-Arbeitsposition der Arbeitsvorrichtung (B) mittels des in einer festgelegten Relativlage zu dem wenigstens einen für die planungsgemäße Trasse maßgeblichen Element fest an der Arbeitsvorrichtung angebrachten Messpunkts (P) bestimmt wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ist-Arbeitsposition des wenigstens eines für die planungsgemäße Trasse maßgeblichen Elements mittels des fest an der Fahreinheit (M) angebrachten Messpunkts (P) und ermittelten maschinenspezifischen Informationen zur jeweiligen Relativlage zwischen dem Messpunkt (P) und dem maßgeblichen Element bestimmt wird.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) die relative oder die absolute Richtungsabweichung gegenüber einer planungsgemäßen Bezugsrichtung gemessen wird.
  6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) zusätzlich errechnete, aus einem digitalen Geländemodell abgeleitete, oder gemessene, z.B. von einem Kompass, einem Richtungssensor, einem GPS-gestützten System, gemessene, Richtungsinformationen berücksichtigt werden.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die räumliche Ist-Arbeitsposition der Arbeitsvorrichtung (B) in der planungsgemäßen Trasse auch durch über Sensoren (4) ermittelte Messwerte der Längs- und/oder Querneigung der Arbeitsvorrichtung bestimmt wird, und dass aus einem Vergleich eines anhand der räumlichen Ist-Arbeitsposition erstellten Arbeitsvorrichtungsmodells und der räumlichen Soll-Arbeitsposition in einem die planungsgemäße Trasse enthaltenden digitalen Geländemodell Stellsignale für die Stellelemente der Längs- und/oder Querneigung der Arbeitsvorrichtung abgeleitet werden.
  8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass generierte planungsgemäße, maschinenspezifische und geodätische Daten mit wenigstens einem stationär oder in der Baumaschine (A) vorgesehenen Systemrechner CPU verarbeitet werden.
  9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Richtungsinformationen zur automatischen Lenkung der Fahreinheit (M) in Form von auf den Messpunkt (P) bezogenen Richtungsvektoren (8, 25) ermittelt werden.
  10. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer geschleppten Einbaubohle mit unveränderlicher Arbeitsbreite der Messpunkt (P) an der Einbaubohle (B) angeordnet und die Einbaubohle mit den Korrektursignalen in einer Linear-Querführung (2), z.B. der Fahreinheit (M), mit wenigstens einem Linear-Stellelement (3) hin- und herverstellt wird, und dass zusätzlich die Längs- oder Quemeigung der Einbaubohle entsprechend planungsgemäßer Vorgaben, z.B. im digitalen Geländemodell, verstellt wird bzw. werden.
  11. Verfahren nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer eine Breitenverstelleinrichtung (3', 3") aufweisenden Auszieh-Einbaubohle mit Ausziehbohlenteilen (11, 12) die Breitenverstelleinrichtung (3', 3") mit den Korrektursignalen angesteuert wird, dass für eine planungsgemäß gleichbleibende Arbeitsbreite der Trasse der andere Ausziehbohlenteil (12) von der Breitenverstelleinrichtung (3") exakt gegensinnig zum einen Ausziehbohlenteil (11) oder für eine planungsgemäß variierende Arbeitsbreite der andere Ausziehbohlenteil (12) individuell relativ zum einen Ausziehbohlenteil (11) verstellt wird, und dass die Längs- und/oder Querneigung der Einbaubohle entsprechend planungsgemäßer Vorgaben verstellt wird, bzw. werden.
  12. Verfahren zum Steuern eines selbstfahrenden Straßenfertigers in einer planungsgemäßen Trasse, wobei der Straßenfertiger eine Fahreinheit (M) und wenigstens eine mittels Stellelementen relativ zur Fahreinheit bewegliche Arbeitsvorrichtung in Form einer Einbaubohle aufweist, bei dem durch Vergleichen von ermittelten Ist-Positionen und Soll-Positionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, dadurch gekennzeichnet, dass mittels eines geodätischen Positionsbestimmungssystems (G; T) fortlaufend Positionsabweichungen zwischen der Ist-Arbeitsposition der Einbaubohle (B) und der planungsgemäßen Soll-Arbeitsposition abgeleitet und die Stellelemente zumindest auf der Basis der abgeleiteten Positionsabweichungen angesteuert werden, um die Ist-Arbeitsposition zur Soll-Arbeitsposition zu bringen, und dass auf der Basis der mit Hilfe des geodätischen Positionsbestimmungssystems ermittelten Ist-Arbeitsposition der Einbaubohle oder eines für die planungsgemäße Trasse maßgeblichen Elements (19, 20) der Einbaubohle zum Umfahren planungsgemäßer Hindernisse (H) im Verlauf der planungsgemäßen Trasse eine automatische Breitensteuerung der Einbaubohle (B) vorgenommen wird, und dass bei der automatischen Breitensteuerung die Einbaubohle das Hindernis (H) entweder mit gleichbleibender Arbeitsbreite umfährt oder seine Arbeitsbreite vorübergehend nur an der Seite des Hindernisses (H) reduziert.
  13. Verfahren zum Steuern eines selbstfahrenden Straßenfertigers in einer planungsgemäßen Trasse, wobei der Straßenfertiger eine Fahreinheit (M) und als Arbeitsvorrichtung (B) wenigstens eine Auszieh-Einbaubohle mit durch Stellelemente (3', 3") beweglichen Ausziehbohlenteilen (11, 12) aufweist, dadurch gekennzeichnet, dass mit an dem Straßenfertiger angeordneten Sensoren (23) eine automatische Breitensteuerung der Auszieh-Einbaubohle (B) vorgenommen wird, bei der entlang der planungsgemäßen Trasse entgegenkommende Hindernisse von den Sensoren festgestellt und Stellelemente (3', 3") entsprechend der Breite und Länge der Hindernisse (H), automatisch angesteuert werden, und dass bei der automatischen Breitensteuerung das Hindernis (H) entweder mit gleichbleibender Arbeitsbreite umfahren oder die Arbeitsbreite vorübergehend nur an der Seite des Hindernisses reduziert wird.
  14. Straßenfertiger mit einer Fahreinheit (M), einer über Holme (1) an die Fahreinheit (M) gekoppelten, geschleppten Einbaubohle und mit Längs- und Querneigungssensoren (4) an der Einbaubohle, wobei die Einbaubohle mit fester Arbeitsbreite in einer Linearquerführung mit Stellelementen (3) hin- und herverstellbar ist oder zur Veränderung der Arbeitsbreite mit Stellelementen (3', 3") aus- und einfahrbare Abziehbohlenteile (11, 12) aufweist, dadurch gekennzeichnet, dass an dem Straßenfertiger ein aufrechter, einen für ein stationäres, geodätisches, wenigstens einen Prozessrechner (CPU) umfassendes Positionsbestimmungssystem vorgesehenen Messpunkt (P) tragender Mast (13) vorgesehen ist, dass an der Fahreinheit (M) bzw. an der Fahreinheit und an der Einbaubohle (B) wenigstens ein realer oder virtueller Referenzpunkt (9, 19, 20) zum Generieren wenigstens eines Richtungsvektors (8, 25) zwischen dem Messpunkt (P) und dem Referenzpunkt (9, 19, 21) vorgesehen ist.
  15. Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf der mit unveränderbarer Arbeitsbreite in der Linearquerführung verstellbaren Einbaubohle angebracht ist.
  16. Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf einem Ausziehbohlenteil (11, 12) angebracht ist.
  17. Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf einem Holm (1) angebracht ist.
  18. Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Referenzpunkt (19) an der Arbeitsvorrichtung (B) das in Fahrtrichtung hinterste Ende (20) der unteren äußeren Einbaubohlenkante bzw. Glättblechkante ist.
EP00101014A 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger Expired - Lifetime EP1118713B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK00101014T DK1118713T3 (da) 2000-01-19 2000-01-19 Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine
DE2000508220 DE50008220D1 (de) 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger
AT00101014T ATE279584T1 (de) 2000-01-19 2000-01-19 Verfahren zum steuern einer baumaschine bzw. eines strassenfertigers und strassenfertiger
EP00101014A EP1118713B1 (de) 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger
JP2001011974A JP2001262611A (ja) 2000-01-19 2001-01-19 自走式建設機械を計画されたルートにおいて制御する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00101014A EP1118713B1 (de) 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger

Publications (2)

Publication Number Publication Date
EP1118713A1 true EP1118713A1 (de) 2001-07-25
EP1118713B1 EP1118713B1 (de) 2004-10-13

Family

ID=8167660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00101014A Expired - Lifetime EP1118713B1 (de) 2000-01-19 2000-01-19 Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger

Country Status (5)

Country Link
EP (1) EP1118713B1 (de)
JP (1) JP2001262611A (de)
AT (1) ATE279584T1 (de)
DE (1) DE50008220D1 (de)
DK (1) DK1118713T3 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358645A1 (de) * 2003-12-15 2005-07-14 Joseph Voegele Ag Verfahren zum Steuern eines Straßenfertigers
DE102005007153A1 (de) * 2005-02-16 2006-08-24 Bjj Kleinmaschinen Gmbh Vorrichtung zur Bearbeitung einer Reitbahn
DE102009059106A1 (de) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
US8762010B2 (en) 2009-08-18 2014-06-24 Caterpillar Inc. Implement control system for a machine
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
US9181660B2 (en) 2012-01-25 2015-11-10 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a civil engineering machine
DE102014010837A1 (de) * 2014-07-24 2016-01-28 Dynapac Gmbh Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger
US9551115B2 (en) 2014-12-19 2017-01-24 Wirtgen Gmbh Transition on the fly
US9719217B2 (en) 2014-08-28 2017-08-01 Wirtgen Gmbh Self-propelled construction machine and method for visualizing the working environment of a construction machine moving on a terrain
US9896810B2 (en) 2014-08-28 2018-02-20 Wirtgen Gmbh Method for controlling a self-propelled construction machine to account for identified objects in a working direction
US9915041B2 (en) 2014-08-28 2018-03-13 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
EP3333318A1 (de) * 2016-12-07 2018-06-13 Wirtgen GmbH Ein breitenveränderlicher automatischer übergang
EP3434825A1 (de) * 2017-07-27 2019-01-30 Joseph Vögele AG Lenkassistenz für einen strassenfertiger
DE102017012010A1 (de) * 2017-12-22 2019-06-27 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
CN113581175A (zh) * 2021-08-19 2021-11-02 日照公路建设有限公司 一种道路施工中多机型工程机械联动作业方法及系统
US11459712B2 (en) 2019-12-19 2022-10-04 Wirtgen Gmbh Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas
US11572661B2 (en) 2019-07-04 2023-02-07 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US11774965B2 (en) 2018-08-16 2023-10-03 Wirtgen Gmbh Slipform paver and method for operating a slipform paver
US11885881B2 (en) 2018-11-02 2024-01-30 Moba Mobile Automation Ag Sensor system for a road finishing machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672122A1 (de) * 2004-12-17 2006-06-21 Leica Geosystems AG Verfahren und Vorrichtung vom Kontrollieren einer Strassenbearbeitungsmaschine
GB2422389A (en) * 2005-01-24 2006-07-26 Strainstall Group Ltd Ground engineering apparatus and method
US9550522B2 (en) 2015-02-19 2017-01-24 Caterpillar Paving Products Inc. Compactor turning speed limiter
JP2017115387A (ja) * 2015-12-24 2017-06-29 株式会社Nippo 建設機械自動制御システム
JP6701002B2 (ja) * 2016-06-23 2020-05-27 株式会社クボタ 走行支援システム及び作業車
WO2018051742A1 (ja) 2016-09-16 2018-03-22 株式会社小松製作所 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1151531B (de) 1957-06-18 1963-07-18 Impresa Pizzarotti & C S R L Vorrichtung zum Steuern der Hoehenlage des Einbauwerkzeuges von Strassendeckenfertigern
EP0542297B1 (de) 1991-11-15 1995-04-12 MOBA-electronic Gesellschaft für Mobil-Automation mbH Ultraschallsensor-Regeleinrichtung für einen Strassenfertiger
US5549412A (en) * 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5925085A (en) * 1996-10-23 1999-07-20 Caterpillar Inc. Apparatus and method for determining and displaying the position of a work implement
DE29918747U1 (de) * 1999-10-25 2000-02-24 MOBA - Mobile Automation GmbH, 65604 Elz Vorrichtung zum Steuern eines Straßenfertigers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1151531B (de) 1957-06-18 1963-07-18 Impresa Pizzarotti & C S R L Vorrichtung zum Steuern der Hoehenlage des Einbauwerkzeuges von Strassendeckenfertigern
EP0542297B1 (de) 1991-11-15 1995-04-12 MOBA-electronic Gesellschaft für Mobil-Automation mbH Ultraschallsensor-Regeleinrichtung für einen Strassenfertiger
US5549412A (en) * 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5925085A (en) * 1996-10-23 1999-07-20 Caterpillar Inc. Apparatus and method for determining and displaying the position of a work implement
DE29918747U1 (de) * 1999-10-25 2000-02-24 MOBA - Mobile Automation GmbH, 65604 Elz Vorrichtung zum Steuern eines Straßenfertigers

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544354A3 (de) * 2003-12-15 2007-11-14 Joseph Voegele AG Verfahren zum Steuern eines Strassenfertigers
DE10358645A1 (de) * 2003-12-15 2005-07-14 Joseph Voegele Ag Verfahren zum Steuern eines Straßenfertigers
DE102005007153A1 (de) * 2005-02-16 2006-08-24 Bjj Kleinmaschinen Gmbh Vorrichtung zur Bearbeitung einer Reitbahn
US8762010B2 (en) 2009-08-18 2014-06-24 Caterpillar Inc. Implement control system for a machine
US8888402B2 (en) 2009-12-18 2014-11-18 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine
EP2336424A3 (de) * 2009-12-18 2013-07-31 Wirtgen GmbH Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
US8613566B2 (en) 2009-12-18 2013-12-24 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine
US8388263B2 (en) 2009-12-18 2013-03-05 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine
DE102009059106A1 (de) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine
US9181660B2 (en) 2012-01-25 2015-11-10 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a civil engineering machine
US9598080B2 (en) 2012-01-25 2017-03-21 Wirtgen Gmbh Self-propelled civil engineering machine and method of controlling a civil engineering machine
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US11761763B2 (en) 2012-10-12 2023-09-19 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US11313679B2 (en) 2012-10-12 2022-04-26 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US10746546B2 (en) 2012-10-12 2020-08-18 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US10180322B2 (en) 2012-10-12 2019-01-15 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9970164B2 (en) 2013-05-23 2018-05-15 Wirtgen Gmbh Milling machine with location indicator system
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
US9359729B2 (en) 2013-05-23 2016-06-07 Wirtgen Gmbh Milling machine with location indicator system
DE102014010837A1 (de) * 2014-07-24 2016-01-28 Dynapac Gmbh Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger
US10273642B2 (en) 2014-08-28 2019-04-30 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US9896810B2 (en) 2014-08-28 2018-02-20 Wirtgen Gmbh Method for controlling a self-propelled construction machine to account for identified objects in a working direction
US9915041B2 (en) 2014-08-28 2018-03-13 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US9719217B2 (en) 2014-08-28 2017-08-01 Wirtgen Gmbh Self-propelled construction machine and method for visualizing the working environment of a construction machine moving on a terrain
US11619011B2 (en) 2014-08-28 2023-04-04 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US11072893B2 (en) 2014-08-28 2021-07-27 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US10161088B2 (en) 2014-12-19 2018-12-25 Wirtgen Gmbh Transition on the fly
US9551115B2 (en) 2014-12-19 2017-01-24 Wirtgen Gmbh Transition on the fly
US9797099B2 (en) 2014-12-19 2017-10-24 Wirtgen Gmbh Transition on the fly
CN108166356A (zh) * 2016-12-07 2018-06-15 维特根有限公司 可变宽度的自动转变
US10253461B2 (en) 2016-12-07 2019-04-09 Wirtgen Gmbh Variable width automatic transition
EP3333318A1 (de) * 2016-12-07 2018-06-13 Wirtgen GmbH Ein breitenveränderlicher automatischer übergang
EP3434825A1 (de) * 2017-07-27 2019-01-30 Joseph Vögele AG Lenkassistenz für einen strassenfertiger
US11029704B2 (en) 2017-12-22 2021-06-08 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
DE102017012010A1 (de) * 2017-12-22 2019-06-27 Wirtgen Gmbh Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine
US11774965B2 (en) 2018-08-16 2023-10-03 Wirtgen Gmbh Slipform paver and method for operating a slipform paver
US11885881B2 (en) 2018-11-02 2024-01-30 Moba Mobile Automation Ag Sensor system for a road finishing machine
US11572661B2 (en) 2019-07-04 2023-02-07 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US11459712B2 (en) 2019-12-19 2022-10-04 Wirtgen Gmbh Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas
US11795633B2 (en) 2019-12-19 2023-10-24 Wirtgen Gmbh Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas
CN113581175A (zh) * 2021-08-19 2021-11-02 日照公路建设有限公司 一种道路施工中多机型工程机械联动作业方法及系统

Also Published As

Publication number Publication date
ATE279584T1 (de) 2004-10-15
DK1118713T3 (da) 2005-01-10
DE50008220D1 (de) 2004-11-18
EP1118713B1 (de) 2004-10-13
JP2001262611A (ja) 2001-09-26

Similar Documents

Publication Publication Date Title
EP1118713B1 (de) Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger
EP1856329B1 (de) Verfahren zur Steuerung einer Baumaschine und Baumaschine mit einem Steuerungssystem
EP3741914B1 (de) Maschinenzug aus einer strassenfräsmaschine und einem strassenfertiger und verfahren zum betreiben einer strassenfräsmaschine und eines strassenfertigers
EP1825064B1 (de) Verfahren und vorrichtung zum kontrollieren einer strassenbearbeitungsmaschine
DE69934756T2 (de) Vorrichtung und Verfahren zum dreidimensionalen Profilieren
DE102011001542B4 (de) Steuerung und entsprechendes Verfahren für eine Teermaschine
DE69834187T2 (de) Kontrolle der schräglage in querrichtung einer mobilen maschine
EP2562309B1 (de) Straßenfertiger mit Messvorrichtung
EP3048199B2 (de) Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht
DE112009001767B4 (de) Straßenfertigungsmaschinen-Steuerung und Verfahren
EP4056758B1 (de) Verfahren zum fertigen eines strassenbelags und asphaltiersystem
EP3480362B1 (de) Strassenwalze und verfahren zur bestimmung der einbauschichtdicke
DE2009427C3 (de) Gleisloser Straßenfertiger zum Verbreitern bereits vorhandener Straßendecken
EP3587667A1 (de) Strassenfertiger mit projektor als navigationshilfe
DE20009459U1 (de) Straßenbauvorrichtung mit automatischem Steuerungssystem zur Schalungspositionierung
DE102019121416A1 (de) Navigationssystem für eine maschine
EP3835485B1 (de) Messsystem für eine baumaschine
DE102021106005A1 (de) Auf der relativen geschwindigkeit basiertes aktorgeschwindigkeitskalibriersystem
DE29918747U1 (de) Vorrichtung zum Steuern eines Straßenfertigers
EP1179636A1 (de) Strassenfertiger und Einbauverfahren
DE19951296C2 (de) Vorrichtung und Verfahren zum Steuern eines Strassenfertigers
DE19921761B4 (de) Verfahren und Vorrichtung zum Verstellen des Arbeitsabstandes
DE19951297C1 (de) Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht
DE102014010837A1 (de) Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger
DE29908429U1 (de) Vorrichtung zum Verstellen des Arbeitsabstandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041013

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUGNION S.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50008220

Country of ref document: DE

Date of ref document: 20041118

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050120

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20041013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: JOSEPH VOGELE A.G.

Effective date: 20050131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: JOSEPH *VOGELE A.G.

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20111130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50008220

Country of ref document: DE

Owner name: JOSEPH VOEGELE AG, DE

Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE

Effective date: 20120217

Ref country code: DE

Ref legal event code: R082

Ref document number: 50008220

Country of ref document: DE

Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE

Effective date: 20120217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190129

Year of fee payment: 20

Ref country code: NL

Payment date: 20190129

Year of fee payment: 20

Ref country code: DE

Payment date: 20190129

Year of fee payment: 20

Ref country code: IT

Payment date: 20190131

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190129

Year of fee payment: 20

Ref country code: DK

Payment date: 20190129

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50008220

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20200119

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200118

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG