EP1118713A1 - Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger - Google Patents
Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger Download PDFInfo
- Publication number
- EP1118713A1 EP1118713A1 EP00101014A EP00101014A EP1118713A1 EP 1118713 A1 EP1118713 A1 EP 1118713A1 EP 00101014 A EP00101014 A EP 00101014A EP 00101014 A EP00101014 A EP 00101014A EP 1118713 A1 EP1118713 A1 EP 1118713A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screed
- working
- driving unit
- width
- working device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000010276 construction Methods 0.000 title claims description 35
- 238000012937 correction Methods 0.000 claims abstract description 11
- 238000003079 width control Methods 0.000 claims description 15
- 239000013598 vector Substances 0.000 claims description 12
- 238000004064 recycling Methods 0.000 claims description 4
- 239000010426 asphalt Substances 0.000 claims 1
- 238000009499 grossing Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 9
- 230000033001 locomotion Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029305 taxis Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2045—Guiding machines along a predetermined path
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/004—Devices for guiding or controlling the machines along a predetermined path
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/841—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine
- E02F3/842—Devices for controlling and guiding the whole machine, e.g. by feeler elements and reference lines placed exteriorly of the machine using electromagnetic, optical or photoelectric beams, e.g. laser beams
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/76—Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
- E02F3/80—Component parts
- E02F3/84—Drives or control devices therefor, e.g. hydraulic drive systems
- E02F3/844—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically
- E02F3/847—Drives or control devices therefor, e.g. hydraulic drive systems for positioning the blade, e.g. hydraulically using electromagnetic, optical or acoustic beams to determine the blade position, e.g. laser beams
Definitions
- the invention relates to a method according to the preamble of patent claim 1, 11 and 12 and a paver according to claim 13.
- Construction machines affected here include road pavers, graders, Crawlers, slipform pavers and traffic area recycling machines where the working device works the subsoil to a planned route to form, with the driving unit acting as a carrier of the working device, the necessary Applying propulsive force and taking the direction and an adjustment the longitudinal and / or transverse slope and / or working width of the working device is possible on the driving unit.
- the screed With a paver, the screed has the material evenly over the Spread, compact and smooth the width. Using a sensor The screed is leveled with the control system The target values are adjusted in height and / or cross slope. When using a extending screed the working width can also be adjusted.
- guide wires representing the desired height and course (EP-B-542 297) stretched along the planned route, which are scanned by sensors, to get information on leveling the screed.
- the high effort for adjusting the guide wires is disadvantageous. So far, the others have been similar Construction machines of the above-mentioned group controlled. Some construction machines are automatically steered, with a guide wire providing directional information. At Automatic steering is not absolutely necessary for graders and caterpillars; however the working device is still along the planned route Taxes.
- the paver is made of Hand directed.
- the screed is leveled using two guide wires without guide wires stationary telescopes for observing height marks on the screed and via control devices on the telescopes, which the adjustment devices control the screed.
- a Measuring point recorded on the driving unit.
- a machine model is created with which the position of the construction machine is defined in a digital terrain model.
- the actual data can be compared with target data from the planning.
- Position deviations determined in the process are used to control control elements.
- For slip shift pavers e.g. the steering cylinders and the lifting cylinders of the height adjustment of the support frame controlled.
- Automatic guidance of the construction machine in the field and leveling of the working device still need a guidewire or similar reference element for deriving directional information and thus a considerable measurement effort.
- precise steering is difficult and steering errors can affect the accuracy of the settings of the working device significantly impair if the driving unit is primarily guided and the working device is secondary the driving unit is tracked.
- the invention has for its object a method of the type mentioned to create with the working device a construction machine without guide wires or Earth-based reference elements with high working accuracy automatically in one the planned route is mobile, and an automatically precisely controllable one Specify paver.
- the task is with the features of claim 1, the sibling Claims 12 and 13, and the independent claim 14 solved.
- the working device of the construction machine exactly in the planned route. Guide wires or earthbound Reference elements are not required. Nevertheless, the planned The route was created very precisely because the work fixture was used with the positioning system or an element of the Working device guided transversely to the direction of travel and in its height and inclined position is, and the driving unit only in the second line of the working device can be. Thereby the knowledge is taken into account that it is for high work accuracy it is important to control the work equipment primarily, and only secondarily the driving unit, since steering movements of the driving unit and made via the driving unit Adjustments of the working device would be too imprecise.
- the position of the working device or that for the planned one is determined via the measuring point
- the route determines the essential element of the work equipment and in addition to the position information of the measuring point additional information relevant to the location of the working device, for example via sensors, procured and used for control.
- automatic width control takes place the screed using the planned data of obstacles, for example Gullies or the like, the control elements of the screed for driving around of the obstacle. It is possible to overcome an obstacle with either Bypass working width, or the working width in the area of the obstacle to reduce or enlarge only on one side.
- the automatic width control has no influence on the automatic control of the screed along the planned route. With the automatic width control, one-sided or double-sided parking or alternative bays or traffic route constrictions shape, the automatic width control of the guide of the Screed is superimposed along the planned route. This method for automatic width control is of independent inventive importance.
- the paver according to claim 14 is for performing a fully automatic Control along the planned route with the help of a geodetic positioning system designed. Regardless of where the measurement point is supporting mast (on the drive unit or on the working device), is always the real or virtual reference point on the screed or at one for the planned one
- the route determines the relevant element and this reference point controlled that the screed forms the planned route.
- the driving unit can also be steered automatically. That for the design element is a lower outer edge, for example the screed or the rear end point of this lower outer edge, the should be routed along the planned edge line of the route. Largely the working width is independent of the driving movement of the driving unit Control elements of the screed parts in the transverse direction in the planned route adjustable, and the transverse and longitudinal inclinations of the screed are also remotely controlled adjustable.
- the position of this element is a constant for the control. Changes this relative position, e.g. in the transverse direction, the measurement point is opened again the element for controlling the construction machine that is decisive for the planned route closed (claim 3).
- the actual working position for control purposes via the measuring point determined, taking into account machine-specific information. For example, a calculation is made in the construction machine Sensors determined where the element of the working device that is decisive for the route is located precisely around this element and therefore the working device to run in the planned route.
- relative or automatic steering of the driving unit measured absolute directional deviations from a planned reference direction, and, if they exceed a tolerance range, for automatic Steering used.
- a Direction sensor or a GPS-based system measured direction information be taken into account in the automatic steering. But that's always the case precise guidance of the working device in the foreground and becomes the driving unit of the Work device tracked. This can result in inaccurate steering movements not on the positioning of the working device in the planned route impact or simply be compensated.
- the spatial actual working position of the working device to determine a work device model in a the planned one
- To set the digital terrain model containing the route and from a comparison Derive control or correction signals for the control elements of the working device and to control the working device.
- sensors for longitudinal and / or Bank of the working device are used, the necessary additional information deliver.
- the abundance of the total data obtained for the control processed with at least one system computer, the stationary or in the construction machine itself can be provided.
- special direction vectors are determined, from which correction signals for automatic steering of the driving unit.
- the measurement point is expediently arranged on the screed to always keep the location, for example knowing a lower outer plank edge.
- the measuring point can also be at the Driving unit or be arranged on a spar of the screed, then using Known machine-specific information or information derived from sensors from the measuring point the position of the screed or the outer one Edge of the screed calculated (claim 10).
- the other screed part is either adjusted in exactly the opposite direction to a screed section, in order to achieve a constant working width, or is even adjusted individually, to achieve a working width that varies according to plan.
- the Longitudinal and / or transverse inclination of the screed in accordance with the planned specifications adjusted to keep the extending screed exactly in the planned route to drive.
- the measuring point can either be on the screed, expediently even on a screed section, on the drive unit or on a spar of the screed be arranged (claim 11).
- the mast carrying the measuring point arranged on the screed which can be adjusted with the working width that cannot be changed, so that control movements required for control are clearly traceable.
- the mast carrying the measuring point is on a screed part arranged. Control movements caused to control are so directly traceable via the measuring point.
- the mast carrying the measuring point is on a spar of the screed appropriate.
- the actual working position is controlled with additional information determined, for example, representing strokes of the control elements Signals and / or calculated direction vectors.
- the arrangement of the measuring point on a mast offers the advantage, the measuring point even with uneven terrain or obstacles with the geodetic positioning system to "see”. For this, the mast should appear or tower over obstacles caused by the construction site.
- the method according to the invention can be used with a grader in order to the rotatability of the graders in the planned route drive.
- the line of motion of the other end of the group of degrees is by calculation known at any time.
- a caterpillar with a pushed or pulled Dozer blade can be guided exactly in the planned route.
- the slipform and / or the screed guided in the planned route It can be changed or unchangeable Working width.
- a geodetic position determination system is used for a route section Total station installed in the vicinity of the planned route, i.e. a kind of theodolite with appropriate equipment and actuators, if necessary combined with the process computer or one with the process computer linked calculator.
- a stationary or moving GPS system can be used are used, using a DGPS system to increase accuracy recommends that you work with a stationary reference station to get the procured Precise or calibrate position data.
- the data transfer or the transmission of measurements and correction signals can be wireless, e.g. through radio or laser transmission, or via one or more cable harnesses.
- Construction machine A is, for example, a paver with a driving unit M and a working device B, namely one on bars 1 towed screed with constant working width.
- the construction machine A is self-driving.
- the transverse and longitudinal slopes of the screed are included Adjustable elements, as well as the height of the screed above the Flat surface.
- the screed is in a linear guide 2 on the spars 1 transverse to Direction of travel back and forth adjustable, by means of at least one control element 3, for example a hydraulic cylinder which is controlled via a control C1 becomes.
- a controller C for functions of the driving unit M is provided, e.g. for the driving speed, the steering angle etc. From the Control C2 off may also have functions in and on the screed controllable.
- a system computer CPU is on the driving unit M provided (Fig. 2).
- the screed has sensors 4 for the longitudinal and / or transverse inclination the control C2 and / or the system computer CPU are connected.
- a measuring point P for example at one at one End 5 of the screed stationed mast 6, which carries a prism 18, the measuring point P defined.
- the driving unit M can be steered in the direction of a double arrow 15. On The driving unit M is provided with a real or virtual reference point 9.
- the procedure below for automatically controlling the paver is also for other self-propelled construction machines with at least one each Appropriate working device.
- construction machines are without the scope want to restrict the invention, for example with pavers Extending screeds (high compaction screed or normal screed), graders with graders, Slipform paver with supporting frame, slipforms and at least one Screed, traffic area recycling equipment and caterpillars with drawn or pushed Dozer blade.
- a geodetic Positioning system G used which via a signal and information transmitting Route 17 is connected to the system computer CPU.
- the system computer could be arranged externally of the construction machine A and with the controller communicate with the construction machine.
- GPS differential GPS
- the actual position of the actual point P is turned on in a step S1 the screed B in the x, y, z directions. If necessary, a second measuring point provided on the screed or on the construction machine and be scanned.
- the route that the screed is to follow in the field is specified with regard to the target position of the measuring point P is generated, i.e. it becomes a digital one in a step S2 Prepared terrain model.
- the course of the planned route is, for example determined by the course of the edges, the thickness, the inclination and the width of a ceiling layer to be installed on a subgrade, the driving unit drives on the formation and the screed above the specifications of the formation is managed.
- Step S4 takes place with the planning data from step S2 and the spatial machine model a target-actual comparison from step S3, for example by calculation in the CPU system computer.
- step S5 Become such Adjustments made, then the respective change in position in step S6 of the screed relative to the driving unit M.
- step S7 is off the result of step S6 determines a directional deviation, expediently in the form of a direction vector 8 between the measuring point P and the virtual one or real measuring point 9 on the driving unit M.
- step S8 the steering of the driving unit M is controlled by a longitudinal movement in the direction of the double arrow 15, the driving unit M, e.g. according to the Target values from the planning data, automatically steer and the working device track.
- the automatic control of a construction machine A is based of a paver with a so-called extending screed.
- the the Extending screed representing working device B is on the spars 1 of the driving unit M towed and is above the level in its height, and in its transverse and / or longitudinal inclinations adjustable. It has one connected to the spars 1 Screed base body 10 of predetermined working width and two extending screed parts 11, 12, which can be extended and retracted relative to the basic screed body 10 via adjusting elements 3 ', 3 " are.
- the measuring point P is attached to a mast 13 in an elevated position, the one on a screed part 11, preferably in the outer End, is firmly mounted.
- the height of the measuring point P is selected so that the Total station T of the geodetic positioning system G also via terrain-related Elevations or construction site-related obstacles "see” the measuring point.
- Each screed part 11, 12 can be transverse to the direction of a double arrow 7 Move the direction of travel back and forth.
- the height settings are made in the direction of a Double arrow 14.
- Steering movements of the driving unit M are in the direction of a Double arrow 15 controlled.
- the virtual or real measuring point 9 on the driving unit M is used to generate a direction vector 8 between the measuring points P, 9.
- Die Total station T scans the actual position of measuring point P, for example using laser beams and communicates with the system computer, not shown. In the total station For example, a high-performance theodolite 16 is provided.
- the total station T can work independently from a GPS system. But it can be useful be using position information from a GPS or DGPS system.
- step S2 target values for the position of the Measuring point P or the target working position generated. Is the measuring point at the end of the Extending screed part 11, then its position represents the actual working position the decisive element of the extending screed for the route, e.g. the outer, lower edge of the screed part 11. Is the Measuring point P further inside, then in this case its transverse distance from the outside lower edge of the screed part 11 as a constant value for determining the Actual work position taken into account.
- step S3 a spatial machine model created, for example, the working device B, with information from the sensor 4 and a height sensor for the height of the screed. This spatial machine model is converted into digital with its actual working position Terrain model set, which is generated from target values of the planning data. in the Step S4 becomes a position deviation between the actual position of the measuring point P or the actual working position and the target position.
- step S5 an adjustment is made on the basis of the calculated position deviation the screed.
- the screed part 11 is in the direction of Double arrow 7 adjusted transversely and relative to the driving unit M by a certain amount.
- the other, opposite screed part 12 is adjusted in opposite directions, i.e. when one screed part 11 is extended, the other screed part becomes 12 retracted accordingly, and vice versa.
- the other screed part 12 is controlled individually, where its respective location based on the machine-specific data or Sensor signals is determined and set.
- step S6 the one that occurs due to the adjustment of the one screed part 11 Change in position of measuring point P compared to measuring point 9 of the driving unit M captured.
- step S7 the change in position or the directional deviation or the direction vector 8 is determined, specifically in comparison to the previous relative position of the two measuring points P, 9.
- step S8 the steering of the driving unit M is controlled by the Tracking unit M of the extending screed.
- the automatic steering of the Driving unit can also relative or absolute directional deviations measured and taken into account in relation to a planned reference direction by a compass, a direction sensor or a GPS system measured direction information.
- the scanning of measuring point P becomes the actual working position the working device, e.g. the screed, or one for the planned one Line of relevant elements of the working device, e.g. one Extending screed part outer edge, captured to the working device exactly in the planned Route to drive.
- the measuring point directly on the relevant element arranged the working device so that it exactly its movements follows, then the measuring point largely represents the actual working position.
- the Measuring point on the driving unit or, for example, the screed spar fixedly arranged, then machine-specific to determine the actual work position
- Data also taken into account to determine the respective position from the actual position Obtain actual work position. In the latter case, this can be done using direction vectors done so that, for example, the outer lower edge of the screed or even the rear end of the edge exactly along a line of the planned one Route is maintained.
- the opposite can also be used as a starting point Edge.
- Fig. 5 In the machine configuration in Fig. 5 is based on a paver with a Spars 1 towed extending screed B the measuring point P on a mast 13 arranged in an elevated position on a spar 1. It becomes real or virtual Measuring point 19 at the outer lower edge of one screed part 11 or even the position of the rear end 20 of that edge, e.g. about one Direction vector 25 and with corresponding measurements of the sensor 4 or one Screed height sensor (not shown). This real or virtual measuring point 19 and the end point 20 are routed in the planned route e.g. by movements in the direction of the double arrows 7, 14. The other screed part 12 becomes exactly the opposite direction depending on whether a constant working width is to be traveled adjusted, or individually if the working width varies according to plan.
- the real or virtual further measuring point is on the driving unit M of the construction machine A. 9 is provided, so that a direction vector between the measurement points 9 and P. 8 can be calculated, for automatic steering (steering movements in the direction of the double arrow 15) of the driving unit M is used to move the driving unit M of the working device B to track.
- FIG. 6 is an automatic width control of the working device B, here an extendable screed of a paver to be explained.
- This automatic Width control can be completely independent of an automatic guidance control the construction machine A are used or this is superimposed to Obstacles H in the planned route must be taken into account.
- FIG. 7 shows how an automatic width control of the working device B, here the extendable screed of a paver, with the help of the geodetic Position determination system, here a total station T, made becomes.
- the exact coordinates for the location and size of an obstacle H are in the contain planned data that are processed by the controller. Further is the course of, for example, the planned edge line 22 with an alternative bay 22 'known.
- the measuring point P is arranged on a spar 1 as in FIG. 5.
- Direction vectors 25 and 8 are used to determine the actual working position of the Measuring point 19, 20 and the actual position of measuring point 9 on the driving unit M.
- the planned data of the obstacle H and over the process computer CPU corresponding to the measuring point 19, 20 of the one screed part 11 the dotted line 21 around the left-hand obstacle H.
- the evasive bay 22 ' becomes the actuating element based on the planned data 3 "of the other screed part 12 is adjusted to the evasive bay 22 ' to form.
- the driving unit M can continue to be steered automatically so that the obstacle H and the avoidance bay 22 'only by adjusting the screed parts 11, 12 are deliberately steered to the right, in combination with appropriate Adjustment movements of the two screed parts 11, 12.
- automatic width control of the extending screed B is strict controlled according to planned information on obstacles H or the like, with continuous determination of the actual working position of the measuring point 19, 20 via the measuring point P.
- each with a geodetic positioning system worked. In practice, this means that at least two such geodetic positioning systems exist have to be because one is used to control each section of the route will be adjusted while that for the subsequent route section got to.
- the automatic control could be in a route section the construction machine with two geodetic positioning systems working simultaneously be made, the one for example the working device and the other controls the driving unit. Then would be for the continuous A total of four geodetic positioning systems are required.
Landscapes
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Architecture (AREA)
- Acoustics & Sound (AREA)
- Road Paving Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Operation Control Of Excavators (AREA)
- Road Repair (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
- Fig. 1
- einen Funktionsplan des erfindungsgemäßen Verfahrens bei einer Baumaschine in Form eines Straßenfertigers mit einer Einbaubohle konstanter Arbeitsbreite,
- Fig. 2
- eine schaubildartige Maschinenkonfiguration des Straßenfertiges zum Funktionsplan der Fig. 1,
- Fig. 3
- einen Funktionsplan zur Durchführung des Verfahrens bei einer als Straßenfertiger mit einer Ausziehbohle ausgebildeten Baumaschine,
- Fig. 4
- eine Maschinenkonfiguration zum Straßenfertiger passend zum Funktionsplan der Fig. 3,
- Fig. 5
- eine Maschinenkonfiguration als Beispiel einer Baumaschine mit an der Fahreinheit angebrachtem Messpunkt, nämlich einem Straßenfertiger mit einer Ausziehbohle,
- Fig. 6
- eine schematische Draufsicht auf einen Straßenfertiger in einer planungsgemäßen Trasse mit Hindernissen, die durch eine automatische Breitensteuerung der Ausziehbohle berücksichtigt werden, und
- Fig. 7
- eine schematische Draufsicht auf einen in einer planungsgemäßen Trasse fahrenden Straßenfertiger mit Ausziehbohle, dessen Auszieh-bohle mit variabler Arbeitsbreite arbeitet.
Claims (18)
- Verfahren zum Steuern einer selbstfahrenden Baumaschine (A), wie eines Straßenfertigers mit wenigstens einer Einbaubohle, oder einer Raupe mit einem Räumschild, einem Grader mit einer Graderschar, oder eines Gleitschalungsfertigers mit Gleitschalungen und wenigstens einer Bohle, oder einer Verkehrsflächen-Recyclingmaschine, in einer planungsgemäßen Trasse, wobei die Baumaschine eine Fahreinheit (M) und wenigstens eine mittels Stellelementen (3, 3', 3") relativ zur Fahreinheit bewegliche Arbeitsvorrichtung (B) aufweist, bei welchem Verfahren durch Vergleichen von ermittelten Ist-Positionen und Soll-Positionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, gekennzeichnet durch folgende Schritte:mit einem geodätischen Positionsbestimmungssystem (G, T) wird bei in der planungsgemäßen Trasse fahrender Baumaschine die Ist-Position eines an der Fahreinheit (M) oder an der Arbeitsvorrichtung (B) angeordneten Messpunktes (P) bestimmt,anhand der Ist-Position und mit maschinenspezifischen Lage-Informationen wird die Ist-Arbeitsposition der Arbeitsvorrichtung (B) oder eines für die planungsgemäße Trasse maßgeblichen Elements (20) der Arbeitsvorrichtung ermittelt,aus einem Vergleich der abgeleiteten Ist-Arbeitsposition und einer planungsgemäßen Soll-Arbeitsposition werden Positionsabweichungen festgestellt,aus den Positionsabweichungen werden die Korrektursignale für die Stellelemente der Arbeitsvorrichtung generiert,die Stellelemente werden anhand der Korrektursignale betätigt, um die Ist-Arbeitsposition zur Soll-Arbeitsposition zu bringen und die Arbeitsvorrichtung in der planungsgemäßen Trasse zu führen.
- Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:ausgehend von der Soll-Arbeitsposition und mit maschinenspezifischen Lage-Informationen zur Relativlage zwischen der Arbeitsvorrichtung und der Fahreinheit (M) werden Richtungsinformationen ermittelt,auf der Basis der Richtungsinformationen wird die Fahreinheit (M) in der planungsgemäßen Trasse automatisch gelenkt und der Arbeitsvorrichtung (B) nachgeführt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ist-Arbeitsposition der Arbeitsvorrichtung (B) mittels des in einer festgelegten Relativlage zu dem wenigstens einen für die planungsgemäße Trasse maßgeblichen Element fest an der Arbeitsvorrichtung angebrachten Messpunkts (P) bestimmt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ist-Arbeitsposition des wenigstens eines für die planungsgemäße Trasse maßgeblichen Elements mittels des fest an der Fahreinheit (M) angebrachten Messpunkts (P) und ermittelten maschinenspezifischen Informationen zur jeweiligen Relativlage zwischen dem Messpunkt (P) und dem maßgeblichen Element bestimmt wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) die relative oder die absolute Richtungsabweichung gegenüber einer planungsgemäßen Bezugsrichtung gemessen wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur automatischen Lenkung der Fahreinheit (M) zusätzlich errechnete, aus einem digitalen Geländemodell abgeleitete, oder gemessene, z.B. von einem Kompass, einem Richtungssensor, einem GPS-gestützten System, gemessene, Richtungsinformationen berücksichtigt werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die räumliche Ist-Arbeitsposition der Arbeitsvorrichtung (B) in der planungsgemäßen Trasse auch durch über Sensoren (4) ermittelte Messwerte der Längs- und/oder Querneigung der Arbeitsvorrichtung bestimmt wird, und dass aus einem Vergleich eines anhand der räumlichen Ist-Arbeitsposition erstellten Arbeitsvorrichtungsmodells und der räumlichen Soll-Arbeitsposition in einem die planungsgemäße Trasse enthaltenden digitalen Geländemodell Stellsignale für die Stellelemente der Längs- und/oder Querneigung der Arbeitsvorrichtung abgeleitet werden.
- Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass generierte planungsgemäße, maschinenspezifische und geodätische Daten mit wenigstens einem stationär oder in der Baumaschine (A) vorgesehenen Systemrechner CPU verarbeitet werden.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Richtungsinformationen zur automatischen Lenkung der Fahreinheit (M) in Form von auf den Messpunkt (P) bezogenen Richtungsvektoren (8, 25) ermittelt werden.
- Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer geschleppten Einbaubohle mit unveränderlicher Arbeitsbreite der Messpunkt (P) an der Einbaubohle (B) angeordnet und die Einbaubohle mit den Korrektursignalen in einer Linear-Querführung (2), z.B. der Fahreinheit (M), mit wenigstens einem Linear-Stellelement (3) hin- und herverstellt wird, und dass zusätzlich die Längs- oder Quemeigung der Einbaubohle entsprechend planungsgemäßer Vorgaben, z.B. im digitalen Geländemodell, verstellt wird bzw. werden.
- Verfahren nach wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei einem Straßenfertiger mit einer eine Breitenverstelleinrichtung (3', 3") aufweisenden Auszieh-Einbaubohle mit Ausziehbohlenteilen (11, 12) die Breitenverstelleinrichtung (3', 3") mit den Korrektursignalen angesteuert wird, dass für eine planungsgemäß gleichbleibende Arbeitsbreite der Trasse der andere Ausziehbohlenteil (12) von der Breitenverstelleinrichtung (3") exakt gegensinnig zum einen Ausziehbohlenteil (11) oder für eine planungsgemäß variierende Arbeitsbreite der andere Ausziehbohlenteil (12) individuell relativ zum einen Ausziehbohlenteil (11) verstellt wird, und dass die Längs- und/oder Querneigung der Einbaubohle entsprechend planungsgemäßer Vorgaben verstellt wird, bzw. werden.
- Verfahren zum Steuern eines selbstfahrenden Straßenfertigers in einer planungsgemäßen Trasse, wobei der Straßenfertiger eine Fahreinheit (M) und wenigstens eine mittels Stellelementen relativ zur Fahreinheit bewegliche Arbeitsvorrichtung in Form einer Einbaubohle aufweist, bei dem durch Vergleichen von ermittelten Ist-Positionen und Soll-Positionen Korrektursignale abgeleitet und zur Steuerung verarbeitet werden, dadurch gekennzeichnet, dass mittels eines geodätischen Positionsbestimmungssystems (G; T) fortlaufend Positionsabweichungen zwischen der Ist-Arbeitsposition der Einbaubohle (B) und der planungsgemäßen Soll-Arbeitsposition abgeleitet und die Stellelemente zumindest auf der Basis der abgeleiteten Positionsabweichungen angesteuert werden, um die Ist-Arbeitsposition zur Soll-Arbeitsposition zu bringen, und dass auf der Basis der mit Hilfe des geodätischen Positionsbestimmungssystems ermittelten Ist-Arbeitsposition der Einbaubohle oder eines für die planungsgemäße Trasse maßgeblichen Elements (19, 20) der Einbaubohle zum Umfahren planungsgemäßer Hindernisse (H) im Verlauf der planungsgemäßen Trasse eine automatische Breitensteuerung der Einbaubohle (B) vorgenommen wird, und dass bei der automatischen Breitensteuerung die Einbaubohle das Hindernis (H) entweder mit gleichbleibender Arbeitsbreite umfährt oder seine Arbeitsbreite vorübergehend nur an der Seite des Hindernisses (H) reduziert.
- Verfahren zum Steuern eines selbstfahrenden Straßenfertigers in einer planungsgemäßen Trasse, wobei der Straßenfertiger eine Fahreinheit (M) und als Arbeitsvorrichtung (B) wenigstens eine Auszieh-Einbaubohle mit durch Stellelemente (3', 3") beweglichen Ausziehbohlenteilen (11, 12) aufweist, dadurch gekennzeichnet, dass mit an dem Straßenfertiger angeordneten Sensoren (23) eine automatische Breitensteuerung der Auszieh-Einbaubohle (B) vorgenommen wird, bei der entlang der planungsgemäßen Trasse entgegenkommende Hindernisse von den Sensoren festgestellt und Stellelemente (3', 3") entsprechend der Breite und Länge der Hindernisse (H), automatisch angesteuert werden, und dass bei der automatischen Breitensteuerung das Hindernis (H) entweder mit gleichbleibender Arbeitsbreite umfahren oder die Arbeitsbreite vorübergehend nur an der Seite des Hindernisses reduziert wird.
- Straßenfertiger mit einer Fahreinheit (M), einer über Holme (1) an die Fahreinheit (M) gekoppelten, geschleppten Einbaubohle und mit Längs- und Querneigungssensoren (4) an der Einbaubohle, wobei die Einbaubohle mit fester Arbeitsbreite in einer Linearquerführung mit Stellelementen (3) hin- und herverstellbar ist oder zur Veränderung der Arbeitsbreite mit Stellelementen (3', 3") aus- und einfahrbare Abziehbohlenteile (11, 12) aufweist, dadurch gekennzeichnet, dass an dem Straßenfertiger ein aufrechter, einen für ein stationäres, geodätisches, wenigstens einen Prozessrechner (CPU) umfassendes Positionsbestimmungssystem vorgesehenen Messpunkt (P) tragender Mast (13) vorgesehen ist, dass an der Fahreinheit (M) bzw. an der Fahreinheit und an der Einbaubohle (B) wenigstens ein realer oder virtueller Referenzpunkt (9, 19, 20) zum Generieren wenigstens eines Richtungsvektors (8, 25) zwischen dem Messpunkt (P) und dem Referenzpunkt (9, 19, 21) vorgesehen ist.
- Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf der mit unveränderbarer Arbeitsbreite in der Linearquerführung verstellbaren Einbaubohle angebracht ist.
- Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf einem Ausziehbohlenteil (11, 12) angebracht ist.
- Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Mast (13) auf einem Holm (1) angebracht ist.
- Straßenfertiger nach Anspruch 14, dadurch gekennzeichnet, dass der Referenzpunkt (19) an der Arbeitsvorrichtung (B) das in Fahrtrichtung hinterste Ende (20) der unteren äußeren Einbaubohlenkante bzw. Glättblechkante ist.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK00101014T DK1118713T3 (da) | 2000-01-19 | 2000-01-19 | Fremgangsmåde til styring af en entreprenörmaskine og en vejlægningsmaskine samt vejlægningsmaskine |
DE2000508220 DE50008220D1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
AT00101014T ATE279584T1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum steuern einer baumaschine bzw. eines strassenfertigers und strassenfertiger |
EP00101014A EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
JP2001011974A JP2001262611A (ja) | 2000-01-19 | 2001-01-19 | 自走式建設機械を計画されたルートにおいて制御する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00101014A EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1118713A1 true EP1118713A1 (de) | 2001-07-25 |
EP1118713B1 EP1118713B1 (de) | 2004-10-13 |
Family
ID=8167660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00101014A Expired - Lifetime EP1118713B1 (de) | 2000-01-19 | 2000-01-19 | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1118713B1 (de) |
JP (1) | JP2001262611A (de) |
AT (1) | ATE279584T1 (de) |
DE (1) | DE50008220D1 (de) |
DK (1) | DK1118713T3 (de) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10358645A1 (de) * | 2003-12-15 | 2005-07-14 | Joseph Voegele Ag | Verfahren zum Steuern eines Straßenfertigers |
DE102005007153A1 (de) * | 2005-02-16 | 2006-08-24 | Bjj Kleinmaschinen Gmbh | Vorrichtung zur Bearbeitung einer Reitbahn |
DE102009059106A1 (de) * | 2009-12-18 | 2011-06-22 | Wirtgen GmbH, 53578 | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
US8762010B2 (en) | 2009-08-18 | 2014-06-24 | Caterpillar Inc. | Implement control system for a machine |
US8989968B2 (en) | 2012-10-12 | 2015-03-24 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US9096977B2 (en) | 2013-05-23 | 2015-08-04 | Wirtgen Gmbh | Milling machine with location indicator system |
US9181660B2 (en) | 2012-01-25 | 2015-11-10 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a civil engineering machine |
DE102014010837A1 (de) * | 2014-07-24 | 2016-01-28 | Dynapac Gmbh | Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger |
US9551115B2 (en) | 2014-12-19 | 2017-01-24 | Wirtgen Gmbh | Transition on the fly |
US9719217B2 (en) | 2014-08-28 | 2017-08-01 | Wirtgen Gmbh | Self-propelled construction machine and method for visualizing the working environment of a construction machine moving on a terrain |
US9896810B2 (en) | 2014-08-28 | 2018-02-20 | Wirtgen Gmbh | Method for controlling a self-propelled construction machine to account for identified objects in a working direction |
US9915041B2 (en) | 2014-08-28 | 2018-03-13 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
EP3333318A1 (de) * | 2016-12-07 | 2018-06-13 | Wirtgen GmbH | Ein breitenveränderlicher automatischer übergang |
EP3434825A1 (de) * | 2017-07-27 | 2019-01-30 | Joseph Vögele AG | Lenkassistenz für einen strassenfertiger |
DE102017012010A1 (de) * | 2017-12-22 | 2019-06-27 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
CN113581175A (zh) * | 2021-08-19 | 2021-11-02 | 日照公路建设有限公司 | 一种道路施工中多机型工程机械联动作业方法及系统 |
US11459712B2 (en) | 2019-12-19 | 2022-10-04 | Wirtgen Gmbh | Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas |
US11572661B2 (en) | 2019-07-04 | 2023-02-07 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US11774965B2 (en) | 2018-08-16 | 2023-10-03 | Wirtgen Gmbh | Slipform paver and method for operating a slipform paver |
US11885881B2 (en) | 2018-11-02 | 2024-01-30 | Moba Mobile Automation Ag | Sensor system for a road finishing machine |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1672122A1 (de) * | 2004-12-17 | 2006-06-21 | Leica Geosystems AG | Verfahren und Vorrichtung vom Kontrollieren einer Strassenbearbeitungsmaschine |
GB2422389A (en) * | 2005-01-24 | 2006-07-26 | Strainstall Group Ltd | Ground engineering apparatus and method |
US9550522B2 (en) | 2015-02-19 | 2017-01-24 | Caterpillar Paving Products Inc. | Compactor turning speed limiter |
JP2017115387A (ja) * | 2015-12-24 | 2017-06-29 | 株式会社Nippo | 建設機械自動制御システム |
JP6701002B2 (ja) * | 2016-06-23 | 2020-05-27 | 株式会社クボタ | 走行支援システム及び作業車 |
WO2018051742A1 (ja) | 2016-09-16 | 2018-03-22 | 株式会社小松製作所 | 作業車両の制御システム、作業車両の制御システムの制御方法および作業車両 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1151531B (de) | 1957-06-18 | 1963-07-18 | Impresa Pizzarotti & C S R L | Vorrichtung zum Steuern der Hoehenlage des Einbauwerkzeuges von Strassendeckenfertigern |
EP0542297B1 (de) | 1991-11-15 | 1995-04-12 | MOBA-electronic Gesellschaft für Mobil-Automation mbH | Ultraschallsensor-Regeleinrichtung für einen Strassenfertiger |
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5925085A (en) * | 1996-10-23 | 1999-07-20 | Caterpillar Inc. | Apparatus and method for determining and displaying the position of a work implement |
DE29918747U1 (de) * | 1999-10-25 | 2000-02-24 | MOBA - Mobile Automation GmbH, 65604 Elz | Vorrichtung zum Steuern eines Straßenfertigers |
-
2000
- 2000-01-19 AT AT00101014T patent/ATE279584T1/de not_active IP Right Cessation
- 2000-01-19 DE DE2000508220 patent/DE50008220D1/de not_active Expired - Lifetime
- 2000-01-19 EP EP00101014A patent/EP1118713B1/de not_active Expired - Lifetime
- 2000-01-19 DK DK00101014T patent/DK1118713T3/da active
-
2001
- 2001-01-19 JP JP2001011974A patent/JP2001262611A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1151531B (de) | 1957-06-18 | 1963-07-18 | Impresa Pizzarotti & C S R L | Vorrichtung zum Steuern der Hoehenlage des Einbauwerkzeuges von Strassendeckenfertigern |
EP0542297B1 (de) | 1991-11-15 | 1995-04-12 | MOBA-electronic Gesellschaft für Mobil-Automation mbH | Ultraschallsensor-Regeleinrichtung für einen Strassenfertiger |
US5549412A (en) * | 1995-05-24 | 1996-08-27 | Blaw-Knox Construction Equipment Corporation | Position referencing, measuring and paving method and apparatus for a profiler and paver |
US5925085A (en) * | 1996-10-23 | 1999-07-20 | Caterpillar Inc. | Apparatus and method for determining and displaying the position of a work implement |
DE29918747U1 (de) * | 1999-10-25 | 2000-02-24 | MOBA - Mobile Automation GmbH, 65604 Elz | Vorrichtung zum Steuern eines Straßenfertigers |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1544354A3 (de) * | 2003-12-15 | 2007-11-14 | Joseph Voegele AG | Verfahren zum Steuern eines Strassenfertigers |
DE10358645A1 (de) * | 2003-12-15 | 2005-07-14 | Joseph Voegele Ag | Verfahren zum Steuern eines Straßenfertigers |
DE102005007153A1 (de) * | 2005-02-16 | 2006-08-24 | Bjj Kleinmaschinen Gmbh | Vorrichtung zur Bearbeitung einer Reitbahn |
US8762010B2 (en) | 2009-08-18 | 2014-06-24 | Caterpillar Inc. | Implement control system for a machine |
US8888402B2 (en) | 2009-12-18 | 2014-11-18 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine |
EP2336424A3 (de) * | 2009-12-18 | 2013-07-31 | Wirtgen GmbH | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
US8613566B2 (en) | 2009-12-18 | 2013-12-24 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine |
US8388263B2 (en) | 2009-12-18 | 2013-03-05 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a self-propelled civil engineering machine |
DE102009059106A1 (de) * | 2009-12-18 | 2011-06-22 | Wirtgen GmbH, 53578 | Selbstfahrende Baumaschine und Verfahren zur Steuerung einer selbstfahrenden Baumaschine |
US9181660B2 (en) | 2012-01-25 | 2015-11-10 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a civil engineering machine |
US9598080B2 (en) | 2012-01-25 | 2017-03-21 | Wirtgen Gmbh | Self-propelled civil engineering machine and method of controlling a civil engineering machine |
US8989968B2 (en) | 2012-10-12 | 2015-03-24 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US11761763B2 (en) | 2012-10-12 | 2023-09-19 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US11313679B2 (en) | 2012-10-12 | 2022-04-26 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US10746546B2 (en) | 2012-10-12 | 2020-08-18 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US10180322B2 (en) | 2012-10-12 | 2019-01-15 | Wirtgen Gmbh | Self-propelled civil engineering machine system with field rover |
US9970164B2 (en) | 2013-05-23 | 2018-05-15 | Wirtgen Gmbh | Milling machine with location indicator system |
US9096977B2 (en) | 2013-05-23 | 2015-08-04 | Wirtgen Gmbh | Milling machine with location indicator system |
US9359729B2 (en) | 2013-05-23 | 2016-06-07 | Wirtgen Gmbh | Milling machine with location indicator system |
DE102014010837A1 (de) * | 2014-07-24 | 2016-01-28 | Dynapac Gmbh | Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger |
US10273642B2 (en) | 2014-08-28 | 2019-04-30 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US9896810B2 (en) | 2014-08-28 | 2018-02-20 | Wirtgen Gmbh | Method for controlling a self-propelled construction machine to account for identified objects in a working direction |
US9915041B2 (en) | 2014-08-28 | 2018-03-13 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US9719217B2 (en) | 2014-08-28 | 2017-08-01 | Wirtgen Gmbh | Self-propelled construction machine and method for visualizing the working environment of a construction machine moving on a terrain |
US11619011B2 (en) | 2014-08-28 | 2023-04-04 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US11072893B2 (en) | 2014-08-28 | 2021-07-27 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US10161088B2 (en) | 2014-12-19 | 2018-12-25 | Wirtgen Gmbh | Transition on the fly |
US9551115B2 (en) | 2014-12-19 | 2017-01-24 | Wirtgen Gmbh | Transition on the fly |
US9797099B2 (en) | 2014-12-19 | 2017-10-24 | Wirtgen Gmbh | Transition on the fly |
CN108166356A (zh) * | 2016-12-07 | 2018-06-15 | 维特根有限公司 | 可变宽度的自动转变 |
US10253461B2 (en) | 2016-12-07 | 2019-04-09 | Wirtgen Gmbh | Variable width automatic transition |
EP3333318A1 (de) * | 2016-12-07 | 2018-06-13 | Wirtgen GmbH | Ein breitenveränderlicher automatischer übergang |
EP3434825A1 (de) * | 2017-07-27 | 2019-01-30 | Joseph Vögele AG | Lenkassistenz für einen strassenfertiger |
US11029704B2 (en) | 2017-12-22 | 2021-06-08 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
DE102017012010A1 (de) * | 2017-12-22 | 2019-06-27 | Wirtgen Gmbh | Selbstfahrende Baumaschine und Verfahren zum Steuern einer selbstfahrenden Baumaschine |
US11774965B2 (en) | 2018-08-16 | 2023-10-03 | Wirtgen Gmbh | Slipform paver and method for operating a slipform paver |
US11885881B2 (en) | 2018-11-02 | 2024-01-30 | Moba Mobile Automation Ag | Sensor system for a road finishing machine |
US11572661B2 (en) | 2019-07-04 | 2023-02-07 | Wirtgen Gmbh | Self-propelled construction machine and method for controlling a self-propelled construction machine |
US11459712B2 (en) | 2019-12-19 | 2022-10-04 | Wirtgen Gmbh | Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas |
US11795633B2 (en) | 2019-12-19 | 2023-10-24 | Wirtgen Gmbh | Method for milling off traffic areas with a milling drum, as well as milling machine for carrying out the method for milling off traffic areas |
CN113581175A (zh) * | 2021-08-19 | 2021-11-02 | 日照公路建设有限公司 | 一种道路施工中多机型工程机械联动作业方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
ATE279584T1 (de) | 2004-10-15 |
DK1118713T3 (da) | 2005-01-10 |
DE50008220D1 (de) | 2004-11-18 |
EP1118713B1 (de) | 2004-10-13 |
JP2001262611A (ja) | 2001-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1118713B1 (de) | Verfahren zum Steuern einer Baumaschine bzw. eines Strassenfertigers und Strassenfertiger | |
EP1856329B1 (de) | Verfahren zur Steuerung einer Baumaschine und Baumaschine mit einem Steuerungssystem | |
EP3741914B1 (de) | Maschinenzug aus einer strassenfräsmaschine und einem strassenfertiger und verfahren zum betreiben einer strassenfräsmaschine und eines strassenfertigers | |
EP1825064B1 (de) | Verfahren und vorrichtung zum kontrollieren einer strassenbearbeitungsmaschine | |
DE69934756T2 (de) | Vorrichtung und Verfahren zum dreidimensionalen Profilieren | |
DE102011001542B4 (de) | Steuerung und entsprechendes Verfahren für eine Teermaschine | |
DE69834187T2 (de) | Kontrolle der schräglage in querrichtung einer mobilen maschine | |
EP2562309B1 (de) | Straßenfertiger mit Messvorrichtung | |
EP3048199B2 (de) | Strassenfertiger mit schichtdickenerfassungsvorrichtung und verfahren zum erfassen der dicke einer eingebauten materialschicht | |
DE112009001767B4 (de) | Straßenfertigungsmaschinen-Steuerung und Verfahren | |
EP4056758B1 (de) | Verfahren zum fertigen eines strassenbelags und asphaltiersystem | |
EP3480362B1 (de) | Strassenwalze und verfahren zur bestimmung der einbauschichtdicke | |
DE2009427C3 (de) | Gleisloser Straßenfertiger zum Verbreitern bereits vorhandener Straßendecken | |
EP3587667A1 (de) | Strassenfertiger mit projektor als navigationshilfe | |
DE20009459U1 (de) | Straßenbauvorrichtung mit automatischem Steuerungssystem zur Schalungspositionierung | |
DE102019121416A1 (de) | Navigationssystem für eine maschine | |
EP3835485B1 (de) | Messsystem für eine baumaschine | |
DE102021106005A1 (de) | Auf der relativen geschwindigkeit basiertes aktorgeschwindigkeitskalibriersystem | |
DE29918747U1 (de) | Vorrichtung zum Steuern eines Straßenfertigers | |
EP1179636A1 (de) | Strassenfertiger und Einbauverfahren | |
DE19951296C2 (de) | Vorrichtung und Verfahren zum Steuern eines Strassenfertigers | |
DE19921761B4 (de) | Verfahren und Vorrichtung zum Verstellen des Arbeitsabstandes | |
DE19951297C1 (de) | Vorrichtung zum Steuern eines Strassenfertigers und Verfahren zum Einbauen einer Strassenschicht | |
DE102014010837A1 (de) | Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger | |
DE29908429U1 (de) | Vorrichtung zum Verstellen des Arbeitsabstandes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20030909 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BUGNION S.A. |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50008220 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050119 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050119 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20050120 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050131 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: JOSEPH VOGELE A.G. Effective date: 20050131 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: JOSEPH *VOGELE A.G. Effective date: 20050131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050313 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50008220 Country of ref document: DE Owner name: JOSEPH VOEGELE AG, DE Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE Effective date: 20120217 Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE Effective date: 20120217 Ref country code: DE Ref legal event code: R082 Ref document number: 50008220 Country of ref document: DE Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE Effective date: 20120217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190129 Year of fee payment: 20 Ref country code: NL Payment date: 20190129 Year of fee payment: 20 Ref country code: DE Payment date: 20190129 Year of fee payment: 20 Ref country code: IT Payment date: 20190131 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20190129 Year of fee payment: 20 Ref country code: DK Payment date: 20190129 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50008220 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20200119 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20200118 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |