EP1825064B1 - Method and device for monitoring a road processing machine - Google Patents

Method and device for monitoring a road processing machine Download PDF

Info

Publication number
EP1825064B1
EP1825064B1 EP05816965A EP05816965A EP1825064B1 EP 1825064 B1 EP1825064 B1 EP 1825064B1 EP 05816965 A EP05816965 A EP 05816965A EP 05816965 A EP05816965 A EP 05816965A EP 1825064 B1 EP1825064 B1 EP 1825064B1
Authority
EP
European Patent Office
Prior art keywords
height
processing machine
road processing
working part
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05816965A
Other languages
German (de)
French (fr)
Other versions
EP1825064A1 (en
Inventor
Andreas Buehlmann
Peter A. Stegmaier
Volker Kuch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Priority to EP05816965A priority Critical patent/EP1825064B1/en
Publication of EP1825064A1 publication Critical patent/EP1825064A1/en
Application granted granted Critical
Publication of EP1825064B1 publication Critical patent/EP1825064B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ

Definitions

  • the invention relates to a method for controlling the travel of a road surface moving machine according to the preamble of claim 1, a road processing machine according to the preamble of claim 11 and a system for carrying out a method for controlling the travel of a road surface moving machine on a base surface and the working height of a height-adjustable working part according to claim 17.
  • machines are used for various work steps that travel along a given route and perform a desired processing step.
  • asphalt pavers are used to apply asphalt pavers with a vehicle and a height-adjustable trowel or screed fastened thereto.
  • the asphalt material is distributed by the vehicle along the front edge of the screed.
  • the screed sweeps and smoothes and densifies the asphalt material to provide a continuous asphalt pavement having a desired surface course.
  • the screed bar can be positioned vertically so that a desired surface profile is achieved as accurately as possible.
  • a Reference used for vertical positioning. If, as a reference line, a rope or a wire has to be stretched along the road to be paved, this is a great expense. If the base surface on which the asphalt is applied is used as a reference, it must be formed very precisely with great effort.
  • a laser beam is used as a reference, in which case the height of the screed relative to the laser is detected with a sensor attached to the screed bar and the screed bar is kept at a desired height.
  • the DE 100 60 903 describes a prior art in which the position of a reference surface is detected with a touch ski or with three spaced apart in the movement direction laser measuring heads.
  • it is proposed to arrange at one point above the screed bar three differently aligned laser distance meters which detect the distance to three measurement points one behind the other in the direction of movement.
  • the distance values are each converted into a height and a horizontal distance.
  • a height control signal is generated for the screed or other processing tool.
  • the accuracy of the height determination with the obliquely aligned laser distance meters is reduced by the mounting accuracy and the fact that at least one measuring point is located on the already applied coating.
  • an exactly constant sensor alignment is hardly achievable due to vibrations as well as large temperature and humidity fluctuations.
  • a small unrecognized change in angle already leads to a considerable error in the height calculated from the measurement assuming the wrong orientation.
  • a road processing machine is used with a height-adjustable working part together with at least one transmitter.
  • a sensor on the machine receives at least one signal of the at least one transmitter and from the received signal, a height position information is derived, which is used for vertical positioning of the height-adjustable working part.
  • a system of transmitter and sensor is about a GPS system used.
  • the reference surface is run over without processing only for detecting the reference surface layer, which is associated with a double driving effort.
  • a solution is known in which a GPS system and a tilt-adjustable rotary laser system are used for three-dimensionally controlling a construction machine.
  • the GPS system on the construction machine determines two location coordinates of the construction machine, which are transmitted to the fixed rotation laser system.
  • the current location coordinates are assigned a desired altitude and the rotating laser is aligned to mark the desired altitude for a linear laser receiver of the construction machine.
  • the laser receiver determines the current deviation of the working tool from the desired height. According to this deviation, the altitude of the working tool is adjusted.
  • This solution is very expensive because it is a GPS system, a complex rotation laser system, a radio link between these systems, a linear laser receiver and at least one controller.
  • there are problems in areas such as under bridges where the satellite signals required by the GPS system can not be received.
  • the DE 199 51 297 C1 refers to an automatic longitudinal control of a paver during the installation of a road layer. Solutions are based on tracking a prism mounted on the paver using a laser total station. This station tracks the prism by means of an alignable in all directions optics. The position of the construction machine or screed is calculated from the solid angle of the optics, the distance between the prism and the optics and the position of the total station. For precise height adjustment of the screed, the prism must be arranged as directly above the screed trailing edge as possible. However, there are then steering inaccuracies that negatively affect the course of pavement. To compensate for the effects of steering inaccuracies are slidable parts of the screed proposed transversely to the direction of travel, so that even with an inaccurate route through an optimal lateral displacement of these parts a precise application of the coating is guaranteed.
  • a road processing machine with laterally movable screed parts is mechanically complex. In construction machines without lateral adjustment, the problems resulting from the steering inaccuracy remain.
  • a positioning system such as a GPS
  • a display device which is visible to a driver of the bulldozer, indicates a difference between an existing surface contour and a sol surface contour of the construction site.
  • the display device may display a three-dimensional rotating image or a two-dimensional rotating image with a cursor to display the bulldozer.
  • a shield sensor tracks the position of the bulldozer blade and the indicator shows changes in the real surface contour as the bulldozer is moved across the job site, with the height of the shield moving between the desired and actual elevations of the surface.
  • An orientation sensor on board the bulldozer supplies a microprocessor with the orientation of the bulldozer, and a storage unit is provided for supplying surface data to the microprocessor.
  • the system integrates bulldozer and surface modification activities along with a utility pipe protection function and hydrological analysis.
  • the invention is based on the object to find a simple solution with which a height-adjustable working part of a road processing machine can be precisely positioned in the vertical direction and the steering function of the road processing machine can be improved.
  • the prism arranged on the roadworking machine horizontally away from the working part in front of the center of gravity of the roadworking machine and thus the steering function can be improved without causing the height adjustment of the working part is deteriorated.
  • the height determination at the prism must be converted into a height at the working part (screed) using at least one value of at least one reference determination.
  • an active positioning element for example a GPS device
  • An active position element should be able to determine its position with the help of other elements whose positions are known.
  • the other elements may be active or passive Act elements. If a GPS device is used as the position element, then this should also be able to determine the position in the vertical direction as accurately as possible.
  • a position element in the form of a modified GPS device yet another signal from a Vertikalpositioniersender, for example, as a rotating laser supplied, so that from the satellite signals and the further signal, the spatial position of the position element are determined very accurately in the vertical direction can.
  • an effective height difference between the position element and a point at the working part can be determined for each possible alignment position of this connection. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the position element and the point at the working part, ie an angle to the vertical or to the horizontal, is determined.
  • connection consists of at least one substantially vertical and one substantially horizontal portion, so the respective inclinations of both sections can be detected. However, if the fixed connection is rotated substantially only about a single horizontal axis, then a single tilt determination is sufficient.
  • the horizontal pivot axis of the working part leading linkage is changed by a height adjustment in height. This allows the working part to float on the warm asphalt material.
  • a height difference between the position element and the working tool must be determined with at least one value derived from a reference determination.
  • the reference determination preferably comprises an inclination determination with which the current orientation of the fixed connection is detected. If necessary, the alignment of the fixed connection can also be determined by means of two distance measurements to the base surface or to a reference height. For this purpose, the distances from two different points of the fixed connection to a reference position are determined.
  • the roadworking machine travels forward on the base surface, two points offset in the direction of travel are skewed over the same area of the base surface. If now the horizontal distance between the two points of the fixed connection is divided by the driving speed, one obtains the time interval which should elapse between a distance measurement at the first and a distance measurement at the second point. This time interval can be used to ensure that the two distance measurements are made on the same reference surface. Alternatively, the position determination with the help of total station and prism can be used.
  • the height difference between position element and working part can be determined. With a known height of the position element can be determined exactly the height of the working part or a working edge with the determined height difference. This height determination for the working part can also be carried out if there is no firm connection between the position element and the working part.
  • a position element and a first distance sensor for determining a distance to the base surface are arranged in front of the road processing machine in the direction of travel.
  • a second distance sensor is arranged offset to the first sensor in the direction of travel to the rear. This arrangement can also be used without firm connection between the working part and the position element for determining the height of the working part in straight running of the machine. In curves, the position determination can be used.
  • the height adjustment device performs only a parallel displacement of the fixed connection during adjustment, the height difference does not depend on the adjustment height.
  • the height correction is constant and it only needs to be checked that no further correction is needed. Accordingly, the reference determination is to monitor the parallel alignment.
  • the orientation of the roadworking machine or of the underlying machine can be determined with at least one inclination determination Base surface to be determined.
  • the measured slope can be used as a reference for correcting altitude. From the position of the position element and this height correction results in the current height of the working part.
  • the position element can be arranged so that the track of the road processing machine can be optimally monitored .
  • the positioning element is fastened to a location of the roadworking machine which is as far away as possible from the turning axis.
  • the positioning of the position element is selected with regard to an optimized signal utilization with respect to the determination of the travel path of the roadworking machine.
  • the position element is arranged in the direction of travel in front of the machine center of gravity laterally on the left or right edge of the machine.
  • the positioning of the position element is thus as far as possible in the direction of travel front end of the road processing machine left or right - and thus as far forward and close to the chassis.
  • the position element should be as far away from the working part as possible.
  • the working part is arranged in the rear end region of the machine, therefore the positioning element is arranged in the front end region. In an undesirable lateral swinging of the vehicle, the position element is noticeably moved away from the driving line.
  • a correction control can immediately bring the road processing machine back on the desired track. The working part essentially always stays on the desired path.
  • the position element is the generic precise control of the travel of the road processing machine at a position at least - in the direction of travel of the machine - in front of the machine center of gravity, in particular as far as possible in front of the machine center of gravity attached.
  • the attachment of the position element or the prism as far forward as possible also simplifies the design of the control algorithm, which is simpler in so far as the control of the direction of travel can be adjusted directly to the horizontal error and the longitudinal axis of the road processing machine need not be known. Their additional knowledge naturally improves the regulation.
  • the Fig. 1 and 2 1 shows a roadworking machine 2 traveling on a base surface 1.
  • the illustrated machine is a road finisher with a vehicle 3 and a working part 4 fastened thereto in a height-adjustable manner in the form of a screed.
  • the asphalt material 5 is distributed by a distributor 6 along the front edge of the working part 4.
  • the working part 4 disposed at the rear end of the road working machine 2 sweeps and smoothes the asphalt material 5 and compacts it to provide a continuous asphalt pavement 7 having a desired surface course.
  • the positioning of the working part 4 at a desired height via a slight pivotal movement of two sides of the machine pivotally mounted supports 8, the pivot bearing 9 are movable as pivot points of hydraulic cylinders as actuators 10 and adjustable in height.
  • the current position and / or direction is determined at points along the track, determines the working height of the working part and the determined position or direction of travel with a desired position or desired direction and the working height with a Nominal height to be compared.
  • a control signal should be provided with which the deviation can be compensated by a corresponding control of the roadworking machine 2. If the working height deviates from the desired height, the working part 4 should be raised or lowered by the supports 8 until the desired height is achieved.
  • a position element arranged on the roadworking machine 2 can be tracked with a laser total station 12 when it is equipped with a prism 11.
  • This station 12 tracks the prism 11 by means of an alignable in all directions optics. From the solid angle of the optics, the distance between prism 11 and optics and the position of the total station 12, the position of the prism 11 is calculated. For comparison with a desired route, the positions and / or directions along the desired route must be present as set points for the road-building machine 2 at the location where the prism 11 is located. In order to ensure a desired processing path in the working part, the curve behavior of the road-working machine 2 should be taken into account in the determination of the desired path for the prism 11, so that the working part 4 along the desired path emotional. The direction of travel can be determined from successive positions.
  • the prism 11 is as far as possible placed in front - in the embodiment, for example
  • the permissible tolerances for the working height are smaller than for the lateral alignment of the working part.
  • the current height of the working part 4 must be recorded extremely accurately.
  • the working part 4 is lower relative to the height of the prism 11 than in the case of a flat base surface 1. Lifting and lowering movements of the carrier 8 and also variable inclinations of the base surface 1 change the height difference between the prism and the working part 4 ,
  • At least one value of at least one reference determination should be used for the calculation of the working height in the working part.
  • the laser total station 12 is connected to an evaluation and control device, not shown, for evaluating the position information of the position element - here of the prism 11 - and for providing control signals for controlling the roadworking machine 2 and for controlling the height adjustment of the working part 4.
  • the at least one reference sensor for performing at least one reference determination is connected to the control device. At least a part of the connections are designed as radio links.
  • the control device is preferably arranged on the roadworking machine 2, but could possibly also be arranged at the laser total station 12. If the control device is arranged on the machine 2, the connections to sensors and actuators can be formed as line connections.
  • This connection 13 comprises, for example, a substantially horizontally extending connecting part 13a and a vertically connected connecting part 13b connected thereto. If the prism 11 is connected via a fixed connection with the working part 4, then for each possible alignment position of this connection 13 can be an effective Height difference between the prism 11 and a point at the working part 4 can be determined. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the prism and the point at the working part 4, ie an angle to the vertical or to the horizontal, is determined. For this purpose, a tilt sensor 14 aligned in the direction of the direct connection line to a part of the fixed connection 13 are attached.
  • the tilt sensor 14 is attached to the horizontally extending connecting part 13a.
  • a second tilt sensor aligned perpendicular to the first tilt sensor, is also arranged on the fixed connection, so that the inclination of the fixed connection can be detected in two different directions.
  • a transversely mounted to the direction of inclination sensor can thus provide additional information.
  • Fig. 2 in a second embodiment for reference determination in the prism 11 with a first distance measuring device 15 at least a first distance measurement to the base surface 1 and temporally offset at the working part 4 with a second distance measuring device 16 at least a second distance measurement to the base surface 1 is performed.
  • the time offset between measurements belonging together should be chosen based on the driving speed so that the two measurements are made essentially at the same reference point.
  • the prism is connected to the roadworking machine 2 via a support bar 13c.

Abstract

The process controls the path of a road treatment machine (2) moving on a ground surface (1) and the working height of a height-adjustable working part (4). It measures the spot of a positioning element (11), plots a travelling direction and determines the working height of the working part. The postioning element is placed horizontally to this part and the positioning height of the positioning element is converted into the working height of the working part using at least one value of a reference calculation.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Kontrollieren des Fahrweges einer auf einer Basisoberfläche fahrenden Strassenbearbeitungsmaschine nach dem Oberbegriff des Anspruches 1, eine Strassenbearbeitungsmaschine nach dem Oberbegriff des Anspruches 11 und ein System zur Durchführung eines Verfahrens zum Kontrollieren des Fahrweges einer auf einer Basisoberfläche fahrenden Strassenbearbeitungsmaschine und der Arbeitshöhe eines daran höhenverstellbar angeordneten Arbeitsteiles nach Anspruch 17.The invention relates to a method for controlling the travel of a road surface moving machine according to the preamble of claim 1, a road processing machine according to the preamble of claim 11 and a system for carrying out a method for controlling the travel of a road surface moving machine on a base surface and the working height of a height-adjustable working part according to claim 17.

Beim Erstellen und Reparieren von Strassen und Plätzen werden für verschiedene Arbeitsschritte Maschinen eingesetzt, die entlang eines vorgegebenen Fahrweges fahren und dabei einen gewünschten Bearbeitungsschritt durchführen. Beispielsweise werden zum Auftragen von Asphalt-Belägen Strassenfertiger mit einem Fahrzeug und einem höhenverstellbar daran befestigten Glättbalken bzw. einer Bohle verwendet. Das Asphaltmaterial wird vom Fahrzeug entlang des vorderen Randes des Glättbalkens verteilt. Wenn die Maschine auf dem vorbereiteten Strassenbett vorrückt, streicht der Glättbalken über das Asphaltmaterial und glättet sowie verdichtet dieses, um einen kontinuierlichen Asphaltbelag mit einem gewünschten Oberflächenverlauf bereitzustellen.When creating and repairing streets and squares, machines are used for various work steps that travel along a given route and perform a desired processing step. For example, asphalt pavers are used to apply asphalt pavers with a vehicle and a height-adjustable trowel or screed fastened thereto. The asphalt material is distributed by the vehicle along the front edge of the screed. As the machine advances on the prepared road bed, the screed sweeps and smoothes and densifies the asphalt material to provide a continuous asphalt pavement having a desired surface course.

Aus dem Stande der Technik sind verschiedene Lösungen bekannt mit denen der Glättbalken vertikal so positioniert werden kann, dass ein gewünschter Oberflächenverlauf möglichst genau erzielt wird. Zur vertikalen Positionierung wird beispielsweise eine Referenz verwendet. Wenn als Referenzlinie etwa ein Seil oder ein Draht entlang der zu asphaltierenden Strasse gespannt werden muss, so ist dies mit einem grossen Aufwand verbunden. Wenn die Basisoberfläche, auf welche der Asphalt aufgetragen wird, als Referenz verwendet wird, so muss diese mit grossem Aufwand sehr genau ausgebildet werden. Gemäss einer weiteren Lösung wird ein Laserstrahl als Referenz verwendet, wobei dann mit einem am Glättbalken befestigten Sensor die Höhe des Glättbalkens relativ zum Laser erfasst und der Glättbalken auf einer gewünschten Höhe gehalten wird.Various solutions are known from the prior art with which the screed bar can be positioned vertically so that a desired surface profile is achieved as accurately as possible. For vertical positioning, for example, a Reference used. If, as a reference line, a rope or a wire has to be stretched along the road to be paved, this is a great expense. If the base surface on which the asphalt is applied is used as a reference, it must be formed very precisely with great effort. According to another solution, a laser beam is used as a reference, in which case the height of the screed relative to the laser is detected with a sensor attached to the screed bar and the screed bar is kept at a desired height.

Die DE 100 60 903 beschreibt einen Stand der Technik bei dem die Lage einer Referenzfläche mit einem Tastski oder mit drei in Bewegungsrichtung voneinander beabstandeten Lasermessköpfen erfasst wird. Um eine aufwändige Konstruktion zum Halten der Lasersensoren zu vermeiden, wird vorgeschlagen an einer Stelle über dem Glättbalken drei verschieden ausgerichtete Laser-Distanzmesser anzuordnen, welche die Distanz zu drei in Bewegungsrichtung hintereinander liegenden Messpunkten erfassen. Die Distanzwerte werden je in eine Höhe und einen horizontalen Abstand umgerechnet. Abhängig von den erfassten Höhen und von der Sollhöhe wird ein Höhensteuersignal für den Glättbalken oder ein anderes Bearbeitungswerkzeug erzeugt.The DE 100 60 903 describes a prior art in which the position of a reference surface is detected with a touch ski or with three spaced apart in the movement direction laser measuring heads. In order to avoid a complicated construction for holding the laser sensors, it is proposed to arrange at one point above the screed bar three differently aligned laser distance meters which detect the distance to three measurement points one behind the other in the direction of movement. The distance values are each converted into a height and a horizontal distance. Depending on the detected heights and height, a height control signal is generated for the screed or other processing tool.

Die Genauigkeit der Höhenbestimmung mit den schräg ausgerichteten Laser-Distanzmessern wird durch die Montagegenauigkeit und durch die Tatsache, dass mindestens ein Messpunkt auf dem bereits aufgebrachten Belag liegt, reduziert. Bei Strassenbaumaschinen ist eine exakt gleich bleibende Sensorausrichtung aufgrund von Vibrationen sowie grossen Temperatur- und Feuchtigkeitsschwankungen kaum erzielbar. Bei schräg nach vorne gerichteten Distanzmessern führt eine kleine unerkannte Winkeländerung bereits zu einem erheblichen Fehler in der aus der Messung unter Annahme der falschen Ausrichtung berechneten Höhe.The accuracy of the height determination with the obliquely aligned laser distance meters is reduced by the mounting accuracy and the fact that at least one measuring point is located on the already applied coating. In road construction machines, an exactly constant sensor alignment is hardly achievable due to vibrations as well as large temperature and humidity fluctuations. At an angle to Front-facing distance meters, a small unrecognized change in angle already leads to a considerable error in the height calculated from the measurement assuming the wrong orientation.

Aus der US 5,549,412 ist ein Verfahren bekannt, bei dem eine Strassenbearbeitungsmaschine mit einem höhenverstellbaren Arbeitsteil zusammen mit mindestens einem Sender eingesetzt wird. Dabei empfängt ein Sensor auf der Maschine mindestens ein Signal des mindestens einen Senders und aus dem empfangenen Signal wird eine Höhen-Positionsinformation abgeleitet, die zur vertikalen Positionierung des höhenverstellbaren Arbeitsteiles verwendet wird. Als System aus Sender und Sensor wird etwa ein GPS-System verwendet. Um eine gewünschte Belagsoberfläche über einer Referenzfläche zu erzielen, wird die Referenzfläche ohne Bearbeitung lediglich zum Erfassen der Referenzflächenlage überfahren, was mit einem doppelten Fahraufwand verbunden ist.From the US 5,549,412 a method is known in which a road processing machine is used with a height-adjustable working part together with at least one transmitter. In this case, a sensor on the machine receives at least one signal of the at least one transmitter and from the received signal, a height position information is derived, which is used for vertical positioning of the height-adjustable working part. As a system of transmitter and sensor is about a GPS system used. In order to achieve a desired pad surface over a reference surface, the reference surface is run over without processing only for detecting the reference surface layer, which is associated with a double driving effort.

Aus der EP 1 079 029 A2 ist eine Lösung bekannt bei der zum dreidimensionalen Steuern bzw. Nivellieren einer Baumaschine ein GPS-System und ein neigungsverstellbares Rotationslasersystem verwendet werden. Das GPS-System auf der Baumaschine ermittelt zwei Ortskoordinaten der Baumaschine, welche an das ortsfeste Rotationslasersystem übermittelt werden. Den aktuellen Ortskoordinaten wird eine Sollhöhe zugeordnet und der Rotationslaser wird so ausgerichtet, dass er bei einem linearen Laserempfänger der Baumaschine die Sollhöhe markiert. Der Laserempfänger ermittelt die aktuelle Abweichung des Arbeitswerkzeuges von der Sollhöhe. Entsprechend dieser Abweichung wird die Höhenlage des Arbeitswerkzeuges verstellt. Diese Lösung ist sehr aufwendig, weil sie ein GPS-System, ein komplexes Rotationslasersystem, eine Funkverbindung zwischen diesen Systemen, einen linearen Laserempfänger und mindestens eine Steuerung umfasst. Zudem ergeben sich Probleme in Bereichen, beispielsweise unter Brücken, wo die vom GPS-System benötigten Sattelitensignale nicht empfangen werden können.From the EP 1 079 029 A2 For example, a solution is known in which a GPS system and a tilt-adjustable rotary laser system are used for three-dimensionally controlling a construction machine. The GPS system on the construction machine determines two location coordinates of the construction machine, which are transmitted to the fixed rotation laser system. The current location coordinates are assigned a desired altitude and the rotating laser is aligned to mark the desired altitude for a linear laser receiver of the construction machine. The laser receiver determines the current deviation of the working tool from the desired height. According to this deviation, the altitude of the working tool is adjusted. This solution is very expensive because it is a GPS system, a complex rotation laser system, a radio link between these systems, a linear laser receiver and at least one controller. In addition, there are problems in areas such as under bridges where the satellite signals required by the GPS system can not be received.

Weitere Möglichkeiten zur Höhenbestimmung des Arbeitsteils können aus der DE 196 47 150 entnommen werden, in der eine Vorrichtung und ein Verfahren zum Steuern der Einbauhöhe eines Strassenfertigers beschrieben werden. Die Erfassung der Höhe der Bohlenkante erfolgt hier durch Potentiometersensoren, Ultraschallsensoren oder Laserempfänger.Further possibilities for determining the height of the working part can be found in the DE 196 47 150 in which an apparatus and a method for controlling the installation height of a paver are described. The height of the screed edge is detected here by potentiometer sensors, ultrasonic sensors or laser receivers.

Die DE 199 51 297 C1 bezieht sich auf eine automatische Längssteuerung eines Strassenfertigers während des Einbauens einer Strassenschicht. Es wird von Lösungen ausgegangen, bei denen ein am Strassenfertiger angeordnetes Prisma mit einer Laser-Totalstation verfolgt wird. Diese Station verfolgt das Prisma mittels einer in alle Richtungen ausrichtbaren Optik. Aus dem Raumwinkel der Optik, der Distanz zwischen Prisma und Optik und der Position der Totalstation wird die Position der Baumaschine bzw. der Bohle berechnet. Für die genaue Höhenregulierung der Bohle muss das Prisma möglichst direkt über der Bohlenhinterkante angeordnet werden. Es ergeben sich dann aber Lenkungsungenauigkeiten, die den Belagsverlauf negativ beeinflussen. Um die Auswirkungen der Lenkungsungenauigkeiten zu kompensieren werden quer zur Fahrtrichtung verschiebbare Teile der Bohle vorgeschlagen, so dass auch bei einem ungenauen Fahrweg durch eine optimale seitliche Verschiebung dieser Teile ein präzises Auftragen des Belages gewährleistet ist.The DE 199 51 297 C1 refers to an automatic longitudinal control of a paver during the installation of a road layer. Solutions are based on tracking a prism mounted on the paver using a laser total station. This station tracks the prism by means of an alignable in all directions optics. The position of the construction machine or screed is calculated from the solid angle of the optics, the distance between the prism and the optics and the position of the total station. For precise height adjustment of the screed, the prism must be arranged as directly above the screed trailing edge as possible. However, there are then steering inaccuracies that negatively affect the course of pavement. To compensate for the effects of steering inaccuracies are slidable parts of the screed proposed transversely to the direction of travel, so that even with an inaccurate route through an optimal lateral displacement of these parts a precise application of the coating is guaranteed.

Eine Strassenbearbeitungsmaschine mit seitlich verschiebbaren Bohlenteilen ist mechanisch aufwändig gebaut. Bei Baumaschinen ohne seitliche Verstellmöglichkeiten bleiben die von der Lenkungsungenauigkeit hervorgehenden Probleme bestehen.A road processing machine with laterally movable screed parts is mechanically complex. In construction machines without lateral adjustment, the problems resulting from the steering inaccuracy remain.

Aus der US 5,964,298 geht ein integriertes Erdkonturierungssystem hervor, das ein Positionierungssystem, wie zum Beispiel ein GPS, zur Verfolgung der Position einer Planierraupe auf einer Baustelle verwendet. Eine Anzeigevorrichtung, die für einen Fahrer der Planierraupe sichtbar ist, zeigt eine Differenz zwischen einer existierenden Oberflächenkontur und einer Solloberflächenkontur der Baustelle an. Die Anzeigevorrichtung kann ein dreidimensionales rotierendes Bild oder ein zweidimensionales rotierendes Bild mit einem Kursor anzeigen, um die Planierraupe darzustellen. Ein Schildsensor verfolgt die Position des Schildes der Planierraupe und die Anzeigevorrichtung zeigt Veränderungen der realen Oberflächenkontur, wenn die Planierraupe über die Baustelle bewegt wird, wobei die Höhe des Schildes sich zwischen der gewünschten und der realen Höhe der Oberfläche bewegt. Ein Orientierungssensor an Bord der Planierraupe versorgt einen Mikroprozessor mit der Orientierung der Planierraupe und eine Speichereinheit ist zur Versorgung des Mikroprozessors mit Oberflächendaten vorgesehen. Durch das System werden die Aktivitäten der Planierraupe und Oberflächenveränderungen integriert zusammen mit einer Versorgungsleitungsschutzfunktion und einer hydrologischen Analyse.From the US 5,964,298 An integrated earth contouring system emerges that uses a positioning system, such as a GPS, to track the position of a bulldozer on a job site. A display device, which is visible to a driver of the bulldozer, indicates a difference between an existing surface contour and a sol surface contour of the construction site. The display device may display a three-dimensional rotating image or a two-dimensional rotating image with a cursor to display the bulldozer. A shield sensor tracks the position of the bulldozer blade and the indicator shows changes in the real surface contour as the bulldozer is moved across the job site, with the height of the shield moving between the desired and actual elevations of the surface. An orientation sensor on board the bulldozer supplies a microprocessor with the orientation of the bulldozer, and a storage unit is provided for supplying surface data to the microprocessor. The system integrates bulldozer and surface modification activities along with a utility pipe protection function and hydrological analysis.

Der Erfindung liegt nun die Aufgabe zugrunde, eine einfache Lösung zu finden, mit welcher ein höhenverstellbares Arbeitsteil einer Strassenbearbeitungsmaschine in vertikaler Richtung präzise positioniert und die Lenkfunktion der Strassenbearbeitungsmaschine verbessert werden kann.The invention is based on the object to find a simple solution with which a height-adjustable working part of a road processing machine can be precisely positioned in the vertical direction and the steering function of the road processing machine can be improved.

Diese Aufgabe wird durch die Merkmale des Anspruches 1, 11 und 17 gelöst. Die abhängigen Ansprüche beschreiben alternative bzw. vorteilhafte Ausführungsvarianten.This object is solved by the features of claims 1, 11 and 17. The dependent claims describe alternative or advantageous embodiments.

Bei der Lösung der Aufgabe wurde erkannt, dass das Prisma an der Strassenbearbeitungsmaschine horizontal vom Arbeitsteil entfernt vor dem Schwerpunkt der Strassenbearbeitungsmaschine angeordnet und damit die Lenkfunktion verbessert werden kann, ohne dass dabei die Höhenregulierung des Arbeitsteiles verschlechtert wird. Dazu muss aber die Höhenbestimmung beim Prisma unter Verwendung mindestens eines Wertes mindestens einer Referenzbestimmung in eine Höhe beim Arbeitsteil (Bohle) umgerechnet werden.In the solution of the problem has been recognized that the prism arranged on the roadworking machine horizontally away from the working part in front of the center of gravity of the roadworking machine and thus the steering function can be improved without causing the height adjustment of the working part is deteriorated. For this, however, the height determination at the prism must be converted into a height at the working part (screed) using at least one value of at least one reference determination.

Es versteht sich von selbst, dass anstelle einer Laser-Totalstation und eines passiven Prismas auch ein aktives Positionselement, beispielsweise ein GPS-Gerät, verwendet werden kann. Ein aktives Positionselement soll mit der Hilfe von anderen Elementen, deren Positionen bekannt sind, seine Position ermitteln können. Bei den anderen Elementen kann es sich wiederum um aktive oder passive Elemente handeln. Wenn als Positionselement ein GPS-Gerät verwendet wird, so sollte dieses auch die Position in vertikaler Richtung möglichst genau bestimmen können. Gegebenenfalls wird einem Positionselement in der Form eines modifizierten GPS-Gerätes noch ein weiteres Signal von einem Vertikalpositioniersender, z.B. ausgeführt als rotierender Laser, zugeführt, so dass aus den Satellitensignalen und dem weiteren Signal die räumliche Lage des Positionselementes auch in vertikaler Richtung sehr genau bestimmt werden kann.It goes without saying that, instead of a laser total station and a passive prism, an active positioning element, for example a GPS device, can also be used. An active position element should be able to determine its position with the help of other elements whose positions are known. The other elements may be active or passive Act elements. If a GPS device is used as the position element, then this should also be able to determine the position in the vertical direction as accurately as possible. Optionally, a position element in the form of a modified GPS device yet another signal from a Vertikalpositioniersender, for example, as a rotating laser supplied, so that from the satellite signals and the further signal, the spatial position of the position element are determined very accurately in the vertical direction can.

Hierfür verwendbare Verfahren und Vorrichtungen zur Positionierung bzw. Höhenmessung mit Laserempfang werden beispielsweise in der US 4,807,131 beschrieben.For this purpose, suitable methods and devices for positioning or height measurement with laser reception, for example, in the US 4,807,131 described.

Wenn das Positionselement über eine feste Verbindung mit dem Arbeitsteil verbunden ist, so kann für jede mögliche Ausrichtungslage dieser Verbindung ein effektiver Höhenunterschied zwischen dem Positionselement und einem Punkt beim Arbeitsteil ermittelt werden. Für die Ermittlung des effektiven Höhenunterschiedes ist es am genauesten, wenn die Neigung der direkten Verbindungslinie zwischen dem Positionselement und dem Punkt beim Arbeitsteil, also ein Winkel zur Vertikalen oder zur Horizontalen, ermittelt wird.If the position element is connected to the working part via a fixed connection, an effective height difference between the position element and a point at the working part can be determined for each possible alignment position of this connection. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the position element and the point at the working part, ie an angle to the vertical or to the horizontal, is determined.

Wenn die Verbindung aus mindestens einem im Wesentlichen vertikal und einem im Wesentlichen horizontal verlaufenden Teilstück besteht, so können auch die jeweiligen Neigungen beider Teilstücke erfasst werden. Wenn die feste Verbindung aber im Wesentlichen nur um eine einzige horizontale Achse gedreht wird, so genügt eine einzige Neigungsbestimmung.If the connection consists of at least one substantially vertical and one substantially horizontal portion, so the respective inclinations of both sections can be detected. However, if the fixed connection is rotated substantially only about a single horizontal axis, then a single tilt determination is sufficient.

Die horizontale Schwenkachse des zum Arbeitsteil führenden Gestänges wird von einer Höhenverstellvorrichtung in der Höhe verändert. Dies ermöglicht es dem Arbeitsteil, auf dem warmen AsphaltMaterial aufzuschwimmen. Um ausgehend von der erfassten Lage des Positionselementes die genaue Lage des Arbeitsteiles zu ermitteln, muss mit mindestens einem aus einer Referenzbestimmung abgeleiteten Wert ein Höhenunterschied zwischen Positionselement und Arbeitswerkzeug bestimmt werden.The horizontal pivot axis of the working part leading linkage is changed by a height adjustment in height. This allows the working part to float on the warm asphalt material. In order to determine the exact position of the working part on the basis of the detected position of the position element, a height difference between the position element and the working tool must be determined with at least one value derived from a reference determination.

Die Referenzbestimmung umfasst vorzugsweise eine Neigungsbestimmung, mit der die aktuelle Ausrichtung der festen Verbindung erfasst wird. Die Ausrichtung der festen Verbindung kann gegebenenfalls auch mittels zweier Abstandsmessungen zur Basisoberfläche bzw. zu einer Referenzhöhe ermittelt werden. Dazu werden die Abstände von zwei verschiedenen Punkten der festen Verbindung zu einer Referenzposition ermittelt.The reference determination preferably comprises an inclination determination with which the current orientation of the fixed connection is detected. If necessary, the alignment of the fixed connection can also be determined by means of two distance measurements to the base surface or to a reference height. For this purpose, the distances from two different points of the fixed connection to a reference position are determined.

Weil die Strassenbearbeitungsmaschine auf der Basisoberfläche vorwärts fährt, sind zwei Punkte, die in Fahrtrichtung versetzt angeordnet sind, zeitversetzt über dem gleichen Bereich der Basisoberfläche. Wenn nun der horizontale Abstand zwischen den beiden Punkten der festen Verbindung durch die Fahrgeschwindigkeit dividiert wird, so erhält man das Zeitintervall, welches zwischen einer Abstandsmessung beim ersten und einer Abstandsmessung beim zweiten Punkt verstreichen soll. Mit diesem Zeitintervall kann gewährleistet werden, dass die beiden Abstandsmessungen an der gleichen Referenzoberfläche gemacht werden. Alternativ dazu kann auch die Positionsbestimmung mit Hilfe von Totalstation und Prisma herangezogen werden.Because the roadworking machine travels forward on the base surface, two points offset in the direction of travel are skewed over the same area of the base surface. If now the horizontal distance between the two points of the fixed connection is divided by the driving speed, one obtains the time interval which should elapse between a distance measurement at the first and a distance measurement at the second point. This time interval can be used to ensure that the two distance measurements are made on the same reference surface. Alternatively, the position determination with the help of total station and prism can be used.

Aus den beiden Distanzen zu einer Referenzoberfläche kann der Höhenunterschied zwischen Positionselement und Arbeitsteil ermittelt werden. Bei bekannter Höhe des Positionselementes kann mit dem ermittelten Höhenunterschied die Höhenlage des Arbeitsteiles bzw. einer Arbeitskante exakt bestimmt werden. Diese Höhenbestimmung für das Arbeitsteil kann auch durchgeführt werden, wenn keine feste Verbindung zwischen Positionselement und Arbeitsteil vorliegt. Das heisst, dass in Fahrtrichtung vorne an der Strassenbearbeitungsmaschine ein Positionselement und ein erster Distanzsensor zum Bestimmen eines Abstandes zur Basisoberfläche angeordnet sind. Am Arbeitsteil ist ein zweiter Distanzsensor zum ersten Sensor in Fahrtrichtung nach hinten versetzt angeordnet. Diese Anordnung ist auch ohne feste Verbindung zwischen Arbeitsteil und Positionselement zur Höhenbestimmung des Arbeitsteiles bei Geradeauslauf der Maschine einsetzbar. In Kurven kann die Positionsbestimmung herangezogen werden.From the two distances to a reference surface, the height difference between position element and working part can be determined. With a known height of the position element can be determined exactly the height of the working part or a working edge with the determined height difference. This height determination for the working part can also be carried out if there is no firm connection between the position element and the working part. This means that a position element and a first distance sensor for determining a distance to the base surface are arranged in front of the road processing machine in the direction of travel. At the working part, a second distance sensor is arranged offset to the first sensor in the direction of travel to the rear. This arrangement can also be used without firm connection between the working part and the position element for determining the height of the working part in straight running of the machine. In curves, the position determination can be used.

Wenn die Höhenverstellvorrichtung beim Verstellen lediglich eine Parallelverschiebung der festen Verbindung durchführt, so hängt der Höhenunterschied nicht von der Verstellhöhe ab. Bei einer Basisoberfläche, deren Ausrichtung im Wesentlichen überall gleich ist, beispielsweise horizontal, ist die Höhenkorrektur konstant und es muss lediglich kontrolliert werden, dass keine weitere Korrektur nötig ist. Entsprechend besteht die Referenzbestimmung darin, die parallele Ausrichtung zu überwachen.If the height adjustment device performs only a parallel displacement of the fixed connection during adjustment, the height difference does not depend on the adjustment height. For a base surface whose orientation is substantially the same everywhere, for example horizontally, the height correction is constant and it only needs to be checked that no further correction is needed. Accordingly, the reference determination is to monitor the parallel alignment.

Bei einer Basisoberfläche, deren Ausrichtung sich entlang des Fahrweges ändert, kann mit mindestens einer Neigungsbestimmung die Ausrichtung der Strassenbearbeitungsmaschine bzw. der darunter liegenden Basisoberfläche ermittelt werden. Die gemessene Neigung kann als Referenzbestimmung zur Korrektur der Höhe benützt werden. Aus der Lage des Positionselementes und dieser Höhenkorrektur ergibt sich die aktuelle Höhe des Arbeitsteiles.In the case of a base surface, the orientation of which changes along the travel path, the orientation of the roadworking machine or of the underlying machine can be determined with at least one inclination determination Base surface to be determined. The measured slope can be used as a reference for correcting altitude. From the position of the position element and this height correction results in the current height of the working part.

Weil nun auch bei einem vom Arbeitsteil in Längsrichtung der Strassenbearbeitungsmaschine - insbesondere um sogar die ganze Längenerstreckung der Maschine - entfernt angeordneten Positionselement die Höhenlage des Arbeitsteiles immer genau bestimmbar ist, kann das Positionselement so angeordnet werden, dass auch der Fahrweg der Strassenbearbeitungsmaschine optimal überwacht werden kann. Um eine hohe Sensibilität bezüglich Fahrzeugbewegungen vom Fahrweg weg zu gewährleisten, wird das Positionselement an einer Stelle der Strassenbearbeitungsmaschine befestigt, die möglichst weit von der Wendeachse entfernt ist. Insbesondere wird die Positionierung des Positionselementes hinsichtlich einer optimierten Signalausnutzung in Bezug auf die Bestimmung des Fahrwegs der Strassenbearbeitungsmaschine gewählt. So sind bei der Anordnung des Positionselements möglichst nahe an den vorderen Fahrwerken der Maschine Positionsänderungen der Maschine durch Messungen zum Positionselement äusserst schnell und präzise erfassbar. Das Positionselement ist in Fahrrichtung vor dem Maschinenschwerpunkt seitlich am linken oder rechten Rand der Maschine angeordnet. Die Positionierung des Positionselements ist damit am in Fahrrichtung vorderen Ende der Strassenbearbeitungsmaschine möglichst weit links oder rechts - und damit möglichst weit vorne und nahe an den Fahrwerken.Because now also in a working part in the longitudinal direction of the road processing machine - especially even the entire length of the machine - remotely located position element, the altitude of the working part is always accurately determined, the position element can be arranged so that the track of the road processing machine can be optimally monitored , In order to ensure a high sensitivity with respect to vehicle movements away from the travel path, the positioning element is fastened to a location of the roadworking machine which is as far away as possible from the turning axis. In particular, the positioning of the position element is selected with regard to an optimized signal utilization with respect to the determination of the travel path of the roadworking machine. Thus, in the arrangement of the position element as close as possible to the front landing gear of the machine changes in position of the machine by measurements to the position element extremely quickly and accurately detected. The position element is arranged in the direction of travel in front of the machine center of gravity laterally on the left or right edge of the machine. The positioning of the position element is thus as far as possible in the direction of travel front end of the road processing machine left or right - and thus as far forward and close to the chassis.

Weil Strassenbearbeitungsmaschinen mit einem höhenverstellbaren Arbeitsteil beim Fahren einer Kurve meist so drehen, dass das Arbeitsteil nicht oder zumindest nur wenig ausschwenkt, sollte das Positionselement so weit wie möglich vom Arbeitsteil entfernt sein. Das Arbeitsteil ist im hinteren Endbereich der Maschine angeordnet, deshalb ist das Positionselement im vorderen Endbereich angeordnet. Bei einem unerwünschten seitlichen Ausschwenken des Fahrzeuges wird das Positionselement erkennbar von der Fahrlinie weg bewegt. Eine Korrektursteuerung kann die Strassenbearbeitungsmaschine sofort wieder auf den gewünschten Fahrweg bringen. Das Arbeitsteil bleibt dabei im Wesentlichen immer auf dem gewünschten Weg.Because roadworking machines usually rotate with a height-adjustable working part while driving a curve such that the working part does not swing or at least only slightly swings out, the position element should be as far away from the working part as possible. The working part is arranged in the rear end region of the machine, therefore the positioning element is arranged in the front end region. In an undesirable lateral swinging of the vehicle, the position element is noticeably moved away from the driving line. A correction control can immediately bring the road processing machine back on the desired track. The working part essentially always stays on the desired path.

Das Positionselement ist zur gattungsgemäss präzisen Kontrolle des Fahrwegs der Strassenbearbeitungsmaschine an einer Position mindestens - in Fahrtrichtung der Maschine - vor dem Maschinenschwerpunkt, insbesondere so weit wie möglich vor dem Maschinenschwerpunkt, angebracht. Die Anbringung des Positionselements bzw. des Prismas möglichst weit vorne erlaubt auch eine einfachere Ausgestaltung des Kontrollalgorithmus, der insofern einfacher wird, da so die Regelung der Fahrtrichtung direkt auf den horizontalen Fehler abgestellt werden kann und die Längsachse der Strassenbearbeitungsmaschine nicht bekannt sein muss. Deren zusätzliche Kenntnis verbessert natürlich die Regelung.The position element is the generic precise control of the travel of the road processing machine at a position at least - in the direction of travel of the machine - in front of the machine center of gravity, in particular as far as possible in front of the machine center of gravity attached. The attachment of the position element or the prism as far forward as possible also simplifies the design of the control algorithm, which is simpler in so far as the control of the direction of travel can be adjusted directly to the horizontal error and the longitudinal axis of the road processing machine need not be known. Their additional knowledge naturally improves the regulation.

Bei der erfindungsgemässen Lösung kann mit lediglich einer Positionsverfolgung mit einem Positionselement, z.B. GPS oder einem Prisma, eine präzise Fahrbewegung und eine präzise Höhenpositionierung des Arbeitsteiles erzielt werden. Zur Ermittlung der Höhe des Arbeitsteiles muss lediglich mindestens eine Art von Referenzbestimmung durchgeführt werden.In the solution according to the invention, with only one position tracking with one position element, eg GPS or a prism, a precise travel movement and a precise height positioning of the working part can be achieved. To determine the height of the working part At least one type of reference determination must be carried out.

Die Zeichnungen erläutern die Erfindung anhand zweier Ausführungsbeispiele. Dabei zeigt

  • Fig. 1 eine schematische Seitenansicht einer Strassenbearbeitungsmaschine mit einem Neigungssensor und
  • Fig. 2 eine schematische Seitenansicht einer Strassenbearbeitungsmaschine mit zwei Distanzmesseinrichtungen
The drawings illustrate the invention with reference to two embodiments. It shows
  • Fig. 1 a schematic side view of a road processing machine with a tilt sensor and
  • Fig. 2 a schematic side view of a road processing machine with two distance measuring devices

Die Fig. 1 und 2 zeigen eine auf einer Basisoberfläche 1 fahrende Strassenbearbeitungsmaschine 2. Bei der dargestellten Maschine handelt es sich um einen Strassenfertiger mit einem Fahrzeug 3 und einem daran höhenverstellbar befestigten Arbeitsteil 4 in der Form einer Bohle. Das Asphaltmaterial 5 wird von einem Verteilorgan 6 entlang des vorderen Randes des Arbeitsteiles 4 verteilt. Wenn die Strassenbearbeitungsmaschine 2 auf der vorbereiteten Basisoberfläche 1 vorrückt, streicht das am hinteren Ende der Strassenbearbeitungsmaschine 2 angeordnete Arbeitsteil 4 über das Asphaltmaterial 5 und glättet sowie verdichtet dieses, um einen kontinuierlichen Asphaltbelag 7 mit einem gewünschten Oberflächenverlauf bereitzustellen. Die Positionierung des Arbeitsteiles 4 auf einer gewünschten Höhe erfolgt über eine leichte Schwenkbewegung von zwei beidseits der Maschine schwenkbar angeordneten Trägern 8, deren Schwenklager 9 als Drehpunkte von Hydraulikzylindern als Betätigungsorganen 10 bewegbar bzw. in der Höhe verstellbar sind.The Fig. 1 and 2 1 shows a roadworking machine 2 traveling on a base surface 1. The illustrated machine is a road finisher with a vehicle 3 and a working part 4 fastened thereto in a height-adjustable manner in the form of a screed. The asphalt material 5 is distributed by a distributor 6 along the front edge of the working part 4. When the road working machine 2 advances on the prepared base surface 1, the working part 4 disposed at the rear end of the road working machine 2 sweeps and smoothes the asphalt material 5 and compacts it to provide a continuous asphalt pavement 7 having a desired surface course. The positioning of the working part 4 at a desired height via a slight pivotal movement of two sides of the machine pivotally mounted supports 8, the pivot bearing 9 are movable as pivot points of hydraulic cylinders as actuators 10 and adjustable in height.

Um eine exakte Bearbeitung entlang eines gewünschten Fahrweges zu vereinfachen, soll an Punkten entlang des Fahrweges die jeweils aktuelle Position und/oder Fahrrichtung ermittelt, die Arbeitshöhe des Arbeitsteiles bestimmt und die ermittelte Position bzw. Fahrrichtung mit einer Sollposition bzw. Sollrichtung sowie die Arbeitshöhe mit einer Sollhöhe verglichen werden. Sobald die Position bzw. Fahrrichtung von der Sollposition bzw. Sollrichtung am entsprechenden Ort abweicht, sollte ein Steuersignal bereit gestellt werden, mit dem durch eine entsprechende Steuerung der Strassenbearbeitungsmaschine 2 die Abweichung kompensiert werden kann. Wenn die Arbeitshöhe von der Sollhöhe abweicht, so soll das Arbeitsteil 4 von den Trägern 8 gehoben oder gesenkt werden, bis die gewünschte Höhe erzielt wird.In order to simplify an exact machining along a desired track, the current position and / or direction is determined at points along the track, determines the working height of the working part and the determined position or direction of travel with a desired position or desired direction and the working height with a Nominal height to be compared. As soon as the position or direction of travel deviates from the desired position or desired direction at the corresponding location, a control signal should be provided with which the deviation can be compensated by a corresponding control of the roadworking machine 2. If the working height deviates from the desired height, the working part 4 should be raised or lowered by the supports 8 until the desired height is achieved.

Ein an der Strassenbearbeitungsmaschine 2 angeordnetes Positionselement, kann, bei Ausführung mit einem Prisma 11, mit einer Laser-Totalstation 12 verfolgt werden. Diese Station 12 verfolgt das Prisma 11 mittels einer in alle Richtungen ausrichtbaren Optik. Aus dem Raumwinkel der Optik, der Distanz zwischen Prisma 11 und Optik und der Position der Totalstation 12 wird die Position des Prismas 11 berechnet. Für einen Vergleich mit einem gewünschten Fahrweg müssen die Positionen und/oder Richtungen entlang des gewünschten Fahrweges als Sollwerte für die Strassenbearbeitungsmaschine 2 an der Stelle, an welcher das Prisma 11 angeordnet ist, vorliegen. Um einen gewünschten Bearbeitungsweg beim Arbeitsteil zu gewährleisten, sollte das Kurvenverhalten der Strassenbearbeitungsmaschine 2 bei der Bestimmung des Sollweges für das Prisma 11 berücksichtigt werden, so dass sich das Arbeitsteil 4 entlang des gewünschten Weges bewegt. Die Fahrrichtung kann aus aufeinander folgenden Positionen bestimmt werden.A position element arranged on the roadworking machine 2 can be tracked with a laser total station 12 when it is equipped with a prism 11. This station 12 tracks the prism 11 by means of an alignable in all directions optics. From the solid angle of the optics, the distance between prism 11 and optics and the position of the total station 12, the position of the prism 11 is calculated. For comparison with a desired route, the positions and / or directions along the desired route must be present as set points for the road-building machine 2 at the location where the prism 11 is located. In order to ensure a desired processing path in the working part, the curve behavior of the road-working machine 2 should be taken into account in the determination of the desired path for the prism 11, so that the working part 4 along the desired path emotional. The direction of travel can be determined from successive positions.

Weil sich bei Strassenbearbeitungsmaschinen 2 Richtungsänderungen durch seitliche Bewegungen des vorderen Endes der Maschine meist deutlicher zeigen als im Bereich des Arbeitsteiles, und weil der Regelalgorithmus der Richtungsregelung aufgrund der Position des Prismas ohne Kenntnis der Längsachse der Maschine einfacher wird, so wird das Prisma 11 möglichst weit vorne platziert - in der Ausführungsform z.B. am in Fahrrichtung vorderen äusserst linken Ende der Strassenbearbeitungsmaschine 2. Das Prisma 11 - am vorderen Ende - ist hier in Längsrichtung (Fahrrichtung) um die ganze Längenerstreckung (Erstreckung in Fahrrichtung) der Strassenbearbeitungsmaschine 2 vom Arbeitsteil 4 - am hinteren Ende - entfernt positioniert. Damit ist eine gute Kontrolle der Maschine mit lediglich einem Prisma möglich.Because 2 directional changes by lateral movements of the front end of the machine usually show more clearly in road processing machines than in the region of the working part, and because the control algorithm of directional control due to the position of the prism without knowledge of the longitudinal axis of the machine is easier, the prism 11 is as far as possible placed in front - in the embodiment, for example The prism 11 - at the front end - here in the longitudinal direction (direction of travel) to the entire length extension (extension in the direction of travel) of the road processing machine 2 from the working part 4 - positioned at the rear end - away. This allows a good control of the machine with only one prism.

Die zulässigen Toleranzen bei der Arbeitshöhe sind kleiner als bei der seitlichen Ausrichtung des Arbeitsteiles. Für den Vergleich einer erfassten Arbeitshöhe mit einer Sollhöhe muss die aktuelle Höhe des Arbeitsteiles 4 äusserst genau erfasst werden. Zwischen der Positionshöhe des Prismas 11 und der Arbeitshöhe des Arbeitsteiles 4 besteht keine feste Beziehung, weil sie in Längsrichtung der Maschine versetzt angeordnet sind. Wenn die Basisoberfläche 1 in Fahrrichtung geneigt verläuft, so ist das Arbeitsteil 4 relativ zur Höhe des Prismas 11 tiefer als bei einer ebenen Basisoberfläche 1. Hebe- und Senkbewegungen der Träger 8 und auch variable Neigungen der Basisoberfläche 1 verändern den Höhenunterschied zwischen Prisma und Arbeitsteil 4.The permissible tolerances for the working height are smaller than for the lateral alignment of the working part. For the comparison of a recorded working height with a desired height, the current height of the working part 4 must be recorded extremely accurately. Between the positional height of the prism 11 and the working height of the working part 4 there is no fixed relationship, because they are arranged offset in the longitudinal direction of the machine. When the base surface 1 is inclined in the direction of travel, the working part 4 is lower relative to the height of the prism 11 than in the case of a flat base surface 1. Lifting and lowering movements of the carrier 8 and also variable inclinations of the base surface 1 change the height difference between the prism and the working part 4 ,

Um aus der Positionshöhe des Prismas 11 eine möglichst genaue Arbeitshöhe ableiten zu können, soll mindestens ein Wert mindestens einer Referenzbestimmung für die Berechnung der Arbeitshöhe beim Arbeitsteil verwendet werden.In order to be able to derive as precise a working height as possible from the positional height of the prism 11, at least one value of at least one reference determination should be used for the calculation of the working height in the working part.

Die Laser-Totalstation 12 ist mit einer nicht dargestellten Auswerte- und Steuereinrichtung zum Auswerten der Lageinformation des Positionselementes - hier des Prismas 11 - und zum Bereitstellen von Steuersignalen zum Steuern der Strassenbearbeitungsmaschine 2 und zum Steuern der Höhenverstellung des Arbeitsteiles 4 verbunden. Ebenfalls der mindestens eine Referenzsensor zum Durchführen mindestens einer Referenzbestimmung ist mit der Steuereinrichtung verbunden. Mindestens ein Teil der Verbindungen sind als Funkverbindungen ausgebildet. Die Steuereinrichtung ist vorzugsweise auf der Strassenbearbeitungsmaschine 2 angeordnet, könnte aber gegebenenfalls auch bei der Laser-Totalstation 12 angeordnet sein. Wenn die Steuereinrichtung auf der Maschine 2 angeordnet ist, so können die Verbindungen zu Sensoren und Betätigungsvorrichtungen als Leitungsverbindungen ausgebildet werden.The laser total station 12 is connected to an evaluation and control device, not shown, for evaluating the position information of the position element - here of the prism 11 - and for providing control signals for controlling the roadworking machine 2 and for controlling the height adjustment of the working part 4. Also, the at least one reference sensor for performing at least one reference determination is connected to the control device. At least a part of the connections are designed as radio links. The control device is preferably arranged on the roadworking machine 2, but could possibly also be arranged at the laser total station 12. If the control device is arranged on the machine 2, the connections to sensors and actuators can be formed as line connections.

Gemäss Fig.1 wird im Rahmen einer ersten Ausführungsform vorgeschlagen, eine feste Verbindung 13 von einem der Träger 8 zum Prisma 11 auszubilden. Diese Verbindung 13 umfasst beispielsweise ein im Wesentlichen horizontal verlaufendes Verbindungsteil 13a und ein damit verbundenes vertikal verlaufendes Verbindungsteil 13b. Wenn das Prisma 11 über eine feste Verbindung mit dem Arbeitsteil 4 verbunden ist, so kann für jede mögliche Ausrichtungslage dieser Verbindung 13 ein effektiver Höhenunterschied zwischen dem Prisma 11 und einem Punkt beim Arbeitsteil 4 ermittelt werden. Für die Ermittlung des effektiven Höhenunterschiedes ist es am genauesten, wenn die Neigung der direkten Verbindungslinie zwischen dem Prisma und dem Punkt beim Arbeitsteil 4, also ein Winkel zur Vertikalen oder zur Horizontalen, ermittelt wird. Dazu kann ein Neigungssensor 14 ausgerichtet in Richtung der direkten Verbindungslinie an einem Teil der festen Verbindung 13 befestigt werden.According to Fig.1 is proposed in a first embodiment, a solid compound 13 of one of the carrier 8 to form the prism 11. This connection 13 comprises, for example, a substantially horizontally extending connecting part 13a and a vertically connected connecting part 13b connected thereto. If the prism 11 is connected via a fixed connection with the working part 4, then for each possible alignment position of this connection 13 can be an effective Height difference between the prism 11 and a point at the working part 4 can be determined. For the determination of the effective height difference, it is most accurate if the inclination of the direct connecting line between the prism and the point at the working part 4, ie an angle to the vertical or to the horizontal, is determined. For this purpose, a tilt sensor 14 aligned in the direction of the direct connection line to a part of the fixed connection 13 are attached.

In der dargestellten Ausführungsform ist der Neigungssensor 14 am horizontal verlaufenden Verbindungsteil 13a befestigt. Gegebenenfalls wird auch noch ein zweiter Neigungssensor, senkrecht zum ersten Neigungssensor ausgerichtet, an der festen Verbindung angeordnet, so dass die Neigung der festen Verbindung in zwei verschiedenen Richtungen erfasst werden kann. Ein quer zur Fahrtrichtung angebrachter Neigungssensor kann somit Zusatzinformationen bereitstellen.In the illustrated embodiment, the tilt sensor 14 is attached to the horizontally extending connecting part 13a. Optionally, a second tilt sensor, aligned perpendicular to the first tilt sensor, is also arranged on the fixed connection, so that the inclination of the fixed connection can be detected in two different directions. A transversely mounted to the direction of inclination sensor can thus provide additional information.

Gemäss Fig. 2 wird im Rahmen einer zweiten Ausführungsform zur Referenzbestimmung beim Prisma 11 mit einer ersten Distanzmesseinrichtung 15 mindestens eine erste Distanzmessung zur Basisoberfläche 1 und zeitlich versetzt beim Arbeitsteil 4 mit einer zweiten Distanzmesseinrichtung 16 mindestens eine zweite Distanzmessung zur Basisoberfläche 1 durchgeführt. Der Zeitversatz zwischen zusammen gehörenden Messungen soll anhand der Fahrgeschwindigkeit so gewählt werden, dass die beiden Messungen im Wesentlichen an der gleichen Referenzstelle erfolgen. Zwischen dem Prisma 11 und dem Arbeitsteil 4 muss nun keine feste Verbindung vorliegen. Das Prisma ist über eine Haltestange 13c mit der Strassenbearbeitungsmaschine 2 verbunden.According to Fig. 2 in a second embodiment for reference determination in the prism 11 with a first distance measuring device 15 at least a first distance measurement to the base surface 1 and temporally offset at the working part 4 with a second distance measuring device 16 at least a second distance measurement to the base surface 1 is performed. The time offset between measurements belonging together should be chosen based on the driving speed so that the two measurements are made essentially at the same reference point. Between the prism 11 and the working part 4 now no solid connection must be present. The prism is connected to the roadworking machine 2 via a support bar 13c.

Zwischen dem Prisma 11 und der ersten Distanzmesseinrichtung 15 ist in vertikaler Richtung ein fester und in horizontaler Richtung im Wesentlichen ein verschwindender Abstand gegeben. Analog muss zwischen dem Arbeitsteil 4 und der zweiten Distanzmesseinrichtung 16 in vertikaler Richtung ein fester und in horizontaler Richtung ein möglichst kleiner Abstand gegeben sein. Weil beim Arbeitsteil 4 Asphaltmaterial 5 von einem Verteilorgan 6 verteilt wird, muss vorzugsweise die zweite Distanzmessung direkt vor dem Verteilorgan 6 durchgeführt werden, damit die Basisoberfläche noch freiliegt. Wenn die Distanzmessung seitlich neben dem ausgetragenen Asphalt gemacht wird, so kann sie auch direkt neben dem Arbeitsteil durchgeführt werden. Es versteht sich von selbst, dass die Anordnung der zweiten Distanzmesseinrichtung 16 an das jeweilige Arbeitsteil 4 angepasst werden kann.Between the prism 11 and the first distance measuring device 15, there is a fixed distance in the vertical direction and a substantially vanishing distance in the horizontal direction. Analog must be given between the working part 4 and the second distance measuring device 16 in the vertical direction a fixed and in the horizontal direction the smallest possible distance. Because asphalt material 5 is distributed by a distributor 6 in the working part 4, preferably the second distance measurement has to be performed directly in front of the distributor 6, so that the base surface is still exposed. If the distance measurement is made laterally next to the discharged asphalt, it can also be done directly next to the working part. It goes without saying that the arrangement of the second distance measuring device 16 can be adapted to the respective working part 4.

Es versteht sich von selbst, dass auch Verfahren mit mindestens einer Neigungsbestimmung und zusätzlich mindestens einer ersten Distanzmessung zur Basisoberfläche 1 sowie zeitlich versetzt beim Arbeitsteil 4 mindestens einer zweiten Distanzmessung zur Basisoberfläche 1 vorteilhaft eingesetzt werden können.It goes without saying that methods with at least one inclination determination and additionally at least one first distance measurement to the base surface 1 and offset in time at the working part 4 of at least one second distance measurement to the base surface 1 can be advantageously used.

Claims (18)

  1. Method for monitoring the travel path of a road processing machine (2) travelling on a base surface (1) and the working height of a working part (4) arranged thereon in a height-adjustable manner in the rear end region, in which method the three-dimensional position of a position element (11) arranged on the road processing machine (2) is detected, a direction of travel is determined, if appropriate, from at least two three-dimensional positions, in particular at two times or from two positional coordinates, and the working height of the working part (4) is determined,
    - the working height being compared with a setpoint height and/or
    - the detected position being compared with a setpoint position and/or
    - the determined direction of travel being compared with a setpoint direction,
    characterized in that
    - the position element (11) is arranged at a position which is located a distance away horizontally from the working part (4) and before the centre of gravity of the road processing machine (2) in the direction of travel
    o in the longitudinal direction of the road processing machine (2) at the front end thereof in the direction of travel and
    o at the side of the road processing machine (2) in the edge region thereof,
    and
    - the positional height of the three-dimensional position of the position element (11) is converted into the working height at the working part (4) with the use of at least one value of at least one reference determination.
  2. Method according to Claim 1, characterized in that the position element (11) is positioned a distance away horizontally from the working part (4) in the longitudinal direction of the road processing machine (2) which corresponds to the total length of the road processing machine (2).
  3. Method according to Claim 1 or 2, characterized in that
    - the position element (11) is arranged at the extreme left or extreme right front end.
  4. Method according to any of Claims 1 to 3, characterized in that a fixed connection is formed between the position element (11) and the working part (4).
  5. Method according to Claim 4, characterized in that, for the reference determination, at least one tilt determination is carried out using a tilt sensor (14) arranged on the fixed connection.
  6. Method according to Claim 5, characterized in that, for the reference determination, two tilt determinations are carried out by two tilt sensors (14) arranged on the fixed connection and differently oriented.
  7. Method according to Claim 5 or 6, characterized in that a height difference between the positional height of the position element (11) and the working height at the working part (4) is derived from the at least one tilt determination.
  8. Method according to any of Claims 1 to 7, characterized in that, for the reference determination, at least one first distance measurement to the base surface (1) is carried out at the position element (11) and, at a different time, at least one second distance measurement to the base surface (1) is carried out at the working part (4), the time offset being chosen on the basis of the travelling speed or of a position determination so that the two measurements are effected substantially at the same reference point.
  9. Method according to Claim 8, characterized in that the position of the reference point is derived from the positional height of the position element (11) and the at least one first distance measurement, and a base height of the base surface (1) is detected at least along a line during the travel of the road processing machine (2).
  10. Method according to Claim 8, characterized in that at least one working height is derived from the positional height of the position element (11), the at least one first distance measurement and the at least one second distance measurement, and preferably the working height of the working part (4) is detected at least along a line during the travel of the road processing machine (2).
  11. Road processing machine (2) for carrying out a method according to Claim 1, comprising
    - a working part (4) arranged in a height-adjustable manner on the road processing machine (2) in the rear end region and
    - a position element (11) arranged on the road processing machine (2),
    the road processing machine (2) being capable of moving on a base surface (1) and the three-dimensional position of the position element (11) being detectable by at least one station (12),
    and it being possible to evaluate the positional information of the position element (11) by an evaluation and control device and it being possible to provide control information for controlling the road processing machine (2) and the height adjustment of the working part (4),
    characterized in that
    - the position element (11) is arranged a distance away horizontally from the working part (4) before the centre of gravity of the road processing machine (2) in the direction of travel
    ○ in the longitudinal direction of the road processing machine (2) at the front end thereof in the direction of travel and
    ○ at the side of the road processing machine (2) in the edge region thereof, and
    - at least one reference sensor (14, 15, 16) being coordinated with the road processing machine (2) for carrying out at least one reference determination, it being possible to convert the positional height of the three-dimensional position of the position element (11) into a working height at the working part (4) with the use of at least one reference value derived by the reference sensor (14, 15, 16).
  12. Road processing machine (2) according to Claim 11, characterized in that the position element (11) is positioned a distance away horizontally from the working part in the longitudinal direction of the road processing machine (2) which corresponds to the total length of the road processing machine (2).
  13. Road processing machine (2) according to Claim 11 or 12, characterized in that
    - the position element (11) is arranged at the extreme left or extreme right front end.
  14. Road processing machine (2) according to any of Claims 11 to 13, characterized in that the working part (4) is in the form of a screeding beam.
  15. Road processing machine (2) according to any of Claims 11 to 14, characterized in that at least one reference sensor is in the form of a tilt sensor (14) which is to be arranged on a fixed connection (13) between the position element (11) and the working part (4) and makes it possible to derive a height difference between the positional height of the position element (11) and the working height of the working position (4).
  16. Road processing machine (2) according to any of Claims 11 to 15, characterized in that at least two reference sensors are in the form of first and second distance sensor (15, 16), the first distance sensor (15) being arranged at the position element (11) and the second (16) at the working part (4) so that distance measurements to the base surface (1) are made at different times as a result of the travelling speed, so that the two measurements are effected substantially at the same reference point.
  17. System for carrying out a method for monitoring the travel path of a road processing machine (2) travelling on a base surface (1) and the working height of a working part (4) arranged thereon in a height-adjustable manner, comprising
    - a road processing machine (2) according to any of Claims 11 to 16,
    - a station (12) for determining the three-dimensional position of the position element (11) and
    - an evaluation and control device for evaluating the positional information of the position element (11) and for providing control information for controlling the road processing machine (2) and the height adjustment of the working part (4).
  18. System according to Claim 17, characterized in that the evaluation and control device is arranged on the road processing machine (2).
EP05816965A 2004-12-17 2005-12-19 Method and device for monitoring a road processing machine Active EP1825064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05816965A EP1825064B1 (en) 2004-12-17 2005-12-19 Method and device for monitoring a road processing machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04029963A EP1672122A1 (en) 2004-12-17 2004-12-17 Method and apparatus for controlling a road working machine
PCT/EP2005/056932 WO2006064062A1 (en) 2004-12-17 2005-12-19 Method and device for monitoring a road processing machine
EP05816965A EP1825064B1 (en) 2004-12-17 2005-12-19 Method and device for monitoring a road processing machine

Publications (2)

Publication Number Publication Date
EP1825064A1 EP1825064A1 (en) 2007-08-29
EP1825064B1 true EP1825064B1 (en) 2009-06-17

Family

ID=34927826

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04029963A Withdrawn EP1672122A1 (en) 2004-12-17 2004-12-17 Method and apparatus for controlling a road working machine
EP05816965A Active EP1825064B1 (en) 2004-12-17 2005-12-19 Method and device for monitoring a road processing machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04029963A Withdrawn EP1672122A1 (en) 2004-12-17 2004-12-17 Method and apparatus for controlling a road working machine

Country Status (9)

Country Link
US (1) US7643923B2 (en)
EP (2) EP1672122A1 (en)
JP (1) JP5390100B2 (en)
CN (1) CN101072916B (en)
AT (1) ATE434086T1 (en)
AU (1) AU2005315566B2 (en)
CA (1) CA2591563C (en)
DE (1) DE502005007537D1 (en)
WO (1) WO2006064062A1 (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200414B1 (en) 2011-11-02 2015-12-01 Gomaco Corporation Stringless paving train method and apparatus
US9963836B1 (en) 2005-02-23 2018-05-08 Gomaco Corporation Method for operating paving train machines
US8855967B1 (en) * 2011-11-02 2014-10-07 Gomaco Corporation Surface data measurement system and method
US7617061B2 (en) * 2006-11-03 2009-11-10 Topcon Positioning Systems, Inc. Method and apparatus for accurately determining height coordinates in a satellite/laser positioning system
US8070385B2 (en) 2008-07-21 2011-12-06 Caterpillar Trimble Control Technologies, Llc Paving machine control and method
US8220806B2 (en) * 2009-01-13 2012-07-17 Roger Hartel Neudeck Surface milling system
EP2256246B1 (en) * 2009-05-20 2018-07-04 Joseph Vögele AG Paving machines for applying a cover layer of a road surface
DE102009059106A1 (en) * 2009-12-18 2011-06-22 Wirtgen GmbH, 53578 Self-propelled construction machine and method for controlling a self-propelled construction machine
EP2366830B1 (en) * 2010-03-18 2016-05-11 Joseph Vögele AG Method and system for applying a street pavement
CN102261032B (en) * 2011-05-04 2012-09-26 三一重工股份有限公司 Paver and levelling control device thereof
US9869063B1 (en) 2011-11-02 2018-01-16 Gomaco Corporation Stringless paving train method and apparatus
DE102012001289A1 (en) 2012-01-25 2013-07-25 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
US8989968B2 (en) 2012-10-12 2015-03-24 Wirtgen Gmbh Self-propelled civil engineering machine system with field rover
US9096977B2 (en) 2013-05-23 2015-08-04 Wirtgen Gmbh Milling machine with location indicator system
CN104121477B (en) * 2014-07-17 2017-03-01 上海雷尼威尔技术有限公司 Automobile-used LNG gas tank control system and method
CN104099854B (en) * 2014-07-31 2016-02-10 中联重科股份有限公司 Surface level-meter adjusting device and control method, paver
DE102014012825A1 (en) 2014-08-28 2016-03-03 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
DE102014012831B4 (en) 2014-08-28 2018-10-04 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
DE102014012836B4 (en) 2014-08-28 2018-09-13 Wirtgen Gmbh Self-propelled construction machine and method for visualizing the processing environment of a construction machine moving in the field
GB201419182D0 (en) * 2014-10-28 2014-12-10 Nlink As Mobile robotic drilling apparatus and method for drilling ceillings and walls
US10539084B2 (en) 2014-11-18 2020-01-21 Carl M. Clark Vehicle rollover safety device utilizing a circular arc level
US9869286B1 (en) * 2014-11-18 2018-01-16 Carl M. Clark Vehicle rollover safety device
US9624643B2 (en) 2015-02-05 2017-04-18 Deere & Company Blade tilt system and method for a work vehicle
US9328479B1 (en) 2015-02-05 2016-05-03 Deere & Company Grade control system and method for a work vehicle
US9551130B2 (en) 2015-02-05 2017-01-24 Deere & Company Blade stabilization system and method for a work vehicle
WO2017010541A1 (en) * 2015-07-15 2017-01-19 住友建機株式会社 Road machine
ES2660477T3 (en) * 2015-07-30 2018-03-22 Albert Handtmann Maschinenfabrik Gmbh & Co. Kg Procedure and device for simplified leveling of a filling machine for sausage manufacturing
AT517924B1 (en) * 2015-11-10 2019-10-15 Dipl Ing Guenther Lehmann marking System
CN106968155A (en) * 2017-05-23 2017-07-21 山东奥邦机械设备制造有限公司 A kind of asphalt-spreader
DE102017010238A1 (en) * 2017-11-03 2019-05-09 Bomag Gmbh Measurement of installation layer thickness by road roller
JP7022601B2 (en) * 2018-01-23 2022-02-18 株式会社トプコン Surveying equipment and surveying method
US10563362B2 (en) * 2018-06-01 2020-02-18 Caterpillar Paving Products Inc. System and method for paving machine control
DE102018119962A1 (en) 2018-08-16 2020-02-20 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
CN109186544A (en) * 2018-11-09 2019-01-11 湖南联智桥隧技术有限公司 A kind of method and device for facing the measurement of higher degree of sky interface
EP3660598B1 (en) * 2018-11-30 2021-10-20 MOBA Mobile Automation AG Automatic application of local specification
CN110004800A (en) * 2019-04-10 2019-07-12 安徽开源路桥有限责任公司 Asphalt concrete pavement construction equipment and construction method based on 3D numerical control system
DE102019118059A1 (en) 2019-07-04 2021-01-07 Wirtgen Gmbh Self-propelled construction machine and method for controlling a self-propelled construction machine
CN110568844B (en) * 2019-08-23 2022-03-29 东南大学 Laser auxiliary positioning system for linear running of unmanned road roller
DE102019135225B4 (en) 2019-12-19 2023-07-20 Wirtgen Gmbh Method for milling off traffic areas with a milling drum, and milling machine for carrying out the method for milling off traffic areas
CH717191A1 (en) * 2020-03-04 2021-09-15 Kibag Bauleistungen Ag Device for paving mastic asphalt on a road surface and method for manufacturing an asphalt road.
EP3981918B1 (en) * 2020-10-08 2024-03-13 Joseph Vögele AG Road finisher and method for levelling the screed of a finisher
EP4083322A1 (en) 2021-04-27 2022-11-02 Leica Geosystems AG System and method for controlling a road construction process
US11834797B2 (en) * 2021-09-08 2023-12-05 Caterpillar Paving Products Inc. Automatic smoothness control for asphalt paver

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807131A (en) 1987-04-28 1989-02-21 Clegg Engineering, Inc. Grading system
US4895440A (en) * 1988-08-22 1990-01-23 Spectra-Physics, Inc. Laser-based measurement system
AU628860B2 (en) * 1989-09-14 1992-09-24 Kabushiki Kaisha Komatsu Seisakusho Blade controller of bulldozer
US5375663A (en) * 1993-04-01 1994-12-27 Spectra-Physics Laserplane, Inc. Earthmoving apparatus and method for grading land providing continuous resurveying
JP3541960B2 (en) * 1993-12-24 2004-07-14 独立行政法人土木研究所 Automatic 3D position control method for construction machinery
US5964298A (en) * 1994-06-13 1999-10-12 Giganet, Inc. Integrated civil engineering and earthmoving system
US5549412A (en) 1995-05-24 1996-08-27 Blaw-Knox Construction Equipment Corporation Position referencing, measuring and paving method and apparatus for a profiler and paver
US5612864A (en) * 1995-06-20 1997-03-18 Caterpillar Inc. Apparatus and method for determining the position of a work implement
US5764511A (en) * 1995-06-20 1998-06-09 Caterpillar Inc. System and method for controlling slope of cut of work implement
DE19647150C2 (en) 1996-11-14 2001-02-01 Moba Mobile Automation Gmbh Device and method for controlling the installation height of a road finisher
SE508951C2 (en) * 1997-11-28 1998-11-16 Spectra Precision Ab Apparatus and method for determining the position of a working part
US6262294B1 (en) 1999-02-17 2001-07-17 Agency Of Industrial Science And Technology Process for continuously producing monomer components from aromatic polyester
DE19940404C2 (en) 1999-08-25 2001-07-12 Moba Mobile Automation Gmbh Method and device for three-dimensional control of a construction machine
DE19951297C1 (en) 1999-10-25 2001-04-12 Moba Mobile Automation Gmbh Control device for road laying machine has beam of road laying machine displaced transverse to travel direction for compensating offset from required path of road surface
DK1118713T3 (en) * 2000-01-19 2005-01-10 Voegele Ag J Procedures for controlling a construction machine and a weighing machine as well as a weighing machine
DE10025474B4 (en) 2000-05-23 2011-03-10 Moba - Mobile Automation Gmbh Coating thickness determination by relative position detection between the tractor and the traction arm of a paver
DE10060903C2 (en) 2000-12-07 2002-10-31 Moba Mobile Automation Gmbh Laser height control device for a construction machine

Also Published As

Publication number Publication date
WO2006064062A1 (en) 2006-06-22
AU2005315566B2 (en) 2010-07-01
CA2591563C (en) 2013-08-13
CA2591563A1 (en) 2006-06-22
CN101072916A (en) 2007-11-14
JP2008524473A (en) 2008-07-10
US7643923B2 (en) 2010-01-05
ATE434086T1 (en) 2009-07-15
AU2005315566A1 (en) 2006-06-22
EP1825064A1 (en) 2007-08-29
DE502005007537D1 (en) 2009-07-30
JP5390100B2 (en) 2014-01-15
CN101072916B (en) 2012-05-09
US20080208417A1 (en) 2008-08-28
EP1672122A1 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
EP1825064B1 (en) Method and device for monitoring a road processing machine
EP1856329B1 (en) Method for controlling a construction machine and construction machine with a controlling system
EP3048199B2 (en) Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
EP2535456B1 (en) Road finisher with coating measuring device
EP1339920B1 (en) Laser height adjustment device for a construction machine
EP2687631B1 (en) Road finisher with measuring device
EP1118713B1 (en) Method for steering a construction machine or roadpaver and road finisher
EP2535457B1 (en) Road finisher with coating measuring device
EP0964958B1 (en) Method for milling road traffic surfaces
EP2199466B1 (en) Method for laying a paving surface
EP3739122B1 (en) Road finisher and method for determining a thickness of a layer of an established installation layer
DE102014222693B4 (en) DEVICE FOR DETERMINING THE TEMPERATURE OF A ROADWORK MATERIAL RAISED BY A CONSTRUCTION MACHINE AND A CONSTRUCTION MACHINE WITH SUCH A DEVICE
EP2006448A1 (en) Paving machine for applying a cover layer made of concrete or asphalt material
EP0542297B1 (en) Ultrasonic control device for a road-finisher
DE4222333A1 (en) METHOD FOR DETERMINING THE DEVIATIONS OF THE ACTUAL LOCATION OF A TRACK SECTION
EP0388819A1 (en) Road-paving machine
EP0915203A1 (en) Ballast leveling machine and method for placing the ballast of a railway track
DE102016207841B4 (en) Layer thickness measuring device and method for coating thickness measurement
EP3892777B1 (en) Road finisher and method with transverse profile control
EP3835485B1 (en) Measuring system for a construction machine
DE10025474B4 (en) Coating thickness determination by relative position detection between the tractor and the traction arm of a paver
DE10025462A1 (en) Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor
DE19921761B4 (en) Method and device for adjusting the working distance
EP3712328B1 (en) Construction maschine with measuring system
DE3444623A1 (en) Measuring and control system for recording and reproducing height profiles, particularly in road construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070330

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080623

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STEGMAIER, PETER, A.

Inventor name: BUEHLMANN, ANDREAS

Inventor name: KUCH, VOLKER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, KAMINSKI & PARTNER PATENTANWAELTE ESTABLI

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005007537

Country of ref document: DE

Date of ref document: 20090730

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LEICA GEOSYSTEMS AG

Free format text: LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH) -TRANSFER TO- LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090928

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

26N No opposition filed

Effective date: 20100318

BERE Be: lapsed

Owner name: LEICA GEOSYSTEMS A.G.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090918

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090617

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221222

Year of fee payment: 18

Ref country code: NL

Payment date: 20221222

Year of fee payment: 18

Ref country code: GB

Payment date: 20221222

Year of fee payment: 18

Ref country code: FR

Payment date: 20221222

Year of fee payment: 18

Ref country code: DE

Payment date: 20221213

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 18