EP1812356A1 - Fils de verre ensimes electro-conducteurs. - Google Patents
Fils de verre ensimes electro-conducteurs.Info
- Publication number
- EP1812356A1 EP1812356A1 EP05815518A EP05815518A EP1812356A1 EP 1812356 A1 EP1812356 A1 EP 1812356A1 EP 05815518 A EP05815518 A EP 05815518A EP 05815518 A EP05815518 A EP 05815518A EP 1812356 A1 EP1812356 A1 EP 1812356A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- glass
- son
- particles
- compounds
- agents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003365 glass fiber Substances 0.000 title abstract description 5
- 239000002245 particle Substances 0.000 claims abstract description 71
- 239000011521 glass Substances 0.000 claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 60
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 36
- 150000001875 compounds Chemical class 0.000 claims abstract description 20
- 239000002270 dispersing agent Substances 0.000 claims abstract description 17
- 239000004094 surface-active agent Substances 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 238000000748 compression moulding Methods 0.000 claims abstract description 3
- 238000004513 sizing Methods 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 20
- 239000002131 composite material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007822 coupling agent Substances 0.000 claims description 12
- 239000004014 plasticizer Substances 0.000 claims description 12
- 239000006229 carbon black Substances 0.000 claims description 11
- 239000011118 polyvinyl acetate Substances 0.000 claims description 11
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- -1 siloxanes Chemical class 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 8
- 239000002518 antifoaming agent Substances 0.000 claims description 8
- 230000003014 reinforcing effect Effects 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 239000000314 lubricant Substances 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 229920001519 homopolymer Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 239000004634 thermosetting polymer Substances 0.000 claims description 4
- 238000013019 agitation Methods 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 150000002894 organic compounds Chemical class 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 150000004756 silanes Chemical class 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 235000010418 carrageenan Nutrition 0.000 claims description 2
- 229920001525 carrageenan Polymers 0.000 claims description 2
- 239000008139 complexing agent Substances 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 125000003700 epoxy group Chemical group 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000002484 inorganic compounds Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 229920001285 xanthan gum Polymers 0.000 claims description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 125000001931 aliphatic group Chemical group 0.000 claims 1
- 125000003118 aryl group Chemical group 0.000 claims 1
- 150000001767 cationic compounds Chemical class 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 150000004665 fatty acids Chemical class 0.000 claims 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 1
- 230000001050 lubricating effect Effects 0.000 abstract 1
- 239000003677 Sheet moulding compound Substances 0.000 description 23
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 13
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 description 12
- 238000000465 moulding Methods 0.000 description 11
- 229910021383 artificial graphite Inorganic materials 0.000 description 10
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000010422 painting Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 229920002873 Polyethylenimine Polymers 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PZTAGFCBNDBBFZ-UHFFFAOYSA-N tert-butyl 2-(hydroxymethyl)piperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCCCC1CO PZTAGFCBNDBBFZ-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 2
- 206010001488 Aggression Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical class OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/42—Coatings containing inorganic materials
- C03C25/44—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/465—Coatings containing composite materials
- C03C25/47—Coatings containing composite materials containing particles, fibres or flakes, e.g. in a continuous phase
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249933—Fiber embedded in or on the surface of a natural or synthetic rubber matrix
- Y10T428/249937—Fiber is precoated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
- Y10T428/292—In coating or impregnation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2938—Coating on discrete and individual rods, strands or filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2962—Silane, silicone or siloxane in coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
- Y10T428/2964—Artificial fiber or filament
Definitions
- the present invention relates to glass strands coated with an electrically conductive size for reinforcing organic materials of the polymer type, so as to obtain composite materials.
- the reinforcing glass threads are produced by mechanical drawing of molten glass threads flowing from the multiple orifices of a die filled with molten glass, by gravity under the effect of the hydrostatic pressure linked to the height of the liquid, to form filaments which are gathered in base son, which son are then collected on a suitable support.
- the glass filaments are coated with a sizing composition, generally aqueous, by passing on a sizing member.
- the role of the sizing is essential in many ways.
- the yarns protects the filaments from the abrasion resulting from the friction of the latter, at high speed, on the drawing and winding members of the thread by acting as a lubricant.
- the size also gives cohesion to the wire by ensuring the connection of the filaments between them.
- the wire sufficiently integrated to withstand the rewinding operations necessary to form including rovings "assembled" from several basic son, and also eliminates electrostatic charges generated during these operations.
- the size improves the impregnation of the yarn by the matrix to be reinforced and promotes adhesion between the glass and said matrix, thus leading to composite materials with improved mechanical properties.
- the sizing protects the wires from chemical and environmental aggressions, which contributes to increasing their durability. In applications requiring cutting the thread, the size allows to avoid the bursting and the release of the filaments, and it participates with the over-image to disperse the electrostatic charges generated during cutting.
- the glass threads in their various forms are commonly used to effectively reinforce dies of various kinds, for example thermoplastic or thermosetting organic materials, and inorganic materials, for example cement.
- the invention is concerned here with reinforcing yarns which are incorporated in thermosetting polymer matrices to manufacture either impregnated mats or "Sheet Molding Compounds" (SMC) which can be shaped directly by molding in a mold. hot pressurized mold, ie pasta intended to be molded by the BuIk Molding Compound (BMC) technique.
- SMC Sheet Molding Compounds
- An SMC is a semi-finished product which combines a mat of glass yarn and a paste of a thermosetting resin, in particular chosen from polyesters.
- glass acts as reinforcement and provides mechanical properties and dimensional stability to castings. It generally represents 25 to 60% of the weight of the MSC. Most often, glass is in the form of chopped strands, although continuous strands can be used for some applications.
- the paste comprises the thermosetting resin and fillers, optionally additives such as initiators, viscosity regulators and mold release agents.
- the SMC is manufactured by depositing a first layer of paste on a film supported by a conveyor belt, by cutting son unwound from rovings by means of a rotary cutter with a length of
- the wires being distributed randomly (isotropically distributed), and depositing a second layer of film-supported paste, the resin face being directed towards the glass.
- the combination of the different layers then passes into the air gap of one or more calendering devices in order to impregnate the glass threads with the resin and to evacuate the trapped air.
- the SMC has yet to undergo a ripening treatment which aims to raise the viscosity of the resin to a value of 40-100 Pa.s imposed to enable it to be molded under good conditions.
- the molding from SMC allows the production of individual parts, in medium or large series, which are inexpensive, particularly because the SMC is deposited directly in the mold without having to make a precise cut to the dimensions of this one. .
- What distinguishes the BMC from the SMC is the form that is here a paste intended to be injected into a mold in compression.
- the parts produced by these molding techniques are particularly used in the automotive field to replace body parts or protection against shocks that are currently metal, especially steel.
- the painting operation of metal parts is carried out by cataphoresis: it consists in depositing, electrostatically, one or more layers of primer (s) to obtain a "smoothing" of the surface, and paint (s) .
- the composite parts can not be used as such because the polymeric material has an electrical insulator character. It is therefore necessary to make them conductive for use on conventional painting lines operating by cataphoresis.
- composition for use in molding processes which comprises a crosslinkable prepolymer, at least one unsaturated monomer copolymerizable with the prepolymer, an initiator of the copolymerization and electrically conductive fillers, for example graphite, metal-coated particles or metal particles.
- the implementation of the composition is made difficult by the high content of conductive charges necessary to obtain a good level of conduction.
- the conductive fillers are incorporated directly into the matrix, which causes a significant increase in viscosity: the impregnation of the glass wire is made more difficult and the pressure to be applied for molding must be increased.
- the solution of increasing the amount of solvent to reduce the viscosity has other disadvantages: it decreases the mechanical properties of the composite and generates micro-bubbles that affects the quality of the surface finish of the final parts.
- the present invention aims to provide reinforcing son which are particularly suitable for the realization of SMC, and which are able to conduct the electric current, so as to obtain moldings of composite materials that can be treated by cataphoresis.
- the invention relates to glass threads coated with an aqueous sizing composition which comprises at least one film-forming agent, at least one compound chosen from plasticizers, surfactants and dispersing agents, at least one agent coupling of glass and electroconductive particles.
- "glass threads coated with a sizing composition which comprises " means not only glass threads coated with the composition in question as obtained at the immediate exit of the one or more sizing members, but also these same son having undergone one or more subsequent treatments.
- the term "son” is understood to mean the basic threads resulting from the non-twisted gathering of a multitude of filaments, and the products derived from these yarns, especially the assemblies of these rovings. Such assemblies can be obtained by unwinding simultaneously several windings of basic son, and then gathering them in locks which are wound on a rotating support. It can also be "direct" rovings of the same title (or linear density) equivalent to that of assembled rovings, obtained by the gathering of filaments directly under the die and the winding on a rotating support.
- aqueous sizing composition means a composition capable of being deposited on the filaments being drawn and which is in the form of a suspension or a dispersion comprising at least 70 % by weight of water, preferably 75% and possibly containing less than 10% by weight, preferably less than 5% of one or more essentially organic solvents that can help to solubilize certain constituents of the sizing composition .
- the composition does not contain an organic solvent, in particular to limit emissions of volatile organic compounds (VOC) into the atmosphere.
- the film-forming agent according to the invention has several roles: it confers the mechanical cohesion of the coating by adhering the conductive particles to the glass filaments and ensuring the connection of these particles together, where appropriate with the material to be reinforced; it helps to bind the filaments to each other; Finally, it protects the wires against mechanical damage and chemical and environmental aggressions.
- the film-forming agent is a polymer chosen from vinyl polyacetates (homopolymers or copolymers, for example copolymers of vinyl acetate and ethylene), polyesters, epoxies, polyacrylics (homopolymers or copolymers), polyurethanes, polyamides (homopolymers or copolymers, for example polyamide-polystyrene or polyamide-polyoxyethylene block copolymers), cellulosic polymers and mixtures of these compounds.
- Polyvinyl acetate, epoxy and polyurethanes are preferred.
- the plasticizing agent makes it possible to lower the glass transition temperature of the film-forming agent, which gives flexibility to the size and makes it possible to limit the shrinkage after drying.
- the surfactant improves the suspension and dispersion of the conductive particles and promotes compatibility between the other constituents and the water. It can be chosen from cationic, anionic or nonionic compounds.
- cationic or nonionic surfactants In order to avoid problems of stability of the sizing composition and inhomogeneous dispersion of the particles, it is preferred to use cationic or nonionic surfactants.
- the dispersing agent helps disperse the conductive particles in the water and reduces their sedimentation.
- the plasticizers, surfactants and dispersants may have one or more functions specific to each of the categories mentioned above.
- the choice of these agents and the amount to be used depends on the film-forming agent and the conductive particles.
- These agents may especially be chosen from:> organic compounds, in particular - optionally halogenated polyalkoxylated, aliphatic or aromatic compounds, such as ethoxylated / propoxylated alkyphenols, preferably containing 1 to 30 ethylene oxide groups and 0 to 15 groups; propylene oxide, ethoxylated / propoxylated bisphenols, preferably containing 1 to 40 ethylene oxide groups and 0 to 20 propylene oxide groups, the ethoxylated / propoxylated fatty alcohols, preferably of which the alkyl chain comprises 8 to 20 carbon atoms; and containing 2 to 50 ethylene oxide groups and up to 20 propylene oxide groups.
- These polyalkoxylated compounds may be block or random copolymers,
- polyalkoxylated fatty acid esters for example of polyethylene glycol, preferably having an alkyl chain containing 8 to 20 carbon atoms and containing 2 to 50 ethylene oxide groups and up to 20 propylene oxide groups, the compounds amines, for example amines, optionally alkoxylated, amine oxides, alkylamides, succinates and taurates of sodium, potassium or ammonium, derivatives of sugars including sorbitan, sodium alkylsulfates and alkylphosphates, potassium or ammonium.
- Inorganic compounds, for example derivatives of silica these compounds may be used alone or in admixture with the aforementioned organic compounds.
- the electrically conductive particles make it possible to impart electrical conductivity to the glass strands and the level of performance depends on the amount of particles present on the strand.
- these are carbon-based particles, in particular graphite particles and / or carbon black particles.
- the particles may have any shape, for example spherical, scaly or needle. Nevertheless, it has been found that the electrical conductivity of a mixture of particles of different shapes is improved with respect to the same quantity of particles of identical shape. Mixtures combining two forms (binary mixture) or three forms (ternary mixture) of particles are advantageous.
- the conductive particles Preferably, 30 to 60% of the conductive particles have an aspect ratio
- particle size is an important parameter for electrical conductivity. As a general rule, the particle size taken in their largest dimension does not exceed 250 ⁇ m, preferably 100 ⁇ m.
- the above-mentioned particles are combined with a conductive carbon black powder with a particle size of 1 ⁇ m or less, preferably having a mean size of less than 100 nm. Because of their small size, carbon black particles make it possible to create points of contact between the graphite particles, which makes it possible to further improve the electrical conductivity.
- the coupling agent makes it possible to ensure that the size is adhered to the surface of the glass.
- the coupling agent is chosen from hydrolysable compounds, especially in an acidic medium containing, for example, citric or acetic acid, belonging to the group consisting of silanes such as gamma-glycidoxypropyltri-methoxysilane, gamma-acryloxypropyltrimethoxysilane, gamma methacryloxypropyltrimethoxysilane, poly (oxyethylene / oxypropylene) trimethoxysilane, gamma-aminopropyltriethoxysilane, vinyltrimethoxysilane, phenylaminopropyltrimethoxysilane or styrylaminoethylaminopropyltrimethoxysilane, siloxanes, titanates, zirconates and mixtures of these compounds.
- the silanes are selected.
- one or more other constituents may be present.
- a viscosity regulating agent which makes it possible to adjust the viscosity of the composition to the conditions of application on the filaments, generally between 5 and 80 mPa.s, preferably at least equal to 7 mPa.s.
- This agent also makes it possible to stabilize the dispersion of the particles so as to prevent them from sedimenting too rapidly, and that they migrate outwards and end up on the surface of the winding during winding of the wire.
- the viscosity regulating agent is chosen from compounds that are highly hydrophilic, that is to say capable of capturing a large quantity of water, such as carboxymethylcelluloses, guar gums or xanthan gums, carrageenans, alginates, polyacrylics, polyamides, polyethylene glycols, especially with a molecular weight greater than 100,000, and mixtures of these compounds.
- the size may also comprise the usual glass fiber additives: lubricating agents such as mineral oils, fatty esters, for example isopropyl palmitate or butyl stearate, and alkylamines, complexing agents such as derivatives of EDTA and gallic acid, and anti-foam agents such as silicones, polyols and vegetable oils.
- lubricating agents such as mineral oils, fatty esters, for example isopropyl palmitate or butyl stearate, and alkylamines
- complexing agents such as derivatives of EDTA and gallic acid
- anti-foam agents such as silicones, polyols and vegetable oils.
- All the compounds mentioned above contribute to obtaining glass threads that can be easily manufactured, can be used as reinforcements, which are incorporated without problem with the resin during the manufacture of the composites and moreover possess properties of electrical conduction.
- the amount of sizing represents 2 to 7% of the weight of the final wire, preferably 3.5 to 6%.
- the conductive wire according to the invention may be glass of any kind, for example E, C, R, AR and reduced boron level (less than 6%). E and AR glasses are preferred.
- the diameter of the glass filaments constituting the wires may vary to a large extent, for example 5 to 30 ⁇ m.
- wide variations can occur in the linear density of the wire used, such as a assembled roving wire, which can range from 68 to 4800 tex depending on the applications concerned, this wire being consisting of basic son whose linear density varies from 17 to 320 tex.
- the invention also relates to the sizing composition itself, before it is deposited on the glass filaments. It includes the constituents mentioned above and water.
- the sizing composition comprises (in% by weight):
- additives preferably 0 to 3%.
- the amount of water to be used is determined so as to obtain a solid content (solids content) which varies from 8 to 35%, preferably from 12 to 25%.
- the preparation of the sizing composition is carried out in the following manner: a) a dispersion D of the conductive particles is produced in water containing the dispersing agent, b) the other components of the sizing are introduced, namely film-forming agents, plasticizers, surfactants, coupling in hydrolysed form and optionally viscosity regulators and additives, in water to form an emulsion E, and c) mixing the dispersion D and emulsion E.
- steps a) and c) are carried out with sufficient agitation to prevent the risk of sedimentation of the conductive particles.
- a viscosity control agent When a viscosity control agent is used, it is introduced in step b) first in the form of an aqueous solution, optionally heated to about 80 ° C in order to have a better dissolution.
- the dispersion D is stable under the usual storage conditions, at a temperature of 20 to 25 ° C. It can be used in particular without major inconvenience for a period of about 6 months, if necessary by subjecting it to agitation before use if the particles have sedimented.
- the sizing composition is to be used almost immediately after being prepared, preferably in a period of time not exceeding about 4 days under the aforementioned storage conditions.
- the particles that have sedimented can be dispersed again without the qualities of the composition being affected.
- the aqueous solution is deposited on the filaments before their gathering in base wire (s). Water is usually removed by drying the wires after collection.
- the subject of the invention is also a composite material, in particular an SMC or a BMC, combining at least one thermosetting polymer material and reinforcing threads, said threads being made up of all or part of glass threads coated with the composition of sizing previously described.
- the level of glass within the composite material is generally between 5 and 60% by weight.
- the composite material is in the form of a SMC having a glass content of between 10 to 60% by weight, preferably 20 to 45%.
- the material is in the form of a BMC having a glass content of between 5 and 20% by weight.
- the thermosetting polymer material is a phenolic resin.
- the subject of the invention is also the use of the sized glass wires according to the invention for the production of electrically conductive molded parts using the compression molding technique, said wires being used in particular in the form of SMC. or BMC.
- the moldings can be painted on usual lines applying the paint by cataphoresis, especially for the production of auto parts.
- a part molded from SMC or BMC is suitable for being coated with paint under the aforementioned conditions since it has a surface resistivity, especially between
- a part having an "internal" resistivity that is to say a volume resistivity such that it can be conferred by a layer of conductive fibers within the matrix, for example of the order from 0.01 to 1000 M ⁇ .m, could also be treated under the same conditions.
- the sizing of the glass strands does not have to have a high solubility in the matrix to be reinforced so that the conductive particles are dispersed throughout the room so that they can undergo the treatment. cataphoresis painting.
- a poorly soluble size in the matrix for example containing one or more polyurethanes as film-forming agent, or even insoluble, may therefore be suitable for the application of paint on such molded parts.
- the use of the conductive glass yarn according to the invention is not limited to the molding technique SMC or BMC.
- Glass son are more generally used for any manufacturing technique of composite materials implementing a reinforcement in the form of glass son which advantageously requires electrical conduction.
- the glass threads may be in the form of a mat or a sail that can be used in particular as a reinforcing or surface-coating element of SMC, said son may or may not be associated with other reinforcing son, especially glass.
- the son according to the invention can thus be used in all fields where thermal conductivity and heat dispersion properties are sought, for example in home appliances and automobiles. These wires can still be used for electromagnetic shielding applications, especially in transport, especially automobiles, the building and the areas requiring the protection of electronic components, in particular relating to magnetic media information.
- the examples given below make it possible to illustrate the invention without however limiting it.
- the wad is defined by the amount of fibrils obtained after scrolling a mass of wire 3 kg. It is expressed in mg / 100 g of yarn.
- R is the resistance, in M ⁇ I is the length of the fiber, in cm.
- the resistance R is measured by means of an ohm-meter, the distance between the two electrodes being 20 cm. - on the molded part
- the "internal" resistivitivity, in M ⁇ .m, is measured on a plate obtained according to the above-mentioned standard NF EN 1149-1, pierced by two remote holes, one of which is the other 20 cm. In each hole is inserted a metal rivet (diameter: 4 mm) serving as a connector, and said connectors being connected to the electrodes of an ohm-meter.
- the flexural stress and flexural modulus in MPa and the deflection in mm are measured under the conditions of ISO 14125-1. • * • the Charpy shock, in kJ / m 2 , is measured under the conditions of the ISO standard
- a sizing composition comprising (in% by weight):
- composition is prepared by adding the components in a vessel containing water at 80 ° C, maintained vigorously stirring, the conductive particles being added last.
- the composition has a viscosity of 7 mPa.s at 20 ° C and a solids content of 19.2%.
- the sizing composition is deposited on glass filaments E of 1 1 micron diameter before their assembly into a single wire which is wound into a cake.
- modified example 1 The procedure of modified example 1 is carried out in that the sizing composition comprises (in% by weight):
- plasticizer mixture of dipropylene glycol dibenzoate 0.12 and diethylene glycol dibenzoate (4)
- composition has a viscosity of 15 mPa.s at 20 ° C and a solids content of 19.5%.
- plasticizer mixture of dipropylene glycol dibenzoate 0.18 and diethylene glycol dibenzoate (4)
- the composition has a viscosity of 12 mPa.s at 20 ° C and a solids content of 20.2%.
- composition is applied to 16 ⁇ m diameter glass filaments E gathered in 4 threads of 100 tex which are wound directly under the die in the form of cakes comprising the 4 separate threads. After drying the cakes, the yarns extracted from the cakes are rewound in the form of an assembled roving of 2400 tex (6 cakes of 4 x 100 tex).
- plasticizer mixture of dipropylene glycol dibenzoate 0.18 and diethylene glycol dibenzoate (4)
- the composition has a viscosity of 14 mPa.s at 20 ° C and a solids content of 21.6%.
- an SMC is made in the following manner. On a polyethylene film is successively deposited a first layer of unsaturated polyester resin paste, cut glass son (length: 25 mm), a second layer of the aforementioned pulp and a second polyethylene film identical to the previous one.
- the paste has the following composition (in parts by weight): - polyester resin (M 0494, Cray Valley) 52
- the glass threads represent 30% by weight of the SMC composite.
- the SMC is cut to a size slightly smaller than that of the mold and deposited therein after removing the polyethylene films.
- the molding is carried out at a temperature of 145 ° C under pressure (70 bar) and a loading rate of 25%.
- the molded part has the electrical and mechanical properties indicated below. By way of comparison also appear the properties of a molded part under the same conditions from an SMC composite comprising glass son coated with a traditional nonconductive sizing (Reference).
- Example 3 Under the conditions of Example 3, a sizing composition comprising (in% by weight) is prepared:
- composition has a viscosity of 35 mPa.s at 20 ° C and a solids content of 22.4%.
- the wire has a linear density equal to 91 tex and a loss on ignition equal to 4.7%.
- the molded part has a surface resistivity equal to 1 x 10 6 M ⁇ / D and an internal resistivity equal to 1 M ⁇ .m.
- the procedure of modified example 5 is carried out in that the size composition comprises (in% by weight):
- the composition has a viscosity of 15 mPa.s at 20 ° C and a solids content of 22.4%.
- the wire has a linear density equal to 96 tex and a loss on ignition equal to 4.5%. From this wire, an SMC is produced under the conditions of Example 4.
- the molded part has a surface resistivity equal to 1 ⁇ 10 5 M ⁇ / D and an internal resistivity equal to 0.1 M ⁇ .m.
- the moldings of Examples 4 to 6 have lower surface resistivity values than the reference based on a conventional non-electrically conductive SMC.
- Examples 5 and 6 also have a significantly lower internal resistivity than the reference (internal resistivity greater than 10 6 M ⁇ .m).
- the inventors attribute this effect to the relatively poorly soluble nature in the matrix of the film-forming agent present in the sizing of the glass strands.
- the conductive particles remain on the wires, or in their close environment, and do not migrate to the surface of the piece.
- the conductive network formed by the glass son within the room provides sufficient internal resistivity to allow the application of cataphoresis painting.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0452398A FR2877001B1 (fr) | 2004-10-21 | 2004-10-21 | Fils de verre ensimes electro-conducteurs. |
PCT/FR2005/050885 WO2006043011A1 (fr) | 2004-10-21 | 2005-10-21 | Fils de verre ensimes electro-conducteurs. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1812356A1 true EP1812356A1 (fr) | 2007-08-01 |
Family
ID=34950491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05815518A Withdrawn EP1812356A1 (fr) | 2004-10-21 | 2005-10-21 | Fils de verre ensimes electro-conducteurs. |
Country Status (11)
Country | Link |
---|---|
US (1) | US20090239056A1 (ja) |
EP (1) | EP1812356A1 (ja) |
JP (1) | JP5336081B2 (ja) |
KR (1) | KR101247057B1 (ja) |
CN (2) | CN101084167A (ja) |
BR (1) | BRPI0517407A (ja) |
CA (1) | CA2584491C (ja) |
FR (1) | FR2877001B1 (ja) |
MX (1) | MX2007004711A (ja) |
RU (1) | RU2403214C2 (ja) |
WO (1) | WO2006043011A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2866329B1 (fr) | 2004-02-12 | 2006-06-02 | Saint Gobain Vetrotex | Fils de verre conducteurs de l'electricite et structures comprenant de tels fils. |
WO2008089085A1 (en) * | 2007-01-12 | 2008-07-24 | Knauf Insulation Gmbh | Graphite-mediated control of static electricity on fiberglass |
FR2920763B1 (fr) * | 2007-09-06 | 2011-04-01 | Saint Gobain Technical Fabrics | Composition d'ensimage sous forme de gel physique pour fils de verre, fils de verre obtenus et composites comprenant lesdits fils. |
US9012021B2 (en) * | 2008-03-26 | 2015-04-21 | Xerox Corporation | Composition of matter for composite plastic contact elements featuring controlled conduction pathways, and related manufacturing processes |
GB0805640D0 (en) * | 2008-03-28 | 2008-04-30 | Hexcel Composites Ltd | Improved composite materials |
US9242897B2 (en) | 2009-05-18 | 2016-01-26 | Ppg Industries Ohio, Inc. | Aqueous dispersions and methods of making same |
CH703815A1 (de) | 2010-09-16 | 2012-03-30 | Hsr Hochschule Fuer Technik Rapperswil | Kniescheibengreifer, Gerät zum Bewegen einer Kniescheibe und Verfahren zum Einstellen des Geräts zum Bewegen einer Kniescheibe. |
MX2014001289A (es) * | 2011-08-01 | 2014-09-25 | Ocv Intellectual Capital Llc | Composiciones aprestantes y metodos de uso de las mismas. |
EP2583953A1 (en) * | 2011-10-20 | 2013-04-24 | 3B-Fibreglass SPRL | Sizing composition for glass fibres |
CN105849160B (zh) | 2014-01-28 | 2017-06-06 | 日东纺绩株式会社 | 着色玻璃纤维及其制造方法 |
CN105013252B (zh) * | 2014-04-16 | 2016-08-24 | 黄山城市绿洲空气过滤器科技有限公司 | 一种涂层及其在空气过滤中的应用 |
RU2565301C1 (ru) * | 2014-10-28 | 2015-10-20 | Общество с ограниченной ответственностью "КомАР" | Замасливатель для стеклянного и базальтового волокна |
RU2586123C1 (ru) * | 2015-01-22 | 2016-06-10 | Общество С Ограниченной Ответственностью Управляющая Компания "Ломоносов Капитал" | Способ производства стеклоизделий с электропроводящей поверхностью |
JPWO2017077980A1 (ja) * | 2015-11-02 | 2018-08-23 | セントラル硝子株式会社 | 電磁遮蔽性金属被覆ガラス繊維フィラー、電磁遮蔽性金属被覆ガラス繊維フィラーの製造方法、及び、電磁遮蔽性樹脂物品 |
CN105271833A (zh) * | 2015-11-03 | 2016-01-27 | 广东志造生物科技有限公司 | 一种降低迁移率的玻璃纤维浸润剂 |
KR101726538B1 (ko) * | 2016-01-09 | 2017-04-13 | 박상구 | 복합사 직물의 전열망 |
CN106431014A (zh) * | 2016-08-28 | 2017-02-22 | 山东玻纤集团股份有限公司 | 一种方格布用玻璃纤维浸润剂及其制备方法 |
CN106348623A (zh) * | 2016-08-28 | 2017-01-25 | 山东玻纤集团股份有限公司 | 一种高压管道用玻璃纤维浸润剂及其制备方法 |
CN107311463A (zh) * | 2017-06-30 | 2017-11-03 | 合肥利裕泰玻璃制品有限公司 | 一种高透光率的导电玻璃的制造方法 |
CN108975730B (zh) * | 2018-08-24 | 2021-04-09 | 巨石集团有限公司 | 一种玻璃纤维浸润剂及其应用 |
RU2709354C1 (ru) * | 2019-07-26 | 2019-12-17 | Открытое акционерное общество "ХИМВОЛОКНО" | Способ изготовления электропроводящих нитей |
CN110342836A (zh) * | 2019-07-29 | 2019-10-18 | 泰山玻璃纤维邹城有限公司 | 增强橡胶用玻璃纤维浸润剂及其制备方法 |
CN115215561B (zh) * | 2022-06-13 | 2023-12-01 | 南京玻璃纤维研究设计院有限公司 | 一种玻璃纤维浸润剂及其制备方法和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431343A (ja) * | 1990-05-28 | 1992-02-03 | Nitto Boseki Co Ltd | 導電性ガラス繊維およびその製造方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1316069A (fr) * | 1961-02-10 | 1963-01-25 | Owens Corning Fiberglass Corp | Procédé de fabrication d'éléments conducteurs de l'électricité |
NL124947C (ja) * | 1961-02-10 | |||
US3247020A (en) * | 1962-01-02 | 1966-04-19 | Owens Corning Fiberglass Corp | Electrically-conductive elements and their manufacture |
US3268312A (en) * | 1965-06-17 | 1966-08-23 | Owens Corning Fiberglass Corp | Method of making coated glass fiber combinations |
US3483019A (en) * | 1968-07-03 | 1969-12-09 | Joseph Dixon Crucible Co The | Method of applying a graphite coating to glass fibers in textile forms |
US3817211A (en) * | 1972-02-22 | 1974-06-18 | Owens Corning Fiberglass Corp | Apparatus for impregnating strands, webs, fabrics and the like |
US3991397A (en) * | 1974-02-06 | 1976-11-09 | Owens-Corning Fiberglas Corporation | Ignition cable |
US4370157A (en) * | 1981-03-09 | 1983-01-25 | Ppg Industries, Inc. | Stable sizing compositions used during forming of glass fibers and resulting fiber |
US4698179A (en) * | 1983-08-31 | 1987-10-06 | Taiho Kogyo Co., Ltd. | Electric conductive and sliding resin material |
US4604276A (en) * | 1983-09-19 | 1986-08-05 | Gte Laboratories Incorporated | Intercalation of small graphite flakes with a metal halide |
US4528213A (en) * | 1983-11-22 | 1985-07-09 | Rca Corporation | EMI/RFI Shielding composition |
US5387468A (en) * | 1987-03-12 | 1995-02-07 | Owens-Corning Fiberglas Technology Inc. | Size composition for impregnating filament strands |
JPH0749560B2 (ja) * | 1987-08-07 | 1995-05-31 | ポリプラスチックス株式会社 | プラスチックス塗装用導電性プライマーまたは導電性塗料 |
JPH01239169A (ja) * | 1988-03-11 | 1989-09-25 | Asahi Glass Co Ltd | 石英繊維用表面処理剤 |
US5234627A (en) * | 1991-12-11 | 1993-08-10 | Dap, Inc. | Stability conductive emulsions |
JPH087648A (ja) * | 1994-06-22 | 1996-01-12 | Shin Etsu Polymer Co Ltd | 導電性樹脂組成物 |
US5626643A (en) * | 1994-09-26 | 1997-05-06 | Owens-Corning Fiberglas Technology Inc. | Contact drying of fibers to form composite strands |
US5556576A (en) * | 1995-09-22 | 1996-09-17 | Kim; Yong C. | Method for producing conductive polymeric coatings with positive temperature coefficients of resistivity and articles made therefrom |
FR2755127B1 (fr) * | 1996-10-29 | 1998-11-27 | Vetrotex France Sa | Fils de verre ensimes destines au renforcement de matieres polymeres |
EP1060142B1 (en) * | 1998-03-03 | 2003-05-14 | PPG Industries Ohio, Inc. | Glass fiber strands coated with thermally conductive inorganic particles and products including the same |
US6419981B1 (en) * | 1998-03-03 | 2002-07-16 | Ppg Industries Ohio, Inc. | Impregnated glass fiber strands and products including the same |
KR100397899B1 (ko) * | 1998-03-03 | 2003-09-13 | 피피지 인더스트리즈 오하이오 인코포레이티드 | 무기 입자 피복된 유리 섬유 스트랜드 및 이를 포함하는제품 |
US6593255B1 (en) * | 1998-03-03 | 2003-07-15 | Ppg Industries Ohio, Inc. | Impregnated glass fiber strands and products including the same |
CN1295542A (zh) * | 1998-03-03 | 2001-05-16 | Ppg工业俄亥俄公司 | 无机润滑涂覆的玻璃纤维束以及包括它的产品 |
US8105690B2 (en) * | 1998-03-03 | 2012-01-31 | Ppg Industries Ohio, Inc | Fiber product coated with particles to adjust the friction of the coating and the interfilament bonding |
US6949289B1 (en) * | 1998-03-03 | 2005-09-27 | Ppg Industries Ohio, Inc. | Impregnated glass fiber strands and products including the same |
US6436315B2 (en) * | 1999-03-19 | 2002-08-20 | Quantum Composites Inc. | Highly conductive molding compounds for use as fuel cell plates and the resulting products |
US20020051882A1 (en) * | 2000-02-18 | 2002-05-02 | Lawton Ernest L. | Forming size compositions, glass fibers coated with the same and fabrics woven from such coated fibers |
US20020123285A1 (en) * | 2000-02-22 | 2002-09-05 | Dana David E. | Electronic supports and methods and apparatus for forming apertures in electronic supports |
US20020085888A1 (en) * | 2000-02-22 | 2002-07-04 | Vedagiri Velpari | Electronic supports and methods and apparatus for forming apertures in electronic supports |
US20020058140A1 (en) * | 2000-09-18 | 2002-05-16 | Dana David E. | Glass fiber coating for inhibiting conductive anodic filament formation in electronic supports |
US6752937B2 (en) | 2001-12-17 | 2004-06-22 | Quantum Composites, Inc. | Highly conductive molding compounds having an increased distribution of large size graphite particles |
CN1230461C (zh) * | 2002-10-08 | 2005-12-07 | 三菱瓦斯化学株式会社 | 聚酰胺及树脂组合物 |
EP1588385B1 (en) * | 2002-12-26 | 2008-05-14 | Showa Denko K.K. | Carbonaceous material for forming electrically conductive material and use thereof |
FR2866329B1 (fr) * | 2004-02-12 | 2006-06-02 | Saint Gobain Vetrotex | Fils de verre conducteurs de l'electricite et structures comprenant de tels fils. |
-
2004
- 2004-10-21 FR FR0452398A patent/FR2877001B1/fr not_active Expired - Fee Related
-
2005
- 2005-10-21 JP JP2007537357A patent/JP5336081B2/ja not_active Expired - Fee Related
- 2005-10-21 WO PCT/FR2005/050885 patent/WO2006043011A1/fr active Application Filing
- 2005-10-21 US US11/577,774 patent/US20090239056A1/en not_active Abandoned
- 2005-10-21 CA CA2584491A patent/CA2584491C/fr not_active Expired - Fee Related
- 2005-10-21 KR KR1020077011351A patent/KR101247057B1/ko not_active IP Right Cessation
- 2005-10-21 MX MX2007004711A patent/MX2007004711A/es active IP Right Grant
- 2005-10-21 CN CNA2005800441338A patent/CN101084167A/zh active Pending
- 2005-10-21 RU RU2007118661A patent/RU2403214C2/ru not_active IP Right Cessation
- 2005-10-21 BR BRPI0517407-4A patent/BRPI0517407A/pt not_active Application Discontinuation
- 2005-10-21 EP EP05815518A patent/EP1812356A1/fr not_active Withdrawn
- 2005-10-21 CN CN201510045479.5A patent/CN104692675A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431343A (ja) * | 1990-05-28 | 1992-02-03 | Nitto Boseki Co Ltd | 導電性ガラス繊維およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2584491C (fr) | 2016-03-15 |
JP5336081B2 (ja) | 2013-11-06 |
CN101084167A (zh) | 2007-12-05 |
US20090239056A1 (en) | 2009-09-24 |
WO2006043011A1 (fr) | 2006-04-27 |
FR2877001B1 (fr) | 2006-12-15 |
RU2007118661A (ru) | 2008-11-27 |
KR20070064374A (ko) | 2007-06-20 |
CA2584491A1 (fr) | 2006-04-27 |
RU2403214C2 (ru) | 2010-11-10 |
JP2008516887A (ja) | 2008-05-22 |
FR2877001A1 (fr) | 2006-04-28 |
BRPI0517407A (pt) | 2008-10-07 |
CN104692675A (zh) | 2015-06-10 |
MX2007004711A (es) | 2007-06-15 |
KR101247057B1 (ko) | 2013-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2584491C (fr) | Fils de verre ensimes electro-conducteurs | |
EP1716085B1 (fr) | Fils de verre conducteurs de l' electricite et structures comprenant de tels fils | |
CA2634229C (fr) | Fils de verre revetus d'un ensimage renfermant des nanoparticules | |
EP1902002B1 (fr) | Fils de renforcement et composites ayant une tenue au feu amelioree | |
EP2155474A1 (fr) | Article polyamide composite | |
FR2781410A1 (fr) | Produit moule en resine thermoplastique renforcee de fibres, et ayant un bon aspect de surface | |
WO2011073198A1 (fr) | Procede de fabrication d'articles composite a base de polyamide | |
WO2010136720A1 (fr) | Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation | |
EP0657395A1 (fr) | Procédé de production de fils de verre ensimés et produits résultants | |
EP1397320B1 (fr) | Fils de verre ensimes, composition d'ensimage et composites comprenant lesdits fils | |
WO1996041912A1 (fr) | Composition d'ensimage pour fils composites et son utilisation | |
FR2819801A1 (fr) | Fils de verre ensimes, composition d'ensimage et composites comprenant lesdits fils | |
EP1885809A2 (fr) | Composition d'ensimage pour granules de fils de verre a forte teneur en verre | |
CN103435834A (zh) | 聚甲醛制品及其制备方法 | |
EP0722914B1 (fr) | Fils de verre ensimés destinés au renforcement de matières organiques | |
WO2005058770A2 (fr) | Fils de verre ensimes destines au renforcement de matieres polymeres, notamment par moulage. | |
EP2697303A1 (fr) | Procede de fabrication de composants par pim, base sur l'utilisation de fibres ou fils organiques, avantageusement couplee a l'utilisation de co2 supercritique | |
FR2786192A1 (fr) | Materiaux de resines thermoplastiques renforcees par des fibres longues et incorporant des charges, et leur procede de fabrication | |
WO2004085331A1 (fr) | Procede de production de fils de verre revetus d’un ensimage thermofusible et produits resultants | |
WO2007090973A1 (fr) | Procede de fabrication de batonnets de renforts concentres , batonnets et dispositif de mise en oeuvre du procede |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070418 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAINT-GOBAIN TECHNICAL FABRICS EUROPE |
|
17Q | First examination report despatched |
Effective date: 20080402 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OCV INTELLECTUAL CAPITAL, LLC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180501 |