EP1809574A2 - Verfahren zur herstellung von natriumdithionit - Google Patents

Verfahren zur herstellung von natriumdithionit

Info

Publication number
EP1809574A2
EP1809574A2 EP05805323A EP05805323A EP1809574A2 EP 1809574 A2 EP1809574 A2 EP 1809574A2 EP 05805323 A EP05805323 A EP 05805323A EP 05805323 A EP05805323 A EP 05805323A EP 1809574 A2 EP1809574 A2 EP 1809574A2
Authority
EP
European Patent Office
Prior art keywords
sodium
mother liquor
formate
substream
sodium dithionite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05805323A
Other languages
English (en)
French (fr)
Inventor
Armin Diefenbacher
Hartwig Voss
Reinhard Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1809574A2 publication Critical patent/EP1809574A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/64Thiosulfates; Dithionites; Polythionates
    • C01B17/66Dithionites or hydrosulfites (S2O42-)

Definitions

  • the present invention relates to an improved process for the preparation of sodium dithionite by the formate process, in which recycled from the wastewater sodium formate is recycled to the synthesis approach.
  • DE 2 651 418 C2 relates to a process for working up the mother liquors with acids obtained in the preparation of sodium umdithionite by the sodium formate process by reacting sodium formate, sulfur dioxide and an alkaline sodium compound in an aqueous alcoholic solution after separation of the sodium dithionite.
  • alcohol and methyl formate are removed by distillation from the mother liquors, the remaining mother liquor is mixed with such amounts of formic acid that the pH is 3.0 to 4.5, the mother liquor heated to temperatures of 75 to 110 0 C, the precipitated sulfur separated and isolated from the mother liquor sodium formate.
  • DE 4 437 253 A1 relates to a process for preparing anhydrous sodium umdithionite by reacting sodium formate, sulfur dioxide and an alkaline sodium compound in aqueous methanolic solution in a first stage, separating the precipitated product from the mother liquor, lowering the content of sodium thiosulfate in the mother liquor and recycling the resulting solution to the first stage.
  • the mother liquor is withdrawn 10 to 60 percent by weight of the water present in it and the remaining solution is cooled to a temperature between (-40) and 10 0 C and the resulting precipitate separated.
  • JP 2001-270844 describes a process for obtaining sodium formate from the wastewater of a sodium dithionite synthesis by means of a two-stage electrodialysis.
  • a first electrodialysis step (cation exchange membrane and for monovalent species selective anion exchange membrane)
  • a solution enriched in formate and hydrogen sulfite is first obtained.
  • sulphite is subsequently oxidized to sulphate.
  • the pH is adjusted to be close to or greater than 7 and again the divalent sulfate is separated from the monovalent formate.
  • Such a multi-stage process is very als ⁇ agile.
  • the oxidative intermediate step is very time-consuming in the case of oxidation with atmospheric oxygen and makes additional use or auxiliary materials necessary.
  • the object of the present invention was to provide a process for the preparation of sodium dithionite, which comprises an economic and technically feasible recirculation of sodium formate from the wastewater, it being possible to recycle the recovered sodium formate into the synthesis.
  • step (b) is a filtrative separation of Natriumdithio- nit from the sodium dithionite mother liquor and in step (c) to a distillative separation of methanol from the residual mother liquor.
  • Sodium compounds which are preferably used for sodium dithionite synthesis are e.g. Sodium carbonate, sodium bicarbonate or sodium hydroxide.
  • the sodium thiosulfate present in the wastewater must be substantially depleted, since it represents an interfering component for the substeps (a) and (b) of the process according to the invention. This is done according to the invention by means of a nanofiltration process.
  • Nanofiltration like reverse osmosis and ultrafiltration, is a pressure-driven membrane process for the separation of dissolved components from aqueous solutions. Nanofiltration has to be classified in terms of its separation behavior between reverse osmosis and ultrafiltration, whereby there are no sharp boundaries in the transition areas.
  • a special feature of nanofiltration membranes is their high ion selectivity: salts with monovalent anions can pass through the membrane to a great extent, while salts with polyvalent ions are retained to a much greater extent.
  • the wastewater stream in step (d) of the process is divided into two sub-streams on a suitable nanofiltration membrane.
  • the thiosulfate ions preferably remain in the retentate (first portion rich in thiosulfate), since they are preferably retained by the nanofiltration membrane in relation to monovalent anions (for example the formations).
  • the formations can pass the nanofiltration membrane to a large extent, so that the permeate (filtrate) thus obtained forms a second thiosulfate-poor, formate-containing partial stream.
  • the membrane separation unit used in nanofiltration in the process according to the invention all membranes are suitable which are stable in the respective system under the necessary separation conditions and which have a selectivity between monovalent and polyvalent anions.
  • the separating layers of the usable membranes can be made of organic polymers, ceramics, carbon or combinations thereof.
  • the separating layers are usually constructed on a single or multilayer porous substructure which consists of the same or at least one different material than the separating layer.
  • the membranes are usually used in pressure-resistant housings which permit the separation between retentate (thiosulfate-rich partial stream) and permeate (thiosulfate-poor partial stream) at the pressure conditions required for the separation.
  • the membranes can be made into flat, tubular, multichannel element, capillary or wound geometry, for which corresponding pressure housings which permit a separation between retentate and permeate are available. Furthermore, several of these elements can be combined in a housing to form a module.
  • step (e) Before a recycling of thiosulfatarmen, formate-containing second substream takes place, this is concentrated in step (e) to a lower water content, since the synthesis takes place in a methanolic, low-water solution.
  • the traceable amount is determined by the residual concentration of thiosulphate which is justifiable in the recycle stream (concentrated permeate stream).
  • the traceable amount of formate may optionally also be limited by the solubility limit of the salts present in the recycle stream, in particular formate and salts of sulfurous acid, if preferably a homogeneous solution is to be metered into the synthesis batch as recycled material.
  • the pH of the residual mother liquor before carrying out step (d) to a pH value in deviation from the pH of the residual mother liquor obtained in step (b) or (c) discontinued.
  • a whole series of other ionic species are present which make separation by nanofiltration more difficult.
  • these are other divalent ions such as sulfite.
  • these are other divalent ions such as sulfite.
  • the retention of the total sulfite contained in the waste water of the formate process, comprising disulfite, sulfite and hydrogen sulfite can be reduced by this pH adjustment, so that this can also be partially recycled into the synthesis together with the sodium formate.
  • the pH of the residual mother liquor prior to step (d) is adjusted by bubbling sulfur dioxide or by adding formic acid to the remainder of the mother liquor.
  • it is also any other suitable method known in the art for pH adjustment applicable.
  • the nanofiltration is carried out in step (d) with an overflow velocity between 0.05 m / s and 8 m / s, more preferably between 0.1 m / s and 4 m / s.
  • an overflow velocity between 0.05 m / s and 8 m / s, more preferably between 0.1 m / s and 4 m / s.
  • the nanofiltration in step (d) is carried out with a transmembrane pressure difference between 5 bar and 70 bar, preferably between 10 bar and 50 bar, more preferably between 20 bar and 30 bar.
  • the transmembrane pressure difference is present between permeate and retention space. This pressure difference overcomes the osmotic pressure which builds up in nanofiltration and achieves the highest possible permeate flow with the smallest possible membrane area.
  • the temperature of step (d) is supplied residual mother liquor between 20 ° C and 90 ° C, particularly preferably between 3O 0 C and 50 0 C.
  • these temperatures can be cost-effective polymeric Use membranes if they are stable.
  • these temperatures can be adjusted cost-effectively (river water, steam which has been reduced in tension), the boiling point of the residual mother liquor is not exceeded and sufficiently high permeate flows are achieved.
  • the concentration of sodium formate in the second partial stream in step (e) is preferably carried out by a thermal process or by membrane processes, such as reverse osmosis or pervaporation.
  • a known thermal process for the concentration For example, the evaporation consists of evaporating the water.
  • Reverse osmosis is a known pressure-driven membrane process in which a pressure which is greater than the osmotic pressure of the liquid is applied to the water-containing liquid which is in contact with a semipermeable membrane. This forces the water through the membrane. Particles dissolved in the water (for example formations) can not pass through the membrane.
  • the formate-containing solution can thus be concentrated.
  • the concentration in step (e) preferably takes place up to a water content of ⁇ 30%, particularly ⁇ 15%, which is contained in the aufkonzent ⁇ ration second partial stream, based on the original amount of water.
  • the recycling in step (f) is carried out in such an amount that in the synthesis batch a concentration of thiosulphate of 5000 ppm, preferably 2500 ppm, particularly preferably 100 ppm, is not exceeded. At higher thiosulphate concentrations in the recycle stream, the synthesis and the subsequent filtration of the product are disturbed.
  • a polymeric nanofiltration membrane (Desal 5 DK, GE Osmonics Inc.) is contacted with a production effluent having a typical composition for a wastewater from the synthesis of sodium dithionite as present after step (c) of the process of the present invention.
  • the solution contains 30 g / l of total sulfite, 12 g / l of sodium thiosulfate and 60 g / l of sodium formate and has a pH of 5.6.
  • the transmembrane pressure during the nanofiltration is 10 bar, the temperature 40 ° C.
  • the membrane is overflowed by the solution at an overflow velocity of 0.5 m / s.
  • MK [retentate mass at the beginning] / [retentate mass at time t]) of 1.5.
  • R 1 - [concentration of permeate] / [concentration of retentate]:
  • Example 1 The solution of Example 1 is adjusted by bubbling sulfur dioxide to a pH of 4.0. Subsequently, the solution with the same membrane as in Example 1 at 40 0 C, an overflow velocity of 0.5 m / s and a transmembrane pressure of 20 bar in contact. The solution is concentrated with a mass concentration factor of 2.2. The following results are obtained:
  • the membrane has a lower retention, so that its concentration in the permeate over Example 1 can be increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Natriumdithionit mit den Schritten (a) Erstellen eines Syntheseansatzes aus Natriumformiat, Schwefeldioxid und einer alkalischen Natriumverbindung in wässrig-methanolischer Lösung unter Entstehen einer Natriumdithionit-Mutterlauge, (b) Abtrennen von Natriumdithionit aus der Natriumdithionit-Mutterlauge, wobei eine Rest-Mutterlauge anfällt, (c) Abtrennen von Methanol aus der Rest-Mutterlauge, (d) Trennen der Rest-Mutterlauge in einen thiosulfatreichen ersten Teilstrom und einen thiosulfatarmen, formiathaltigen zweiten Teilstrom mittels einer Nanofiltration, (e) Aufkonzentrieren von Natriumformiat in dem zweiten Teilstrom und (f) Rückführen des aufkonzentrierten zweiten Teilstromes in den Verfahrensschritt (a).

Description

Verfahren zur Herstellung von Natriumdithionit
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von Natrium¬ dithionit nach dem Formiatverfahren, bei dem aus dem Abwasser rückgewonnenes Natrium- formiat in den Syntheseansatz zurückgeführt wird.
Die Herstellung von Natriumdithionit aus Natriumformiat, Schwefeldioxid und einer alkali- sehen Natriumverbindung in wässrig-methanolischer Lösung ist im Stand der Technik be¬ kannt, zum Beispiel aus DE 2 716 032 C2.
Bei der Produktion von Natriumdithionit nach dem Formiatverfahren fällt nach der Synthese und der anschließenden filtrativen Abtrennung des Produkts sowie der destillativen Abtren- nung des Alkohols aus dem Filtrat ein Abwasser an, das noch beachtliche Mengen an Natri¬ umformiat enthält. Neben Natriumformiat sind Natriumthiosulfat sowie Salze der schwefli¬ gen Säure wesentliche Bestandteile des Abwassers. Der Verlust von Natriumformiat und von Natriumsulfit über das Abwasser stellt einerseits einen Verlust an Einsatzstoffen dar und andererseits bildet das Formiat eine erhebliche Abwasserbelastung (hoher TOC-Wert). Es besteht daher ein hoher wirtschaftlicher Anreiz, zumindest einen Teil der im Abwasser enthaltenen Einsatzstoffe zurück zu gewinnen.
DE 2 651 418 C2 betrifft ein Verfahren zur Aufarbeitung der bei der Herstellung von Natri¬ umdithionit nach dem Natriumformiatverfahren durch Umsetzung von Natriumformiat, Schwefeldioxid und einer alkalische reagierenden Natriumverbindung in einer wässrigen alkoholischen Lösung nach Abtrennung des Natriumdithionits anfallenden Mutterlaugen mit Säuren. Dabei wird aus den Mutterlaugen Alkohol und Ameisensäuremethylester destillativ entfernt, die verbleibende Mutterlauge mit solchen Mengen an Ameisensäure versetzt, dass der pH-Wert 3,0 bis 4,5 beträgt, die Mutterlauge auf Temperaturen von 75 bis 1100C erhitzt, der ausgefallene Schwefel abgetrennt und aus der Mutterlauge Natriumformiat isoliert.
DE 4 437 253 Al bezieht sich auf ein Verfahren zur Herstellung von wasserfreiem Natri¬ umdithionit durch Umsetzung von Natriumformiat, Schwefeldioxid und einer alkalischen Natriumverbindung in wässrig-methanolischer Lösung in einer ersten Stufe, Abtrennen des ausgefallenen Produktes von der Mutterlauge, Senkung des Gehalts an Natriumthiosulfat in der Mutterlauge und Rückführung der resultierenden Lösung in die erste Stufe. Dabei wird der Mutterlauge 10 bis 60 Gew-Prozent des in ihr vorhandenen Wassers entzogen und die verbleibende Lösung auf eine Temperatur zwischen (-40) und 100C abgekühlt und der dabei ausfallende Niederschlag abgetrennt.
In JP 2001-270844 wird ein Verfahren zur Gewinnung von Natriumformiat aus dem Ab- wasser einer Natriumdithionitsynthese mithilfe einer zweistufigen Elektrodialyse beschrie¬ ben. Dabei wird in einer ersten Elektrodialysestufe (Kationenaustauschermembran und für einwertige Spezies selektive Anionenaustauschermembran) zunächst eine an Formiat und Hydrogensulfit angereicherte Lösung gewonnen. In einer weiteren Verfahrensstufe wird im Anschluss zunächst Sulfit zu Sulfat oxidiert. In der nachfolgenden Elektrodialysestufe wird der pH- Wert nahe oder größer als 7 eingestellt und wiederum das zweiwertige Sulfat vom einwertigen Formiat abgetrennt. Ein solches mehrstufiges Verfahren ist jedoch sehr auf¬ wendig. Der oxidative Zwischenschritt ist im Falle einer Oxidation mit Luftsauerstoff sehr zeitaufwendig und macht zusätzliche Einsatz- beziehungsweise Hilfsstoffe notwendig.
Aufgabe der vorliegenden Erfindung war es, ein Verfahren zur Herstellung von Natrium- dithionit bereitzustellen, das eine wirtschaftliche und technisch realisierbare Rückgewin¬ nung von Natriumformiat aus dem Abwasser umfasst, wobei das rückgewonnene Natrium¬ formiat in die Synthese zurückgeführt werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von Natriumdithionit mit den Schritten
(a) Erstellen eines Syntheseansatzes aus Natriumformiat, Schwefeldioxid und einer alkalischen Natriumverbindung in wässrig-methanolischer Lösung unter Entstehen einer Natriumdithionit-Mutterlauge,
(b) Abtrennen von Natriumdithionit aus der Natriumdithionit-Mutterlauge, wobei eine Rest-Mutterlauge anfällt,
(c) Abtrennen von Methanol aus der Rest-Mutterlauge,
(d) Trennen der Rest-Mutterlauge in einen thiosulfatreichen, an Formiat abgereicher- ten ersten Teilstrom und einen thiosulfatarmen, formiathaltigen zweiten Teilstrom mittels einer Nanofiltration,
(e) Aufkonzentrieren von Natriumformiat in dem zweiten Teilstrom und (f) Rückführen des aufkonzentrierten zweiten Teilstromes in den Verfahrensschritt
(a).
Vorzugsweise handelt es sich in Schritt (b) um ein filtratives Abtrennen von Natriumdithio- nit aus der Natriumdithionit-Mutterlauge und in Schritt (c) um ein destillatives Abtrennen von Methanol aus der Rest-Mutterlauge. Für die Natriumdithionit-Synthese vorzugsweise einsetzbare Natriumverbindungen sind z.B. Natriumcarbonat, Natriumbicarbonat oder Natriumhydroxid.
Durch das erfϊndungsgemäße Verfahren kann in vorteilhafter Weise durch die Aufarbeitung des Abwassers und die Rückführung eines Teils des Natriumformiats in die Synthese ein Teil der Einsatzstoffkosten eingespart werden, wobei gleichzeitig die TOC-Fracht des er¬ zeugten Abwassers verringert wird. Das Rückgewinnungsverfahren zeichnet sich dabei durch einen geringen technischen Aufwand und eine hohe Wirtschaftlichkeit aus.
Um vor allem das Natriumformiat zurück zu gewinnen und wieder in die Synthese einsetzen zu können, muss das im Abwasser enthaltene Natriumthiosulfat weitgehend abgereichert werden, da es für die für die Teilschritte (a) und (b) des erfindungsgemäßen Verfahrens eine Störkomponente darstellt. Dies erfolgt erfindungsgemäß mit Hilfe eines Nanofiltrationsver- fahrens.
Die Nanofiltration ist wie die Umkehrosmose und die Ultrafiltration ein druckbetriebenes Membranverfahren zur Trennung von gelösten Komponenten aus wässrigen Lösungen. Die Nanofiltration ist hinsichtlich ihres Trennverhaltens zwischen Umkehrosmose und Ultrafϊlt- ration einzuordnen, wobei es in den Übergangsbereichen keine scharfe Abgrenzung gibt. Eine Besonderheit der Nanofiltrationsmembranen ist ihre hohe Ionenselektivität: Salze mit einwertigen Anionen können die Membran in hohem Maße passieren, während Salze mit mehrwertigen Ionen in weit höherem Maße zurückgehalten werden.
Bei der vorliegenden Erfindung wird der Abwasserstrom in Schritt (d) des Verfahrens an einer geeigneten Nanofϊltrationsmembran in zwei Teilströme aufgeteilt. Die Thiosulfationen verbleiben bevorzugt im Retentat (erster thiosulfatreicher Teilstrom), da sie gegenüber ein¬ wertigen Anionen (zum Beispiel den Formiationen) bevorzugt durch die Nanofϊltrations¬ membran zurückgehalten werden. Die Formiationen können die Nanofϊltrationsmembran zu einem großen Anteil passieren, so dass das so gewonnene Permeat (Filtrat) einen zweiten thiosulfatarmen, formiathaltigen Teilstrom bildet. - A -
Für die bei der Nanofiltration in dem erfindungsgemäßen Verfahren verwendete Membran¬ trenneinheit kommen alle Membranen in Betracht, die im jeweiligen System unter den er¬ forderlichen Trennbedingungen stabil sind und die eine Selektivität zwischen einwertigen und mehrwertigen Anionen aufweisen. Die Trennschichten der einsetzbaren Membranen können aus organischen Polymeren, Keramik, Kohlenstoff oder Kombinationen daraus be¬ stehen. Aus mechanischen Gründen sind die Trennschichten in der Regel auf einer ein- oder mehrschichtigen porösen Unterstruktur aufgebaut, die aus dem gleichen oder auch aus min¬ destens einem unterschiedlichen Material als die Trennschicht besteht.
Die Membranen werden üblicherweise in druckfeste Gehäuse eingesetzt, welche die Tren¬ nung zwischen Retentat (thiosulfatreicher Teilstrom) und Permeat (thiosulfatarmer Teil¬ strom) bei den für die Trennung erforderlichen Druckbedingungen erlauben. Die Membra¬ nen können in Flach-, Rohr-, Multikanalelement-, Kapillar- oder Wickelgeometrie ausge¬ führt werden, für die entsprechende Druckgehäuse, die eine Trennung zwischen Retentat und Permeat erlauben, verfügbar sind. Weiterhin können mehrere dieser Elemente in einem Gehäuse zu einem Modul zusammengefasst werden.
Bevor eine Rückführung des thiosulfatarmen, formiathaltigen zweiten Teilstroms stattfindet, wird dieser in Schritt (e) auf einen geringeren Wasseranteil eingeengt, da die Synthese in einer methanolischen, wasserarmen Lösung stattfindet. Die rückführbare Menge wird einer¬ seits durch die im Rezyklatstrom (aufkonzentrierter Permeatstrom) vertretbare Restkonzent¬ ration an Thiosulfat bestimmt. Andererseits kann die rückführbare Menge an Formiat gege¬ benenfalls auch durch die Löslichkeitsgrenze der im Rezyklatstrom enthaltenen Salze, vor allem Formiat und Salze der schwefligen Säure, begrenzt sein, sofern bevorzugt eine homo- gene Lösung als Rezyklat in den Syntheseansatz zudosiert werden soll.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird der pH- Wert der Rest-Mutterlauge vor der Durchführung von Schritt (d) auf einen pH-Wert in Abweichung zu dem pH- Wert der in Schritt (b) oder (c) anfallenden Rest-Mutterlauge, eingestellt. Vor- zugsweise wird der pH-Wert der Rest-Mutterlauge vor der Durchführung von Schritt (d) zwischen pH = 4 und pH = 6 eingestellt, besonders bevorzugt zwischen pH = 4 und pH = 4,5. Durch diese pH-Wert-Einstellung lässt sich überraschend die Thiosulfatrückhaltung bei der Nanofiltration in Schritt (d) erhöhen. In der bei dem erfindungsgemäßen Verfahren als Abwasser anfallenden Rest-Mutterlauge liegen neben den zu trennenden Thiosulfat-Ionen und Formiat-Ionen noch eine ganze Reihe anderer ionischer Spezies vor, die eine Trennung mittels Nanofiltration erschweren. Insbesondere sind dies andere zweiwertige Ionen, wie Sulfit. Sind mehrere zweiwertige Ionenspezies vorhanden, so ist die Rückhaltung der ein- zelnen Spezies reduziert. Durch die geschickte Einstellung des pH- Wertes besonders bevor¬ zugt zwischen pH = 4 und pH = 4,5 steigt die Rückhaltung für Thiosulfat an der Membran beträchtlich. Gleichzeitig lässt sich die Rückhaltung des in dem Abwasser des Formiatver- fahrens enthaltenen Gesamtsulfits, umfassend Disulfit, Sulfit und Hydrogensulfit, durch diese pH- Wert-Einstellung verringern, so dass dieses ebenfalls zusammen mit dem Natrium- formiat teilweise in die Synthese zurückgeführt werden kann.
Vorzugsweise wird der pH- Wert der Rest-Mutterlauge vor Schritt (d) durch Einperlen von Schwefeldioxid oder durch Zudosieren von Ameisensäure zu der Rest-Mutterlauge einge- stellt. Es ist jedoch auch jedes andere geeignete, dem Fachmann bekannte Verfahren zur pH- Wert-Einstellung anwendbar.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Nano- filtration in Schritt (d) mit einer Überströmgeschwindigkeit zwischen 0,05 m/s und 8 m/s, besonders bevorzugt zwischen 0,1 m/s und 4 m/s durchgeführt. Eine ausreichende Über¬ strömung ist notwendig, um eine Konzentrationspolarisation an der Membranoberfläche zu vermeiden. Eine zu hohe Überströmgeschwindigkeit erzeugt einen hohen Druckverlust.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Nano- fϊltration in Schritt (d) mit einer transmembranen Druckdifferenz zwischen 5 bar und 70 bar durchgeführt, bevorzugt zwischen 10 bar und 50 bar, besonders bevorzugt zwischen 20 bar und 30 bar. Die transmembrane Druckdifferenz liegt dabei zwischen Permeat- und Reten- tatraum vor. Durch diese Druckdifferenz wird der sich bei der Nanofiltration aufbauende osmotische Druck überwunden und ein möglichst hoher Permeatfluss bei einer möglichst geringen Membranfläche erzielt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt die Temperatur der Schritt (d) zugeführten Rest-Mutterlauge zwischen 20°C und 90°C, beson¬ ders bevorzugt zwischen 3O0C und 500C. Bei diesen Temperaturen lassen sich kostengüns- tige polymere Membranen, falls diese stabil sind, einsetzen. Ferner lassen sich diese Tempe¬ raturen kostengünstig einstellen (Flusswasser, niedergespannter Dampf), der Siedepunkt der Rest-Mutterlauge wird nicht überschritten und es werden genügend hohe Permeatflüsse er¬ zielt.
Die Aufkonzentration von Natriumformiat in dem zweiten Teilstrom in Schritt (e) erfolgt vorzugsweise durch ein thermisches Verfahren oder durch Membranverfahren, wie die Um¬ kehrosmose oder die Pervaporation. Ein bekanntes thermisches Verfahren zum Aufkonzent- rieren besteht beispielsweise im Verdampfen des Wassers. Die Umkehrosmose ist ein be¬ kanntes druckgetriebenes Membranverfahren, bei dem an die Wasser enthaltende Flüssig¬ keit, die mit einer semipermeablen Membran in Kontakt steht, ein Druck angelegt wird, der größer ist als der osmotische Druck der Flüssigkeit. Dadurch wird das Wasser durch die Membran gedrängt. Im Wasser gelöste Teilchen (zum Beispiel Formiationen) können die Membran nicht passieren. Die formiathaltige Lösung kann so eingeengt werden. Zur Auf¬ konzentration der formiathaltigen Lösung in Verfahrensschritt (e) kann aber auch jedes an¬ dere, dem Fachmann bekannte Verfahren, sowie Kombinationen aus zwei oder mehreren solchen Verfahren eingesetzt werden.
Vorzugsweise erfolgt die Aufkonzentration in Schritt (e) bis zu einem in dem aufkonzent¬ rierten zweiten Teilstrom enthaltenen, auf die ursprüngliche Wassermenge bezogenen Was¬ seranteil < 30%, besonders < 15%.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Rück¬ führung in Schritt (f) in einer solchen Menge durchgeführt, dass in dem Syntheseansatz eine Konzentration an Thiosulfat von 5000ppm, bevorzugt 2500ppm, besonders bevorzugt lOOOppm nicht überschritten wird. Bei höheren Thiosulfatkonzentrationen im Rückführ¬ strom werden die Synthese und die nachfolgende Filtration des Produkts gestört.
Anhand der Beispiele wird die Erfindung nachstehend näher erläutert.
Beispiel 1
Eine polymere Nanofiltrationsmembran (Desal 5 DK, GE Osmonics Inc.) wird mit einem Produktionsabwasser mit einer für ein Abwasser aus der Natriumdithionitsynthese typischen Zusammensetzung, wie sie nach Schritt (c) des erfϊndungsgemäßen Verfahrens vorliegt, in Kontakt gebracht. Die Lösung enthält 30 g/l Gesamtsulfit, 12 g/l Natriumthiosulfat und 60 g/l Natriumformiat und hat einen pH-Wert von 5,6. Der transmembrane Druck beträgt bei der Nanofiltration 10 bar, die Temperatur 400C. Die Membran wird von der Lösung mit einer Überströmgeschwindigkeit von 0,5 m/s überströmt. Die Lösung wird mit einem Mas¬ senkonzentrationsfaktor (MK = [Retentatmasse zu Beginn] / [Retentatmasse zur Zeit t]) von 1 ,5 aufkonzentriert. Man ermittelt folgende Rückhaltungen (R = 1 - [Konzentration Per- meat] / [Konzentration Retentat]):
Beispiel 2
Die Lösung aus Beispiel 1 wird durch Einperlen von Schwefeldioxid auf einen pH- Wert von 4,0 eingestellt. Anschließend wird die Lösung mit derselben Membran wie in Beispiel 1 bei 400C, einer Überströmgeschwindigkeit von 0,5 m/s und einem Transmembrandruck von 20 bar in Kontakt gebracht. Die Lösung wird mit einem Massenkonzentrationsfaktor von 2,2 aufkonzentriert. Man erhält folgende Ergebnisse:
Bei dem verringerten pH- Wert lässt sich daher eine größere Rückhaltung für das Thiosulfat erreichen. Für das Gesamtsulfit weist die Membran eine geringere Rückhaltung auf, so dass seine Konzentration im Permeat gegenüber Beispiel 1 erhöht werden kann.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Natriumdithionit mit den Schritten
(a) Erstellen eines Syntheseansatzes aus Natriumformiat, Schwefeldioxid und einer alkalischen Natriumverbindung in wässrig-methanolischer Lösung unter Entstehen einer Natriumdithionit-Mutterlauge, (b) Abtrennen von Natriumdithionit aus der Natriumdithionit-Mutterlauge, wobei eine
Rest-Mutterlauge anfällt, (c) Abtrennen von Methanol aus der Rest-Mutterlauge,
(d) Trennen der Rest-Mutterlauge in einen thiosulfatreichen ersten Teilstrom und ei¬ nen thiosulfatarmen, formiathaltigen zweiten Teilstrom mittels einer Nanofiltrati- on,
(e) Aufkonzentrieren von Natriumformiat in dem zweiten Teilstrom und (f) Rückführen des aufkonzentrierten zweiten Teilstromes in den Verfahrensschritt
(a).
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Rest-Mutterlauge nach der Durchführung von Schritt (c) einen bestimmten pH- Wert aufweist, der vor der Durchführung von Schritt (d) auf einen geringeren Wert eingestellt wird.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass der pH- Wert der Rest- Mutterlauge vor der Durchführung von Schritt (d) auf pH = 4 bis pH = 6 eingestellt wird.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass der pH- Wert auf pH = 4 bis pH = 4,5 eingestellt wird.
5. Verfahren gemäß einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der pH- Wert durch Einperlen von Schwefeldioxid oder durch Zudosieren von Ameisensäure zu der Rest-Mutterlauge eingestellt wird.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Aufkonzentration in Schritt (e) durch ein thermisches Verfahren, durch ein Membran- verfahren oder eine Kombination daraus erfolgt.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Membranverfahren eine Umkehrosmose ist.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Aufkonzentration in Schritt (e) bis zu einem in dem aufkonzentrierten zweiten Teil¬ strom enthaltenen, auf die Wassermenge in dem in Teilschritt (d) entstehenden zwei¬ ten Teilstrom bezogenen Wasseranteil < 30% erfolgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass die Rückführung in Schritt (f) in einer solchen Menge durchgeführt wird, dass in dem
Syntheseansatz eine Konzentration an Thiosulfat von 5000ppm nicht überschritten wird.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die alkalische Natriumverbindung eine Verbindung aus der Gruppe Natriumcarbonat,
Natriumbicarbonat und Natriumhydroxid umfasst.
EP05805323A 2004-11-03 2005-11-03 Verfahren zur herstellung von natriumdithionit Withdrawn EP1809574A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004053090A DE102004053090A1 (de) 2004-11-03 2004-11-03 Verfahren zur Herstellung von Natriumdithionit
PCT/EP2005/011786 WO2006048293A2 (de) 2004-11-03 2005-11-03 Verfahren zur herstellung von natriumdithionit

Publications (1)

Publication Number Publication Date
EP1809574A2 true EP1809574A2 (de) 2007-07-25

Family

ID=36143400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05805323A Withdrawn EP1809574A2 (de) 2004-11-03 2005-11-03 Verfahren zur herstellung von natriumdithionit

Country Status (5)

Country Link
US (1) US7968076B2 (de)
EP (1) EP1809574A2 (de)
CN (1) CN101056820A (de)
DE (1) DE102004053090A1 (de)
WO (1) WO2006048293A2 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049568A1 (de) 2005-10-17 2007-04-19 Basf Ag Verfahren zur kontinuierlichen Hydrierung oder hydrierenden Aminierung
US8027479B2 (en) 2006-06-02 2011-09-27 Coding Technologies Ab Binaural multi-channel decoder in the context of non-energy conserving upmix rules
CN102050471B (zh) * 2010-11-05 2012-05-23 烟台大学 甲酸钠法保险粉废液中甲酸钠和亚硫酸钠的回收方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2442418B2 (de) * 1974-09-05 1980-04-17 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Natriumdithionit
JPS51136596A (en) 1975-05-21 1976-11-26 Mitsui Toatsu Chem Inc Method for processing mot her liquid in the production of sodium dithionite
GB1504087A (en) 1975-05-21 1978-03-15 Mitsui Toatsu Chemicals Process for treating the mother liquor in the production of anhydrous sodium dithionite
JPS51136597A (en) 1975-05-21 1976-11-26 Mitsui Toatsu Chem Inc Method for processing mother solution of sodium dithionite anhydride production
JPS52138090A (en) 1976-04-26 1977-11-17 Mitsui Toatsu Chem Inc Treatment of mother liquor from production of anhydrous sodium dithionite
DE2646825A1 (de) * 1976-10-16 1978-04-20 Basf Ag Verfahren zur kontinuierlichen herstellung von natriumdithionitloesungen durch kathodische reduktion
JPS5350090A (en) * 1976-10-20 1978-05-08 Mitsui Toatsu Chem Inc Production of anhydrous sodium dithionite
DE2651418C2 (de) 1976-11-11 1986-01-09 Basf Ag, 6700 Ludwigshafen Verfahren zur Aufarbeitung der bei der Herstellung von Natriumdithionit nach dem Natriumformiatverfahren anfallenden Mutterlaugen
DE2716032C2 (de) 1977-04-09 1985-11-14 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Natriumdithionit
CA2016353A1 (en) * 1989-05-23 1990-11-23 Charles E. Winslow, Jr. Method for re-use of aqueous co-product from manufacture of sodium dithionite
DE4437253A1 (de) 1993-10-28 1995-05-04 Basf Ag Verfahren zur Herstellung von wasserfreiem Natriumdithionit
US5792441A (en) * 1996-10-11 1998-08-11 Pulp And Paper Research Institute Of Canada Fixed-resin bed technologies for the treatment of the chlorine dioxide generator effluent and feeds stream
FR2773891B1 (fr) 1998-01-21 2000-02-18 Eastman Kodak Co Procede pour le traitement de bains de stabilisation saisonnes utilises dans les traitements photographiques
DE69920067D1 (de) 1998-01-22 2004-10-21 Eastman Kodak Co Verfahren und Vorrichtung zur Rückführung von Waschwasser in photographischen Verarbeitungen
DE19954299A1 (de) * 1999-11-11 2001-05-17 Eilenburger Elektrolyse & Umwelttechnik Gmbh Verfahren zur gleichzeitigen elektrochemischen Herstellung von Natriumdithionit und Natriumperoxodisulfat
JP2001270844A (ja) 2000-03-23 2001-10-02 Mitsubishi Gas Chem Co Inc ハイドロサルファイト製造廃液からのギ酸ナトリウムの回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006048293A3 *

Also Published As

Publication number Publication date
US20080187484A1 (en) 2008-08-07
CN101056820A (zh) 2007-10-17
US7968076B2 (en) 2011-06-28
DE102004053090A1 (de) 2006-05-04
WO2006048293A2 (de) 2006-05-11
WO2006048293A3 (de) 2007-02-15

Similar Documents

Publication Publication Date Title
DE69614516T3 (de) Nanofiltration von konzentrierten wässrigen salzlösungen
EP2356088B1 (de) Verfahren zur herstellung von acrolein umfassend die aufarbeitung einer rohglycerin-phase
EP2785439B1 (de) Verfahren zur aufarbeitung einer wässerigen, lignin-enthaltenden lösung
DE102009005324A1 (de) Verfahren zur adiabatischen Nitrierung von Benzol
EP0982283A2 (de) Verfahren zur Abtrennung mehrfunktioneller Alkohole von wasserlöslichen Salzen aus wässrigen Systemen
WO2011029110A1 (de) Verfahren und vorrichtung zur aufkonzentrierung von wertstofflösungen
WO2005079960A1 (de) Verbessertes verfahren zur stofftrennung mittels membranen
DE10329303A1 (de) Verfahren zur Aufarbeitung des bei der Herstellung von Dinitrotoluol anfallenden Abwassers
EP1809574A2 (de) Verfahren zur herstellung von natriumdithionit
AT504206A4 (de) Verfahren zur behandlung eines stoffstromes
KR101810704B1 (ko) 막 처리에 의한 카프로락탐 회수방법
EP0550844B1 (de) Verfahren zur Herstellung von Methyl-Hydroxyalkyl-Celluloseethern
EP1401846B1 (de) Verfahren zur gewinnung von n-phosphonomethylglycin
DE2814800A1 (de) Verfahren zur herstellung von guanidin
DE3533562A1 (de) Verfahren zur gewinnung von vanillin
EP3466890B1 (de) Verfahren zur aufbereitung von abwasser aus der milchindustrie
DE602005004939T2 (de) Epoxidierung von propylen, bei der eine membran zur abtrennung des phospin- und/oder phosphinoxidpromotors vom produkt verwendet wird
DE10258663B4 (de) Verfahren zur Herstellung von Trioxan
EP2142286A1 (de) Verfahren zur aufreinigung von produktgemischen aus umesterungsreaktionen
EP1078906B1 (de) Verfahren zum Entfernen von kurzkettigen Fettsäuren aus einer wässrigen Glycerinlösung
EP3898520A1 (de) Verfahren zur herstellung von ammoniummetawolframat
DE4212086C2 (de) Verfahren zur kontinuierlichen Herstellung von C¶1¶¶0¶-C¶2¶¶2¶-Alkan-alkalisulfonaten
AT521525B1 (de) Verfahren zur Regeneration eines Harzes zur Entfärbung eines Biomassezustroms und verwandte Systeme
EP1514847A2 (de) Reinigung von Ammoniummetallat-Lösungen
EP4279167A1 (de) Vorrichtung zur aufbereitung einer lösung sowie entsprechendes verfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070816

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20090225

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140528