EP1786975B1 - A steel shell for a suction roll and a method of producing a steel product - Google Patents

A steel shell for a suction roll and a method of producing a steel product Download PDF

Info

Publication number
EP1786975B1
EP1786975B1 EP05774806A EP05774806A EP1786975B1 EP 1786975 B1 EP1786975 B1 EP 1786975B1 EP 05774806 A EP05774806 A EP 05774806A EP 05774806 A EP05774806 A EP 05774806A EP 1786975 B1 EP1786975 B1 EP 1786975B1
Authority
EP
European Patent Office
Prior art keywords
steel
suction roll
austenite
ferrite
roll shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05774806A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1786975A1 (en
Inventor
Mats Liljas
Pelle Johansson
Conny Bergkvist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Priority to PL05774806T priority Critical patent/PL1786975T3/pl
Priority to SI200530843T priority patent/SI1786975T1/sl
Publication of EP1786975A1 publication Critical patent/EP1786975A1/en
Application granted granted Critical
Publication of EP1786975B1 publication Critical patent/EP1786975B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/48Suction apparatus
    • D21F1/50Suction boxes with rolls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/10Suction rolls, e.g. couch rolls
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F3/00Press section of machines for making continuous webs of paper
    • D21F3/02Wet presses
    • D21F3/10Suction rolls, e.g. couch rolls
    • D21F3/105Covers thereof

Definitions

  • the invention relates to a steel shell for a suction roll with a plurality of through drilled holes and a method of producing a steel product, in which method a piece of steel material is worked by a cutting operation including drilling.
  • Stainless steel is used in fields in which a high corrosion resistance is necessary.
  • a high corrosion resistance may be required in environments within off-shore, paper and pulp industry and chemical industry.
  • suction roll shells for paper machines that are manufactured from stainless steel.
  • One type of stainless steel is the so called duplex steels that contain ferrite and austenite.
  • Duplex steels are known to combine a high mechanical strength and toughness with a good corrosion resistance, in particular in terms of stress corrosion and corrosion fatigue. For corrosion resistance as well as mechanical properties such as weldability, it is important that the steel is well balanced in terms of the essential components austenite and ferrite. In modem development of duplex steels, it is desired to have a micro-structure containing 35-65 % ferrite, the remainder being austenite.
  • duplex steels are increasingly competing with traditional austenite stainless steels.
  • a steel material is described in published US Patent Application No. 2003/0172999 .
  • the steel material described in this publication is a ferrite-austenite stainless steel having a micro-structure essentially consisting of 35-65 % by volume ferrite and 35-65 % by volume austenite.
  • the steel in question has a chemical composition containing 0.005-0.07 C, 0.1-2.0 Si, 3-8 Mn, 19-23 Cr, 0.15-0.30 N och 0.5-1.7 Ni, in % by weight. Some other components may also be included.
  • Nitrogen is of considerable importance to the steel described in US 2003/0172999 , since nitrogen is dominant as austenite former and contributes to the strength of the steel as well as to its corrosion resistance. For this reason, it was estimated that the nitrogen content of the steel should be in the range of 0.15-0.30 %, and preferably in the range of 0.20-0.24 %. However, it has been previously shown that steel types of such a high nitrogen content are poor in cuttability.
  • a stainless steel intended to be used for a particular product must be subjected to some type of cutting operation, such as milling, turning or drilling.
  • austenite and duplex stainless steels are poor in cuttability and hence various measures are undertaken in order to increase cuttability of the stainless steel.
  • nitrogen in stainless steel decreases cuttability.
  • a method for increasing cuttability of a martensite stainless steel by reducing carbon and nitrogen contents such that the total content of carbon and nitrogen together is not more than 0.05 % by weight.
  • martensite steels have a poorer corrosion resistance.
  • a stainless steel suitable for a suction roll shell should be of martensite type, among other things containing carbon at a % by weight of more than 0 but not more than 0.06, silicon at a % by weight above 0 but not more than 2, manganese at a % by weight above 0 but not more than 2, nickel at 3-6 % by weight, chromium at 14-17 % by weight, molybdenum at 1-3 % by weight and copper at a % by weight of from 0.5 to 1.5.
  • the present invention aims at providing a solution to the problem of finding a steel material that exhibits a high strength as well as a good corrosion resistance, and that moreover is suitable for cutting operations without having to be subjected to sulphur addition treatment. It is also an object of the invention to provide a suction roll shell with good corrosion resistance, which is easy to manufacture by cutting operations.
  • a steel material of the type described in above mentioned US 2003/0172999 not only has a high strength and a good corrosion resistance, but that the material in question also is suitable for cutting operations such as turning, milling and drilling, without the material in question having been treated by addition of sulphur.
  • the inventors have also found that the material in question is particularly suitable as a material for paper machine suction rolls, and that it is advantageous to manufacture a suction roll shell of such a material.
  • the invention relates to a suction roll shell of this material such as defined in claim 1.
  • the invention can also be understood as a method of producing a steel product cutting operation such as defined in claim 9, in particular for manufacturing suction roll shells, but also for manufacturing other products, e.g. rotating machine parts, such as shafts.
  • the invention relates to a suction roll shell having a plurality of through holes.
  • the suction roll shell according to the invention is made of a stainless ferrite-austenite steel having a micro-structure essentially consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite.
  • the steel composition will be described in greater detail in the detailed description.
  • the invention also relates to a suction roll comprising the inventive suction roll shell.
  • the cutting operation comprises drilling of at least one through hole, and preferably drilling of a plurality of holes.
  • the method comprises drilling of hundreds of thousands of holes. A corresponding drilled length is several kilometres.
  • the cutting operation may also comprise turning of outside and inside faces of the shell.
  • FIG. 1 a first step in the manufacturing of a suction roll shell is shown.
  • an essentially planar blank 1 is roller bent between two rollers 2, 3, as is known as such and need not be described in greater detail herein.
  • the ends of the blank 1 are welded together such that a weld joint unites the blank 1 to form a segment 9.
  • a plurality of segments are then united by circular joints to form a shell that is heat treated after the welding.
  • Fig. 3 shows how the thus achieved shell 9 can be subjected to a working operation, such as turning.
  • Fig. 3 shows a turning tool 5 acting on the face of the shell 9.
  • Fig. 4 shows schematically a subsequent step in the manufacturing process, in which the shell 9 is drilled by a drill 6, whereby the shell is provided with a number of through holes 7.
  • Fig. 5 shows the completed suction roll shell 8 with its circular cylindrical shell 9 and the through holes 7 thereof.
  • Fig. 5 also shows schematically that the ends of the suction roll shell 8 can be closed by side covers 10.
  • a vacuum source not shown
  • Suction roll shells have previously been manufactured from a material sold under the name 3RE60 Avesta SRG.
  • This steel is a stainless ferrite-austenite steel that has been improved in respect of cuttability by sulphur treatment and that has the following typical composition in % by weight.
  • steel 3RE60 has been used for about 30 years for the manufacturing of suction roll shells, and about 10 years ago it was provided with an additive for improved cuttability and its name was changed to 3RE60 SRG.
  • the steel is called 3RE60 Avesta SRG.
  • This steel has a microstructure essentially consisting of 35-65 % by volume of ferrite and 35-65 % by volume of austenite, and its chemical composition contains in % by weight: C 0.005 Si 0.1-2.0 Mn 3-8 Cr 19-23 Ni 0.5-1.7 N 0.15-0.3 and optionally Mo and/or W at a total content of no more than 1.0 (Mo + W/2), optionally Cu up to a maximum of 1.0 Cu, balance being iron and impurities.
  • the steel contains 0.02-0.05 C.
  • the steel contains 0.18-0.26 N and advantageously 20-23 Cr.
  • the steel contains 0.8-1.70 Ni, and even more preferred 1.35-1.7 Ni.
  • the steel contains 0.22 N, 21.5 Cr, 1.5 Ni, 0.3 Mo, 5 Mn and not more than 0.04 C.
  • a steel is sold by Outokumpu Stainless AB, Box 74, SE-774 22, AVESTA.
  • This steel is sold by Outokumpu under the name LDX 2101®.
  • the name is a trademark registered in the European Union.
  • the LDX 2101® steel is particularly suitable to be used in a suction roll shell.
  • Particularly suitable contents of copper and silicon are 0.3 Cu and 0.7 Si, respectively.
  • the guideline values 0.3 Cu and 0.7 Si (in % by weight) are used for LDX 2101®.
  • the steel of the type mentioned above has relatively high nitrogen content. As it is known that nitrogen tends to impair cuttability, it would be expected that cuttability is poorer. However, it has been surprisingly shown that the cuttability of the steel used according to the present invention is considerably higher than expected.
  • Fig. 6 shows the results of a comparative test in which an LDX 2101® steel were compared with two other, cuttability-improved, austenite steels called 304L PRODEC® and 316L PRODEC®, respectively.
  • the steel 304L PRODEC® has the following composition in % by weight: C 0.02 Si 0.5 Mn 1.5 Cr 18.2 Ni 8.4 Mo essentially none N 0.07 S 0.02
  • the steel 316L PRODEC® has the following composition: C 0.02 Si 0.5 Mn 1.5 Cr 17.2 Ni 11.2 Mo 2.3 N 0.05 S 0.02
  • Fig. 7 shows the results of an additional comparative test between an LDX 2101® steel and steels 304L PRODEC® and 316L PRODEC®.
  • Fig. 7 shows a test with a working time of 15 minutes, in which turning was made by a cutting edge of hard metal. Under these circumstances, a cutting speed was achieved for an LDX 2102® steel that was somewhat lower in comparison with the other two steels. The difference is however marginal.
  • Fig. 8 shows another test in which the steel LDX 2101® is compared with a conventional duplex steel sold under the name 2205.
  • This steel which is more highly alloyed than LDX 2101®, is standardized (EN 1.4462) and is used in a great number of applications. It has no cuttability-improving additives and is not used for this type of suction roll shells.
  • 2205 has the following composition: C 0.02 Si 0.4 Mn 1.5 Cr 22.2 Ni 5.7 Mo 3.1 N 0.17 S 0.001
  • FIG. 9 yet another test is shown in Fig. 9 .
  • an LDX 2101® steel was compared with three other steel types used for suction roll shells, i.e. 2304 Avesta SRG, 3RE60 Avesta SRG and 2205 Avesta SRG. All steels designated SRG (Suction Roll Grade) are cuttability-improved by sulphur addition.
  • the steel 2304 Avesta SRG has the following typical composition: C 0.02 Si 0.8 Mn 1.5 Cr 22.7 Ni 4.7 Mo 0.3 N 0.09 S 0.02
  • the steel 2205 Avesta SRG has the following typical composition: C 0.017 Si 0.6 Mn 1.35 Cr 22.0 Ni 5.7 Mo 2.9 N 0.13 S 0.02
  • the advantage is obtained, among other things, that the completed roll shell achieves a very good corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Adjustment And Processing Of Grains (AREA)
EP05774806A 2004-09-07 2005-08-19 A steel shell for a suction roll and a method of producing a steel product Active EP1786975B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL05774806T PL1786975T3 (pl) 2004-09-07 2005-08-19 Płaszcz stalowy do walca ssącego i sposób wytwarzania wyrobu stalowego
SI200530843T SI1786975T1 (sl) 2004-09-07 2005-08-19 Jekleni plašč za sesalni valj in postopek izdelave jeklenega izdelka

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0402141A SE528375C2 (sv) 2004-09-07 2004-09-07 En sugvalsmantel av stål samt en metod för tillverkning av en sugvalsmantel
PCT/SE2005/001220 WO2006041344A1 (en) 2004-09-07 2005-08-19 A steel shell for a suction roll and a method of producing a steel product

Publications (2)

Publication Number Publication Date
EP1786975A1 EP1786975A1 (en) 2007-05-23
EP1786975B1 true EP1786975B1 (en) 2009-09-30

Family

ID=33308722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05774806A Active EP1786975B1 (en) 2004-09-07 2005-08-19 A steel shell for a suction roll and a method of producing a steel product

Country Status (16)

Country Link
US (2) US20070248484A1 (ru)
EP (1) EP1786975B1 (ru)
JP (1) JP4758430B2 (ru)
KR (1) KR20070110246A (ru)
CN (2) CN101018908B (ru)
AT (1) ATE444394T1 (ru)
BR (1) BRPI0514969B1 (ru)
CA (1) CA2584275C (ru)
DE (1) DE602005016943D1 (ru)
EA (1) EA010540B1 (ru)
ES (1) ES2333737T3 (ru)
PL (1) PL1786975T3 (ru)
SE (1) SE528375C2 (ru)
SI (1) SI1786975T1 (ru)
TW (1) TWI393788B (ru)
WO (1) WO2006041344A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3008222A4 (en) * 2013-06-13 2017-02-15 Outokumpu Oyj Duplex ferritic austenitic stainless steel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125458B (fi) * 2008-05-16 2015-10-15 Outokumpu Oy Ruostumaton terästuote, tuotteen käyttö ja menetelmä sen valmistamiseksi
FI121340B (fi) * 2008-12-19 2010-10-15 Outokumpu Oy Dupleksinen ruostumaton teräs
CN102851602A (zh) * 2012-09-05 2013-01-02 徐琼 低镍不锈钢合金材料
CN102864385A (zh) * 2012-09-05 2013-01-09 忻峰 一种低镍不锈钢合金
CN102864381A (zh) * 2012-09-05 2013-01-09 陈敏 一种低镍不锈钢合金材料
CN102851618A (zh) * 2012-09-05 2013-01-02 徐琼 低镍不锈钢合金材料及制备方法
CN102864380A (zh) * 2012-09-05 2013-01-09 忻峰 一种低镍不锈钢合金及制备方法
CN102864386A (zh) * 2012-09-05 2013-01-09 陈敏 一种低镍不锈钢合金材料及制备方法
JP6520327B2 (ja) * 2015-04-08 2019-05-29 株式会社大林組 セグメント用継手金具の製造方法およびセグメント用継手金具
CN110270798B (zh) * 2019-06-27 2020-09-29 福建维普斯厨卫科技有限公司 一种包括圆柱体卫浴主体的多功能龙头的生产工艺
CN111910117B (zh) * 2020-07-15 2022-04-29 丁国旺 一种熔炼高强度不锈钢的碳、氮合金化的方法
CN113025891B (zh) * 2021-02-08 2022-07-22 江阴兴澄特种钢铁有限公司 一种双相不锈钢s32101钢板及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111455A (en) * 1961-05-29 1963-11-19 Sandusky Foundry & Machine Com Suction roll shell and method of making same
US3736131A (en) * 1970-12-23 1973-05-29 Armco Steel Corp Ferritic-austenitic stainless steel
US4832765A (en) * 1983-01-05 1989-05-23 Carpenter Technology Corporation Duplex alloy
DE69518354T2 (de) * 1994-05-21 2001-04-26 Park Yong S Rostfreier Duplex-Stahl mit hoher Korrosionsbeständigkeit
JPH09202943A (ja) * 1996-01-25 1997-08-05 Kubota Corp 高耐食高強度高靱性二相ステンレス鋼および製紙機用サクションロール胴部材
JPH09256109A (ja) * 1996-03-18 1997-09-30 Kubota Corp ドリル加工性にすぐれた高靱性・高腐蝕疲労強度二相ステンレス鋼
US5746891A (en) * 1996-07-25 1998-05-05 Withers; William David Wear indicators for seal strip of a suction roll of a paper making machine
FR2765243B1 (fr) * 1997-06-30 1999-07-30 Usinor Acier inoxydable austenoferritique a tres bas nickel et presentant un fort allongement en traction
US6033497A (en) * 1997-09-05 2000-03-07 Sandusky International, Inc. Pitting resistant duplex stainless steel alloy with improved machinability and method of making thereof
JP3621818B2 (ja) * 1998-01-09 2005-02-16 三菱重工業株式会社 ステンレス鋳鋼
FI103829B1 (fi) * 1998-05-14 1999-09-30 Valmet Corp Imutela
JP2000248339A (ja) * 1999-02-26 2000-09-12 Nisshin Steel Co Ltd 加工性及び耐食性に優れたオーステナイト系快削ステンレス鋼
JP3508095B2 (ja) * 1999-06-15 2004-03-22 株式会社クボタ 耐熱疲労性・耐腐食疲労性およびドリル加工性等に優れたフェライト−オーステナイト二相ステンレス鋼および製紙用サクションロール胴部材
JP3720223B2 (ja) * 1999-10-15 2005-11-24 株式会社クボタ 耐熱疲労性・耐腐食疲労性およびドリル加工性等に優れた二相ステンレス鋼および製紙用サクションロール胴部材
SE517449C2 (sv) * 2000-09-27 2002-06-04 Avesta Polarit Ab Publ Ferrit-austenitiskt rostfritt stål
SE526603C3 (sv) * 2003-01-24 2005-11-16 Sandvik Intellectual Property Belagt hårdmetallskär
EP1609883B1 (en) * 2004-06-24 2017-09-20 Sandvik Intellectual Property AB Coated metal cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3008222A4 (en) * 2013-06-13 2017-02-15 Outokumpu Oyj Duplex ferritic austenitic stainless steel

Also Published As

Publication number Publication date
CN101806009A (zh) 2010-08-18
CN101806009B (zh) 2012-08-22
SI1786975T1 (sl) 2010-01-29
PL1786975T3 (pl) 2010-03-31
CN101018908B (zh) 2012-11-07
WO2006041344A8 (en) 2007-05-31
ES2333737T3 (es) 2010-02-26
JP2008512579A (ja) 2008-04-24
CA2584275C (en) 2016-11-15
CN101018908A (zh) 2007-08-15
US20070248484A1 (en) 2007-10-25
EA010540B1 (ru) 2008-10-30
BRPI0514969B1 (pt) 2018-05-15
KR20070110246A (ko) 2007-11-16
EP1786975A1 (en) 2007-05-23
EA200700421A1 (ru) 2007-10-26
US20150252529A1 (en) 2015-09-10
SE0402141D0 (sv) 2004-09-07
SE0402141L (sv) 2006-03-08
SE528375C2 (sv) 2006-10-31
CA2584275A1 (en) 2006-04-20
DE602005016943D1 (de) 2009-11-12
JP4758430B2 (ja) 2011-08-31
WO2006041344A1 (en) 2006-04-20
ATE444394T1 (de) 2009-10-15
TWI393788B (zh) 2013-04-21
TW200609363A (en) 2006-03-16
BRPI0514969A (pt) 2008-07-01

Similar Documents

Publication Publication Date Title
EP1786975B1 (en) A steel shell for a suction roll and a method of producing a steel product
EP2236639B2 (en) Hot work tool steel with outstanding toughness and thermal conductivity
EP1728877B9 (en) Process for producing low-alloy steel excelling in corrosion resistance
KR101141828B1 (ko) 터빈 로터 및 터빈 로터의 제조 방법
US6344094B1 (en) Ferritic-austenitic two-phase stainless steel
EP1831417A1 (en) Precipitation hardenable martensitic stainless steel
JPS63169361A (ja) 工具鋼
JP6180984B2 (ja) チェーンソー部品用素材鋼板およびチェーンソー部品
US4058650A (en) Back material of metal band saw high in fatigue strength
JP3156170B2 (ja) ラインパイプ用マルテンサイト系ステンレス鋼
US10280492B2 (en) Alloy for mud motor shaft applications with high strength, high impact toughness and excellent fatigue life
DE202010018445U1 (de) Scherenmesser einer Schrottschere
US20090246065A1 (en) Alloy, shaft made therefrom, and motor with shaft
JPH06145903A (ja) 高腐食疲労強度ステンレス鋼
JPH04247851A (ja) 高Mnオーステナイト鋼
JP2740595B2 (ja) ドリル加工性にすぐれる二相ステンレス鋼
JPS5852464A (ja) 高腐食疲労強度二相ステンレス鋼
JP2889020B2 (ja) 被削性の優れた高Mn非磁性鋼
JP2023081506A (ja) 横孔付きシャフト部品及びこれを製造するための鋼材
JP2580300B2 (ja) 快削二相ステンレス鋳鋼
JPH0748656A (ja) 油井管用マルテンサイト系ステンレス鋼
JPH06248392A (ja) 析出硬化型ステンレス鋼
JPH0770702A (ja) 高腐食疲労強度及び良好なドリル加工性を備える二相ステンレス鋼
JPH11320246A (ja) メタルバンドソー用刃材およびメタルバンドソー

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005016943

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090403168

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333737

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100201

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6703

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230817

Year of fee payment: 19

Ref country code: IT

Payment date: 20230822

Year of fee payment: 19

Ref country code: GB

Payment date: 20230822

Year of fee payment: 19

Ref country code: FI

Payment date: 20230821

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230811

Year of fee payment: 19

Ref country code: AT

Payment date: 20230822

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230814

Year of fee payment: 19

Ref country code: SI

Payment date: 20230810

Year of fee payment: 19

Ref country code: PL

Payment date: 20230811

Year of fee payment: 19

Ref country code: GR

Payment date: 20230822

Year of fee payment: 19

Ref country code: FR

Payment date: 20230823

Year of fee payment: 19

Ref country code: DE

Payment date: 20230821

Year of fee payment: 19

Ref country code: BE

Payment date: 20230821

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 19