EP1771865B1 - Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire - Google Patents

Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire Download PDF

Info

Publication number
EP1771865B1
EP1771865B1 EP05766947.5A EP05766947A EP1771865B1 EP 1771865 B1 EP1771865 B1 EP 1771865B1 EP 05766947 A EP05766947 A EP 05766947A EP 1771865 B1 EP1771865 B1 EP 1771865B1
Authority
EP
European Patent Office
Prior art keywords
ceramic
radiocarbon
corrosion medium
process temperature
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05766947.5A
Other languages
German (de)
English (en)
Other versions
EP1771865A2 (fr
Inventor
Johannes Fachinger
Tatjana Podruzhina
Werner Von Lensa
Kerstin Bundesamt für Strahlenschutz KÜHN
Reinhard Odoj
Heiner BRÜCHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1771865A2 publication Critical patent/EP1771865A2/fr
Application granted granted Critical
Publication of EP1771865B1 publication Critical patent/EP1771865B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates to a method for treating a radio-carbon-contaminated ceramic, in particular reactor graphite.
  • Radiocarbon is the radioactive 14 carbon isotope of carbon. It is naturally produced by cosmic radiation in neutron radiation fields of nuclear reactors in small amounts as a fission product or by activation of the isotope 13 C occurring in natural carbon at 1.1% with an effective cross section of 0.0009 barn, but mainly by activation of nitrogen ( 14 N) in an n, p-reaction with a cross-section of 1.81 barn.
  • the isotope 17 O with only 0.038% in atmospheric oxygen can be converted to radiocarbon via a n, a reaction with a lower cross-section of 0.235 bam.
  • radiocarbon Because of its long physical half-life of 5,730 years and its good mountability in biological systems due to a substitution of 12 C or 13 C radiocarbon in carbon compounds with high biological half-life is radiocarbon a problematic contamination in radioactive waste represents and requires special safety precautions. On the other hand, it is also a valuable indicator of biological research because it is built into biological systems like natural carbon and can easily be tracked for radioactive decay.
  • Radio-carbon from ceramics in particular from nuclear waste, can therefore be used both for the decontamination of waste and for the recovery of valuable material for research.
  • ceramics may be mentioned: reactor graphite. Coal, SiC, Al 2 O 3 , MgO and composites containing ceramics, eg carbon fiber reinforced SiC.
  • a method of disposing of a radiotoxic contaminated article of graphite or carbon wherein a portion of the radiotoxic agents are removed by heating the article therefrom and supplied to a further disposal step, and wherein at least one closed layer is applied to the surface of the article by filling Pore with pyrolytic carbon by infiltration of hydrocarbons above 1000 ° C and / or formed by chemical reaction with a silicon compound to form silicon carbide sealing and / or diffusion-inhibiting. It is disclosed that the heating takes place in vacuum or under inert gas, to prevent the formation of carbon monoxide and carbon dioxide on heating by reactions with the atmospheric oxygen, which contain the existing radiocarbon and therefore may not escape uncontrolled.
  • This object is achieved in a method of the type mentioned in claim 1, characterized in that in a process temperature range by means of chemical reaction of at least one corrosion medium at least with the radiocarbon at least a volatile reaction gas is formed, wherein the amount of at least one corrosion medium, the process temperature and / or the process duration being such that the chemical reaction takes place substantially only on the surface of the ceramic, including pore surfaces, and within near-surface regions, and the at least one reaction gas is collected and fed to a separate treatment, such low process temperature being selected; that the corrosion medium can penetrate far into an existing pore system to partially oxidize the crystals on the inner surface.
  • the method considerably reduces the concentration of radiocarbon contamination. Although it is not possible to remove the entire radiocarbon from the treated ceramic by acting on the surfaces and the areas near the surface. However, even a distance of z. B. 50%, carried out with the method according to Measurements can be achieved, the usability of waste storage facilities would be able to double because the (end) storage capacities are linked to the total cumulative 14 C activity.
  • SectiondekontaminATORs graphite material can be supplied at sufficiently low residual contamination and a complete conversion to CO or CO 2 at higher temperatures of, for example, about 1000 ° C in air.
  • the concentration of radiocarbons in the collected reaction gases is significantly enriched in comparison to the natural occurrence, which is a good prerequisite for further use of radio carbon as a valuable material.
  • the treated ceramic can be corroded on its surface metered so that the inner regions remain as stable as possible.
  • the process according to the invention can also be carried out in such a way that oxygen is used as the corrosion medium.
  • oxygen when used, it reacts with carbon to form carbon monoxide or carbon dioxide, ie volatile carbon compounds.
  • the inventive method can also be carried out so that air is used as an oxygen supplier.
  • pure oxygen or oxygen may be used in admixture with other gases in a composition other than air.
  • the conversion into the abovementioned volatile carbon compounds already takes place at temperatures of about 500.degree. At these temperatures, the oxygen can penetrate far into an existing pore system to partially oxidize the crystals on the inner surface. At higher temperatures, however, a strong oxidation on the outside of the ceramic to be treated, since the pore diffusion is accelerated less by increasing the temperature than the chemical reaction and thus there is a depletion of the corrosion oxygen inside the pore system of the ceramic medium to be corroded.
  • the optimum temperature for the metered corrosion thus depends on the chemical reactivity of the corrosion medium, the diffusion rate in the pore system, which can be increased or controlled, for example by reducing the pressure or by adding inert inert gases, and the dimensions of the ceramic material to be corroded.
  • the process according to the invention can also be carried out so that water vapor is used as an oxygen supplier. It has proved to be advantageous, an inert gas To saturate at room temperature with water and then heat the water-inert gas mixture to process temperature.
  • the inventive method can also be carried out so that hydrogen is used as the corrosion medium.
  • reaction product with carbon in this case essentially CH 4 is formed.
  • the inventive method can also be carried out so that the ceramic is in a container, wherein the at least one corrosion medium is supplied controlled at a suitable process temperature and the reaction gas is withdrawn.
  • the at least one corrosion medium is adsorbed by the surface of the ceramic, including the pore surfaces, and then the ceramic is brought to process temperature. It may be advantageous to heat the ceramic under vacuum or in an inert gas atmosphere. How much the surfaces are loaded with the corrosion medium can be controlled, for example, by the chosen partial pressure and the loading time. The degree of loading should be chosen so that the amount of corrosion medium present is just sufficient to achieve the desired level of corrosion during heating. In this case, the removal of the reaction gases by evacuation or by purging with inert gas after the process at temperatures below the process temperature range or during the process can take place. In this procedure, near-surface carbon is reacted, which reacts chemically with the previously adsorbed corrosion medium. The proportion of radiocarbon in the separated carbon is higher in this method than in the treatment in a permanent atmosphere of the corrosion medium. However, this gain goes hand in hand with a decrease in total sales due to lower partial pressures.
  • the inventive method can also be carried out so that in a further step, the container is evacuated or the ceramic is purged with inert gas to withdraw the reaction gases, and then the process, starting with the adsorption of the at least one corrosion medium on the surface, at least one other Time is performed.
  • the process starting with the adsorption of the at least one corrosion medium on the surface, at least one other Time is performed.
  • a discontinuous process with several cycles is given, which on the one hand lead to longer treatment periods compared to the continuous process, but on the other hand can bring about increased amounts of radiocarbon in the reaction gases.
  • the inventive method can also be carried out so that before adsorbing the at least one corrosion medium metered corrosion by controlled addition of the at least one corrosion medium is carried out at such process temperature that at least a portion of closed pores is opened.
  • the first step in this process primarily serves to open the closed pores, it also already results in removal of a portion of the radio-carbon.
  • the opening of the closed pores can for example be done under a corrosive medium atmosphere, this treatment step can be carried out at elevated temperatures in a relatively short time, just enough to open the pores.
  • the corrosion too Pore opening can also be carried out with the aid of a previously adsorbed corrosion medium in vacuo or an inert gas atmosphere.
  • the process according to the invention can also be carried out in such a way that after the final removal of the reaction gases, the remaining residual ceramic is recycled, for example as nuclear graphite.
  • the method according to the invention can be carried out in such a way that the radiocarbon contained in the collected reaction gases is enriched. Subsequently, the radiocarbon can be recycled as a valuable material.
  • a cyclic process for the corrosion medium may be particularly advantageous when using steam as the oxygen supplier.
  • the cyclic process could look like this: In the corrosive process, carbon monoxide and hydrogen are produced as reaction products with the endothermic reaction of graphite with water vapor under appropriate process conditions.
  • the extracted and collected carbon monoxide now contains a significantly higher proportion of radiocarbon than the original ceramic. This proportion can now be further increased by enrichment processes.
  • solid carbon and water (steam) can be generated from the carbon monoxide in reaction with the hydrogen. The water can then again serve as a supplier for the corrosion medium oxygen.
  • carbon monoxide or CH 4 is preferably produced as the reaction gas.
  • Carbon monoxide and CH 4 have a lower weight than carbon dioxide. With these reaction gases, therefore, the given weight difference between radiocarbon and the stable isotopes of the carbon can be better utilized for enrichment of the radiocarbon.
  • the production of leach-resistant, non-combustible storage containers makes sense. This can e.g. by reaction of the radiocarbon-rich material to carbides, e.g. SiC, or rock-like carbonates happen.
  • the corrosion medium should be chosen so that the reaction gases are as directly as possible suitable for the further treatment steps.
  • FIG. 1 shows in a diagram the result of treatment of one of the AVR reactor (first High-temperature experimental reactor at Anlagenstechnik Anlagenlich; see VDI report 729, AVR - 20 Years of Operation, ISBN 3-18-090720-0, VDI-Verlag, Dusseldorf, 1989 )) originating graphite powder.
  • oxygen was used as a constituent of water.
  • first argon was saturated with water vapor at room temperature.
  • the graphite powder was heated in the steam-argon atmosphere to 1057 ° C and held at this temperature for 16 hours.
  • FIG. 1 represents the release of carbon during the treatment period.
  • Curve 1 shows the total mass loss of the graphite powder. This mass loss is expressed in percent by the left scale.
  • Curve 2 represents the percent release of radiocarbon with respect to the original radiocarbon content. Thus, after 16 hours, about 46% of the radiocarbon originally present in the graphite powder is released. Curve 3 plots the ratio between radiocarbon release in percent and the release of stable carbon isotopes in percent. As an example, the ratio after about 16 hours of treatment is shown below. As mentioned earlier, about 46% of the radiocarbon is removed. At the same time, the treatment released a little more than 16% of the stable carbon isotopes. The ratio of the percentages 46/16 gives a ratio of about 2.85. The ratio is on the right scale of the graph in FIG. 1 shown. The diagram clearly shows that at the beginning of the process the ratio of the yield of radiocarbon is higher than at later times. This confirms the predominant deposition of radiocarbon on the surface, including the pore surfaces.
  • graphite powder from the experimental reactor MERLIN was first stored in air so that the surfaces of the powder, including the pore surfaces, could adsorb oxygen. This material was then placed in a pure argon atmosphere, heated to 1057 ° C and held at this temperature for about 13.5 hours.
  • FIG. 2 shows the result of this treatment in one too FIG. 1 corresponding diagram. It can be seen that overall a much lower absolute release rate was achieved both with respect to the radiocarbon (curve 5) and the stable carbon isotopes (curve 4). However, according to curve 6, the ratio of the percentage release of the radiocarbon to the percentage release of the stable carbon isotopes is more than a factor of 10 higher. Accordingly, the percentage is also the radiocarbon-containing molecules in reaction gases significantly higher than in the treatment under the water-argon atmosphere. The corrosion alone by means of the adsorbed oxygen is particularly suitable when high proportions of radiocarbon in the reaction gases, for example for the recycling of the radio-carbon, to be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (14)

  1. Procédé pour traiter une céramique contenant du carbone contaminée par du radiocarbone, pour lequel au moins une partie du radiocarbone est extraite de la céramique et la partie extraite est recueillie,
    a) le procédé étant utilisé pour au moins partiellement réduire la concentration de l'extraction de radiocarbone d'une proportion de carbone de la céramique,
    b) le volume d'au moins un milieu corrosif, la température de procédé et/ou la durée du procédé étant choisis de telle manière que la réaction chimique se produit pour l'essentiel uniquement au niveau de la surface externe et/ou interne de la céramique, y compris de la surface des pores,
    c) au moins un gaz de réaction volatil étant formé dans une zone de température du procédé au moyen d'une réaction chimique d'au moins un milieu corrosif avec au moins le radiocarbone,
    d) au moins un gaz de réaction étant recueilli et étant amené vers un traitement séparé,
    caractérisé en ce que
    e) une température de procédé faible est choisie pour que le milieu corrosif puisse pénétrer largement dans un système de pores existant, afin de pouvoir oxyder partiellement les cristaux présents au niveau de la surface interne.
  2. Procédé selon la revendication 1, caractérisé en ce que l'oxygène est utilisé en tant que milieu corrosif.
  3. Procédé selon la revendication 2, caractérisé en ce que l'air est employé en tant que fournisseur d'oxygène.
  4. Procédé selon la revendication 2, caractérisé en ce que de la vapeur d'eau est employée en tant que fournisseur d'oxygène.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'hydrogène est utilisé en tant que milieu corrosif.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la céramique est broyée, en particulier concassée, avant de lancer la réaction chimique.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la céramique se trouve dans un contenant, l'au moins un milieu corrosif étant alimenté de manière contrôlée à une température de procédé appropriée et le gaz de réaction étant ôté.
  8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'au moins un milieu corrosif est absorbé par la surface de la céramique, y compris par la surface des pores, puis la céramique est amenée à la température de procédé.
  9. Procédé selon la revendication 8, caractérisé en ce que la céramique sous vide ou dans une atmosphère de gaz inerte est amenée à la température de procédé.
  10. Procédé selon la revendication 9, caractérisé en ce que, lors d'une étape ultérieure, le récipient est évacué ou la céramique est rincée avec gaz inerte afin de retirer les gaz de réaction, puis le procédé est réalisé au moins une nouvelle fois, en commençant par l'absorption de l'au moins un milieu corrosif sur la surface.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce qu'avant l'absorption d'au moins un milieu corrosif, une corrosion dosée au moyen d'un ajout contrôlé d'au moins un milieu corrosif est réalisée à la température de procédé, de telle manière qu'au moins une partie des pores fermés est ouverte.
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la céramique résiduelle restante est recyclée après le dernier retrait du gaz de réaction, par exemple en tant que graphite nucléaire.
  13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le radiocarbone contenu dans les gaz de réaction recueillis est enrichi.
  14. Procédé selon la revendication 13, caractérisé en ce que le monoxyde de carbone ou le CH4 de préférence est produit en tant que gaz de la réaction.
EP05766947.5A 2004-07-28 2005-07-12 Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire Not-in-force EP1771865B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410036631 DE102004036631B4 (de) 2004-07-28 2004-07-28 Verfahren zur Behandlung einer mit Radiokarbon kontaminierten Keramik, insbesondere Reaktorgraphit
PCT/DE2005/001222 WO2006012830A2 (fr) 2004-07-28 2005-07-12 Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire

Publications (2)

Publication Number Publication Date
EP1771865A2 EP1771865A2 (fr) 2007-04-11
EP1771865B1 true EP1771865B1 (fr) 2013-07-10

Family

ID=35787478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05766947.5A Not-in-force EP1771865B1 (fr) 2004-07-28 2005-07-12 Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire

Country Status (3)

Country Link
EP (1) EP1771865B1 (fr)
DE (1) DE102004036631B4 (fr)
WO (1) WO2006012830A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063941A1 (de) * 2008-12-19 2010-07-01 Forschungszentrum Jülich GmbH Verfahren zur Reduzierung oder zumindest teilweisen Entfernung spezifischer Radiotoxika aus einer kerntechnischen Anlage
DE102010026936A1 (de) 2010-07-12 2012-01-12 Forschungszentrum Jülich GmbH Verfahren zur Teildekontamination radioaktiver Abfälle
DE102011016272A1 (de) 2011-04-06 2012-10-11 Forschungszentrum Jülich GmbH Verfahren zur Dekontamination von Radionukliden aus neutronenbestrahlten Kohlenstoff- und/oder Graphitwerkstoffen
DE102011016273A1 (de) * 2011-04-06 2012-10-11 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von Kohlenstoff- und Graphitwerkstoffen sowie dadurch hergestellte Kohlenstoff- und Graphitwerkstoffe
DE102013003847B3 (de) 2013-03-07 2014-09-04 Forschungszentrum Jülich GmbH Fachbereich Patente Verfahren zur Dekontamination von Radionukliden aus neutronenbestrahlten Kohlenstoff- und/ oder Graphitwerkstoffen
RU2546981C1 (ru) * 2013-10-16 2015-04-10 Открытое акционерное общество "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники им. Н.А. Доллежаля" (ОАО "НИКИЭТ") Способ обработки облученного реакторного графита
RU2603015C1 (ru) * 2015-10-29 2016-11-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ очистки облученных графитовых втулок уран-графитового реактора и устройство для его осуществления
RU2660804C1 (ru) * 2017-07-03 2018-07-10 Российская Федерация, от лица которой выступает Государственная корпорация по атомной энергии "Росатом" Способ подготовки графитовых радиоактивных отходов к захоронению
RU2711292C1 (ru) * 2018-11-21 2020-01-16 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Способ дезактивации элемента конструкции ядерного реактора

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120793A1 (de) * 1981-05-25 1983-01-20 Battelle-Institut E.V., 6000 Frankfurt "verfahren und vorrichtung zur dekontamination von festkoerpern"
DE3149795C2 (de) * 1981-12-16 1986-05-15 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zur Abtrennung des Strukturgraphits vom Kernbrennstoff bei Kernreaktorbrennelementen
DE3313251C2 (de) * 1983-04-13 1986-03-06 Hobeg Hochtemperaturreaktor-Brennelement Gmbh, 6450 Hanau Verfahren zur Vorbereitung von kugelförmigen Brennelementen zur Endlagerung
DE3345782A1 (de) * 1983-12-17 1985-06-27 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau Verfahren zur primaerkreis-dekontamination von reaktoren
DE19737891C2 (de) * 1997-08-29 2002-08-01 Forschungszentrum Juelich Gmbh Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein
JP3051859B2 (ja) * 1998-10-30 2000-06-12 原電事業株式会社 原子炉で使用された黒鉛の処理方法
UA57884C2 (uk) * 1999-10-14 2003-07-15 Дейвід БРЕДБЕРІ Спосіб обробки радіоактивного графіту
JP2001116891A (ja) * 1999-10-15 2001-04-27 Kaken:Kk 放射性汚染物の気相ガス化除染方法およびその装置
DE10148146B4 (de) * 2001-09-28 2009-08-27 Forschungszentrum Jülich GmbH Verfahren zur Entsorgung eines mit mindestens einem Radiotoxikum kontaminierten Gegenstandes aus Reaktorgraphit und/oder Kohlestein

Also Published As

Publication number Publication date
EP1771865A2 (fr) 2007-04-11
WO2006012830A3 (fr) 2006-05-11
WO2006012830A2 (fr) 2006-02-09
DE102004036631B4 (de) 2013-02-21
DE102004036631A1 (de) 2006-03-23

Similar Documents

Publication Publication Date Title
EP1771865B1 (fr) Procede pour traiter une ceramique contaminee par du radiocarbone, en particulier du graphite nucleaire
DE60024306T2 (de) Verfahren zur behandlung von radioaktivem graphit
EP2593942A1 (fr) Procédé de décontamination partielle de déchets radioactifs
KR101666138B1 (ko) 환원 기체에 의한 흑연 열적 정화
WO2012136191A1 (fr) Procédé de décontamination de radionucléides présents dans des matériaux carbonés et/ou graphitiques irradiés avec des neutrons
DE102013003847B3 (de) Verfahren zur Dekontamination von Radionukliden aus neutronenbestrahlten Kohlenstoff- und/ oder Graphitwerkstoffen
EP0078428B1 (fr) Procédé pour la fabrication des frittés combustibles nucléaires oxydés
DE19737891C2 (de) Verfahren zur Entsorgung eines mit Radiotoxika kontaminierten Gegenstandes aus Reaktorgraphit oder Kohlestein
EP2368254B1 (fr) Procédé de réduction ou d'élimination au moins partielle de substances radiotoxiques spécifiques dans une installation nucléaire
DE102012009119A1 (de) Thermische Graphit-Dekontaminierung mit Reduktionsgasen
EP3170187B1 (fr) Procédé pour la décontamination de graphite contaminé
EP0054604A2 (fr) Procédé de préparation de corps résiduaires solidifiés pour le stockage définitif de déchets radioactifs
DE10148146B4 (de) Verfahren zur Entsorgung eines mit mindestens einem Radiotoxikum kontaminierten Gegenstandes aus Reaktorgraphit und/oder Kohlestein
DE1064163B (de) Kernreaktor-Abschirmmaterial und Verfahren zu seiner Herstellung
Tachikawa et al. Trapping and recovery of radioiodine compounds by copper metal
DE3117862C2 (fr)
DE1592485C3 (de) Verfahren zum Zerstören von Graphit enthaltenden Kernbrennstoff-Formkörpern zur Wiedergewinnung der eingebetteten Kernbrennstoffe
RU2656224C2 (ru) Способ обработки стержня-поглотителя, содержащего загрязненный карбид бора и натрий
EP0503557A1 (fr) Procédé de retraitement de barreaux absorbants provenant de réacteurs nucléaires refroidis à l'eau
DE1592433C3 (de) Verfahren zur Aufbereitung von verbrauchtem Kernbrennstoff
DE102011016273A1 (de) Verfahren zur Herstellung von Kohlenstoff- und Graphitwerkstoffen sowie dadurch hergestellte Kohlenstoff- und Graphitwerkstoffe
Meyer et al. Treatment of Graphite Waste to Minimize Disposal Volume
DE1592433B2 (de) Verfahren zur aufbereitung von verbrauchtem kernbrennstoff
DE102012112648A1 (de) Graphitmatrix mit kristallinem Bindemittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VON LENSA, WERNER

Inventor name: ODOJ, REINHARD

Inventor name: FACHINGER, JOHANNES

Inventor name: BRUECHER, HEINER

Inventor name: PODRUZHINA, TATJANA,TKACHEV, ANDREY

Inventor name: KUEHN, KERSTIN,BUNDESAMT FUER STRAHLENSCHUTZ

17Q First examination report despatched

Effective date: 20071213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005013837

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G21F0009280000

Ipc: G21F0009300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G21F 9/28 20060101ALI20111209BHEP

Ipc: G21F 9/30 20060101AFI20111209BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PODRUZHINA, TATJANA

Inventor name: VON LENSA, WERNER

Inventor name: KUEHN, KERSTIN,BUNDESAMT FUER STRAHLENSCHUTZ

Inventor name: ODOJ, REINHARD

Inventor name: FACHINGER, JOHANNES

Inventor name: BRUECHER, HEINER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013837

Country of ref document: DE

Effective date: 20130829

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013837

Country of ref document: DE

Effective date: 20140411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140604

Year of fee payment: 10

Ref country code: CH

Payment date: 20140722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140722

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013837

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160722

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160722

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170712

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731