EP1756416A1 - Kraftstoffeinspritzsystem - Google Patents

Kraftstoffeinspritzsystem

Info

Publication number
EP1756416A1
EP1756416A1 EP05735840A EP05735840A EP1756416A1 EP 1756416 A1 EP1756416 A1 EP 1756416A1 EP 05735840 A EP05735840 A EP 05735840A EP 05735840 A EP05735840 A EP 05735840A EP 1756416 A1 EP1756416 A1 EP 1756416A1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
pressure accumulator
high pressure
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05735840A
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Scheurer
Roger Busch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1756416A1 publication Critical patent/EP1756416A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/007Venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/60Fuel-injection apparatus having means for facilitating the starting of engines, e.g. with valves or fuel passages for keeping residual pressure in common rails

Definitions

  • the invention is based on a fuel injection system, as is known for example from DE 100 60 812 AI and as it is preferably used for internal combustion engines.
  • a fuel injection system has a high-pressure accumulator in which fuel can be stored under high pressure.
  • At least one injection valve is connected to the high-pressure accumulator, via which the fuel present in the high-pressure accumulator under high pressure can be injected into the combustion chamber of an internal combustion engine.
  • To generate the high pressure in the high-pressure accumulator there is a high-pressure pump that draws fuel from a leak oil area and compresses it and supplies it to the high-pressure accumulator.
  • a fuel pressure is built up in the high-pressure accumulator, which is necessary for a finely atomized fuel injection
  • Switching off the internal combustion engine also shuts down the high-pressure pump, so that the fuel remaining in the high-pressure accumulator cools there over time until it has reached ambient temperature. This causes the fuel in the high-pressure accumulator to shrink, which is approximately 1% per 10 ° C. The pressure in the high-pressure accumulator drops accordingly until the volume of fuel in the
  • High-pressure accumulator is smaller than the volume of the high-pressure accumulator itself. This leads to the outgassing of air from the fuel, and this air fills the volume released in the high-pressure accumulator.
  • the air must first be compressed by the high-pressure pump before the desired high fuel pressure can be built up. This effect is noticeable through a delayed build-up of pressure that can last up to two seconds. can be customers and is therefore clearly noticeable for the user of the internal combustion engine, which is operated, for example, in a motor vehicle
  • the fuel injection system according to the invention with the characterizing features of patent claim 1 has the advantage that the pressure build-up in a fuel injection system that works according to the so-called Cornmon-Raü principle occurs without a noticeable delay.
  • the control valve works in such a way that when the high-pressure pump is switched off, fuel can flow from the leakage area into the high-pressure accumulator.
  • the cavity created by the shrinkage of the fuel in the high-pressure accumulator is filled up with fuel flowing from the leakage area, so that the high-pressure accumulator always remains completely filled with fuel.
  • the internal combustion engine is restarted and the high-pressure pump thus starts up, no air has to be compressed, so that the pressure in the high-pressure accumulator rises very quickly and is available for fuel injection
  • control valve is designed as a check valve, the check valve only opening the fuel line when the pressure in the high-pressure accumulator is less than or equal to the pressure in the leakage oil chamber. This ensures that from the
  • High-pressure accumulator No fuel pressure escapes as long as the mashing machine is in operation When the fuel in the high-pressure accumulator cools down, a negative pressure is created which draws fuel from the leakage area into the high-pressure accumulator so that it always remains completely filled with fuel.
  • the return line can be a separate one However, it is also possible to provide the return line parallel to the high-pressure pump, so that the intake line, through which the high-pressure pump draws fuel from the leakage area, and the high-pressure line, through which fuel under high pressure flows to the high-pressure accumulator is directly connected to one another via the return line.
  • the control valve is designed to be switchable, the control valve being switched open when the high-pressure pump is not working. This enables fuel to flow from the high-pressure accumulator into the leak oil chamber as well as from the leak oil chamber with the high-pressure accumulator. This leads to a quick pressure equalization between
  • High pressure accumulator and leakage oil room When the fuel in the high-pressure accumulator cools down, it always remains completely filled with fuel, as already shown above.
  • the switchable control valve is used during normal operation of the breeding machine to keep the pressure in the high-pressure reservoir at a constant value as a pressure-maintaining valve, in that when a setpoint pressure in the high-pressure reservoir is exceeded, fuel is discharged from the high-pressure reservoir and fed to the leakage area via the pressure-maintaining valve.
  • FIG. 1 shows the schematic representation of an injection device
  • FIG. 2a likewise shows a schematic representation of the high-pressure accumulator without returning fuel when the high-pressure pump is switched off
  • FIG. 2b shows the pressure and speed of the internal combustion engine over time in this case
  • FIG. 3a and FIG. 3b show the same view as FIG. 2a and FIG. 2b Case in which the high-pressure accumulator is always filled with fuel
  • FIG. 1 schematically shows a fuel injection system that works with a so-called common rail system.
  • a leakage area 1 fuel is present at ambient pressure, the leakage area 1 in a vehicle usually corresponding to the fuel tank.
  • An intake line 3 leads from the leak oil region 1 to a high-pressure pump 5, in which fuel can be generated under high pressure.
  • the compressed and high pressure fuel is supplied by the high-pressure pump 5 via a high-pressure line 7 to a high-pressure accumulator 10, in which the fuel can be kept under high pressure.
  • a plurality of fuel injection valves 12 are connected to the high-pressure accumulator 10, via which the fuel which is held in the high-pressure accumulator 10 under high pressure can be injected into the combustion chamber of the internal combustion engine.
  • Corresponding control devices in the high-pressure pump 5 generally provide that only as much fuel is supplied to the high-pressure accumulator 10 as is taken from it for fuel injection. If an excessively high pressure nevertheless arises in the high-pressure accumulator 10, a pressure regulating valve 20 is provided to limit the pressure, which is provided in a control line 15, which connects the high-pressure accumulator 10 to the leak oil area 1 High-pressure accumulator 10 opened so that fuel flows into the leakage area 1 and reduces the pressure in the high-pressure accumulator 10. If the pressure falls below the target pressure again, the pressure control valve 20 closes the control line 15 and thus stops the further pressure drop.
  • the high pressure accumulator 10 is shown schematically and the hydraulic conditions that arise there when the high pressure accumulator 10 cools in the previously known fuel injection systems.
  • the high pressure accumulator 10 is filled with fuel under high pressure via the high pressure pump 5. After the internal combustion engine is switched off, the high-pressure pump 5 also no longer feeds fuel into the high-pressure accumulator 10.
  • an expansion tank 30 is provided, which is connected to the high-pressure accumulator 10 and whose connection to the high-pressure accumulator 10 can be interrupted by a valve 27. If the valve 27 is closed after the internal combustion engine has been switched off, then no fuel can flow from the expansion tank 30 into the high-pressure accumulator 10.
  • the high-pressure pump 15 is put into operation at time to, whereby the rotary Number N of the brake engine reaches a first value relatively quickly. Due to the compression of the air bubble 32 in the high-pressure accumulator 10, the pressure build-up takes place only with a delay .DELTA.t, which in car applications can be up to two seconds, depending on the high-pressure volume, delivery rate and temperature difference. When the pressure of the high-pressure accumulator 10 has reached a certain value, higher speeds of the engine are possible.
  • FIG. 3a shows the same system as FIG. 2a, but here the valve 27 remains open after the high-pressure pump 5 has been switched off. This allows fuel flowing from the expansion tank 30 into the high-pressure accumulator 10, so that the
  • High-pressure accumulator 10 always remains filled with fuel.
  • the high-pressure pump 15 is started, the valve 27 being closed. Since fuel is largely incompressible, a high pressure quickly builds up in the high-pressure accumulator 10.
  • FIG. 3b shows that the pressure rises immediately from time tQ and the speed N of
  • Breririkraftmaschine already assumes a higher value at an earlier point in time.
  • the vehicle can thus be started without delay by compressing the air bubbles in the high-pressure accumulator 10.
  • the expansion tank 30 of FIGS. 2a and 3a corresponds to the leak oil region 1 in an internal combustion engine according to FIG. 1.
  • a return line 22 can be provided, which leads from the high-pressure reservoir 10 directly into the leak oil region 1.
  • a return line 22 is a
  • Check valve designed control valve 24 is arranged, which allows a fuel flow only in the direction of the high-pressure accumulator 10, the pressure in the high-pressure accumulator 10 drops by cooling the fuel below the pressure in the leakage area, i. H. below the ambient pressure, fuel from the leak oil area 1 is filled into the high-pressure accumulator 10 via the check valve 24 and the return line 22, so that it always remains completely filled with fuel.
  • the return line 22 ′ which is formed parallel to the high-pressure pump 15, works in the same way.
  • a check valve 24' is also formed, which only allows fuel flow in the direction of the high pressure chers 10 allows the return line 22 'can also be integrated in the high pressure pump 5, so that no additional space is required.
  • the pressure control valve 20 can also be used. As described above, the pressure control valve 20 is normally used to limit the pressure in the high pressure accumulator 10. If, however, the pressure control valve 20 is opened after the high-pressure pump 5 has been switched off, the control line 15 functions as a return line 22. On the one hand, the still high pressure in the high-pressure accumulator 10 is rapidly released into the leak oil region 1 and, on the other hand, fuel is released from the fuel when the pressure in the high-pressure accumulator 10 drops Leakage oil area 1 is sucked in, so that the high-pressure accumulator 10 always remains filled with fuel. The amount required for this is very small and is usually only a few cm ⁇ over a few hours.

Abstract

Kraftstoffeinspritzsystem mit einem Hochdruckspeicher (10), in dem Kraftstoff unter hohem Druck gespeichert werden kann, wobei wenigstens ein Einspritzventil (12) mit dem Hochdruckspeicher (10) verbindbar ist, über das der im Hochdruckspeicher (10) befindliche Kraftstoff in den Brennraum einer Brennkraftmaschine eingespritzt werden kann. Eine Hochdruckpumpe (5) saugt Kraftstoff aus einem Leckölbereich (1), verdichtet diesen und führt ihn dem Hochdruckspeicher (10) zu, so dass dort bei Betrieb der Hochdruckpumpe (5) ein hoher Kraftstoffdruck aufgebaut wird. Zwischen dem Leckölbereich (1) und dem Hochdruckspeicher (10) ist eine Rücklaufleitung (15, 22, 22') mit einem Regelventil (20; 24; 24') ausgebildet, wobei das Regelventil (20; 24; 24') bei abgeschalteter Hochdruckpumpe (5) einen Kraftstofffluss vom Leckölbereich (1) in den Hochdruckspeicher (10) ermöglicht.

Description

Kraftstoffeinspritzsystem
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzsystem aus, wie es beispielsweise aus der Schrift DE 100 60 812 AI bekannt ist und wie es vorzugsweise für Brennkraftmaschinen verwendet wird. Ein solches Kraftstoffeinspritzsystem weist einen Hochdruckspeicher auf, in dem Kraftstoff unter hohem Druck gespeichert werden kann. Mit dem Hochdruckspeicher ist wenigstens ein Einspritzventil verbunden, über das der im Hochdruckspeicher unter hohem Druck vorhandene Kraftstoff in den Brennraum einer Brennkraftmaschine eingespritzt werden kann. Zur Erzeugung des Hochdrucks im Hochdruckspeicher ist eine Hochdruckpumpe vorhanden, die Kraftstoff aus einem Leckolbereich ansaugt und verdichtet dem Hochdruck- Speicher zuführt. Beim Betrieb der Hochdruckpumpe wird also im Hochdruckspeicher ein Kraftstoffdruck aufgebaut, der für eine fein zerstäubte Kraftstoffeinspritzung notwendig ist
Beim Betrieb der Brennkraftmaschine erwärmt sich der Kraftstoff im Hochdruck- Speicher, so dass dort Temperaturen von über 50 °C herrschen können. Nach dem
Abschalten der Brenrikraftmaschine wird auch die Hochdruckpumpe stillgelegt, so dass der im Hochdruckspeicher verbleibende Kraftstoff dort mit der Zeit abkühlt, bis er Umgebungstemperatur angenommen hat. Dadurch schrumpft der Kraftstoff im Hochdruckspeicher, was in etwa 1 % pro 10 °C ausmacht Der Druck im Hochdruckspeicher sinkt entsprechend ab, bis das Volumen des Kraftstoffs im
Hochdruckspeicher kleiner ist als das Volumen des Hochdruckspeichers selbst Dadurch kommt es zum Ausgasen von Luft aus dem Kraftstoff, und diese Luft füllt das freiwerdende Volumen im Hochdruckspeicher aus. Beim Neustart der Brennkraftmaschine muss die Luft durch die Hochdruckpumpe erst komprimiert werden, bevor der gewünschte hohe Kraftstoffdruck aufgebaut werden kann. Dieser Effekt macht sich durch einen verzögerten Druckaufbau bemerkbar, der bis zu zwei Se- kunden betragen kann und damit für den Benutzer der Brennkraftmaschine, die beispielsweise in einem Kraftfahrzeug betrieben wird, deutlich merkbar ist
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzsystem mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Druckaufbau in einem Kraftstoffeinspritzsystem, das nach dem sogenannten Cornmon- Raü-Prinzip arbeitet, ohne merkliche Verzögerung geschieht Hierzu ist eine Rück- laufleitung zwischen dem Leckolbereich und dem Hochdruckspeicher ausgebildet, in der ein Regelventil ausgebildet ist Das Regelventil arbeitet hierbei so, dass bei abgeschalteter Hochdruckpumpe Kraftstoff vom Leckolbereich in den Hochdruckspeicher fließen kann. Kühlt sich der Kraftstoff im Hochdruckspeicher nunmehr ab, so wird der durch die Schrumpfung des Kraftstoffs im Hochdruckspeicher entste- hende Hohlraum durch nachfließenden Kraftstoff aus dem Leckolbereich aufgefüllt, so dass der Hochdruckspeicher stets vollständig mit Kraftstoff gefüllt bleibt. Beim Wiederanlaufen der Brennkraftmaschine und damit anlaufender Hochdruckpumpe muss somit keine Luft komprimiert werden, sodass der Druck im Hoch- druckspeicher sehr rasch ansteigt und für die Kraftstoffeinspritzung zur Verfügung steht
In einer ersten vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist das Regelventil als Rückschlagventil ausgebildet, wobei das Rückschlagventil die Kraftstoffleitung nur dann öffnet, wenn der Druck im Hochdruckspeicher kleiner oder gleich dem Druck im Leckölraum ist. Dadurch ist sichergestellt dass aus dem
Hochdruckspeicher kein Kraftstoffdruck entweicht, solange die Breimkraftmaschi- ne im Betrieb ist Beim Abkühlen des Kraftstoffs im Hochdruckspeicher bildet sich ein Unterdruck, durch den Kraftstoff aus dem Leckolbereich in den Hochdruckspeicher gesaugt wird, sodass dieser stets vollständig mit Kraftstoff gefüllt bleibt Die Rücklaufleitung kann hierbei eine separate Leitung sein, die direkt vom Hochdruckspeicher in den Leckölraum führt Es ist aber auch möglich, die Rücklaufleitung parallel zur Hochdruckpumpe vorzusehen, sodass die Ansaugleitung, über die die Hochdruckpumpe Kraftstoff aus dem Leckolbereich ansaugt, und die Hochdruckleitung, über die Kraftstoff unter hohem Druck dem Hochdruckspeicher zu- geführt wird, direkt über die Rücklaufleitung miteinander verbunden sind. In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist das Regelventil schaltbar ausgestaltet, wobei das Regelventil offen geschaltet wird, wenn die Hochdruckpumpe nicht arbeitet. Dadurch ist ein Kraftstofffluss sowohl vom Hochdruckspeicher in den Leckölraum, als auch vom Leckölraum mit den Hochdruckspeicher möglich. Dies führt zu einem raschen Druckausgleich zwischen
Hochdruckspeicher und Leckölraum. Beim Abkühlen des Kraftstoffs im Hochdruckspeicher bleibt dieser auch hier stets vollständig mit Kraftstoff gefüllt, wie oben bereits dargestellt. Das schaltbaren Regelventil dient beim normalen Betrieb der Breimkraftrnaschine dazu, als Druckhalteventil den Druck im Hochdruckspei- eher auf einem konstanten Wert zu halten, indem beim Überschreiten eines Solldrucks im Hochdruckspeicher Kraftstoff aus dem Hochdruckspeicher abgeleitet und über das Druckhalteventil dem Leckolbereich zugeführt wird.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Einspritzvorrichtung dargestellt. Es zeigt
Figur 1 die schematische Darstellung einer Einspritzvorrichtung,
Figur 2a in ebenfalls schematischer Darstellung den Hochdruckspeicher oh- ne Rückführung von Kraftstoff bei ausgeschalteter Hochdruckpumpe, Figur 2b den zeitlichen Verlauf von Druck und Drehzahl der Brennkraftmaschine für diesen Fall, Figur 3a und Figur 3b zeigen in derselben Ansicht wie Figur 2a bzw. Figur 2b den Fall, bei dem der Hochdruckspeicher stets kraftstoffgefüllt ist
Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein Kraftstoffeinspritzsystem schematisch dargestellt, das mit einem so genannten Common-Rail-System arbeitet In einem Leckolbereich 1 ist Kraftstoff bei Umgebungsdruck vorhanden, wobei der Leckolbereich 1 bei einem Fahrzeug üblicherweise dem Kraftstofftank entspricht. Vom Leckolbereich 1 führt eine Ansaugleitung 3 zu einer Hochdruckpumpe 5, in der Kraftstoff unter hohem Druck erzeugt werden kann. Der verdichtete und unter hohem Druck stehende Kraftstoff wird durch die Hochdruckpumpe 5 über eine Hochdruckleitung 7 einem Hochdruckspeicher 10 zugeführt, in dem der Kraftstoff unter hohem Druck vorgehalten werden kann. Mit dem Hochdruckspeicher 10 sind mehrere KraftstofFeinspritzven- tile 12 verbunden, über die der Kraftstoff, der im Hochdruckspeicher 10 unter ho- hem Druck vorgehalten wird, in den Brennraum der Brenrikraftmaschine eingespritzt werden kann. Über entsprechende Regelvorrichtungen in der Hochdruckpumpe 5 ist im allgemeinen vorgesehen, dass nur so viel Kraftstoff dem Hochdruckspeicher 10 zugeführt wird, wie aus diesem zur Kraftstoffeinspritzung entnommen wird. Falls im Hochdruckspeicher 10 trotzdem ein zu hoher Druck ent- steht, ist zur Begrenzung des Drucks ein Druckregelventil 20 vorgesehen, das in einer Absteuerleitung 15 vorgesehen ist, die den Hochdruckspeicher 10 mit dem Leckolbereich 1 verbindet Das Druckregelventil 20 wird bei Überschreiten eines gewünschten Solldrucks im Hochdruckspeicher 10 geöffnet, so dass Kraftstoff in den Leckolbereich 1 abfließt und den Druck im Hochdruckspeicher 10 mindert Wird der Solldruck wieder unterschritten, schließt das Druckregelventil 20 die Absteuerleitung 15 und stoppt so den weiteren Druckabfall.
In Figur 2 ist schematisch der Hochdruckspeicher 10 dargestellt und die hydraulischen Verhältnisse, die sich dort bei der Abkühlung des Hochdruckdruckspeichers 10 bei den bisher bekannten Kraftstoff einspritzsystemen ergeben. Der Hochdruckspeicher 10 wird über die Hochdruckpumpe 5 mit Kraftstoff unter hohem Druck gefüllt. Nach Abschalten der Brenrikraftmaschine fördert auch die Hochdruckpumpe 5 keinen Kraftstoff mehr in den Hochdruckspeicher 10. In Figur 2 ist ein Ausgleichbehälter 30 vorgesehen, der mit dem Hochdruckspeicher 10 verbunden ist und dessen Verbindung mit dem Hochdruckspeicher 10 durch ein Ventil 27 unterbrochen werden kann. Ist das Ventil 27 nach Abschalten der Brermkraftmaschine geschlossen, so kann aus dem Ausgleichbehälter 30 kein Kraftstoff in den Hochdruckspeicher 10 nachfließenden. Durch das Abkühlen des Kraftstoffs im Hochdruckspeicher 10 bildet sich damit ein Hohlraum, der mit aus dem Kraftstoff aus- gasender Luft gefüllt wird und eine Luftblase 32 bildet. Beim Wiedereinschalten der Brenrikraftmaschine und damit auch der Hochdruckpumpe 5 wird der Kraftstoff im Hochdruckspeicher 10 komprimiert. Durch die im Vergleich zum Kraftstoff hochkompressible Luftblase 32 verzögert sich jedoch der Druckaufbau im Hochdruckspeicher 10, wie in Figur 2b dargestellt, die den Verlauf von Druck p und Drehzahl N einer Brenrdrafuriaschinen beim Wiedereinschalten zeigt Zum
Zeitpunkt to wird die Hochdruckpumpe 15 in Betrieb gesetzt wodurch die Dreh- zahl N der Brermkraftmaschine relativ rasch einen ersten Wert erreicht. Durch die Kompression der Luftblase 32 im Hochdruckspeicher 10 erfolgt der Druckaufbau erst mit einer Verzögerung Δt, die bei Pkw-Λpplikationen bis zu zwei Sekunden betragen kann, je nach Hochdruckvolumen, Förderleistung und Temperaturdiffe- renz. Wenn der Druck dem Hochdruckspeicher 10 einem gewissen Wert erreicht hat, sind höhere Drehzahlen der Brermkraftmaschine möglich.
Figur 3a zeigt dasselbe System wie Figur 2a, jedoch bleibt hier das Ventil 27 nach dem Abschalten der Hochdruckpumpe 5 offen. Dadurch kann aus dem Ausgleich- behälter 30 Kraftstoff in den Hochdruckspeicher 10 nachfließenden, sodass der
Hochdruckspeicher 10 stets mit Kraftstoff gefüllt bleibt. Beim Neustart der Brermkraftmaschine wird die Hochdruckpumpe 15 in Betrieb gesetzt, wobei das Ventil 27 geschlossen wird. Da Kraftstoff weitgehend inkompressibel ist, baut sich hier rasch ein hoher Druck im Hochdruckspeicher 10 auf. Entsprechend zeigt Figur 3b, dass der Druck urimittelbar ab dem Zeitpunkt tQ ansteigt und die Drehzahl N der
Breririkraftmaschine bereits zu einem früheren Zeitpunkt einen höheren Wert annimmt. Das Fahrzeug kann somit ohne Verzögerung durch Komprimieren der Luftblasen im Hochdruckspeicher 10 in Gang gesetzt werden.
Der Ausgleichsbehälter 30 der Figuren 2a und 3a entspricht bei einer Brennkraftmaschine nach Figur 1 dem Leckolbereich 1.
Zur technischen Realisierung sind in Figur 1 verschiedene Möglichkeiten gezeigt. Zum einen kann eine Rücklaufleitung 22 vorgesehen sein, die vom Hochdruckspei- eher 10 direkt in den Leckolbereich 1 führt. In der Rücklaufleitung 22 ist ein als
Rückschlagventil ausgebildetes Regelventil 24 angeordnet, das einen Kraftstoff- fluss nur in Richtung des Hochdruckspeichers 10 ermöglicht Sinkt der Druck im Hochdruckspeicher 10 durch Abkühlen des Kraftstoffs unter den Druck im Leckolbereich, d. h. unter den Umgebungsdruck, so wird Kraftstoff aus dem LeckÖIbe- reich 1 über das Rückschlagventil 24 und die Rücklaufleitung 22 in den Hochdruckspeicher 10 eingefüllt, sodass dieser stets vollständig mit Kraftstoff gefüllt bleibt.
In gleicher Weise arbeitet die Rücklauf leitung 22', die parallel zur Hochdruckpum- pe 15 ausgebildet ist. In dieser Rücklaufleitung 22' ist ebenfalls ein Rückschlagventil 24' ausgebildet, das einen Kraftstofffluss nur in Richtung des Hochdruckspei- chers 10 erlaubt Die Rücklaufleitung 22' kann hier auch in die Hochdruckpumpe 5 integriert sein, so dass kein zusätzlicher Bauraum benötigt wird.
Um den Hochdruckspeicher 10 stets mit Kraftstoff zu befüllen kann auch das Druckregelventil 20 verwendet werden. Wie oben beschrieben wird das Druckregelventil 20 normalerweise dazu benutzt, den Druck im Hochdruckspeicher 10 zu begrenzen. Wird das Druckregelventil 20 jedoch nach Abschalten der Hochdruckpumpe 5 geöffnet so fungiert die Absteuerleitung 15 als Rücklaufleitung 22. Dadurch wird zum einen der noch hohe Druck im Hochdruckspeicher 10 rasch in den Leckolbereich 1 abgebaut und zum anderen wird bei sinkendem Druck im Hochdruckspeicher 10 Kraftstoff aus dem Leckolbereich 1 angesaugt, so dass der Hochdruckspeicher 10 stets mit Kraftstoff gefüllt bleibt. Die dafür benötigte Menge ist sehr gering und beträgt in der Regel nur wenige cm^ über einige Stunden hinweg.

Claims

Ansprüche
1. Kraftstoffeinspritzsystem, vorzugsweise für Brerinkraftmaschinen, mit einem Hochdruckspeicher (10), in dem Kraftstoff unter hohem Druck gespeichert werden kann, und mit wenigstens einem Einspritzventil (12), das mit dem Hochdruckspeicher (10) verbindbar ist und über das der im Hochdruckspeicher (1) befindliche Druck in den Brennraum einer Brenrikraftmaschine eingespritzt werden kann, und mit einer Hochdruckpumpe (5), die Kraftstoff aus einem Leckolbereich (1) ansaugt und verdichtet dem Hochdruckspeicher (10) zu- führt, so dass dort bei Betrieb der Hochdruckpumpe (5) ein hoher Kraftstoffdruck aufgebaut wird, dadurch gekennzeichnet, dass zwischen dem Leckolbereich (1) und dem Hochdruckspeicher (10) eine Rücklaufleitung (22) mit einem Regelventil (20; 24; 24') ausgebildet ist wobei das Regelventil (20; 24; 24') bei abgeschalteter Hochdrucl umpe (5) einen Kraftstofffluss vom Leck- ölbereich ( 1 ) in den Hochdruckspeicher (10) ermöglicht
2. Kraftstoffeinspritzsystem nach Anspruch 1, bei dem das Regelventil als Rückschlagventil (24; 24') ausgebildet ist, wobei das Rückschlagventil (24; 24') die Rücklaufleitung (22) nur dann öffnet, wenn der Druck im Hochdruckspeicher (10) kleiner oder gleich dem Druck im Leckolbereich (l)ist.
3. Kraftstoffeinspritzsystem nach Anspruch 2, bei dem die Rücklaufleitung (22) direkt vom Hochdruckspeicher (10) in den Leckolbereich (1) führt
4. Kraftstoffeinspritzsystem nach Anspruch 2, bei dem der Hochdruckpumpe (5) Kraftstoff über eine Ansaugleitung (3) zugeführt wird, wobei die Hochdruckpumpe (5) den verdichteten Kraftstoff über eine Hochdruckleitung (7) in den Hochdruckspeicher (10) leitet und die Rücklaufleitung (22) parallel zur Hochdruckpumpe (5) verläuft, so dass die Ansaugleitung (3) über die Rücklauflei- tung (22) direkt mit der Hochdruckleitung (7) verbunden ist.
5. Kraftstoffeinspritzsystem nach Anspruch 1, bei dem das Regelventil (20) schaltbar ausgestaltet ist und die Rücklaufleitung (22) bei abgeschalteter Hochdruckpumpe (5) ständig öffnet.
6. Kraftstoffeinspritzsystem nach Anspruch 5, bei dem das schallbare Regelventil bei Betrieb der Hochdruckpumpe (5) als Druckregelventil (20) fungiert, welches in einer Absteuerleitung (15) angeordnet ist und diese bei nur dann öffnet, wenn der Druck im Hochdruckspeicher (10) einen bestimmten Solldruck überschreitet, wobei die Absteuerleitung (15) in ihrer Funktion der Rücklaufleitung (22) entspricht.
EP05735840A 2004-06-04 2005-04-15 Kraftstoffeinspritzsystem Withdrawn EP1756416A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027507A DE102004027507A1 (de) 2004-06-04 2004-06-04 Kraftstoffeinspritzsystem
PCT/EP2005/051680 WO2005119048A1 (de) 2004-06-04 2005-04-15 Kraftstoffeinspritzsystem

Publications (1)

Publication Number Publication Date
EP1756416A1 true EP1756416A1 (de) 2007-02-28

Family

ID=34965043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05735840A Withdrawn EP1756416A1 (de) 2004-06-04 2005-04-15 Kraftstoffeinspritzsystem

Country Status (6)

Country Link
US (1) US7574994B2 (de)
EP (1) EP1756416A1 (de)
JP (1) JP2008501086A (de)
CN (1) CN100467856C (de)
DE (1) DE102004027507A1 (de)
WO (1) WO2005119048A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895716A (zh) * 2015-04-15 2015-09-09 北京航科发动机控制系统科技有限公司 一种用于燃油分配器的燃油储存装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082392B2 (ja) 2004-06-30 2008-04-30 トヨタ自動車株式会社 内燃機関の燃料供給装置
WO2008115462A2 (en) * 2007-03-21 2008-09-25 Continental Automotive Systems Us, Inc. Regulator flow noise prevention for fuel system of a vehicle
US8042522B2 (en) * 2008-10-24 2011-10-25 Federal Mogul Corporation Fuel rail vent system
DE102008055935A1 (de) * 2008-11-05 2010-05-12 Continental Automotive Gmbh Einspritzanlage für eine Brennkraftmaschine
GB2508834B (en) 2012-12-12 2019-12-04 Ford Global Tech Llc controlling a fuel supply system of an engine of a motor vehicle during shutdown and start-up
DE102014213648B3 (de) * 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
DE102018201806A1 (de) * 2018-02-06 2019-08-08 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
US20190368449A1 (en) * 2018-06-01 2019-12-05 GM Global Technology Operations LLC Returnless fuel system with accumulator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167744A1 (de) * 2000-06-21 2002-01-02 Toyota Jidosha Kabushiki Kaisha Hochdruckkraftstoffeinspritzsystem

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268225B (en) * 1992-06-29 1995-07-05 Ford Motor Co A fuel supply arrangement
JP3133586B2 (ja) * 1993-11-18 2001-02-13 富士重工業株式会社 高圧燃料噴射式エンジンの燃料圧力制御装置
US5477829A (en) * 1994-08-08 1995-12-26 Ford Motor Company Automotive returnless fuel system pressure valve
US5623910A (en) * 1994-11-30 1997-04-29 Walbro Corporation Check and vent valve assembly
US6352067B1 (en) * 2000-07-26 2002-03-05 Visteon Global Technologies, Inc. Returnless fuel system pressure valve with two-way parasitic flow orifice
DE10060812A1 (de) 2000-12-07 2002-06-13 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen
US6988488B2 (en) * 2003-04-15 2006-01-24 Visteon Global Technologies, Inc. Fuel pressure relief valve
US20040250795A1 (en) * 2003-06-10 2004-12-16 Visteon Global Technologies, Inc. Managing fuel volume change in fuel rail
DE10337850A1 (de) * 2003-08-18 2005-03-17 Robert Bosch Gmbh Vorrichtung zum Fördern von Kraftstoff aus einem Vorratsbehälter zu einer Brennkraftmaschine
US6792918B1 (en) 2003-09-29 2004-09-21 General Motors Corporation Vacuum relief modular reservoir assembly
DE102004037557A1 (de) * 2004-08-03 2006-03-16 Robert Bosch Gmbh Kraftstoffeinspritzsystem
US7066152B2 (en) * 2004-09-03 2006-06-27 Ford Motor Company Low evaporative emission fuel system depressurization via solenoid valve
DE602004007394T2 (de) * 2004-10-26 2008-03-06 Ford Global Technologies, LLC, Dearborn Einspritzventilleckstrombegrenzung
US7267108B2 (en) * 2005-04-18 2007-09-11 Ford Global Technologies, Llc Fuel system pressure relief valve with integral accumulator
US7246607B2 (en) * 2005-10-31 2007-07-24 Delphi Technologies, Inc. Three position fuel line check valve for relief of diurnal pressure
US7441545B1 (en) * 2007-12-12 2008-10-28 Robert Bosch Gmbh Fuel pressure relief valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167744A1 (de) * 2000-06-21 2002-01-02 Toyota Jidosha Kabushiki Kaisha Hochdruckkraftstoffeinspritzsystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895716A (zh) * 2015-04-15 2015-09-09 北京航科发动机控制系统科技有限公司 一种用于燃油分配器的燃油储存装置

Also Published As

Publication number Publication date
US20080149069A1 (en) 2008-06-26
DE102004027507A1 (de) 2005-12-22
WO2005119048A1 (de) 2005-12-15
US7574994B2 (en) 2009-08-18
JP2008501086A (ja) 2008-01-17
CN100467856C (zh) 2009-03-11
CN1961145A (zh) 2007-05-09

Similar Documents

Publication Publication Date Title
WO2005119048A1 (de) Kraftstoffeinspritzsystem
WO2002042633A1 (de) Einspritzsystem für eine brennkraftmaschine und verfahren zum regeln und/oder entlüften eines solchen einspritzsystems
DE10236314A1 (de) Einspritzanlage für Brennkraftmaschinen mit verbesserten Starteigenschaften
DE102008032560A1 (de) System und Verfahren zum Vorpumpen in einem Strömungsmittelsystem
DE69927414T2 (de) Drosselvorrichtung zur Reduktion der Gasentwicklung in einer Hochdruckbrennstoffrücklaufleitung
DE102005028931B4 (de) Kraftstoffversorgungssystem für einen Verbrennungsmotor
EP1348072B1 (de) Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine
DE112010005250T5 (de) Regelvorrichtung für den Strömungsmitteldruck und Kraftstoffversorgungseinrichtung
DE102006061570A1 (de) Kraftstoffsystem, insbesondere vom Common-Rail-Typ, für eine Brennkraftmaschine
EP1403509A2 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
WO2006100207A1 (de) Druckabbauverfahren für eine einspritzanlage und entsprechende einspritzanlage
DE10156429A1 (de) Hochdruckkraftstoffpumpe mit entlüftetem Membranspeicher
EP2835526B1 (de) Ventilanordnung für eine Kraftstoffversorgungsanlage und Kraftstoffversorgungsanlage
WO2007068521A1 (de) Kraftstoffsystem für eine brennkraftmaschine
DE102007059851A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2015124375A1 (de) Pumpe, die von einem linearantrieb angetrieben ist
WO2004027250A1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen
EP1338787A1 (de) Hydraulische Druckentlastungseinrichtung für eine Kraftstoffeinspritzanlage
DE102004037732A1 (de) Ein für Nutzfahrzeuge geregelter Systemdruck in einem Kühlkreislauf, in welchem ein Retarder angeordnet ist
DE102007016625A1 (de) Ventil und Einspritzanlage für eine Brennkraftmaschine mit Ventil
WO2012089375A1 (de) Druckregelanordnung für ein kraftstoffeinspritzsystem
DE19859175A1 (de) Verfahren zum Entlüften eines Kraftstoffversorgungssystems
DE19839579C1 (de) Einspritzsystem
WO2012089376A1 (de) Pumpe, insbesondere eines kraftstoffeinspritzsystems
DE19949525B4 (de) Druckübersetzer für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit hydraulisch unterstützter Wiederbefüllung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20081216

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120831