EP1348072B1 - Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine - Google Patents

Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine Download PDF

Info

Publication number
EP1348072B1
EP1348072B1 EP01994597A EP01994597A EP1348072B1 EP 1348072 B1 EP1348072 B1 EP 1348072B1 EP 01994597 A EP01994597 A EP 01994597A EP 01994597 A EP01994597 A EP 01994597A EP 1348072 B1 EP1348072 B1 EP 1348072B1
Authority
EP
European Patent Office
Prior art keywords
fuel
pressure
internal combustion
combustion engine
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01994597A
Other languages
English (en)
French (fr)
Other versions
EP1348072A1 (de
Inventor
Klaus Joos
Jens Wolber
Thomas Frenz
Markus Amler
Hansjoerg Bochum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1348072A1 publication Critical patent/EP1348072A1/de
Application granted granted Critical
Publication of EP1348072B1 publication Critical patent/EP1348072B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular of a motor vehicle, in which the fuel is conveyed from a reservoir by means of at least one fuel pump in a fuel line.
  • a fuel supply system of an internal combustion engine comprises two fuel pumps connected in series and a plurality of fuel valves injecting directly into a combustion chamber.
  • a valve device ensures that during the starting process of the internal combustion engine one of the two fuel pumps delivers the fuel at an increased pressure to the fuel valves. This ensures that vapor bubbles are flushed in the fuel line from the fuel line or compressed in the fuel line and thereby starting the engine in a sufficiently short time is possible.
  • the method proposed in DE 195 39 885 considerably improves the starting behavior of the internal combustion engine. However, it has been found that even a further improvement of the starting behavior and in particular a shortening of the starting time of the internal combustion engine is desired.
  • EP 0 237 754 A1 it is described to increase the pressure in a low-pressure fuel system with intake manifold injection when stopping the internal combustion engine by activating a second pressure regulator.
  • This has the advantage that even during the service life of the internal combustion engine, if this is not in operation, the pressure of the fuel is increased compared to the normal pressure, whereby the formation of vapor bubbles is avoided from the outset.
  • This makes it possible for the combustion chambers of the internal combustion engine to provide the fuel even faster during the starting process, which accelerates the starting process itself and improves the starting behavior of the internal combustion engine.
  • the increase in the fuel pressure in the fuel line only in the idle state also has the advantage over a constantly increased fuel pressure that the components of the internal combustion engine are less loaded during normal operation. This is especially true for the fuel pump, whose life is extended by the normally lower pressure and also for the fuel lines, which are less prone to permeation at the normally lower pressure.
  • JP 09 250 426 describes the possibility, in a high-pressure fuel system with direct fuel injection during starting of an internal combustion engine, to feed a high-pressure region directly from a low-pressure pump when the pressure in the high-pressure region is below the delivery pressure of the low-pressure pump.
  • JP 09 166 061 describes the possibility of the low druchpumpe in such a fuel system on the switching off of the engine out in addition, so as to maintain the fuel pressure between high and low pressure pump.
  • the present invention has the object, a method of the type mentioned in such a way that the starting behavior and reliability of the internal combustion engine can be improved in a simple manner.
  • This object is achieved in a method of the type mentioned in that the pressure of the fuel at least in a region of the fuel line in a rest state of the internal combustion engine in which a crankshaft of the internal combustion engine does not rotate and ignition is off, compared to a normal operation at least is temporarily increased and in the idle state of the internal combustion engine during the phase with increased fuel pressure, a high pressure region and a low pressure region of the fuel line are connected to each other such that in them the same pressure prevails.
  • Such a fuel line having a high pressure region and a low pressure region comes e.g. used in internal combustion engines with direct fuel injection (BDE).
  • BDE direct fuel injection
  • the fuel is first conveyed by an electric fuel pump in the low pressure region of the fuel line and fed to a high pressure pump directly driven by the internal combustion engine. This promotes the fuel under very high pressure (up to 120 bar) in a fuel rail, which is also referred to as "rail". From this, the fuel is fed directly to the injection valves, which inject the fuel directly into the combustion chambers of the internal combustion engine.
  • the high pressure region and the low pressure region of the fuel line from each other.
  • the high-pressure components of the high-pressure region for example the high-pressure pump, the high-pressure injection valves, a quantity control valve and a pressure control valve, may thus be exposed to the high pressure in the high-pressure region for a very long period of time. If the high-pressure region with the low-pressure region during the phase with increased pressure of Fuel connected, thereby automatically results in a lowering of the pressure in the high pressure region to a common pressure value, which, however, is higher than the usual pressure value in the low pressure region of the fuel line, so that vapor bubbles are avoided.
  • the components in the high-pressure region of the fuel line are thus no longer exposed to the particularly high pressure, so that the density requirement for these components are mitigated. As a result, the manufacturing costs for the corresponding components are reduced and possibly also increases the life of these components.
  • the pressure of the fuel is increased at least in the said region of the fuel line in the idle state when the temperature of the internal combustion engine is above a limit value.
  • the formation of vapor bubbles is particularly likely when the fuel in the fuel lines is warm.
  • Such heating of the fuel is in turn to be feared when the internal combustion engine is switched off after a long operation and are heated by conduction of heat, the fuel line, the fuel pump and / or other elements of the fuel system of the hot engine.
  • this heating of the fuel is taken into account in the fuel line.
  • the increase in the fuel pressure in the fuel line in the idle state is then dispensed with when the internal combustion engine has been started, for example, only for a short time, so it has not reached a high operating temperature, and so far no Emergence of vapor bubbles promoting heating of the fuel in the fuel line is to be feared.
  • the pressure of the fuel in the said region of the fuel line at least during the starting of the internal combustion engine and preferably during a period after starting the internal combustion engine remains increased.
  • the time duration during which after the start of the internal combustion engine, the pressure of the fuel remains at least in the said region of the fuel line depends on the temperature of the internal combustion engine.
  • the probability of the formation of vapor bubbles depends on the temperature of the fuel, which in turn depends on the temperature of the engine.
  • the pressure of the fuel should remain elevated for a certain period, which depends on the temperature of the internal combustion engine. Possibly. the pressure can be lowered again when the temperature of the internal combustion engine has dropped below a threshold value.
  • One way to increase the pressure of the fuel in said region in said manner is to eliminate a means for adjusting the pressure of the fuel to a normal level at least in said region of the fuel line during the increased fuel pressure phase becomes.
  • This variant of the inventive method is particularly easy to implement.
  • the increase in the pressure of the fuel at least in the said region of the fuel line during the idle state of the internal combustion engine includes the commissioning of at least one fuel pump after switching off the internal combustion engine. Such commissioning of the fuel pump is very easy to implement and contributes to the desired result.
  • the increase in the pressure of the fuel at least in said region of the fuel line during the idle state of the internal combustion engine at least also by an increase in temperature of the fuel in said region of the fuel line.
  • This variant of the The method according to the invention makes use of the otherwise dreaded increase in the temperature of the fuel:
  • the heat conduction from the hot engine can lead to such a temperature increase, which leads to the desired pressure increase because of the closed volume of the fuel in the fuel line.
  • the pressure increase is effected in a particularly simple manner.
  • the invention also relates to a computer program which performs the above method when executed on a controller for running an internal combustion engine. It is particularly preferred if the computer program is stored on a memory, in particular on a flash memory.
  • the invention relates to a control and / or regulating device for operating an internal combustion engine; in particular a motor vehicle, in which the fuel is conveyed from a reservoir by means of at least one fuel pump in a fuel line and in which the pressure of the fuel is increased at least in a region of the fuel line depending on an operating condition.
  • a control and / or regulating device is known from the market.
  • the invention proposes that the control and / or regulating device carries out the above method. It is particularly preferred if the control and / or regulating device executes a computer program of the type mentioned above.
  • the invention further relates to an internal combustion engine with at least one fuel pump, which fuel in promotes a fuel line, and with a device which can increase the pressure of the fuel at least in a region of the fuel line depending on an operating condition of the internal combustion engine.
  • an internal combustion engine is also known from the market. To better start it is proposed that it is operated with a control and / or regulating device of the type mentioned above.
  • the internal combustion engine having a first pressure adjustment, with a normal pressure of the Fuel can be adjusted at least in one area of the fuel line.
  • the internal combustion engine should have a separating device with which the first pressure setting device can be fluidically separated at least from the said region of the fuel line when the internal combustion engine is at rest.
  • an internal combustion engine carries the reference numeral 10 as a whole. It comprises a combustion chamber 12, to which air is supplied via an intake pipe 14. The exhaust gases are discharged via an exhaust pipe 16.
  • the fuel is supplied to the combustion chamber 12 through injection valves 18, of which only one is shown in FIG.
  • the injection valves 18 are connected to a commonly referred to as "rail" fuel rail 20.
  • the fuel is in turn fed into the fuel manifold 20 by a high pressure pump 22 and pressurized. Between the high pressure pump 22 and the fuel rail 20, a high pressure fuel line 24 is provided.
  • the high pressure pump 22, the high pressure fuel line 24, and the fuel rail 20 form a high pressure region of the fuel system.
  • a low-pressure fuel line 26 leads to a tank 28.
  • a fuel filter 30 and an electric fuel pump 32 is arranged in the low-pressure fuel line 26 .
  • a branch line 34 branches off between the fuel filter 30 and the high-pressure pump 22, which in turn opens into the low-pressure fuel line 26 between the electric fuel pump 32 and the tank 28.
  • the branch line 34 in turn branches into two parallel strands 34a and 34b.
  • a check valve 36 and a first pressure regulator 38 is arranged in the branch 34 a of the branch line 34.
  • the first pressure regulator 38 is designed so that it opens at a pressure in the branch 34 a of the branch line 34 of about 4 bar.
  • a second pressure regulator 40 is arranged, which opens at a corresponding pressure of about 6 bar.
  • the check valve 36, the first pressure regulator 38 and the second pressure regulator 40 are integrated into a module 42 which is integrated in the lid of the tank 28 in a manner not shown in FIG. As a result, the assembly of the pressure regulator 38 and 40 and the valve 36 is simplified.
  • a check valve 44 which closes the tank 28 and a pressure damper 46 are provided.
  • a leakage line 38 leads to the tank 28. Due to the high pressure in the fuel rail 20 and the high-pressure fuel line 24 passing fuel from the high-pressure pump 22 to the tank 38 is returned.
  • a return line 50 is on the one hand between the high-pressure pump 22 and fuel manifold 20 to the high pressure fuel line 24 and on the other hand between the pressure damper 46 and the high pressure pump 22 to the low pressure fuel line 26 connected.
  • a quantity control valve 52 is interposed in the return line 50.
  • the quantity control valve 52 is actuated by a magnetic actuator 54. When de-energized, the quantity control valve 52 is pressed by a spring 56 in its fully open extreme position.
  • the fuel rail 20 is connected to a pressure relief valve 58, which in turn is fluidly connected to the low pressure fuel line 26 at a location between the pressure damper 46 and the filter 30.
  • the pressure relief valve 58 is a spring-loaded ball valve with an opening pressure of about 125 bar.
  • the pressure in the fuel rail 20 is detected by a pressure sensor 60, which passes corresponding signals to a control and regulating device 62. This also receives signals from a temperature sensor 64, which taps the temperature of the internal combustion engine 10, for example, the temperature of cooling water (not shown).
  • a control and regulating device 62 On the input side, the control and regulating device 62 is still connected to a position transmitter 66 of an ignition lock (not shown).
  • the control and regulating device 62 controls the magnetic adjuster 54 of the magnetic control valve 52, the injection valves 18, the electrical Fuel pump 32 and the check valve 36 at.
  • the check valve 36 is controlled by the control and regulating device 62 so that it is open and the branch 34 a of the branch line 34 is continuous.
  • the funded by the electric fuel pump 32 from the tank 28 in the low-pressure fuel line 26 fuel is therefore regulated by the pressure regulator 38 approximately to a pressure of 4 bar.
  • the pressure regulator 40 in the second branch 34b of the branch 34 is not akitv because it opens only at a pressure of about 6 bar in the branch 34 (it is understood that the pressure in the branch 34 and the sections 34a and 34b equal to the pressure in the region of the low pressure fuel line 26 which is between the fuel pump 32 and the high pressure pump 22).
  • the branch line 34 and the components 36, 38 and 40 arranged in it, the low-pressure fuel line 26 and the electric fuel pump 32 thus form a low-pressure region of the fuel line. From the high-pressure pump 22, this is compressed to 4 bar "pre-compressed" fuel to a pressure of about 125 bar and conveyed into the high pressure fuel line 24 and the fuel manifold 20 out. The flow rate is controlled by the quantity control valve 52.
  • a start block 68 it is checked in block 70 whether an off sequence of the internal combustion engine 10 has been initiated due to the position or a movement of the position transmitter 66 of the ignition lock. If so, it is checked in block 72 whether the temperature T detected by the temperature sensor 64 of the engine 10 (e.g., the cooling water of the engine 10) is greater than a threshold value TG. If this is also the case, the blocking valve 36 is actuated in block 74 by the control and regulating unit 62 in such a way that it closes. In block 75, the electric fuel pump 32 is then turned on and off after a certain time interval (block 76) in block 78 again. In block 80, a flag is set. The program ends in end block 82. Also jumped to block 82 if the query results of blocks 70 or 72 are negative.
  • the method illustrated in FIG. 2 causes the pressure regulator 38 to be closed when the internal combustion engine 10 is switched off by a rotation of the ignition key in the ignition lock and when the temperature T of the internal combustion engine is above a limit value TG Lock valve 36 is deactivated. If now the fuel pump 32 is turned on in block 75, the pressure control in the low-pressure fuel line 26 by the second pressure regulator 40 in the branch 34b of the branch line 34, ie the pressure is set to a higher pressure, namely 6 bar here. Due to this increased pressure in the Low-pressure fuel line 26 already compressed vapor bubbles are compressed and reliably prevented the emergence of new vapor bubbles. In an embodiment not shown, the pressure increase takes place additionally or exclusively due to the heating of the fuel by heat conduction from the hot internal combustion engine.
  • the 2/2-amount control valve 52 is pressed in the normally open state of the internal combustion engine 10 of the spring 56 in its fully open position, the low-pressure fuel line 26 is fluidly connected to the high-pressure fuel line 24.
  • both fuel lines 24 and 26 and in the fuel rail 20 therefore prevails the same pressure, namely the said 6 bar.
  • This pressure is considerably lower than the pressure otherwise prevailing in the high-pressure region of the fuel system.
  • the blocking valve 36 is opened in block 92, whereby the pressure regulator 38 comes back into action and sets the pressure in the low-pressure fuel line 26 to a lower pressure, in this case 4 bar (the quantity control valve 52 was previously closed, so that the low-pressure fuel line 26 and the high-pressure fuel line 24 are again fluidly separated from each other).
  • the internal combustion engine 10 is then started in block 94 and the flag is cleared in block 96.
  • the method finally ends in block 98. This takes into account that, when the temperature of the engine is so low that the formation of vapor bubbles in the low-pressure fuel line 26 is not to be feared, starting the engine 10 with increased pressure of the fuel in the low pressure fuel line 26 is not required.
  • the internal combustion engine 10 is started in block 100.
  • the start of the internal combustion engine 10 is thus in this case with the by the pressure regulator 40th
  • the check valve 36 is controlled by the control and regulating device 62 so that it opens (block 103). This again activates the first pressure regulator 38 in the branch line 34a, thereby adjusting the fuel pressure in the low-pressure fuel line 26 to a normal pressure of about 4 bar.
  • the time duration t in the block 102 may depend on the temperature T of the internal combustion engine 10. This ensures that the pressure in the low-pressure fuel line 26 is lowered again to a normal level only when the temperature of the internal combustion engine 10 has dropped so far that formation of vapor bubbles in the low-pressure fuel line 26 is no longer to be feared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Ein Verfahren dient zum Betrieben einer Brennkraftmaschine (10) insbesondere eines Kraftfahrzeugs. Bei dem Verfahren wird der Kraftstoff aus einem Vorratsbehälter (28) mittels mindestens einer Kraftstoffpumpe (22, 32) in eine Kraftstoffleitung (20, 24, 26, 34) gefördert. Der Druck des Kraftstoffs mindestens in einem Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) wird abhängig von einem Betriebszustand erhöht. Um ein sicheres Starten der Brennkraftmaschine (10) zu gewährleisten, wird der Druck des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) in einem Ruhezustand der Brennkraftmaschine (10) wenigstens zeitweise erhöht.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem der Kraftstoff aus einem Vorratsbehälter mittels mindestens einer Kraftstoffpumpe in eine Kraftstoffleitung gefördert wird.
  • Aus der DE 195 39 885 A1 ist eine Kraftstoffversorgungsanlage einer Brennkraftmaschine bekannt. Die Kraftstoffversorgungsanlage umfasst zwei in Reihe geschaltete Kraftstoffpumpen sowie mehrere, direkt in einen Brennraum einspritzende Kraftstoffventile. Bei dem bekannten Verfahren wird über eine Ventileinrichtung dafür gesorgt, dass während des Startvorgangs der Brennkraftmaschine eine der beiden Kraftstoffpumpen den Kraftstoff mit einem erhöhten Druck zu den Kraftstoffventilen fördert. Hierdurch wird erreicht, dass Dampfblasen in der Kraftstoffleitung aus der Kraftstoffleitung gespült oder in der Kraftstoffleitung komprimiert werden und hierdurch ein Starten der Brennkraftmaschine in ausreichend kurzer Zeit möglich ist. Das in der DE 195 39 885 vorgeschlagene Verfahren verbessert zwar das Startverhalten der Brennkraftmaschine erheblich. Es wurde jedoch festgestellt, dass noch eine weitere Verbesserung des Startverhaltens und hier insbesondere eine Verkürzung der Startzeit der Brennkraftmaschine gewünscht wird.
  • In der EP 0 237 754 A1 wird beschrieben, den Druck in einem Niederdruck-Kraftstoffsystem mit Saugrohreinspritzung beim Abstellen der Brennkraftmaschine durch Aktivieren eines zweiten Druckreglers zu erhöhen. Dies hat den Vorteil, dass bereits während der Standzeit der Brennkraftmaschine, wenn diese also nicht in Betrieb ist, der Druck des Kraftstoffs gegenüber dem normalen Druck erhöht wird, wodurch die Bildung von Dampfblasen von vornherein vermieden wird. Dies ermöglicht es, dass den Brennräumen der Brennkraftmaschine der Kraftstoff noch schneller beim Startvorgang zu Verfügung gestellt wird, was den Startvorgang selbst beschleunigt und das Startverhalten der Brennkraftmaschine verbessert.
  • Die Erhöhung des Kraftstoffdrucks in der Kraftstoffleitung nur im Ruhezustand hat darüber hinaus gegenüber einem ständig erhöhten Kraftstoffdruck den Vorteil, dass die Komponenten der Brennkraftmaschine im Normalbetrieb weniger belastet werden. Dies gilt insbesondere für die Kraftstoffpumpe, deren Lebensdauer durch den im Normalfall niedrigeren Druck verlängert wird und auch für die Kraftstoffleitungen, welche bei den im Normalfall niedrigeren Druck weniger anfällig gegenüber einer Permeation sind.
  • Die JP 09 250 426 beschreibt die Möglichkeit, bei einem Hochdruck-Kraftstoffsystem mit Kraftstoff-Direkteinspritzung während des Anlassens einer Brennkraftmaschine einen Hochdruckbereich direkt von einer Niederdruckpumpe zu speisen, wenn der Druck im Hochdruckbereich unterhalb des Förderdrucks der Niederdruckpumpe liegt.
  • Die JP 09 166 061 beschreibt die Möglichkeit, die Nieder druchpumpe in einem derartigen Kraftstoffsystem über das Abschalten der Brennkraftmaschine hinaus weiter in betreiten, um so den Kraftstoffdruck zwischen Hoch- und Niederdruckpumpe aufrecht zu erhalten.
  • Die vorliegende Erfindung hat die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass das Startverhalten und die Betriebssicherheit der Brennkraftmaschine auf einfache Weise verbessert werden.
  • Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass der Druck des Kraftstoffs mindestens in einem Bereich der Kraftstoffleitung in einem Ruhezustand der Brennkraftmaschine, in dem eine Kurbelwelle der Brennkraftmaschine nicht dreht und eine Zündung ausgeschaltet ist, im Vergleich zu einem Normalbetrieb wenigstens zeitweise erhöht wird und in dem Ruhezustand der Brennkraftmaschine während der Phase mit erhöhtem Kraftstoffdruck ein Hochdruckbereich und ein Niederdruckbereich der Kraftstoffleitung miteinander derart verbunden sind, dass in ihnen der gleiche Druck herrscht.
  • Eine solche Kraftstoffleitung mit einem Hochdruckbereich und einem Niederdruckbereich kommt z.B. bei Brennkraftmaschinen mit Benzindirekteinspritzung (BDE) zum Einsatz. Bei einem solchen Kraftstoffsystem wird der Kraftstoff zunächst von einer elektrischen Kraftstoffpumpe in den Niederdruckbereich der Kraftstoffleitung gefördert und einer von der Brennkraftmaschine direkt angetriebenen Hochdruckpumpe zugeführt. Diese fördert den Kraftstoff unter sehr hohem Druck (bis zu 120 bar) in eine Kraftstoff-Sammelleitung, welche auch als "Rail" bezeichnet wird. Von dieser wird der Kraftstoff direkt den Einspritzventilen zugeführt, welche den Kraftstoff unmittelbar in die Brennräume der Brennkraftmaschine einspritzen.
  • Üblicherweise bleiben im Ruhezustand der Brennkraftmaschine der Hochdruckbereich und der Niederdruckbereich der Kraftstoffleitung voneinander getrennt. Die Hochdruckkomponenten des Hochdruckbereichs, z.B. die Hochdruckpumpe, die Hochdruckeinspritzventile, ein Mengensteuerventil und ein Drucksteuerventil, sind somit u.U. während eines sehr langen Zeitraums dem hohen Druck im Hochdruckbereich ausgesetzt. Wird der Hochdruckbereich mit dem Niederdruckbereich während der Phase mit erhöhtem Druck des Kraftstoffs verbunden, ergibt sich hierdurch automatisch eine Absenkung des Drucks im Hochdruckbereich auf einen gemeinsamen Druckwert, welcher jedoch höher liegt als der übliche Druckwert im Niederdruckbereich der Kraftstoffleitung, so dass Dampfblasen vermieden werden.
  • Die Komponenten im Hochdruckbereich der Kraftstoffleitung sind somit nicht mehr dem besonders hohen Druck ausgesetzt, so dass die Dichtheitsanforderung an diese Komponenten entschärft sind. Hierdurch werden die Fertigungskosten für die entsprechenden Komponenten reduziert und ggf. erhöht sich auch die Lebensdauer dieser Komponenten.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • In einer ersten Weiterbildung ist genannt, dass der Druck des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung im Ruhezustand dann erhöht wird, wenn die Temperatur der Brennkraftmaschine oberhalb eines Grenzwerts liegt. Die Bildung von Dampfblasen ist dann besonders wahrscheinlich, wenn der Kraftstoff in den Kraftstoffleitungen warm ist. Eine solche Erwärmung des Kraftstoffs ist wiederum dann zu befürchten, wenn die Brennkraftmaschine nach einem längeren Betrieb abgestellt wird und durch Wärmeleitung die Kraftstoffleitung, die Kraftstoffpumpe und/oder andere Elemente des Kraftstoffsystems von der heißen Brennkraftmaschine erwärmt werden.
  • Durch die erfindungsgemäße Weiterbildung des Verfahrens wird diese Erwärmung des Kraftstoffs in der Kraftstoffleitung berücksichtigt. Andererseits wird auf die Erhöhung des Kraftstoffdrucks in der Kraftstoffleitung auch im Ruhezustand dann verzichtet, wenn die Brennkraftmaschine z.B. nur kurzzeitig gestartet wurde, sie also keine hohe Betriebstemperatur erreicht hat, und insoweit auch keine die Entstehung von Dampfblasen fördernde Erwärmung des Kraftstoffes in der Kraftstoffleitung zu befürchten ist.
  • Weiter wird vorgeschlagen, dass der Druck des Kraftstoffs in dem besagten Bereich der Kraftstoffleitung mindestens während des Startens der Brennkraftmaschine und vorzugsweise während eines Zeitraums nach dem Starten der Brennkraftmaschine erhöht bleibt. Hierdurch wird ein sicheres Starten der Brennkraftmaschine nochmals beschleunigt und ein ruhiger und sicherer Betrieb der Brennkraftmaschine nach dem Startvorgang mit hoher Zuverlässigkeit sichergestellt.
  • Dabei wird besonders bevorzugt, wenn die Zeitdauer, während der nach dem Start der Brennkraftmaschine der Druck des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung erhöht bleibt, von der Temperatur der Brennkraftmaschine abhängt.
  • Wie oben ausgeführt wurde, hängt die Wahrscheinlichkeit der Bildung von Dampfblasen von der Temperatur des Kraftstoffs ab, welche wiederum von der Temperatur der Brennkraftmaschine abhängt. Beim Betrieb einer sehr heißen Brennkraftmaschine, z. B. einer Brennkraftmaschine, die nach längerer Betriebsdauer und kurzem Zwischenstopp wieder angelassen wird, ist die Gefahr des Entstehens von Dampfblasen besonders ausgeprägt. In diesem Fall sollte der Druck des Kraftstoffs über einen bestimmten Zeitraum erhöht bleiben, welcher von der Temperatur der Brennkraftmaschine abhängt. Ggf. kann der Druck wieder abgesenkt werden, wenn die Temperatur der Brennkraftmaschine unterhalb eines Grenzwertes abgesunken ist.
  • Eine Möglichkeit, den Druck des Kraftstoffs in dem besagten Bereich in der besagten Weise zu erhöhen, besteht darin, dass eine Einrichtung, welche den Druck des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung auf ein normales Niveau einstellt, während der Phase mit erhöhten Kraftstoffdruck ausgeschaltet wird. Diese Variante des erfindungsgemäßen Verfahrens ist besonders einfach zu realisieren.
  • Möglich ist auch, dass die Erhöhung des Drucks des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung während des Ruhezustands der Brennkraftmaschine die Inbetriebnahme mindestens einer Kraftstoffpumpe nach dem Abschalten der Brennkraftmaschine beinhaltet. Eine solche Inbetriebnahme der Kraftstoffpumpe ist sehr leicht realisierbar und trägt zu dem gewünschten Ergebnis bei.
  • Möglich ist auch, dass die Erhöhung des Drucks des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung während des Ruhezustands der Brennkraftmaschine mindestens auch durch eine Temperaturerhöhung des Kraftstoffs in dem besagten Bereich der Kraftstoffleitung erfolgt. Diese Variante des erfindungsgemäßen Verfahrens macht sich die ansonsten gefürchtete Erhöhung der Temperatur des Kraftstoffs zu Nutze: Durch die Wärmeleitung von der heißen Brennkraftmaschine kann es zu einer solchen Temperaturerhöhung kommen, welche wegen des abgeschlossenen Volumens des Kraftstoffs in der Kraftstoffleitung zu der gewünschten Druckerhöhung führt. Bei dieser Weiterbildung des erfindungsgemäßen Verfahrens wird also die Druckerhöhung auf besonders einfache Art und Weise bewirkt.
  • Die Erfindung betrifft auch ein Computerprogramm, welches das obige Verfahren durchführt, wenn es auf einem Steurgerät zum Betreiten einer Brennkraftmaschine ausgeführt wird. Dabei ist besonders bevorzugt, wenn das Computerprogramm auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist.
  • Ferner betrifft die Erfindung ein Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine; insbesondere eines Kraftfahrzeugs, bei der der Kraftstoff aus einem Vorratsbehälter mittels mindestens einer Kraftstoffpumpe in eine Kraftstoffleitung gefördert wird und bei der der Druck des Kraftstoffs mindestens in einem Bereich der Kraftstoffleitung abhängig von einem Betriebszustand erhöht wird. Ein solches Steuer- und/oder Regelgerät ist vom Markt her bekannt. Um den Startvorgang der Brennkraftmaschine zu beschleunigen, wird erfindungsgemäß vorgeschlagen, dass das Steuer- und/oder Regelgerät das obige Verfahren durchführt. Besonders bevorzugt ist dabei, wenn das Steuer- und/oder Regelgerät ein Computerprogramm der oben genannten Art ausführt.
  • Die Erfindung betrifft weiterhin eine Brennkraftmaschine mit mindestens einer Kraftstoffpumpe, welche Kraftstoff in eine Kraftstoffleitung fördert, und mit einer Einrichtung, welche den Druck des Kraftstoffs mindestens in einem Bereich der Kraftstoffleitung abhängig von einem Betriebszustand der Brennkraftmaschine erhöhen kann. Auch eine solche Brennkraftmaschine ist vom Markt her bekannt. Um sie besser starten zu können wird vorgeschlagen, dass sie mit einem Steuer- und/oder Regelgerät der oben genannten Art betrieben wird.
  • Um die mit dem Steuer- und/oder Regelgerät mögliche Erhöhung des Drucks des Kraftstoffs in der Kraftstoffleitung bei der erfindungsgemäßen Brennkraftmaschine auf möglichst einfache Art und Weise realisieren zu können, wird vorgeschlagen, dass die Brennkraftmaschine eine erste Druckeinstelleinrichtung aufweist, mit der ein normaler Druck des Kraftstoffs mindestens in einem Bereich der Kraftstoffleitung eingestellt werden kann.
  • Weiterhin wird vorgeschlagen, dass sie eine zweite Druckeinstelleinrichtung aufweist, mit der ein erhöhter Druck des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung eingestellt werden kann, wobei die erste und die zweite Druckeinstelleinrichtung jeweils mindestens mit dem besagten Bereich der Kraftstoffleitung verbunden sind. Ferner soll die Brennkraftmaschine eine Trenneinrichtung aufweisen, mit der im Ruhezustand der Brennkraftmaschine die erste Druckeinstelleinrichtung mindestens von dem besagten Bereich der Kraftstoffleitung fluidisch getrennt werden kann.
  • Die Montage der besagten Komponenten wird dadurch vereinfacht, dass die Druckeinstelleinrichtungen und die Trenneinrichtung in ein Modul integriert sind. Zeichnung
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert.
  • In der Zeichnung zeigen:
  • Figur 1
    ein Blockschaltbild einer Brennkraftmaschine;
    Figur 2
    ein Flussdiagramm eines ersten Verfahrens zum Betreiben der Brennkraftmaschine von Figur 1; und
    Figur 3
    ein Flussdiagramm eines zweiten Verfahrens zum Betreiben der Brennkraftmaschine von Figur 1.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 trägt eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Sie umfasst einen Brennraum 12, dem Luft über ein Ansaugrohr 14 zugeführt wird. Die Abgase werden über ein Abgasrohr 16 abgeleitet.
  • Der Kraftstoff wird dem Brennraum 12 durch Einspritzventile 18 zugeführt, von denen in Figur 1 nur eines dargestellt ist. Die Einspritzventile 18 sind an eine üblicherweise als "Rail" bezeichnete Kraftstoff-Sammelleitung 20 angeschlossen. Der Kraftstoff wird in die Kraftstoff-Sammelleitung 20 wiederum durch eine Hochdruckpumpe 22 gefördert und unter Druck gesetzt. Zwischen Hochdruckpumpe 22 und Kraftstoff-Sammelleitung 20 ist eine Hochdruck-Kraftstoffleitung 24 vorgesehen. Die Hochdruckpumpe 22, die Hochdruck-Kraftstoffleitung 24 und die Kraftstoff-Sammelleitung 20 bilden einen Hochdruckbereich des Kraftstoffsystems.
  • Von der Hochdruckpumpe 22 führt eine Niederdruck-Kraftstoffleitung 26 zu einem Tank 28. In der Niederdruck-Kraftstoffleitung 26 ist ein Kraftstofffilter 30 und eine elektrische Kraftstoffpumpe 32 angeordnet. Von der Niederdruck-Kraftstoffleitung 26 zweigt zwischen Kraftstofffilter 30 und Hochdruckpumpe 22 eine Zweigleitung 34 ab, welche in die Niederdruck-Kraftstoffleitung 26 wiederum zwischen der elektrischen Kraftstoffpumpe 32 und dem Tank 28 einmündet. Die Zweigleitung 34 verzweigt sich wiederum in zwei parallel zueinander angeordnete Stränge 34a und 34b. Im Zweig 34a der Zweigleitung 34 ist ein Sperrventil 36 und ein erster Druckregler 38 angeordnet. Der erste Druckregler 38 ist so ausgelegt, dass er bei einem Druck im Zweig 34a der Zweigleitung 34 von ungefähr 4 bar öffnet.
  • Im zweiten Zweig 34b der Zweigleitung 34 ist ein zweiter Druckregler 40 angeordnet, welcher bei einem entsprechenden Druck von ungefähr 6 bar öffnet. Das Sperrventil 36, der erste Druckregler 38 und der zweite Druckregler 40 sind in ein Modul 42 integriert, welches auf in Figur 1 nicht näher dargestellte Art und Weise in den Deckel des Tanks 28 integriert ist. Hierdurch wird die Montage der Druckregler 38 und 40 sowie des Ventils 36 vereinfacht. Zwischen Hochdruckpumpe 22 und Kraftstofffilter 30 sind noch ein zum Tank 28 hin sperrendes Rückschlagventil 44 und ein Druckdämpfer 46 vorgesehen.
  • Von der Hochdruckpumpe 22 führt eine Leckageleitung 38 zum Tank 28. Durch diese wird aufgrund des hohen Drucks in der Kraftstoff-Sammelleitung 20 und der Hochdruck-Kraftstoffleitung 24 übertretender Kraftstoff aus der Hochdruckpumpe 22 zum Tank 38 hin zurückgeführt. Eine Rückströmleitung 50 ist einerseits zwischen Hochdruckpumpe 22 und Kraftstoff-Sammelleitung 20 mit der Hochdruck-Kraftstoffleitung 24 und andererseits zwischen Druckdämpfer 46 und der Hochdruckpumpe 22 mit der Niederdruck-Kraftstoffleitung 26 verbunden. In der Rückströmleitung 50 ist ein Mengensteuerventil 52 zwischengeschaltet.
  • Bei diesem handelt es sich um ein 2/2-Schaltventil, welches in seiner Extremstellung die Rückströmleitung 50 vollständig sperrt und in der anderen Extremstellung die Rückströmleitung 50 vollständig freigibt. Das Mengensteuerventil 52 wird durch einen Magnetsteller 54 betätigt. Im stromlosen Zustand wird das Mengensteuerventil 52 durch eine Feder 56 in seine vollständig geöffnete Extremstellung gedrückt.
  • Die Kraftstoff-Sammelleitung 20 ist mit einem Druckbegrenzungsventil 58 verbunden, welches wiederum fluidisch mit der Niederdruck-Kraftstoffleitung 26 an einer Stelle zwischen dem Druckdämpfer 46 und dem Filter 30 verbunden ist. Bei dem Druckbegrenzungsventil 58 handelt es sich um ein federbelastetes Kugelventil mit einem Öffnungsdruck von ungefähr 125 bar.
  • Der Druck in der Kraftstoff-Sammelleitung 20 wird von einem Drucksensor 60 erfasst, der entsprechende Signale an ein Steuer- und Regelgerät 62 leitet. Dieses erhält ferner noch Signale von einem Temperatursensor 64, welcher die Temperatur der Brennkraftmaschine 10, z.B. die Temperatur von Kühlwasser (nicht dargestellt) abgreift. Eingangsseitig ist das Steuer- und Regelgerät 62 noch mit einem Stellungsgeber 66 eines Zündschlosses (nicht dargestellt) verbunden. Ausgangsseitig steuert das Steuer- und Regelgerät 62 den Magnetsteller 54 des Magnetsteuerventils 52, die Einspritzventile 18, die elektrische Kraftstoffpumpe 32 und das Sperrventil 36 an.
  • Im Normalbetrieb der Brennkraftmaschine 10 wird das Sperrventil 36 von dem Steuer- und Regelgerät 62 so angesteuert, dass es geöffnet ist und der Zweig 34a der Zweigleitung 34 durchgängig ist. Der von der elektrischen Kraftstoffpumpe 32 aus dem Tank 28 in die Niederdruck-Kraftstoffleitung 26 geförderte Kraftstoff wird daher durch den Druckregler 38 ungefähr auf einen Druck von 4 bar eingeregelt. Der Druckregler 40 im zweiten Zweig 34b der Zweigleitung 34 ist nicht akitv, da dieser erst bei einem Druck von ungefähr 6 bar in der Zweigleitung 34 öffnet (es versteht sich, dass der Druck in der Zweigleitung 34 und den Abschnitten 34a und 34b gleich dem Druck in dem Bereich der Niederdruck-Kraftstoffleitung 26 ist, welcher zwischen der Kraftstoffpumpe 32 und der Hochdruckpumpe 22 liegt).
  • Die Zweigleitung 34 und die in ihr angeordneten Komponenten 36, 38 und 40, die Niederdruck-Kraftstoffleitung 26 und die elektrische Kraftstoffpumpe 32 bilden also einen Niederdruckbereich der Kraftstoffleitung. Von der Hochdruckpumpe 22 wird dieser auf 4 bar "vorverdichtete" Kraftstoff auf einen Druck von ungefähr 125 bar verdichtet und in die Hochdruck-Kraftstoffleitung 24 und zur Kraftstoff-Sammelleitung 20 hin gefördert. Die Durchflussmenge wird durch das Mengensteuerventil 52 geregelt.
  • Um die Brennkraftmaschine 10 möglichst schnell starten zu können, läuft während des Ruhezustands der Brennkraftmaschine 10 ein Verfahren ab, welches nun unter Bezugnahme auf Figur 2 im Detail erläutert wird. Unter einem Ruhezustand wird verstanden, dass die Brennkraftmaschine 10 ausgeschaltet ist, sich also die Kurbelwelle (nicht dargestellt) nicht dreht und beispielsweise auch die Zündung ausgeschaltet ist. Das in Figur 2 dargestellte Verfahren ist als Computerprogramm im Steuer- und Regelgerät 62 abgelegt.
  • Nach einem Startblock 68 wird im Block 70 geprüft, ob aufgrund der Stellung bzw. einer Bewegung des Stellungsgebers 66 des Zündschlosses eine Ausschaltsequenz der Brennkraftmaschine 10 eingeleitet wurde. Ist dies der Fall, wird im Block 72 geprüft, ob die vom Temperatursensor 64 erfasste Temperatur T der Brennkraftmaschine 10 (z.B. des Kühlwassers der Brennkraftmaschine 10) größer ist als ein Grenzwert TG. Ist auch dies der Fall, wird im Block 74 vom Steuer- und Regelgerät 62 das Sperrventil 36 so angesteuert, dass es schließt. Im Block 75 wird dann die elektrische Kraftstoffpumpe 32 eingeschaltet und nach Ablauf eines bestimmten Zeitintervalls (Block 76) im Block 78 wieder ausgeschaltet. Im Block 80 wird ein Flag gesetzt. Das Programm endet im Endblock 82. Zum Block 82 wird auch gesprungen, wenn die Abfrageergebnisse der Blöcke 70 oder 72 negativ sind.
  • Durch das in Figur 2 dargestellte Verfahren wird bewirkt, dass dann, wenn die Brennkraftmaschine 10 durch eine Drehung des Zündschlüssels im Zündschloss ausgeschaltet wird, und wenn festgestellt wird, dass die Temperatur T der Brennkraftmaschine oberhalb eines Grenzwerts TG liegt, der Druckregler 38 durch das geschlossene Sperrventil 36 deaktiviert wird. Wird nun die Kraftstoffpumpe 32 im Block 75 eingeschaltet, erfolgt die Druckregelung in der Niederdruck-Kraftstoffleitung 26 durch den zweiten Druckregler 40 im Zweig 34b der Zweigleitung 34, d.h. der Druck wird auf einen höheren Druck, nämlich vorliegend 6 bar, eingestellt. Durch diesen erhöhten Druck in der Niederdruck-Kraftstoffleitung 26 werden bereits entstandene Dampfblasen komprimiert und die Entstehung neuer Dampfblasen zuverlässig verhindert. In einem nicht dargestellten Ausführungsbeispiel erfolgt die Druckerhöhung zusätzlich oder ausschließlich aufgrund der Erwärmung des Kraftstoffes durch Wärmeleitung von der heißen Brennkraftmaschine.
  • Das das 2/2-Mengensteuerventil 52 im stromlosen Ruhezustand der Brennkraftmaschine 10 von der Feder 56 in seine vollständig geöffnete Stellung gedrückt wird, ist die Niederdruck-Kraftstoffleitung 26 fluidisch mit der Hochdruck-Kraftstoffleitung 24 verbunden. In beiden Kraftstoffleitungen 24 und 26 und in der Kraftstoff-Sammelleitung 20 herrscht demnach der gleiche Druck, nämlich die besagten 6 bar. Dieser Druck liegt erheblich unterhalb des sonst im Hochdruckbereich des Kraftstoffsystems liegenden Druck. Durch diesen im Ruhezustand der Brennkrtaftmaschine abgesenkten Druck im Hochdruckbereich des Kraftstoffsystems werden die Dichtigkeitsanforderungen an die Komponenten im Hochdruckbereich, beispielsweise die Einspritzventile 18, erheblich reduziert, so dass diese einfacher und preiswerter ausgebildet sein können.
  • Beim Starten der Brennkraftmaschine 10 wird folgendermaßen vorgegangen (das entsprechende und in Figur 3 dargestellte Verfahren ist ebenfalls als Computerprogramm im Steuer- und Regelgerät 62 abgelegt):
  • Nach einem Startblock 84 wird im Block 86 abgefragt, ob z.B. aufgrund einer entsprechenden Bewegung des Schlüssels im Zündschloss, welche durch den Stellungsgeber 66 erfasst wird, eine Einschaltsequenz der Brennkraftmaschine 10 abläuft. Ist dies der Fall, wird im Block 88 abgefragt, ob das Flag gesetzt ist. Ist dies ebenfalls der Fall, was darauf hinweist, dass während des vorhergegangenen Ruhezustands der Brennkraftmaschine 10 ein erhöhter Kraftstoffdruck in der Niederdruck-Kraftstoffleitung 26 eingestellt wurde, wird im Block 90 die vom Temperatursensor 64 festgestellte Temperatur T der Brennkraftmaschine 10 abgefragt und mit einem Grenzwert TG verglichen.
  • Liegt die tatsächliche Temperatur T der Brennkraftmaschine 10 unterhalb des Grenzwerts TG, wird im Block 92 das Sperrventil 36 geöffnet, wodurch der Druckregler 38 wieder in Aktion tritt und den Druck in der Niederdruck-Kraftstoffleitung 26 auf einen niedrigeren Druck, vorliegend 4 bar, einstellt (das Mengensteuerventil 52 wurde zuvor geschlossen, so das die Niederdruck-Kraftstoffleitung 26 und die Hochdruck-Kraftstoffleitung 24 wieder fluidisch voneinander getrennt sind). Anschließend wird im Block 94 die Brennkraftmaschine 10 gestartet und im Block 96 das Flag gelöscht. Das Verfahren endet schließlich im Block 98. Hierdurch wird berücksichtigt, dass dann, wenn die Temperatur der Brennkraftmaschine so niedrig ist, dass die Bildung von Dampfblasen in der Niederdruck-Kraftstoffleitung 26 nicht zu befürchten ist, das Starten der Brennkraftmaschine 10 mit erhöhtem Druck des Kraftstoffs in der Niederdruck-Kraftstoffleitung 26 nicht erforderlich ist.
  • Liegt die tatsächliche Temperatur T der Brennkraftmaschine jedoch oberhalb des Grenzwerts TG, liegt also ein sog. "Heißstart" vor, wird im Block 100 die Brennkraftmaschine 10 gestartet. Der Start der Brennkraftmaschine 10 erfolgt in diesem Fall also mit dem durch den Druckregler 40 eingestellten erhöhten Druck des Kraftstoffs in der Niederdruck-Kraftstoffleitung 26. Nach einem Zeitablauf t, welcher im Block 102 festgestellt wird, wird das Sperrventil 36 von dem Steuer- und Regelgerät 62 so angesteuert, dass es öffnet (Block 103). Hierdurch wird wieder der erste Druckregler 38 in der Zweigleitung 34a aktiviert, wodurch der Kraftstoffdruck in der Niederdruck-Kraftstoffleitung 26 auf einen normalen Druck von ungefähr 4 bar eingestellt wird.
  • Dadurch, dass der Druck in der Niederdruck-Kraftstoffleitung 26 erst nach Ablauf einer bestimmten Zeit nach dem Starten der Brennkraftmaschine 10 abgesenkt wird, wird sichergestellt, dass während des gesamten Startvorgangs der Brennkraftmaschine 10 und auch noch während eines ausreichend langen Zeitraums, während dem die Brennkraftmaschine 10 abkühlen kann, ein erhöhter Kraftstoffdruck vorliegt und hierdurch das Vorhandensein von Dampfblasen in der Niederdruck-Kraftstoffleitung 26 verhindert wird. Im Block 104 wird das Flag gelöscht.
  • In einem nicht dargestellten Ausführungsbeispiel kann die Zeitdauer t im Block 102 von der Temperatur T der Brennkraftmaschine 10 abhängen. Hierdurch wird sichergestellt, dass der Druck in der Niederdruck-Kraftstoffleitung 26 erst dann wieder auf ein normales Niveau abgesenkt wird, wenn die Temperatur der Brennkraftmaschine 10 soweit abgesunken ist, dass eine Bildung von Dampfblasen in der Niederdruck-Kraftstoffleitung 26 nicht mehr zu befürchten ist.

Claims (13)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (10) insbesondere eines Kraftfahrzeugs, bei dem der Kraftstoff aus einem Vorratsbehälter (28) mittels mindestens einer Kraftstoffpumpe (22, 32) in eine Kraftstoffleitung (20, 24, 26, 34) gefördert wird, dadurch gekennzeichnet, dass der Druck des Kraftstoffs mindestens in einem Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) in einem Ruhezustand der Brennkraftmaschine (10), in dem eine Kurbelwelle der Brennkraftmaschine (10) nicht dreht und eine Zündung (66) ausgeschaltet ist, im Vergleich zum Normalbetrieb wenigstens zeitweise erhöht wird (75), und in dem Ruhezustand der Brennkraftmaschine (10) während der Phase mit erhöhtem Kraftstoffdruck ein Hochdruckbereich (20, 24) und ein Niederdruckbereich (26, 34) der Kraftstoffleitung (20, 24, 26, 34), 24, 26, 34) miteinander derart verbunden sind, dass in ihnen der gleiche Druck herrscht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druck des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) im Ruhezustand dann erhöht wird (75), wenn die Temperatur (T) der Brennkraftmaschine (10) oberhalb eines Grenzwerts (TG) liegt (72).
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Druck des Kraftstoffs in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) mindestens während des Startens (100) der Brennkraftmaschine (10) und vorzugsweise während eines Zeitraums (102) nach dem Starten (100) der Brennkraftmaschine (10) erhöht bleibt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Zeitdauer, während der nach dem Start der Brennkraftmaschine der Druck des Kraftstoffs mindestens in dem besagten Bereich der Kraftstoffleitung erhöht bleibt, von der Temperatur der Brennkraftmaschine abhängt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Einrichtung (38), welche den Druck des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) auf ein normales Niveau einstellt, während der Phase mit erhöhtem Kraftstoffdruck ausgeschaltet wird (74).
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erhöhung des Drucks des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) während des Ruhezustands der Brennkraftmaschine (10) die Inbetriebnahme mindestens einer Kraftstoffpumpe (32) nach dem Abschalten (70) der Brennkraftmaschine (10) beinhaltet (75).
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erhöhung des Drucks des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) während des Ruhezustands der Brennkraftmaschine (10) mindestens auch durch eine Temperaturerhöhung des Kraftstoffs in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) erfolgt.
  8. Computerprogramm, dadurch gekennzeichnet, dass es ein Verfahren nach einem der Ansprüche 1 bis 7 durchführt, wenn es auf einem Stenergerät zum Betreiben einer Brennkraftmaschine ausgeführt wird.
  9. Computerprogramm nach Anspruch 8, dadurch gekennzeichnet, dass es auf einem Speicher, insbesondere auf einem Flash-Memory, abgespeichert ist.
  10. Steuer- und/oder Regelgerät (62) zum Betreiben einer Brennkraftmaschine (10) insbesondere eines Kraftfahrzeugs, dadurch gekennzeichnet, dass es ein Computerprogramm nach Anspruch 8 oder 9 ausführt.
  11. Brennkraftmaschine (10) mit mindestens einer Kraftstoffpumpe (22, 32), welche Kraftstoff in eine Kraftstoffleitung (20, 24, 26, 34) fördert, und mit einer Einrichtung (32, 36, 38), welche den Druck des Kraftstoffs mindestens in einem Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) abhängig von einem Betriebszustand der Brennkraftmaschine (10) erhöhen kann, dadurch gekennzeichnet, dass sie mit einem Steuer- und/oder Regelgerät (62) nach Anspruch 10 betrieben wird.
  12. Brennkraftmaschine nach Anspruch 11, dadurch gekennzeichnet, dass sie eine erste Druckeinstelleinrichtung (38) aufweist, mit der ein normaler Druck des Kraftstoffs mindestens in einem Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) eingestellt werden kann, dass sie eine zweite Druckeinstelleinrichtung (40) aufweist, mit der ein erhöhter Druck des Kraftstoffs mindestens in dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) eingestellt werden kann, wobei die erste (38) und die zweite Druckeinstelleinrichtung (40) jeweils mindestens mit dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) verbunden sind, und dass sie ferner eine Trenneinrichtung (36) aufweist, mit der im Ruhezustand der Brennkraftmaschine (10) die erste Druckeinstelleinrichtung (38) mindestens von dem besagten Bereich (26) der Kraftstoffleitung (20, 24, 26, 34) fluidisch getrennt werden kann.
  13. Brennkraftmaschine nach Anspruch 12, dadurch gekennzeichnet, dass die Druckeinstelleinrichtungen (38, 40) und die Trenneinrichtung (36) in ein Modul integriert sind.
EP01994597A 2000-12-12 2001-12-06 Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine Expired - Lifetime EP1348072B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10061856A DE10061856A1 (de) 2000-12-12 2000-12-12 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE10061856 2000-12-12
PCT/DE2001/004604 WO2002048532A1 (de) 2000-12-12 2001-12-06 Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1348072A1 EP1348072A1 (de) 2003-10-01
EP1348072B1 true EP1348072B1 (de) 2005-09-21

Family

ID=7666823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01994597A Expired - Lifetime EP1348072B1 (de) 2000-12-12 2001-12-06 Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine

Country Status (5)

Country Link
US (1) US7089914B2 (de)
EP (1) EP1348072B1 (de)
KR (1) KR20020081307A (de)
DE (2) DE10061856A1 (de)
WO (1) WO2002048532A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317216A1 (de) * 2003-04-15 2004-11-04 Robert Bosch Gmbh Vorrichtung zum Fördern von Kraftstoff aus einem Kraftstofftank zu einer Brennkraftmaschine
DE10360024A1 (de) * 2003-12-19 2005-07-21 Siemens Ag Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102005003592A1 (de) * 2005-01-26 2006-08-03 Daimlerchrysler Ag Kraftstoffversorgungseinrichtung
US7681555B2 (en) * 2006-05-23 2010-03-23 Delphi Technologies, Inc. Controller for a fuel injector and a method of operating a fuel injector
AT502972B1 (de) * 2006-12-07 2008-06-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine
DE102006060299A1 (de) 2006-12-20 2008-06-26 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffsystems für eine Brennkraftmaschine
US7527043B2 (en) * 2007-07-05 2009-05-05 Caterpillar Inc. Liquid fuel system with anti-drainback valve and engine using same
US7448361B1 (en) * 2007-10-23 2008-11-11 Ford Global Technologies, Llc Direct injection fuel system utilizing water hammer effect
DE102008030898B4 (de) * 2008-06-30 2010-07-01 Ford Global Technologies, LLC, Dearborn Steuereinrichtung für ein Kraftfahrzeug mit Verbrennungsmotor und Stopp-Start-Einrichtung
US7832375B2 (en) * 2008-11-06 2010-11-16 Ford Global Technologies, Llc Addressing fuel pressure uncertainty during startup of a direct injection engine
DE102010002801A1 (de) * 2010-03-12 2011-09-15 Robert Bosch Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102010028010A1 (de) * 2010-04-21 2011-10-27 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstofffördereinrichtung
KR20140057025A (ko) * 2012-11-02 2014-05-12 현대자동차주식회사 Lpg 직접 분사 시스템
FR3013395B1 (fr) * 2013-11-19 2015-12-11 Renault Sas Procede et systeme d'alimentation en gazole d'un vehicule automobile.
DE102015201414A1 (de) * 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Starten einer Brennkraftmaschine
JP2016185762A (ja) * 2015-03-27 2016-10-27 株式会社オートネットワーク技術研究所 車載発光装置
DE102021205379A1 (de) 2021-05-27 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Kraftstoffversorgungssystems
DE102021210394A1 (de) 2021-09-20 2023-03-23 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Systems zur Versorgung einer Brennkraftmaschine mit Kraftstoff

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3004822A1 (de) * 1980-02-09 1981-10-15 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum steuern einer kraftstoffpumpe bei einer brennkraftmaschine
DE3608522A1 (de) 1986-03-14 1987-09-17 Bosch Gmbh Robert Verfahren zum steuern einer kraftstoffeinspritzanlage und kraftstoffeinspritzanlage
JPH06200857A (ja) * 1993-01-08 1994-07-19 Fuji Heavy Ind Ltd 高圧噴射式エンジンの燃料圧力制御方法
US5598817A (en) * 1993-09-10 1997-02-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel feeding system for internal combustion engine
DE19530261A1 (de) * 1994-08-26 1996-02-29 Volkswagen Ag Niederdruck-Kraftstoffördersystem mit Hochdruckspeicherung
DE4443836A1 (de) * 1994-12-09 1996-06-13 Bosch Gmbh Robert Einrichtung zur Kraftstoffversorgung für eine Brennkraftmaschine
DE19539885A1 (de) 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
JP3939779B2 (ja) * 1995-05-26 2007-07-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 内燃機関の燃料供給のための燃料供給装置
DE19539883B4 (de) * 1995-05-26 2011-06-01 Robert Bosch Gmbh Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
JPH0988763A (ja) * 1995-09-28 1997-03-31 Fuji Heavy Ind Ltd 高圧燃料噴射式エンジンの燃料圧力制御装置
JP3031222B2 (ja) * 1995-12-13 2000-04-10 三菱自動車工業株式会社 エンジンの燃料供給装置
WO1997032122A1 (fr) * 1996-02-29 1997-09-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Dispositif d'alimentation en carburant pour moteurs a combustion interne
JPH09250426A (ja) * 1996-03-14 1997-09-22 Toyota Motor Corp 内機機関の燃料噴射制御装置
DE19631167B4 (de) * 1996-08-01 2005-08-11 Siemens Ag Referenzdruckventil
US6024064A (en) * 1996-08-09 2000-02-15 Denso Corporation High pressure fuel injection system for internal combustion engine
JP3333407B2 (ja) * 1996-10-17 2002-10-15 株式会社ユニシアジェックス 直噴式ガソリン内燃機関の燃料供給装置
US5839420A (en) * 1997-06-04 1998-11-24 Detroit Diesel Corporation System and method of compensating for injector variability
DE19818421B4 (de) * 1998-04-24 2017-04-06 Robert Bosch Gmbh Kraftstoffversorgungsanlage einer Brennkraftmaschine

Also Published As

Publication number Publication date
US20030145830A1 (en) 2003-08-07
WO2002048532A1 (de) 2002-06-20
DE10061856A1 (de) 2002-06-27
EP1348072A1 (de) 2003-10-01
KR20020081307A (ko) 2002-10-26
DE50107525D1 (de) 2006-02-02
US7089914B2 (en) 2006-08-15

Similar Documents

Publication Publication Date Title
EP1348072B1 (de) Verfahren, computerprogram und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine sowie brennkraftmaschine
DE102004009792B3 (de) Kraftstoffzuführeinrichtung zur Versorgung der Injektoren an Brennräumen einer Brennkraftmaschine mit Kraftstoff
EP1360406B1 (de) Kraftstoffsystem, verfahren zum betreiben des kraftstoff-systems, computerprogramm sowie steuer- und/oder regelgerät zur steuerung des kraftstoffsystems
DE19742180C2 (de) Einspritzsystem für eine Brennkraftmaschine und Verfahren zum Regeln eines Einspritzsystems
DE10061987B4 (de) Verfahren und Vorrichtung zum Kühlen einer Kraftstoffeinspritzanlage
EP1566536B1 (de) Kraftstoffversorgungssystem und Verfahren zur Regelung der Kraftstoffversorgung
DE10158950C2 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
EP1336043B1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen mit verbessertem startverhalten
DE102005028931B4 (de) Kraftstoffversorgungssystem für einen Verbrennungsmotor
DE102006060300A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
WO2012028370A1 (de) Fördereinrichtung eines kraftstoffversorgungssystems einer brennkraftmaschine
EP2031237A1 (de) Einspritzdüse zum Einspritzen von Brennstoff
EP1124055B1 (de) Kraftstoffversorgungsanlage für eine Brennkraftmaschine
EP1339961B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine
EP1262659B1 (de) Kraftstoffsystem für eine Brennkraftmaschine
DE19738502A1 (de) System zur Hochdruckerzeugung
DE102010004215B4 (de) Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug
EP1226349B1 (de) Verfahren zum ablassen des kraftstoffdrucks in einem rücklauffreien kraftstoffversorgungssystem
WO2004027250A1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen
DE19933569B4 (de) Einspritzsystem für eine Brennkraftmaschine
DE102006060299A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems für eine Brennkraftmaschine
DE10261414B4 (de) Kraftstoffeinspritzanlage
EP1273780A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP1327762B1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040120

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050921

REF Corresponds to:

Ref document number: 50107525

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051220

Year of fee payment: 5

REF Corresponds to:

Ref document number: 50107525

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200221

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107525

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701