EP1708876B1 - Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn - Google Patents

Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn Download PDF

Info

Publication number
EP1708876B1
EP1708876B1 EP04804050A EP04804050A EP1708876B1 EP 1708876 B1 EP1708876 B1 EP 1708876B1 EP 04804050 A EP04804050 A EP 04804050A EP 04804050 A EP04804050 A EP 04804050A EP 1708876 B1 EP1708876 B1 EP 1708876B1
Authority
EP
European Patent Office
Prior art keywords
web
insulating material
lamination
webs
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04804050A
Other languages
English (en)
French (fr)
Other versions
EP1708876A1 (de
Inventor
Gerd-Rüdiger Klose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Original Assignee
Deutsche Rockwool Mineralwoll GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004047193A external-priority patent/DE102004047193A1/de
Application filed by Deutsche Rockwool Mineralwoll GmbH and Co OHG filed Critical Deutsche Rockwool Mineralwoll GmbH and Co OHG
Priority to PL04804050T priority Critical patent/PL1708876T3/pl
Priority to SI200431923T priority patent/SI1708876T1/sl
Publication of EP1708876A1 publication Critical patent/EP1708876A1/de
Application granted granted Critical
Publication of EP1708876B1 publication Critical patent/EP1708876B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/28Splitting layers from work; Mutually separating layers by cutting
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • D04H1/4226Glass fibres characterised by the apparatus for manufacturing the glass fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • D04H1/645Impregnation followed by a solidification process
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7654Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
    • E04B1/7658Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
    • E04B1/7662Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/04Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
    • E04B9/045Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/237Noninterengaged fibered material encased [e.g., mat, batt, etc.]

Definitions

  • the invention relates to a method for producing an insulation web of mineral fibers, in particular of rock wool and / or glass wool, in which the mineral fibers are produced from a melt and deposited on a conveyor as a primary web, the primary web stabilized at right angles to its longitudinal extent and as a secondary web on a second Conveyor is stored, the secondary web is then moved so that the mineral fibers occupy a course perpendicular to the large surfaces of the secondary web and the secondary web is then divided by a separating cut parallel to the large surfaces of the secondary web in at least two insulating material webs, each one have large surface and a substantially coextensive, the large surface opposite arranged separation surface.
  • the invention further relates to an insulation web of bonded with a binder mineral fibers, in particular of mineral wool and / or glass wool, having a large surface area and a resulting in dividing a secondary nonwoven web in two insulating material separating surface, wherein the mineral fibers in the region of the separation surface perpendicular to the parting surface and in the field the surface and an angle deviating from 90 ° to the large surface, in particular are arranged to extend parallel to the large surface, and with a lamination.
  • a binder mineral fibers in particular of mineral wool and / or glass wool
  • Insulating materials made of vitreous solidified mineral fibers are classified according to the chemical composition commercially available in glass wool and rock wool insulation materials. Both varieties differ in the chemical composition of the mineral fibers.
  • the glass wool fibers are made from silicate melts that contain high levels of alkalis and boron oxides that act as fluxes. These melts have a wide processing range and can be removed by means of rotating bowls whose walls have holes, to relatively smooth and long mineral fibers, which are usually at least partially bonded with mixtures of thermosetting phenol-formaldehyde and urea resins.
  • the proportion of these binders in the glass wool insulating materials for example, about 5 to about 10 mass% and is also limited by the fact that the character of a non-combustible insulation material should be preserved.
  • the bond can also be made with thermoplastic binders such as polyacrylates.
  • the pulp is added to other substances such as oils in amounts below about 0.4% by mass for hydrophobing and dust binding.
  • the impregnated with binders and other additives mineral fibers are collected as a fiber web on a slow-speed conveyor. In most cases, the mineral fibers of several shredding devices are deposited successively on this conveyor. The mineral fibers are oriented largely directionless in one plane. But they store very flat on top of each other. By slight vertical pressure, the fiber web is compressed to the desired thickness and the conveying speed of the conveyor simultaneously to the required density and the binder cured in a curing oven by means of hot air, so that the structure of the fiber web is fixed.
  • the primary nonwoven consists of relatively coarse fiber flakes, in the core areas of which higher binder concentrations are present, while in the peripheral areas weaker or non-bonded mineral fibers predominate.
  • the mineral fibers are aligned in the fiber flakes approximately in the transport direction.
  • Rock wool insulation materials have contents of binders of about 2 to about 4.5% by mass. With this small amount of binders, only part of the mineral fibers are in contact with the binders.
  • the binders used are predominantly mixtures of phenol, formaldehyde and urea resins. A part of Resins are already substituted by polysaccharides.
  • Inorganic binders are used as for the glass wool insulating materials only for special applications of insulating materials, as these are much more brittle than the largely elastic to plastic plastic reacting organic binder, which accommodates the desired character of insulating materials made of mineral fibers as elastic-springy building materials.
  • the additives used are mostly high-boiling mineral oils in proportions of 0.2% by mass, in exceptional cases also about 0.4% by mass.
  • the primary nonwovens are deposited by means of a pendulum-suspended conveyor transversely across another conveyor, which allows the production of an endless fibrous web consisting of a plurality of obliquely superimposed individual layers.
  • a pendulum-suspended conveyor transversely across another conveyor, which allows the production of an endless fibrous web consisting of a plurality of obliquely superimposed individual layers.
  • the forces acting on the fiber web cause binder-rich core zones are compacted and unfolded into narrow lamellae, resulting in main folds with folds in flanks.
  • the less bound or binder-free mineral fibers are slightly rolled in the interstices of the folds and between the lamellae and thereby slightly compressed.
  • the fine structure thus consists of relatively stiff slats, which have a certain flexibility due to their numerous folds, but are relatively stiff parallel to the folding axes and form spaces which are easily compressible.
  • the compressive strength and the transverse tensile strength of the fibrous web clearly increase in comparison with a normal, in particular extremely flat, arrangement of the mineral fibers.
  • the flexural strength of the fibrous web or of the sections separated from it in the form of plates or Dämmfilzen is therefore significantly higher in the transverse direction than in the production direction.
  • the bending strength in the transverse direction is on the order of three to four times as high as the bending strength in the direction of production.
  • Slats are mostly 200 mm wide Danish fabric elements, which are cut off in the direction of production by an at least correspondingly thick fiber web.
  • the mineral fibers in the fiber web or in the particularly solid lamellae are oriented at right angles to the cut surfaces, which are now the large surfaces of the lamellae.
  • Slats with densities of more than about 75 kg / m 3 are therefore suitable as tensile and pressure resistant insulating layer on the outer walls of buildings and can be glued on the outer wall and then plastered with a reinforced plaster layer.
  • Such insulation is referred to as a thermal insulation composite system.
  • the pressure-resistant lamella is sufficiently flexible in the longitudinal direction so that it can also be glued onto curved components.
  • Slat plates in the bulk density range of about 30 to about 100 kg / m 3 , preferably ⁇ 60 kg / m 3 are separated in the desired thickness in the production direction as lamellae of between about 75 to 250 mm thick fiber web lying flat transverse adhered to a closed backing material, such as aluminum, aluminum composite, grid-reinforced aluminum-polyethylene composite sheets, and similar sheets, or, for example, to paper webs.
  • the individual slats are pressed together only under slight pressure and usually form no closed insulation layer.
  • the specific amounts of, for example, dispersion adhesives are very low. Process technology even easier, for example, aluminum-polyethylene composite films with the surface of the lamellae by heating the often only about 0.03 to 0.06 mm thick polyethylene film connect.
  • slat plates can also be made from glass wool fiber webs with mineral fibers running at right angles to the large surfaces.
  • the smooth mineral fibers are directed in these lamellae pronounced parallel to each other and very easy to compress against lateral forces, especially since the bulk densities are generally lower than that of the lamella plates made of rock wool insulation materials.
  • Lamellae can also be used to produce lamellar webs having widths of, for example, 500 mm or 1000 mm, thicknesses of approximately 20 mm to approximately 100 mm and lengths of several meters. Due to the orientation of the mineral fibers at right angles to the large surfaces can be flat surfaces, for example, provided by large ventilation ducts with a flat and relatively strong insulation layer. At the same time, due to the high compressibility in the direction of the width of the fins, i. in the longitudinal direction of the slat webs are easily performed around pipelines with small diameters and there give a uniform sheath. This behavior is favored by the joints between the individual lamellae, since here the transverse stiffening of the insulating material is interrupted.
  • lamellae The production of lamellae is complicated in terms of process engineering and leads to a low throughput speed of the production plants.
  • the bonding technique is also substantially unsuitable for the partly heavy weight slats.
  • An adhesive bond between adjacent lamellae can also be weakened by loose mineral fibers or mineral fiber fragments (dust) being present in the region of the adhesive surfaces.
  • Laminated lanes are rolled up tightly for storage and transport and wrapped in a covering.
  • the lamellae are stressed at the beginning and at the end of a role strong on shear. After unrolling these slats fall off easily.
  • the lamellae are even thrown off when the lamella web is allowed to unroll itself after removal of the sheaths by the action of the large restoring forces.
  • Austrollvorgang the end of the role whipping like a whip through the air, so that already partially detached lamellae are completely replaced by the acceleration or the strong impact of the end on the ground.
  • carrier layers which are only partially glued to the lamellae are largely eliminated. These include, for example, mesh fabric made of glass fibers or similar planar structures.
  • the lamella plates affixed as individual elements have the processing technology advantage that necessary separating cuts can either be made along the transverse joints between adjacent lamellae or these serve at least as an auxiliary line for the guidance of a cutting tool.
  • the transverse joints can also be marked as a kink on the carrier layer to adapt by folding the slats, the slats in size with respect to the installation conditions.
  • a much more economical method for the production of insulating materials with the characteristic of lamellae, lamellar plates or lamellar sheets orientation of the mineral fibers is in the EP 0 741 827 B1 described.
  • a thin primary nonwoven is unfolded by an up and down moving conveyor and placed endlessly and looped on a second conveyor. This creates individual layers which are pressed against each other in the horizontal direction and are compressed differently depending on the desired density of density.
  • the primary fleece is guided between two pressure-resistant bands, which initially limit only the height of the primary fleece.
  • the mineral fibers are aligned in the arcuately deflected tracks of the primary web parallel to boundary surfaces. To obtain largely flat surfaces, the primary nonwoven can also be actively compressed in the vertical direction.
  • This orientation of the mineral fibers in the primary non-woven can be done in a separate device, but is suitably made in conjunction with a curing oven.
  • the endless fibrous web between two pressure belts, of which at least one is movable in the vertical direction flows through hot air in the vertical direction.
  • the printing tapes have pressure-resistant elements with holes in which surface areas of the fiber web press, whereby the surfaces are profiled. In the two surfaces of the fiber web may lead to a further alignment of the mineral fibers, a further compression compared to the underlying areas and possibly to a slight binder enrichment.
  • the fiber web with the binding and / or impregnating agents contained therein is heated, so that moisture present in the fiber web is expelled and the binders cure, in which they form connecting films or solids.
  • the fibrous web by solidification of the binder is shown in longitudinal section a structure in which the mineral fibers are oriented in the core of the primary web predominantly perpendicular to the large surfaces of the endless fiber web. In the near-surface areas, the mineral fibers are aligned parallel to the large surfaces.
  • the mineral fibers may also be mushroom-shaped and / or compressed downwards between the zones of mineral fibers running at right angles to the large surfaces, given correspondingly large vertical pressures. Between the arcuately deflected paths of the primary web generally remain small gussets that occur as different widths and different depths transverse grooves in the two major surfaces of the endless fiber web.
  • the higher-density zones with the mineral fibers running at right angles to the large surfaces differ significantly from the intermediate zones with a flat arrangement of the mineral fibers.
  • the structure In cross-section, the structure is less uniform than in insulation boards used to make fins. For example, the bending tensile strength is lower because of the inhomogeneity of the structure at a comparable density.
  • the shallow mineral fibers in the near-surface zones significantly reduce the thermal conductivity at right angles to the large surfaces. From the EP 1 321 595 A2 It is known that the transverse tensile strength between these mineral fibers is weak, so that these lying flat mineral fibers are removed to tighter connections of the insulation boards produced therefrom, for example, with cladding for the production of sandwich panels or when used as plaster base in thermal insulation composite systems to reach.
  • the EP 0 867 572 A2 further describes an insulating element made of mineral fibers, consisting of a mineral fiber fleece and / or a plurality of interconnected lamellae and at least one applied on a main surface lamination in the form of a film.
  • This insulating element thus consists of a thin uniform fiber web of flat superimposed and interconnected individual mineral fibers with a thickness of less than 15 mm and a lamination and several interconnected slats. The lamination can be applied both on the thin fiber web and on the lamellae.
  • the invention therefore an object of the invention to improve a generic method for producing an insulating membrane made of mineral fibers to the effect that the produced insulating material with respect to their strength properties and their processability, especially in the field of building exterior surfaces and pipe jacket surfaces improved or is simplified.
  • the solution of this problem provides in a generic method that on at least one of the separating surfaces of the two insulating material webs a lamination is applied.
  • the solution to the problem with an insulating material web according to the invention provides that the lamination is arranged on the separating surface.
  • the insulation webs according to the invention produced by the method according to the invention should have as possible with the basic characteristics of lamellar plates matching properties.
  • the lamination is not applied to the compressible, weakly bonded regions of the insulating material web, but to the cross-resistant and at the same time pressure-resistant parting surfaces, namely into regions with fibers oriented at right angles to the lamination.
  • the surfaces arranged opposite the parting surfaces are compressible in the direction of their surface normals and can accordingly adapt to unevenness of the surface to be insulated, for example a building facade, while the separating surfaces arranged externally with the lining then remain extremely smooth.
  • Flanges of ventilation ducts, sleeves or clamps in pipelines can be insulated up to a certain height, for example, with such insulating material webs, without this having an effect on the formation of the outer surfaces of the thermal insulation.
  • Flanges of ventilation ducts, sleeves or clamps in pipelines can therefore be overlapped with a corresponding insulation sheet of mineral fibers such that the outer surface has no bumps.
  • the conditional by the primary unfolding of the primary nonwoven folds can act here as a bending or bending area, whereby the internally arranged surface of the insulating material according to a traverse more easily adapted to the externally arranged round surface of the surface to be insulated.
  • insulating sheets for outdoor wall surfaces of a ventilated clothing which are used for example in the form of roll-up Dämmfilze or insulation boards and are also used in the core insulation behind an outer masonry shell, resulting from the compressibility of the insulation material economic advantages in terms of processing and installation of the insulating material web according to the invention.
  • the mineral fibers extending in the large surfaces substantially parallel to the large surfaces are removed.
  • an exact thickness of the insulating material web can be adjusted and, on the other hand, the strength properties are changed to the effect that the large surfaces of the insulating material webs are sufficiently pressure-resistant.
  • Such formed insulating material track is similar in their properties of the basic characteristics of a slat mat.
  • the fibrous web which according to this invention is finally subdivided into at least two insulating material webs, has mineral fibers bound with binders, which if appropriate are impregnated by hydrophobizing and / or dust-binding agents or other additives and are of endless design.
  • the mineral fibers are oriented in the interior of the fibrous web to near-surface areas predominantly perpendicular to the outer major surfaces of the fibrous web. Below the two large outer surfaces of the fiber web, the mineral fibers are oriented at decreasing angles to parallel to the large surfaces. In the areas of large surfaces, the mineral fibers may be bound in a higher density and with additional binders.
  • the fibrous web can be separated in front of a curing oven by the parallel to the large surfaces of the fibrous web or the secondary nonwoven separating cut to form the insulating material webs.
  • the separating cut can be carried out centrally but also off-center, so that either two are the same Material thickness insulating material webs or insulating material webs of different material thickness can be produced.
  • By separating cut the dividing surfaces are formed, are applied to the air-permeable and / or heat-resistant nonwovens, tissue and / or scrim.
  • These laminations mentioned above can consist for example of glass, natural and / or organic man-made fibers.
  • the chemical fibers can be formed, for example, from carbon, aramid, terephthalate, polyamide or polypropylene fibers or from mixtures of these above-mentioned chemical fibers.
  • the laminations are tension-resistant, web-shaped laminations, wherein the laminations are formed in one or more layers. If the lamination has several layers, these layers can be formed from different fibers. In particular, for example, glass fiber random webs can be bonded to nonwoven webs of thermoplastic fibers or perforated thermoplastic films.
  • the tension-resistant, sheet-like laminations are bonded to the insulation web, in particular hot melt adhesives have been found suitable for this purpose, which are applied linearly and / or punctiform on the lamination and / or the parting surface of the insulating material.
  • the laminations can also serve as outer reinforcing, protective, filtering and / or decorative layers.
  • the lamination roll-shaped in the area between, resulting after the separation cut two insulation sheets and the separating surfaces of the insulating material webs before the so interconnected laminations and insulation webs are wound, the lamination is arranged inside the winding inside.
  • the binders present in the fibrous web can be activated, for example, by solvents, in particular water.
  • the insulating material webs run over contact rollers, through which they are wetted with the solvent.
  • further binders preferably in small quantities, can be sprayed onto the surfaces and the separating surfaces of the insulating material webs.
  • the lamination has at least on one side, at least on the surface facing the release surface, a thin layer of, for example, a high-viscosity dispersion adhesive or a water-silicate plastic adhesive filled, for example, with pigments, which is arranged as an impregnation.
  • the prerequisite is that the lamination has sufficient material thickness to be able to support this thin layer.
  • other adhesives can also be used, provided that they have a viscosity which makes it possible for the adhesives not to be absorbed by the insulating material webs, which frequently act in a suction capillary manner, so that the insulating webs subsequently saturate with brittle fragility with these adhesives.
  • the two insulation webs formed from the secondary nonwoven web can be brought together in front of the curing oven together with the laminations applied to the respective parting surfaces and passed together through the curing oven in which the binder of the secondary web and the adhesive between the lining and the parting surface solidified or cured by means of hot air become. Subsequently, the insulation webs thus formed can be trimmed in the longitudinal direction and cut to the appropriate length, wherein the cutting is carried out in lengths that lead to a wound insulation web or in shorter sections to insulation boards.
  • the insulating materials made of the insulating material for example, rockwool have densities between 23 kg / m 3 and 70 kg / m 3 , while corresponding insulating sheets of glass wool gross densities in the range between 12 kg / m 3 and 55 kg / m 3 have.
  • the secondary nonwoven is subdivided before the curing oven in the insulating material webs, which are provided before the curing oven with the laminations on the respective separation surfaces.
  • the secondary nonwoven is subdivided into the insulating material webs only after passing through the curing oven, which consequently can be connected to the lamination only after passing through the curing oven.
  • the secondary nonwoven obtains its final structure before splitting into the insulating material webs by curing the binder in the curing oven.
  • the separating cut is carried out with a band saw, with emerging sawdust being sucked off immediately in the area of the band saw so that it does not adhere to the separating surfaces and adversely affects the bonding of the lining to the insulating material webs.
  • the adhesive for bonding the insulating material webs with the laminations is applied either directly to the parting surfaces of the insulation webs or to the lamination, if the laminations are not already formed at the factory with a corresponding adhesive layer.
  • films are suitable as laminations.
  • an aluminum-polyethylene composite film is suitable as a lining for the purposes described above.
  • This aluminum-polyethylene composite film may also be reinforced with fiberglass mesh.
  • the polyethylene layer is heated during the application of the lamination on the parting surface of the insulating material web by means of a follower heating roller, so that this polyethylene layer softens and welded to the tips of the mineral fibers of the insulation web.
  • the two insulating material webs formed from the secondary nonwoven web are formed identically so that both insulating webs also carry identical laminations. But there is also the possibility that the two insulation webs are formed differently, in particular with regard to the lamination without further notice. It has already been pointed out above that the two insulating material webs can have different material thickness, if the separating cut is not performed centrally. In addition, the two insulating material webs produced from a secondary nonwoven can also be formed differently with regard to the type and material thickness of the lining. Furthermore, it is also possible to form only one insulation web with a lamination, while the second insulation web continues to process without lamination, for example, is wound up.
  • the laminations are trimmed edge-side together with the insulating material webs, so that the laminations are flush with the insulating material webs.
  • inventive insulating material for the insulation of pipes they are running with their longitudinal axis direction Narrow sides arranged adjacent to each other on the pipe, so that forms a complete insulation of the pipeline.
  • the transition region of the joints of adjacent insulating material webs can in this case be covered in a simple manner with self-adhesive film strips, since the corresponding insulation webs have sufficient rigidity, which is otherwise given only in known from the prior art lamellar mats.
  • the self-adhesive film tapes can also already be part of the lamination, as far as it extends beyond a longitudinal edge region of the insulating material web.
  • the insulating material web according to the invention is particularly suitable for the insulation of pipelines, which serve to guide media whose temperature is below ambient temperatures.
  • the penetration of water vapor can be reliably prevented, as far as the lamination is formed of vapor-damping composite films, of which an edge region protrudes over an extending in the longitudinal axis direction of the insulating material side surface, so that this edge region can be adhered to the lamination of an adjacently arranged insulation web.
  • an insulating material according to the invention with a one-sided protruding edge region of the lamination in addition to an embodiment of an insulating material according to the invention with a one-sided protruding edge region of the lamination of course, an embodiment is conceivable in which the lamination projecting beyond two, in particular parallel edge regions of the insulating material web. In order to facilitate the winding of such insulation web, it can be provided that at least in the region of a protruding edge region of the lamination, a thin paper strip is rolled up with.
  • the glued laminations in particular the glued films have markings.
  • the lamination is formed as an aluminum foil, it is possible in this connection to provide regularly recurring imprints or markings in the form of, for example, beams or arrows applied with the aid of paints. It has proven to be sufficient if the markers are arranged in both extending in the longitudinal axis direction of the insulating material edge regions and have a length between 2 and 10 cm. In the alternative, are The markings arranged at intervals of about 10 cm, so that the markings are used in particular as an aid in cutting the insulating material webs. If the markings are designed as arrows, they can also indicate the conveying direction of a medium in a pipeline or a ventilation duct.
  • the markings can also be applied by means of a laser beam.
  • FIG. 1 shows the first section of a plant 1 for producing an insulating material web 2 ( FIG. 2
  • the mineral fibers 3 are made of a silicate material, for example natural and / or artificial stones, by melting the silicate material in a cupola 4 and feeding the melt 5 to a fiberization unit 6.
  • the fiberizing unit 6 has a plurality of spinning wheels 7 driven in rotation, of which in FIG. 1 only a spinning wheel 7 is shown.
  • the cupola 4 has on the output side a spout 8, via which the melt 5 flows from the cupola 4 to the spinning wheels 7.
  • the mineral fibers 3 are formed from the melt 5 and collected on a first conveyor belt 9.
  • a primary nonwoven fabric 10 is formed, in which the mineral fibers 3, which are mixed with binder in the fiberizing aggregate 6, are aligned in substantially the same direction and arranged in a laminar manner.
  • the primary nonwoven 10 is then transferred to a downstream processing station 12 via a second conveyor belt 11 which, in contrast to the first conveyor belt 9, is not a collecting conveyor belt but a transport conveyor belt.
  • the general transport direction of the primary web 10 is changed. This change takes place from the original longitudinal direction into a transport in the original transverse direction of the primary web 10.
  • the conveying direction is in FIG. 1 represented by an arrow 13.
  • the primary web 10 is transported over a roller 14 whose purpose is to change the transport direction of the primary web 10 from a substantially horizontal direction in a substantially vertical direction to supply the primary web 10 to another processing station 15.
  • This further processing station 15 has two parallel conveyor belts 16, 17, between which the primary web 10 is guided.
  • the conveyor belts 16, 17 are arranged to oscillate and oscillate the primary web 10 at right angles to its longitudinal extent as a secondary web 18 on a further conveyor, not shown, which runs parallel to the conveyor belts 9 and 11.
  • the thus suspended secondary web 18 is then fed to a compression station 19, in which the secondary web 18 is compressed.
  • the compacting station 19 has an upper conveyor belt 20 and a lower conveyor belt 21, between which the secondary web 18 runs.
  • the two conveyor belts 20 and 21 of the compression station 19 are arranged in a pendulous manner and, in addition to the function of compacting the secondary web 18, also function to lecturpreln the compacted secondary web 18 in the longitudinal direction meandering.
  • This floating of the secondary web 18 causes the secondary web 18 in its central region has an orientation of the mineral fibers 3, the right angle is aligned to the large surfaces 22, 23.
  • the secondary nonwoven 18 has an orientation of the mineral fibers 3 that are at an angle other than the orthogonal to the large surfaces 22, 23 to a parallel orientation relative to these large surfaces 22, 23 varied. This arrangement and orientation of the mineral fibers 3 in the secondary web 18 results from the swaying of the secondary web 18 following the compression station 19.
  • the suspended secondary web 18 is fed immediately after the swaying of a processing station 24, which has an upper conveyor belt 25 and a lower conveyor belt 26 and their conveying speeds compared to the conveying speed of the compression station 19 is lower, so that the suspended Sekundärvlies 18 compressed in its longitudinal direction and the individual meander of the suspended Sekundärvlieses 18 are pushed together.
  • the processing station 24 is followed by a further processing station 27, which also has an upper conveyor belt 28 and a lower conveyor belt 29, between which the suspended secondary web 18 is conveyed.
  • the processing station 27 has a further reduced conveying speed of the secondary web 18 in order to continue the compaction and the homogenization of the suspended secondary web 18.
  • the thus prepared secondary web 18 forms an end product, which can be further processed to form certain insulating material webs 2 of mineral fibers 3, such as insulation boards or insulating material webs 2, as described below in relation to FIG. 2 is described.
  • the meandering unfolded and compressed secondary web 18 is fed to a curing oven 30 by two parallel conveyor belts 31 and 32 are arranged.
  • hot air is conveyed through the conveyor belts 31, 32 and thus also through the secondary nonwoven 18, which hot air cures the binder contained in the secondary nonwoven 18 for connecting the individual mineral fibers 3.
  • Due to the curing of the binder is the Secondary web 18 in its geometric shape, which it has received before the curing oven through the processing stations 12, 15, 19 and 24 and 27 fixed.
  • the distance between the two conveyor belts 31, 32 in the curing oven 30 is set to the material thickness of the secondary web 18 and limited by the conveying speed of the conveyor belts 31, 32 in relation to the amount of hot air required to cure the binder.
  • the secondary web 18 passes through a first sawing station 33, which has a band saw 34 with a band-shaped saw blade 35, with which saw blade 35 divides the secondary web 18 by a separating cut parallel to the large surfaces 22, 23 into two insulation webs 2 each having a large surface 22, 23 and a substantially coextensive, the respective large surface 22, 23 opposite separating surface 36 have.
  • the secondary web 18 having a width of 2,400 mm is then subdivided into four part webs by a circular saw with a circular saw blade 37 in the longitudinal direction, each sub web ultimately forming an insulating web 2 and having a width of 1,200 m.
  • the insulation webs 22 separated in the longitudinal direction by the separating cut parallel to the large surfaces 22, 23 of the secondary nonwoven 18 are lifted apart from one another and fed to a laminating station 38 in which a lining 39 is applied to the separating surfaces 36 of the insulating webs 2.
  • the lamination 39 is hereby stored for each insulating material web 2 as a laminating roll 40, wherein the lamination 39 is deducted with the promotion of the insulating material web 2 of the laminating roll 40 and bonded to the same surface with the insulating material web 2.
  • the insulation webs 2 are wound up and packed.
  • the insulating material webs 2 are cut to length in a predetermined length of the secondary web 18 by a section perpendicular to the longitudinal direction of the insulating material web 2.
  • the liner 39 is formed as an air-permeable and heat-resistant nonwoven fabric of glass fibers and forms an outer reinforcing, protective, filtering and decorative layer.
  • the connection of the lamination 39 with the insulating material web 2 in the laminating station 38 is effected by a sprayed onto the insulating material 2 high-viscosity dispersion adhesive, which is sprayed over the entire surface, selectively or in strips depending on the required connection between the lining 39 and the insulating material 2 and its adhesive effect.
  • the lamination 39 is arranged on the separating surface 36 of the insulating material web 2, so that the lamination 39 is connected to the fiber tips at right angles to the separating surface 36 of the insulating material web 2. It may additionally be provided that, prior to winding the insulation web 2, the mineral fibers 3 present in the region of the large surfaces 22, 23, which deviate from a rectangular orientation to the large surfaces 22, 23, are removed by cutting or grinding.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Dämmstoffbahn aus Mi­neralfasern, bei dem die Mineralfasern aus einer Schmelze hergestellt und auf einer Fördereinrichtung als Primärvlies abgelegt werden, das Primärvlies recht­winklig zu seiner Längserstreckung aufgependelt und als Sekundärvlies auf einer zweiten Fördereinrichtung abgelegt wird, das Sekundärvlies anschließend derart bewegt wird, dass die Mineralfasern im Wesentlichen einen Verlauf rechtwinklig zu den großen Oberflächen des Sekundärvlieses einnehmen und das Sekundärvlies anschließend durch einen Trennschnitt parallel zu den großen Oberflächen des Sekundärvlieses in zumindest zwei Dämmstoffbahnen unterteilt wird, die jeweils eine große Oberfläche und eine im Wesentlichen flächengleiche, der großen Oberfläche gegenüberliegend angeordnete Trennfläche aufweisen. Um ein gat­tungsgemäßes Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern dahingehend zu verbessern, dass die herzustellende Dämmstoffbahn hinsichtlich ihrer Festigkeitseigenschaften und ihrer Verarbeitbarkeit, insbesondere im Bereich von Gebäudeaußenflächen und Rohrleitungsmantelflächen verbessert bzw. ver­einfacht ist, ist vorgesehen, dass auf zumindest eine der Trennflächen (36) der beiden Dämmstoffbahnen (2) eine Kaschierung (39) aufgebracht wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern, insbesondere aus Steinwolle und/oder Glaswolle, bei dem die Mineralfasern aus einer Schmelze hergestellt und auf einer Fördereinrichtung als Primärvlies abgelegt werden, das Primärvlies rechtwinklig zu seiner Längserstreckung aufgependelt und als Sekundärvlies auf einer zweiten Fördereinrichtung abgelegt wird, das Sekundärvlies anschließend derart bewegt wird, dass die Mineralfasern im Wesentlichen einen Verlauf rechtwinklig zu den großen Oberflächen des Sekundärvlieses einnehmen und das Sekundärvlies anschließend durch einen Trennschnitt parallel zu den großen Oberflächen des Sekundärvlieses in zumindest zwei Dämmstoffbahnen unterteilt wird, die jeweils eine große Oberfläche und eine im Wesentlichen flächengleiche, der großen Oberfläche gegenüberliegend angeordnete Trennfläche aufweisen. Die Erfindung betrifft ferner eine Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern, insbesondere aus Mineralwolle und/oder Glaswolle, mit einer großen Oberfläche und einer beim Aufteilen eines Sekundärvlieses in zwei Dämmstoffbahnen entstehenden Trennfläche, wobei die Mineralfasern im Bereich der Trennfläche rechtwinklig zur Trennfläche und im Bereich der Oberfläche und einem Winkel abweichend von 90° zur großen Oberfläche, insbesondere parallel zur großen Oberfläche verlaufend angeordnet sind, und mit einer Kaschierung.
  • Dämmstoffe aus glasig erstarrten Mineralfasern werden nach der chemischen Zusammensetzung handelsüblich in Glaswolle- und Steinwolle-Dämmstoffe unterschieden. Beide Varietäten unterscheiden sich durch die chemische Zusammensetzung der Mineralfasern. Die Glaswolle-Fasern werden aus silikatischen Schmelzen hergestellt, die große Anteile an Alkalien und Boroxiden aufweisen, die als Flussmittel wirken. Diese Schmelzen weisen einen breiten Verarbeitungsbereich auf und lassen sich mit Hilfe von rotierenden Schüsseln, deren Wandungen Löcher aufweisen, zu relativ glatten und langen Mineralfasern ausziehen, die zumeist mit Gemischen aus duroplastisch aushärtenden Phenol-Formaldehyd- und Harnstoffharzen zumindest teilweise gebunden werden. Der Anteil dieser Bindemittel in den Glaswolle-Dämmstoffen beträgt beispielsweise ca. 5 bis ca. 10 Masse-% und wird nach oben auch dadurch begrenzt, dass der Charakter eines nichtbrennbaren Dämmstoffs erhalten bleiben soll. Die Bindung kann auch mit thermoplastischen Bindemitteln wie Polyacrylaten erfolgen. Der Fasermasse werden weitere Stoffe, wie beispielsweise Öle in Mengen unter ca. 0,4 Masse-% zur Hydrophobierung und zur Staubbindung hinzugefügt. Die mit Bindemitteln und sonstigen Zusätzen imprägnierten Mineralfasern werden als Faserbahn auf einer langsam laufenden Fördereinrichtung aufgesammelt. Zumeist werden die Mineralfasern mehrerer Zerfaserungsvorrichtungen nacheinander auf dieser Fördereinrichtung abgelegt. Dabei sind die Mineralfasern in einer Ebene weitgehend richtungslos orientiert. Sie lagern aber ausgesprochen flach übereinander. Durch leichten vertikalen Druck wird die Faserbahn auf die gewünschte Dicke und über die Fördergeschwindigkeit der Fördereinrichtung gleichzeitig auf die erforderliche Rohdichte verdichtet und die Bindemittel in einem Härteofen mittels Heißluft ausgehärtet, so dass die Struktur der Faserbahn fixiert wird.
  • Bei der Herstellung von Steinwolle-Dämmstoffen werden imprägnierte Mineralfasern als möglichst dünnes und leichtes Mineralfaservlies, einem sogenannten Primärvlies aufgesammelt und mit hoher Geschwindigkeit aus dem Bereich der Zerfaserungsvorrichtung weggeführt, um erforderliche Kühlmittel gering zu halten, die andernfalls im Verlauf des weiteren Herstellungsverfahren mit weiterem Energieaufwand wieder aus der Faserbahn zu entfernen wären. Aus dem Primärvlies wird eine endlose Faserbahn aufgebaut, die eine gleichmäßige Verteilung der Mineralfasern aufweist.
  • Das Primärvlies besteht aus relativ groben Faserflocken, in deren Kernbereichen auch höhere Bindemittel-Konzentrationen vorliegen, während in den Randbereichen schwächer oder gar nicht gebundene Mineralfasern vorherrschen. Die Mineralfasern sind in den Faserflocken etwa in Transportrichtung ausgerichtet. Steinwolle-Dämmstoffe weisen Gehalte an Bindemitteln von ca. 2 bis ca. 4,5 Masse-% auf. Bei dieser geringen Menge an Bindemitteln ist auch nur ein Teil der Mineralfasern in Kontakt mit den Bindemitteln. Als Bindemittel werden vorwiegend Gemische aus Phenol-, Formaldehyd- und Harnstoffharzen verwendet. Ein Teil der Harze wird auch schon durch Polysaccharide substituiert. Anorganische Bindemittel werden wie auch bei den Glaswolle-Dämmstoffen nur für spezielle Anwendungen der Dämmstoffe eingesetzt, da diese deutlich spröder sind, als die weitgehend elastisch bis plastisch reagierenden organischen Bindemittel, was dem angestrebten Charakter der Dämmstoffe aus Mineralfasern als elastisch-fedemde Baustoffe entgegen kommt. Als Zusatzmittel werden zumeist hochsiedende Mineralöle in Anteilen von 0,2 Masse-%, in Ausnahmefällen auch ca. 0,4 Masse-% verwendet.
  • Üblicherweise werden die Primärvliese mit Hilfe einer pendelnd aufgehängten Fördereinrichtung quer über eine weitere Fördereinrichtung abgelegt, was die Herstellung einer aus einer Vielzahl von schräg aufeinander liegenden Einzellagen bestehenden endlosen Faserbahn ermöglicht. Durch eine horizontal in Förderrichtung gerichtete und eine gleichzeitige vertikale Stauchung kann die Faserbahn mehr oder weniger intensiv aufgefaltet werden. Die Achsen der Hauptfaltungen sind horizontal ausgerichtet und verlaufen somit quer zu der Förderrichtung.
  • Die auf die Faserbahn einwirkenden Kräfte führen dazu, dass bindemittelreiche Kernzonen zu schmalen Lamellen verdichtet und aufgefaltet werden, wobei sich Hauptfalten mit Faltungen in Flanken ergeben. Gleichzeitig werden die weniger gebundenen oder bindemittelfreien Mineralfasern in den Zwickeln der Faltungen und zwischen den Lamellen leicht gerollt und dabei leicht komprimiert. Die Feinstruktur besteht somit aus relativ steifen Lamellen, die durch ihre zahlreichen Faltungen eine gewisse Flexibilität aufweisen, aber parallel zu den Faltungsachsen relativ steif sind und Zwischenräume ausbilden, die leicht kompressibel sind. Durch die Auf- und Verfaltungen steigen die Druckfestigkeit und die Querzugfestigkeit der Faserbahn gegenüber einer normalen, insbesondere ausgesprochen flachen Anordnung der Mineralfasern deutlich an. Die Biegefestigkeit der Faserbahn bzw. der von ihr abgetrennten Abschnitte in Form von Platten oder Dämmfilzen ist deshalb in Querrichtung deutlich höher als in Produktionsrichtung. Bei Dachdämmplatten mit Rohdichten von ca. 130 bis 150 kg/m3 ist die Biegefestigkeit in Querrichtung größenordnungsmäßig drei- bis viermal so hoch, wie die Biegefestigkeit in Produktionsrichtung.
  • Diese Abhängigkeit der mechanischen Eigenschaften von der Orientierung der Mineralfasern in dem Dämmstoff wird zur Herstellung von Lamellen für Lamellenplatten und handelsüblichen Lamellenbahnen genannten Produkten genutzt.
  • Bei Lamellen handelt es sich um zumeist 200 mm breite Dänimstoffelemente, die in Produktionsrichtung von einer zumindest entsprechend dicken Faserbahn abgeschnitten werden. Die Mineralfasern in der Faserbahn bzw. in den besonders festen Lamellen sind hierbei rechtwinklig zu den Schnittflächen, die nunmehr die großen Oberflächen der Lamellen sind, orientiert. Lamellen mit Rohdichten von über ca. 75 kg/m3 sind deshalb als zug- und druckfeste Dämmschicht auf Außenwänden von Gebäuden verwendbar und können auf der Außenwand verklebt und anschließend mit einer bewehrten Putzschicht verputzt werden. Eine derartige Dämmung wird als Wärmedämm-Verbundsystem bezeichnet. Die druckfeste Lamelle ist in Längsrichtung ausreichend biegsam, um auch auf gekrümmte Bauteile aufgeklebt werden zu können. Gleichzeitig ist sie rechtwinklig zu den Seitenflächen noch so kompressibel, dass mit geringem Anpressdruck Abweichungen von der jeweiligen Länge und Breite (Maßtoleranzen) zwischen den einzelnen Lamellen ausgeglichen werden können. Damit lassen sich fugendichte Dämmschichten herstellen. Mehrere Lamellen werden ferner auch zu Lamellenplatten zusammengesetzt.
  • Lamellenplatten im Rohdichte-Bereich von ca. 30 bis ca. 100 kg/m3, vorzugsweise < 60 kg/m3 werden in gewünschter Materialstärke in Produktionsrichtung als Lamellen von einer zwischen ca. 75 bis 250 mm dicken Fasernbahn abgetrennt, die flach liegend quer auf ein geschlossenes Trägermaterial, wie beispielsweise Aluminium-, Aluminiumverbund-, mit Gittergelegen bewehrte Aluminium-Polyethylen-Verbundfolien und ähnlichen Folien oder beispielsweise auf Papierbahnen aufgeklebt werden. Die einzelnen Lamellen werden dabei nur unter leichtem Druck aneinander gedrückt und bilden zumeist keine geschlossene Dämmschicht. Um aus Brandschutzgründen wenig brennbare Substanz in der Lamellenplatte zu haben, sind die spezifischen Mengen an beispielsweise Dispersionsklebem sehr gering. Verfahrenstechnisch noch einfacher lassen sich beispielsweise Aluminium-Polyethylen-Verbundfolien mit der Oberfläche der Lamellen durch Erwärmen der vielfach nur ca. 0,03 bis ca. 0,06 mm dicken Polyethylenfolie verbinden.
  • Auf die gleiche Art lassen sich Lamellenplatten auch aus Glaswolle-Faserbahnen mit rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern herstellen. Die glatten Mineralfasern sind in diesen Lamellenplatten ausgesprochen parallel zueinander gerichtet und gegenüber Seitenkräften sehr leicht zu komprimieren, zumal die Rohdichten generell niedriger sind, als die der Lamellenplatten aus Steinwolle-Dämmstoffen.
  • Aus Lamellen lassen sich ferner Lamellenbahnen herstellen, die Breiten von beispielsweise 500 mm oder 1000 mm, Dicken von ca. 20 mm bis ca. 100 mm sowie Längen von mehreren Metern aufweisen. Aufgrund der Orientierung der Mineralfasern rechtwinklig zu den großen Oberflächen lassen sich ebene Flächen, beispielsweise von großen Lüftungskanälen mit einer ebenen und relativ festen Dämmschicht versehen. Gleichzeitig können die Lamellenbahnen aufgrund der hohen Kompressibilität in Richtung der Breite der Lamellen, d.h. in Längsrichtung der Lamellenbahnen ohne Weiteres um Rohrleitungen mit geringen Durchmessern geführt werden und ergeben dort eine gleichmäßige Ummantelung. Begünstigt wird dieses Verhalten durch die Fugen zwischen den einzelnen Lamellen, da hier die Queraussteifung des Dämmstoffs unterbrochen ist.
  • Lamellenbahnen und Lamellenplatten mit einer geringen Breite ermöglichen bei konstanter Krafteinwirkung größere Verformungen als Lamellenbahnen und Lamellenplatten mit größerer Breite. Der mögliche Biegeradius dieser Dämmelemente nimmt mit zunehmender Dämmdicke und Rohdichte ab. Die mit kleiner werdendem Biegeradius ansteigende Kompression der inneren Zonen der Faserbahn führt naturgemäß zu einer erheblichen Verdichtung, aber auch zur Erhöhung der Druckfestigkeit in diesen Zonen. Lamellenbahnen eignen sich deshalb wie feste, aber wesentlich aufwendiger herzustellende Rohrschalen als tragende Schicht für die Ummantelung von Rohrleitungen, beispielsweise mit glatten oder profilierten Blechen aus beispielsweise Stahl, Aluminium, Kunststoff-Folien, Gips- oder Mörtelschichten. Die rechtwinklig oder bei Rohrleitung radial zu den gedämmten Oberflächen ausgerichteten Mineralfasern führen zu einer Erhöhung der Wärmeleitfähigkeit der Dämmstoffe gegenüber solchen Dämmstoffen, die eine laminare Faserstruktur aufweisen oder gegenüber Rohrschalen, in denen die Mineralfasern konzentrisch um die Mittelachse der Rohrleitung angeordnet sind.
  • Die Herstellung von Lamellen ist verfahrungstechnisch aufwendig und führt zu einer geringen Durchlaufgeschwindigkeit der Produktionsanlagen. Die Verklebungstechnik ist zudem für die teilweise ein hohes Gewicht aufweisenden Lamellen im Wesentlichen ungeeignet. Eine Klebeverbindung zwischen benachbarten Lamellen kann ferner dadurch geschwächt sein, dass im Bereich der Klebeflächen lose Mineralfasern oder Mineralfaserbruchstücke (Staub) vorhanden sind.
  • Lamellenbahnen werden zur Lagerung und zum Transport fest aufgerollt und mit einer Umhüllung umwickelt. Hierbei werden die Lamellen am Anfang und am Ende einer Rolle stark auf Scherung beansprucht. Nach dem Entrollen fallen diese Lamellen leicht ab. Die Lamellen werden sogar abgeschleudert, wenn der Lamellenbahn erlaubt wird, sich nach dem Entfernen der Umhüllungen durch Einwirkung der großen Rückstellkräfte selbständig zu entrollen. Bei diesem unkontrollierten Entrollvorgang wird das Ende der Rolle peitschenartig durch die Luft geschleudert, so dass bereits teilweise abgelöste Lamellen durch die Beschleunigung oder den starken Aufprall des Endes auf den Boden vollständig abgelöst werden.
  • Weiterhin besteht die Gefahr, dass sich einzelne Lamellen von der Lamellenbahn lösen, wenn die Lamellen versehentlich nach außen geklappt werden. Wegen der von vornherein ungenügenden Festigkeit der Verbindung der Lamellen und den negativen Einwirkungen bei der Handhabung der Lamellenbahnen scheiden Trägerschichten, die nur partiell mit den Lamellen verklebt sind, weitgehend aus. Hierzu gehören beispielsweise Gittergewebe aus Glasfasern oder ähnliche flächige Gebilde.
  • Die als einzelne Elemente aufgeklebten Lamellenplatten haben verarbeitungstechnisch den Vorteil, dass notwendige Trennschnitte entweder entlang der Querfugen zwischen benachbarten Lamellen ausgeführt werden können oder diese zumindest als Hilfslinie für die Führung eines Schneidwerkzeugs dienen. Die Querfugen können ferner als Knickstelle auf der Trägerschicht markiert werden, um durch Abklappen der Lamellen die Lamellenplatten hinsichtlich ihrer Größe an die Einbaubedingungen anzupassen.
  • Eine wesentlich wirtschaftlichere Methode zur Herstellung von Dämmstoffen mit der für Lamellen, Lamellenplatten oder Lamellenbahnen charakteristischen Orientierung der Mineralfasern ist in der EP 0 741 827 B1 beschrieben. Bei diesem Verfahren wird ein dünnes Primärvlies durch eine sich auf und ab bewegende Fördereinrichtung aufgefaltet und endlos sowie schlaufenförmig auf eine zweite Fördereinrichtung aufgelegt. Hierbei entstehen einzelne Lagen, die in horizontaler Richtung aneinander gedrückt und in Abhängigkeit von der je nach der angestrebten Rohdichte unterschiedlich gestaucht werden. Zu diesem Zweck wird das Primärvlies zwischen zwei drucksteifen Bändern geführt, welche zunächst nur die Höhe des Primärvlieses begrenzen. Bereits hierdurch werden die Mineralfasern in den bogenförmig umgelenkten Bahnen des Primärvlieses parallel zu Begrenzungsflächen ausgerichtet. Um weitgehend ebene Oberflächen zu erhalten, kann das Primärvlies auch aktiv in vertikaler Richtung gestaucht werden.
  • Diese Ausrichtung der Mineralfasern im Primärvlies kann in einer separaten Vorrichtung erfolgen, wird aber zweckmäßig in Verbindung mit einem Härteofen vorgenommen. Im Härteofen wird die endlose Faserbahn zwischen zwei Druckbändern, von denen mindestens eines in vertikaler Richtung verfahrbar ist, mit Heißluft in vertikaler Richtung durchströmt. Die Druckbänder weisen drucksteife Elemente mit Löchern auf, in die sich Oberflächenbereiche der Faserbahn eindrücken, wodurch die Oberflächen eine Profilierung erhalten. In den beiden Oberflächen der Faserbahn kann es zu einer weiteren Ausrichtung der Mineralfasern, einer weiteren Verdichtung gegenüber den darunter liegenden Bereichen und unter Umständen zu einer leichten Bindemittelanreicherung kommen.
  • Mit Hilfe der durch die Heißluft übertragenen Wärmeenergie wird die Faserbahn mit den darin enthaltenen Binde- und/oder Imprägniermitteln erwärmt, so dass in der Faserbahn vorhandene Feuchtigkeit ausgetrieben wird und die Bindemittel aushärten, in dem sie verbindende Filme oder Festkörper bilden. Nach der Fixierung der Faserbahn durch Verfestigung der Bindemittel zeigt sich im Längsschnitt eine Struktur, in der die Mineralfasern im Kern des Primärvlieses überwiegend rechtwinklig zu den großen Oberflächen der endlosen Faserbahn orientiert sind. In den oberflächennahen Bereichen sind die Mineralfasern parallel zu den großen Oberflächen ausgerichtet. Wegen der relativ großen Steifigkeit des Kerns des Primärvlieses können die Mineralfasern bei entsprechend großen vertikalen Drücken auch pilzartig gestaucht und/oder nach unten hin zwischen die Zonen mit rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern gedrückt sein. Zwischen den bogenförmig umgelenkten Bahnen des Primärvlieses verbleiben generell kleine Zwickel, die als unterschiedlich breite und unterschiedlich tiefe Querfurchen in den beiden großen Oberflächen der endlosen Faserbahn auftreten.
  • Im Horizontalschnitt unterscheiden sich die höher verdichteten Zonen mit den rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasern deutlich von den Zwischenzonen mit einer flachen Anordnung der Mineralfasern. Im Querschnitt ist die Struktur weniger gleichmäßig als bei Dämmplatten, die zur Herstellung von Lamellen verwendet werden. So ist beispielsweise die Biegezugfestigkeit wegen der Inhomogenität der Struktur bei vergleichbarer Rohdichte niedriger.
  • Die in den oberflächennahen Zonen flach liegenden Mineralfasern verringern deutlich die Wärmeleitfähigkeit rechtwinklig zu den großen Oberflächen. Aus der EP 1 321 595 A2 ist es bekannt, dass die Querzugfestigkeit zwischen diesen Mineralfasern schwach ausgebildet ist, so dass diese flach liegenden Mineralfasern entfernt werden, um festere Verbindungen der daraus hergestellten Dämmplatten, beispielsweise mit Bekleidungen für die Herstellung von Sandwichelementen oder bei der Verwendung als Putzträger in Wärmedämm-Verbundsystemen zu erreichen.
  • Da sich die oberflächennahen Zonen aber je nach Verdichtung im Bereich beider großen Oberflächen bis hin zu Tiefen von ca. 15 mm bis ca. 35 mm in die Faserbahn erstrecken, ist deren Entfernung mit erheblichen Materialverlusten verbunden, sofern die abgetrennten Zonen nicht selbst als Dämmstoffe verwendet werden. Derartige Koppelproduktionen gelten aber als schwierig und werden nach Möglichkeit vermieden.
  • Aus der EP 0 741 827 B1 ist ferner die Herstellung von kaschierten Dämmfilzen bekannt, bei der die endlose schlaufenförmig aufgefaltete Faserbahn auf beiden großen Oberflächen mit Trägerschichten aus Aluminiumfolien verklebt werden und die Faserbahn anschließend mittig und parallel zu ihren großen Oberflächen aufgeschnitten wird, so dass letztlich zwei gleich dicke und kaschierte Faserbahnen entstehen, die anschließend aufgerollt werden. Bei den auf diese Weise hergestellten, als Dämmfilze bezeichneten Faserbahnen ist nur eine partielle Verklebung mit der Trägerschicht möglich. Diese partielle Verklebung und die geringe Querzugfestigkeit der Mineralfasern führt zu einem nur geringe Festigkeit aufweisenden Verbund, dessen Verbindung im Vergleich zu einer Lamellenplatte bzw. einer Lamellenmatte aus Lamellen wesentlich weniger fest ist. Dieser Unterschied spielt aber bei einer kontinuierlich verklebten Faserbahn insbesondere beim Ablösen der Trägerschichten an den beiden Enden keine bedeutende Rolle. Jedoch führen die außenliegenden, unkaschierten kompressiblen Zonen zu Unebenheiten.
  • Die EP 0 867 572 A2 beschreibt ferner ein Dämmelement aus Mineralfasern, bestehend aus einem Mineralfaservlies und/oder mehreren miteinander verbundenen Lamellen und zumindest einer auf einer Hauptfläche aufgebrachten Kaschierung in Form einer Folie. Dieses Dämmelement besteht somit aus einer dünnen gleichförmigen Faserbahn aus flach übereinanderliegenden und miteinander verbundenen einzelnen Mineralfasern mit einer Materialstärke von weniger als 15 mm sowie einer Kaschierung und mehreren, miteinander verbundenen Lamellen. Die Kaschierung kann sowohl auf der dünnen Faserbahn als auch auf den Lamellen aufgebracht sein.
  • Aus der DD 248 934 A3 und der in dieser als Stand der Technik genannten EP 1 152 094 A1 sowie der DE 197 58 700 C2 sind Verfahren bekannt, bei denen eine mit Binde- und sonstigen Zusatzmitteln imprägnierte Faserbahn in Lamellen unterteilt wird, die um 90° gedreht und anschließend horizontal aneinander gedrückt und vertikal gestaucht werden, so dass Lamellenbahnen entstehen. Es ist auch vorgesehen, dass die einzelnen Lamellen unterschiedlich verdichtet und aus verschiedenen Materialien ausgebildet werden. Nach dem Zusammenfügen der einzelnen Lamellen sind die Mineralfasern je nach der Orientierung in der ursprünglichen Faserbahn mehr oder weniger rechtwinklig zu den großen Oberflächen orientiert. Durch den unabdingbaren vertikalen Druck werden auch hier die in den beiden oberflächennahen Zonen vorhandenen Mineralfasern umgebogen und in einer flachen Lagerung fixiert.
  • Festigkeitssteigernd kann sich bei dem in der EP 0 741 827 B1 wie auch in der DD 248 934 A3 beschriebenen Verfahren auswirken, dass bei dem Passieren des Härteofens die jeweils oberste, wenige Mikrometer bis Millimeter dicke Zone der Faserbahn stärker verdichtet und mit Bindemitteln angereichert wird, als die unmittelbar darunter liegenden Zonen. Damit kann ein festerer Kontakt mit der Kaschierung hergestellt werden, wenngleich die für den Gebrauch entscheidende Querzugfestigkeit der Faserbahn vornehmlich durch die tiefer angeordneten Zonen beeinflusst wird.
  • Ausgehend von dem voranstehend beschriebenen Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, ein gattungsgemäßes Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern dahingehend zu verbessern, dass die herzustellende Dämmstoffbahn hinsichtlich ihrer Festigkeitseigenschaften und ihrer Verarbeitbarkeit, insbesondere im Bereich von Gebäudeaußenflächen und Rohrleitungsmantelflächen verbessert bzw. vereinfacht ist. Darüber hinaus liegt er Erfindung die Aufgabe zugrunde, eine gattungsgemäße Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern zu schaffen, die verbesserte Verarbeitungseigenschaften und insbesondere auch verbesserte Festigkeitseigenschaften sowie weitere Eigenschaften von Lamellen bzw. Lamellenbahnen oder-platten in zumindest gleicher Güte aufweist.
  • Die Lösung dieser Aufgabenstellung sieht bei einem gattungsgemäßen Verfahren vor, dass auf zumindest eine der Trennflächen der beiden Dämmstoffbahnen eine Kaschierung aufgebracht wird. Die Lösung der Aufgabenstellung bei einer erfindungsgemäßen Dämmstoffbahn sieht vor, dass die Kaschierung auf der Trennfläche angeordnet ist. Die mit dem erfindungsgemäßen Verfahren hergestellten erfindungsgemäßen Dämmstoffbahnen sollen möglichst mit der Grundcharakteristik von Lamellenplatten übereinstimmende Eigenschaften aufweisen.
  • Erfindungsgemäß wird daher die Kaschierung nicht auf die kompressiblen, schwach gebundenen Bereiche der Dämmstoffbahn aufgebracht, sondern auf die querzugfesten und gleichzeitig drucksteifen Trennflächen, nämlich in Bereiche mit rechtwinklig zur Kaschierung orientierten Mineralfasern. Die den Trennflächen gegenüberliegend angeordneten Oberflächen sind demgegenüber in Richtung ihrer Flächennormalen kompressibel und können sich demzufolge Unebenheiten der zu dämmenden Fläche, beispielsweise einer Gebäudefassade anpassen, während die dann außenliegend angeordneten Trennflächen mit der Kaschierung ausgesprochen glatt bleiben. Mit derartigen Dämmstoffbahnen können beispielsweise auch Flansche von Lüftungskanälen, Muffen oder Schellen bei Rohrleitungen bis zu einer gewissen Höhe gedämmt werden, ohne dass dies Auswirkung auf die Ausbildung der außenliegenden Flächen der Wärmedämmung hat. Flansche von Lüftungskanälen, Muffen oder Schellen bei Rohrleitungen können daher mit einer entsprechenden Dämmstoffbahn aus Mineralfasern derart überlappt werden, dass die Außenfläche keine Unebenheiten aufweist.
  • Die durch die primäre Auffaltung des Primärvlieses bedingten Faltungen können hierbei als Knick- oder Biegebereich wirken, wodurch sich die innenliegend angeordnete Oberfläche der Dämmstoffbahn entsprechend einem Polygonzug leichter der außenliegend angeordneten runden Oberfläche der zu dämmenden Fläche anpasst.
  • Bei Dämmstoffbahnen für Außenwandflächen einer belüfteten Bekleidung, die beispielsweise in Form aufrollbarer Dämmfilze oder Dämmplatten eingesetzt werden und auch bei der Kerndämmung hinter einer äußeren Mauerwerksschale Verwendung finden, ergeben sich aus der Kompressibilität der Dämmstoffbahn wesentliche wirtschaftliche Vorteile hinsichtlich der Verarbeitung und der Montage der erfindungsgemäßen Dämmstoffbahn.
  • Ergänzend kann bei dem erfindungsgemäßen Verfahren vorgesehen sein, dass die in den großen Oberflächen im Wesentlichen parallel zu den großen Oberflächen verlaufenden Mineralfasern entfernt werden. Demzufolge werden auch die großen Oberflächen derart bearbeitet, dass in den großen Oberflächen ein Faser verlauf im Wesentlichen rechtwinklig zu diesen großen Oberflächen vorherrscht. Durch diese Weiterbildung des erfindungsgemäßen Verfahrens kann zum einen eine exakte Dicke der Dämmstoffbahn eingestellt werden und zum anderen die Festigkeitseigenschaften dahingehend verändert werden, dass auch die großen Oberflächen der Dämmstoffbahnen ausreichend druckfest sind. Eine derart ausgebildete Dämmstoffbahn gleicht in ihren Eigenschaften der Grundcharakteristik einer Lamellenmatte. Das Entfernen der im Wesentlichen parallel zu den großen Oberflächen verlaufenden Mineralfasern hat darüber hinaus die Wirkung, dass eine optisch ansprechende, insbesondere ebene große Oberfläche geschaffen wird.
  • Die Faserbahn, welche gemäß dieser Erfindung abschließend in zumindest zwei Dämmstoffbahnen unterteilt wird, weist mit Bindemitteln gebundene Mineralfasern auf, die gegebenenfalls durch hydrophobierende und/oder staubbindende Mittel oder andere Zusätze imprägniert und endlos ausgebildet ist. Die Mineralfasern sind im Inneren der Faserbahn bis in oberflächennahen Bereichen überwiegend rechtwinklig zu den außenliegenden großen Oberflächen der Faserbahn orientiert. Unterhalb der beiden großen außenliegenden Oberflächen der Faserbahn sind die Mineralfasern in kleiner werdenden Winkeln bis parallel zu den großen Oberflächen ausgerichtet. In den Bereichen der großen Oberflächen können die Mineralfasern in einer höheren Dichte und mit zusätzlichen Bindemitteln gebunden sein.
  • Die Faserbahn kann zur Bildung der Dämmstoffbahnen vor einem Härteofen durch den parallel zu den großen Oberflächen der Faserbahn bzw. des Sekundärvlieses geführten Trennschnitt aufgetrennt werden. Der Trennschnitt kann hierbei mittig aber auch außermittig durchgeführt werden, so dass entweder zwei eine gleiche Materialstärke aufweisende Dämmstoffbahnen oder Dämmstoffbahnen unterschiedlicher Materialstärke hergestellt werden können. Durch den Trennschnitt werden die Trennflächen ausgebildet, auf die luftdurchlässige und/oder wärmefeste Vliese, Gewebe und/oder Gelege aufgebracht werden. Diese voranstehend genannten Kaschierungen können beispielsweise aus Glas-, Natur- und/oder organischen Chemiefasern bestehen. Die Chemiefasern können beispielsweise aus Kohlenstoff, Aramid-, Terephthalat-, Polyamid- oder Polypropylenfasern bzw. aus Mischungen dieser voranstehend genannten Chemiefasern ausgebildet sein.
  • Vorzugsweise handelt es sich bei den Kaschierungen um zugfeste, bahnenförmig ausgebildete Kaschierungen, wobei die Kaschierungen ein- oder mehrlagig ausgebildet sind. Weist die Kaschierung mehrere Lagen auf, so können diese Lagen aus unterschiedlichen Fasern ausgebildet sein. Insbesondere können beispielsweise Glasfaser-Wirrvliese mit Wirrvliesen aus thermoplastischen Fasern oder mit gelochten Folien aus Thermoplasten verbunden werden.
  • Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass die zugfesten, bahnenförmigen Kaschierungen mit der Dämmstoffbahn verklebt werden, wobei sich hierzu insbesondere Heißschmelzkleber als geeignet erwiesen haben, die linienförmig und/oder punktförmig auf die Kaschierung und/oder die Trennfläche der Dämmstoffbahn aufgetragen werden.
  • Neben den voranstehenden Wirkungen können die Kaschierungen auch als äußere Verstärkungs-, Schutz-, Filter- und/oder Dekorationsschichten dienen.
  • Für die Durchführung des erfindungsgemäßen Verfahrens hat es sich als vorteilhaft erwiesen, die Kaschierungen rollenförmig in den Bereich zwischen den, nach dem Trennschnitt entstehenden beiden Dämmstoffbahnen anzuordnen und den Trennflächen der Dämmstoffbahnen zuzuführen, bevor die derart miteinander verbundenen Kaschierungen und Dämmstoffbahnen aufgewickelt werden, wobei die Kaschierung im Wickel innenliegend angeordnet ist.
  • Bei der Trennung der Faserbahn in die zu kaschierenden Teilbahnen, nämlich Dämmstoffbahnen kann es zu einer Beeinträchtigung, nämlich Verringerung der Klebefähigkeit der in der Faserbahn enthaltenen Bindemittel kommen. Um dieser Beeinträchtigung entgegenzuwirken, können die in der Faserbahn vorhandenen Bindemittel beispielsweise durch Lösungsmittel, wie insbesondere Wasser aktiviert werden. Zu diesem Zweck laufen die Dämmstoffbahnen über Kontaktwalzen, durch welche sie mit dem Lösungsmittel benetzt werden. Alternativ oder ergänzend können weitere Bindemittel, vorzugsweise in geringen Mengen auf die Oberflächen und die Trennflächen der Dämmstoffbahnen gesprüht werden.
  • Alternativ kann vorgesehen sein, dass die Kaschierung zumindest einseitig, nämlich zumindest auf der der Trennfläche zugewandten Oberfläche eine dünne Schicht eines beispielsweise hochviskosen Dispersionsklebers oder eines beispielsweise mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Klebers aufweist, die als Imprägnierung angeordnet ist. Voraussetzung ist, dass die Kaschierung eine ausreichende Materialstärke aufweist, um diese dünne Schicht tragen zu können. Es sind selbstverständlich auch weitere Kleber verwendbar, soweit diese eine Viskosität aufweisen, die es ermöglicht, dass die Kleber nicht von den häufig kapillar saugend wirkenden Dämmstoffbahnen aufgesogen werden, so dass sich die Dämmstoffbahnen nachfolgend bis zur Sprödbrüchigkeit mit diesen Klebern sättigen. Diese negativen Auswirkungen zeigen sich beispielsweise bei der Imprägnierung von Glasfaser-Wirrvliesen oder Glasfaser-Geweben mit duroplastischen Harzen, die dann anschließend auf die Trennfläche der Dämmstoffbahn aufgebracht und gemeinsam mit der Dämmstoffbahn einem Härteofen zur Aushärtung des Bindemittels zugeführt werden. Bei der Verwendung eines hochviskosen Dispersionsklebers oder eines mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Klebers sowie eines vergleichbaren Klebers ist eine vollflächige Verklebung der Kaschierung auf der Trennfläche möglich, da die Kaschierung das Eindringen der einzelnen Mineralfasern in eine Lochung eines Druckbandes des Härteofens und somit die Bildung einer Oberflächenprägung verhindern. Darüber hinaus werden keine zusätzlichen Vorrichtungen zur Aushärtung des Klebers benötigt und der Energieverbrauch für die Aushärtung des Klebers reduziert.
  • Die beiden aus dem Sekundärvlies gebildeten Dämmstoffbahnen können gemeinsam mit den auf den jeweiligen Trennflächen aufgebrachten Kaschierungen vor dem Härteofen zusammengeführt und gemeinsam durch den Härteofen geführt werden, in dem die Bindemittel des Sekundärvlieses und der Kleber zwischen der Kaschierung und der Trennfläche mittels Heißluft verfestigt bzw. ausgehärtet werden. Anschließend können die derart ausgebildeten Dämmstoffbahnen in Längsrichtung besäumt und auf die entsprechende Länge abgelängt werden, wobei das Ablängen in Längen erfolgt, die zu einer aufwickelbaren Dämmstoffbahn oder in kürzeren Abschnitten zu Dämmstoffplatten führen. Die aus den Dämmstoffbahnen hergestellten Dämmstoffe aus beispielsweise Steinwolle weisen Rohdichten zwischen 23 kg/m3 und 70 kg/m3 auf, während entsprechende Dämmstoffbahnen aus Glaswolle Rohdichten im Bereich zwischen 12 kg/m3 und 55 kg/m3 haben.
  • Nach dem voranstehend beschriebenen Ausführungsbeispiel wird das Sekundärvlies vor dem Härteofen in die Dämmstoffbahnen unterteilt, welche vor dem Härteofen mit den Kaschierungen auf den entsprechenden Trennflächen versehen werden. Alternativ kann vorgesehen sein, dass das Sekundärvlies erst nach dem Durchlaufen des Härteofens in die Dämmstoffbahnen unterteilt wird, welche auch demzufolge erst nach dem Durchlaufen des Härteofens mit der Kaschierung verbunden werden können. In diesem Fall erhält das Sekundärvlies vor dem Aufteilen in die Dämmstoffbahnen seine endgültige Struktur, indem das Bindemittel im Härteofen ausgehärtet wird. Der Trennschnitt wird mit einer Bandsäge durchgeführt, wobei entstehender Sägestaub unmittelbar im Bereich der Bandsäge abgesaugt wird, so dass dieser nicht an den Trennflächen anhaftet und das Verkleben der Kaschierung mit den Dämmstoffbahnen nachteilig beeinflusst.
  • Der Kleber zum Verkleben der Dämmstoffbahnen mit den Kaschierungen wird entweder auf die Trennflächen der Dämmstoffbahnen oder auf die Kaschierung direkt aufgebracht, wenn die Kaschierungen nicht bereits werksseitig mit einer entsprechenden Kleberschicht ausgebildet sind.
  • Neben den bereits voranstehend genannten luftdurchlässigen und hitzebeständigen Kaschierungen können auch Folien als Kaschierungen verwendet werden. Beispielsweise eignet sich eine Aluminium-Polyethylen-Verbundfolie als Kaschierung für die voranstehend dargestellten Zwecke. Diese Aluminium-Polyethylen-Verbundfolie kann darüber hinaus durch Glasfaser-Gittergelege bewehrt sein. Die Polyethylenschicht wird beim Aufbringen der Kaschierung auf die Trennfläche der Dämmstoffbahn mittels einer mitlaufenden Heizwalze erhitzt, so dass diese Polyethylenschicht erweicht und mit den Spitzen der Mineralfasern der Dämmstoffbahn verschweißt.
  • Bei dem erfindungsgemäßen Verfahren kann vorgesehen sein, dass die beiden aus dem Sekundärvlies ausgebildeten Dämmstoffbahnen identisch ausgebildet sind, so dass beide Dämmstoffbahnen auch identische Kaschierungen tragen. Es besteht aber ohne Weiteres auch die Möglichkeit, dass die beiden Dämmstoffbahnen insbesondere hinsichtlich der Kaschierung unterschiedlich ausgebildet werden. Es wurde bereits voranstehend darauf hingewiesen, dass die beiden Dämmstoffbahnen unterschiedliche Materialstärke aufweisen können, wenn der Trennschnitt nicht mittig durchgeführt wird. Darüber hinaus können die aus einem Sekundärvlies hergestellten beiden Dämmstoffbahnen auch hinsichtlich der Art und der Materialstärke der Kaschierung unterschiedlich ausgebildet werden. Weiterhin besteht auch die Möglichkeit, lediglich eine Dämmstoffbahn mit einer Kaschierung auszubilden, während die zweite Dämmstoffbahn ohne Kaschierung weiter verarbeitet, beispielsweise aufgewickelt wird. Es besteht ferner die Möglichkeit, eine Dämmstoffbahn mit Kaschierung aufzuwickeln, während die zweite Dämmstoffbahn mit oder ohne Kaschierung in Dämmstoffplatten unterteilt wird. Selbstverständlich besteht auch die Möglichkeit, die aufzuwickelnde Dämmstoffbahn ohne Kaschierung aufzuwickeln, während die zweite Dämmstoffbahn vor ihrer Aufteilung in Dämmstoffplatten mit zumindest einer Kaschierung verklebt wird.
  • Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass die Kaschierungen gemeinsam mit den Dämmstoffbahnen randseitig beschnitten werden, so dass die Kaschierungen bündig mit den Dämmstoffbahnen abschließen.
  • Bei der Verwendung erfindungsgemäßer Dämmstoffbahnen für die Dämmung von Rohrleitungen werden diese mit ihren in Längsachsenrichtung verlaufenden Schmalseiten aneinander anliegend an der Rohrleitung angeordnet, so dass sich eine vollständige Dämmung der Rohrleitung ausbildet. Der Übergangsbereich der Stoßstellen benachbarter Dämmstoffbahnen kann hierbei in einfacher Weise mit selbstklebenden Folienbändern abgedeckt werden, da die entsprechenden Dämmstoffbahnen eine ausreichende Steifigkeit aufweisen, die ansonsten nur bei aus dem Stand der Technik bekannten Lamellenmatten gegeben ist. Die selbstklebenden Folienbänder können aber auch bereits Bestandteil der Kaschierung sein, soweit diese über einen Längskantenbereich der Dämmstoffbahn hinausragt. Derart ausgebildet ist die erfindungsgemäße Dämmstoffbahn insbesondere für die Dämmung von Rohrleitungen geeignet, die der Führung von Medien dienen, deren Temperatur unter den Umgebungstemperaturen liegen. Durch diese Ausgestaltung kann das Eindringen von Wasserdampf zuverlässig verhindert werden, soweit die Kaschierung aus dampfbremsenden Verbundfolien ausgebildet ist, von denen ein Randbereich über eine in Längsachsenrichtung der Dämmstoffbahn verlaufende Seitenfläche übersteht, so dass dieser Randbereich auf die Kaschierung einer benachbart angeordneten Dämmstoffbahn aufgeklebt werden kann.
  • Neben einer Ausführungsform einer erfindungsgemäßen Dämmstoffbahn mit einem einseitig überstehenden Randbereich der Kaschierung ist selbstverständlich auch eine Ausführungsform denkbar, bei der die Kaschierung über zwei, insbesondere parallel verlaufende Randbereiche der Dämmstoffbahn hervorstehen. Um das Aufwickeln einer derartigen Dämmstoffbahn zu erleichtern, kann vorgesehen sein, dass zumindest im Bereich eines überstehenden Randbereichs der Kaschierung ein dünner Papierstreifen mit aufgerollt wird.
  • Es ist nach einem weiteren Merkmal der Erfindung vorgesehen, dass die aufgeklebten Kaschierungen, insbesondere die aufgeklebten Folien Markierungen aufweisen. Ist die Kaschierung als Aluminium-Folie ausgebildet, so können diesbezüglich regelmäßig wiederkehrende Prägungen oder mit Hilfe von Farben aufgebrachte Markierungen in Form von beispielsweise Balken oder Pfeilen vorgesehen sein. Hierbei hat es sich als ausreichend erwiesen, wenn die Markierungen in beiden in Längsachsenrichtung der Dämmstoffbahn verlaufenden Randbereiche angeordnet sind und eine Länge zwischen 2 und 10 cm aufweisen. Hilfsweise sind die Markierungen in Abständen von ca. 10 cm angeordnet, so dass die Markierungen insbesondere als Hilfsmittel beim Zuschneiden der Dämmstoffbahnen dienen. Sind die Markierungen als Pfeile ausgebildet, so können diese darüber hinaus auch die Förderrichtung eines Mediums in einer Rohrleitung bzw. einem Lüftungskanal anzeigen.
  • Bei entsprechend widerstandsfähigen Kaschierungen, die sich in der Wärme verfärbende Substanzen, beispielsweise Bindemittel enthalten, können die Markierungen auch mit Hilfe eines Laserstrahls aufgebracht werden.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der eine Ausführungsform einer Anlage zur Durchführung eines Verfahrens zur Herstellung einer Dämmstoffbahn aus Mineralfasern dargestellt ist. In dieser Zeichnung zeigen:
  • Figur 1
    einen ersten Abschnitt einer schematisch dargestellten Anlage zur Herstellung einer Dämmstoffbahn aus Mineralfasern und
    Figur 2
    einen zweiten Abschnitt der Anlage zur Durchführung des Verfahrens zur Herstellung einer Dämmstoffbahn aus Mineralfasern gemäß Figur 1.
  • Figur 1 zeigt den ersten Abschnitt einer Anlage 1 zur Herstellung einer Dämmstoffbahn 2 (Figur 2) aus Mineralfasern 3. Die Mineralfasern 3 werden aus einem silikatischen Material, beispielsweise natürlichen und/oder künstlichen Steinen hergestellt, indem in einem Kupolofen 4 das silikatische Material geschmolzen und die Schmelze 5 einem Zerfaserungsaggregat 6 zugeführt wird. Das Zerfaserungsaggregat 6 weist mehrere rotierend angetriebene Spinnräder 7 auf, von denen in Figur 1 lediglich ein Spinnrad 7 dargestellt ist.
  • Der Kupolofen 4 weist ausgangsseitig eine Ausgußrinne 8 auf, über die die Schmelze 5 aus dem Kupolofen 4 auf die Spinnräder 7 fließt.
  • Durch die rotatorische Bewegung der Spinnräder 7 werden die Mineralfasern 3 aus der Schmelze 5 gebildet und auf einem ersten Förderband 9 gesammelt. Auf diesem ersten Förderband 9 bildet sich ein Primärvlies 10, in dem die mit im Zerfaserungsaggregat 6 mit Bindmitteln versetzten Mineralfasern 3 in im Wesentlichen gleicher Richtung ausgerichtet und laminar angeordnet sind. Das Primärvlies 10 wird sodann über ein zweites Förderband 11, welches im Unterschied zum ersten Förderband 9 kein Sammelförderband, sondern ein Transportförderband ist, einer nachgeschalteten Bearbeitungsstation 12 übergeben.
  • In der Bearbeitungsstation 12 wird die allgemeine Transportrichtung des Primärvlieses 10 geändert. Diese Änderung erfolgt von der ursprünglichen Längsrichtung in einen Transport in die ursprüngliche Querrichtung des Primärvlieses 10. Die Förderrichtung ist in Figur 1 durch einen Pfeil 13 dargestellt.
  • Das Primärvlies 10 wird über eine Walze 14 transportiert, deren Zweck es ist, die Transportrichtung des Primärvlieses 10 aus einer im Wesentlichen horizontalen Richtung in eine im Wesentlichen vertikale Richtung zu ändern, um das Primärvlies 10 einer weiteren Bearbeitungsstation 15 zuzuführen. Diese weitere Bearbeitungsstation 15 weist zwei parallel zueinander verlaufende Förderbänder 16, 17 auf, zwischen denen das Primärvlies 10 geführt ist. Die Förderbänder 16, 17 sind pendelnd angeordnet und pendeln das Primärvlies 10 rechtwinklig zu seiner Längserstreckung als Sekundärvlies 18 auf einer nicht näher dargestellten weiteren Fördereinrichtung auf, welche parallel zu den Förderbändern 9 und 11 verläuft.
  • Das derart aufgependelte Sekundärvlies 18 wird sodann einer Verdichtungsstation 19 zugeführt, in welcher das Sekundärvlies 18 komprimiert wird. Die Verdichtungsstation 19 weist ein oberes Förderband 20 und ein unteres Förderband 21 auf, zwischen denen das Sekundärvlies 18 läuft. Die beiden Förderbänder 20 und 21 der Verdichtungsstation 19 sind pendelnd angeordnet und haben neben der Funktion der Verdichtung des Sekundärvlieses 18 auch die Funktion, das verdichtete Sekundärvlies 18 in Längsrichtung mäandrierend aufzupendeln. Dieses Aufpendeln des Sekundärvlieses 18 führt dazu, dass das Sekundärvlies 18 in seinem mittleren Bereich eine Orientierung der Mineralfasern 3 aufweist, die rechtwinklig zu den großen Oberflächen 22, 23 ausgerichtet ist. In Zonen unmittelbar unterhalb der großen Oberflächen 22, 23 weist das Sekundärvlies 18 eine Orientierung der Mineralfasern 3 auf, die unter einem Winkel abweichend von der Orthogonalen zu den großen Oberflächen 22, 23 bis hin zu einer parallelen Ausrichtung relativ zu diesen großen Oberflächen 22, 23 variiert. Diese Anordnung und Orientierung der Mineralfasern 3 in dem Sekundärvlies 18 resultiert aus dem Aufpendeln des Sekundärvlieses 18 im Anschluss an die Verdichtungsstation 19.
  • Das aufgependelte Sekundärvlies 18 wird unmittelbar nach dem Aufpendeln einer Bearbeitungsstation 24 zugeführt, die ein oberes Förderband 25 und ein unteres Förderband 26 aufweist und deren Fördergeschwindigkeiten im Vergleich zur Fördergeschwindigkeit der Verdichtungsstation 19 geringer ist, so dass das aufgependelte Sekundärvlies 18 in seiner Längsrichtung komprimiert und die einzelnen Mäander des aufgependelten Sekundärvlieses 18 zusammengeschoben werden.
  • Der Bearbeitungsstation 24 ist eine weitere Bearbeitungsstation 27 nachgeschaltet, die ebenfalls ein oberes Förderband 28 und ein unteres Förderband 29 aufweist, zwischen denen das aufgependelte Sekundärvlies 18 gefördert wird. Die Bearbeitungsstation 27 weist eine weitergehend reduzierte Fördergeschwindigkeit des Sekundärvlieses 18 auf, um die Verdichtung und die Homogenisierung des aufgependelten Sekundärvlieses 18 fortzusetzen.
  • Das derart vorbereitete Sekundärvlies 18 bildet ein Endprodukt, das zur Bildung von bestimmten Dämmstoffbahnen 2 aus Mineralfasern 3, wie zum Beispiel Dämmstoffplatten oder Dämmstoffbahnen 2 weiterverarbeitet werden kann, wie dies nachfolgend in Bezug zu Figur 2 beschrieben wird.
  • Das mäandrierend aufgefaltete und komprimierte Sekundärvlies 18 wird einem Härteofen 30 zugeführt, indem zwei parallel zueinander verlaufende Förderbänder 31 und 32 angeordnet sind. In dem Härteofen 30 wird Heißluft durch die Förderbänder 31, 32 und somit auch durch das Sekundärvlies 18 gefördert, welche Heißluft das in dem Sekundärvlies 18 zur Verbindung der einzelnen Mineralfasern 3 enthaltene Bindemittel aushärtet. Durch die Aushärtung des Bindemittels wird das Sekundärvlies 18 in seiner geometrischen Form, die es vor dem Härteofen durch die Bearbeitungsstationen 12, 15, 19 und 24 sowie 27 erhalten hat, fixiert.
  • Der Abstand der beiden Förderbänder 31, 32 im Härteofen 30 ist auf die Materialstärke des Sekundärvlieses 18 eingestellt und durch die Fördergeschwindigkeit der Förderbänder 31, 32 im Verhältnis zur erforderlichen Heißluftmenge, um das Bindemittel auszuhärten, begrenzt.
  • Im Anschluss an den Härteofen 30 läuft das Sekundärvlies 18 durch eine erste Sägestation 33, die eine Bandsäge 34 mit einem bandförmigen Sägeblatt 35 aufweist, mit welchem Sägeblatt 35 das Sekundärvlies 18 durch einen Trennschnitt parallel zu den großen Oberflächen 22, 23 in zwei Dämmstoffbahnen 2 unterteilt wird, die jeweils eine große Oberfläche 22, 23 und eine im Wesentlichen flächengleiche, der jeweiligen großen Oberfläche 22, 23 gegenüberliegende Trennfläche 36 aufweisen.
  • Das eine Breite von 2.400 mm aufweisende Sekundärvlies 18 wird anschließend durch eine Kreissäge mit einem Kreissägeblatt 37 in Längsrichtung in vier Teilbahnen unterteilt, wobei jede Teilbahn letztendlich eine Dämmstoffbahn 2 darstellt und eine Breite von 1.200 m aufweist.
  • Die in Längsrichtung durch den Trennschnitt parallel zu den großen Oberflächen 22, 23 des Sekundärvlieses 18 getrennten Dämmstoffbahnen 22 werden voneinander abgehoben und einer Kaschierungsstation 38 zugeführt, in der auf die Trennflächen 36 der Dämmstoffbahnen 2 eine Kaschierung 39 aufgebracht wird. Die Kaschierung 39 ist hierbei für jede Dämmstoffbahn 2 als Kaschierungsrolle 40 bevorratet, wobei die Kaschierung 39 mit der Förderung der Dämmstoffbahn 2 von der Kaschierungsrolle 40 abgezogen und flächengleich mit der Dämmstoffbahn 2 verklebt wird. Im Anschluss an die Kaschierungsstation 38 werden die Dämmstoffbahnen 2 aufgewickelt und verpackt. Zu diesem Zweck werden die Dämmstoffbahnen 2 in einem vorbestimmten Längenmaß von dem Sekundärvlies 18 durch einen Schnitt rechtwinklig zur Längsrichtung der Dämmstoffbahn 2 abgelängt.
  • Die Kaschierung 39 ist als ein luftdurchlässiges und wärmefestes Vlies aus Glasfasern ausgebildet und bildet eine äußere Verstärkungs-, Schutz-, Filter- und Dekorationsschicht. Die Verbindung der Kaschierung 39 mit der Dämmstoffbahn 2 in der Kaschierungsstation 38 erfolgt durch einen auf die Dämmstoffbahn 2 aufgesprühten hochviskosen Dispersionskleber, der in Abhängigkeit der erforderlichen Verbindung zwischen der Kaschierung 39 und der Dämmstoffbahn 2 sowie seiner Klebewirkung vollflächig, punktuell oder streifenförmig aufgesprüht wird. Die Kaschierung 39 ist auf der Trennfläche 36 der Dämmstoffbahn 2 angeordnet, so dass die Kaschierung 39 mit den Faserspitzen der rechtwinklig zu der Trennfläche 36 der Dämmstoffbahn 2 verbunden ist. Es kann ergänzend vorgesehen sein, dass vor dem Wickeln der Dämmstoffbahn 2 die im Bereich der großen Oberflächen 22, 23 vorhandenen Mineralfasern 3, die von einer rechtwinkligen Orientierung zu den großen Oberflächen 22, 23 abweichen, durch Schneiden oder Schleifen entfernt werden.

Claims (36)

  1. Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern, insbesondere aus Steinwolle und/oder Glaswolle, bei dem die Mineralfasern aus einer Schmelze hergestellt und auf einer Fördereinrichtung als Primärvlies abgelegt werden, das Primärvlies rechtwinklig zu seiner Längserstreckung aufgependelt und als Sekundärvlies auf einer zweiten Fördereinrichtung abgelegt wird, das Sekundärvlies anschließend derart bewegt wird, dass die Mineralfasern im wesentlichen einen Verlauf rechtwinklig zu den großen Oberflächen des Sekundärvlieses einnehmen und das Sekundärvlies anschließend durch einen Trennschnitt parallel zu den großen Oberflächen des Sekundärvlieses in zumindest zwei Dämmstoffbahnen unterteilt wird, die jeweils eine große Oberfläche und eine im wesentlichen flächengleiche, der großen Oberfläche gegen-überliegend angeordnete Trennfläche aufweisen,
    dadurch gekennzeichnet,
    dass auf zumindest eine der Trennflächen (36) der beiden Dämmstoffbahnen (2) eine Kaschierung (39) aufgebracht wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die in den großen Oberflächen (22, 23) im wesentlichen parallel zu den großen Oberflächen (22, 23) verlaufenden Mineralfasern (3) entfernt werden.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Dämmstoffbahnen (2) vor und/oder nach dem Aufbringen der Kaschierung (39) einem Härteofen (30) zugeführt werden, in dem ein im Primärvlies (10) bereits enthaltenes Bindemittel ausgehärtet wird.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Trennschnitt zur Ausbildung der Dämmstoffbahnen (2) mittig zwischen den großen Oberflächen (22, 23) des Sekundärvlieses (18) ausgeführt wird.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) als ein luftdurchlässiges und/oder wärmefestes Vlies, Gewebe oder Gelege, insbesondere aus Glas- und/oder Naturfasern oder organischen Chemiefasern, wie beispielsweise aus Kohlenstoff, Aramid, Terephthalat, Polyamid, Polypropylen bzw. Mischungen daraus oder als Folie, beispielsweise Aluminium-Polyethylen-Verbundfolie und zumindest einlagig und insbesondere in Form von zugfesten Bahnen aufgebracht wird.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) mehrlagig aufgebracht wird, wobei die Lagen der Kaschierung (39) vorzugsweise unterschiedlich ausgebildet werden.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die Lagen der Kaschierung (39) aus Glasfaser-Wirrvlies mit Lagen aus Wirrvliesen aus thermoplastischen Fasern und/oder aus gelochten Folien aus Thermoplasten miteinander verbunden werden.
  8. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) mit der Dämmstoffbahn (2) verklebt wird, wobei die Verklebung vorzugsweise teilflächig, insbesondere linienförmig und/oder punktförmig erfolgt und wobei beispielsweise Heißkleber verwendet werden.
  9. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) als äußere Verstärkungs-, Schutz-, Filter-und/oder Dekorationsschicht ausgebildet wird.
  10. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) von einem Wickel (40) abgezogen und gemeinsam mit der Dämmstoffbahn (2) einer Verarbeitungsstation (38) zugeführt wird, in der die Kaschierung (39) mit der Dämmstoffbahn (2) verbunden wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass mehrere Lagen der Kaschierung (39) von einem Wickel (40) abgezogen werden.
  12. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass in der Dämmstoffbahn (2) vorhandene Bindemittel vor der Verbindung mit der Kaschierung (39) durch Lösungsmittel, beispielsweise Wasser aktiviert werden.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet,
    dass die Aktivierung der Bindemittel durch Kontaktwalzen erfolgt.
  14. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Bindemittel auf die Trennfläche (36) der Dämmstoffbahn (2) aufgesprüht wird, bevor die Kaschierung (39) aufgebracht wird.
  15. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zwischen der Dämmstoffbahn (2) und der Kaschierung (39) eine Schicht einer Imprägnierung, insbesondere aus einem hochviskosen Dispersionskleber oder aus einem mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Kleber angeordnet wird.
  16. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Imprägnierung mit einer hohen Viskosität aufgetragen wird, so dass die Imprägnierung nicht von der Kaschierung (39) aufgesaugt wird.
  17. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die beiden Dämmstoffbahnen (2) nach dem Aufbringen der Kaschierungen (39) zusammengeführt und gemeinsam einem Härteofen (30) zugeführt werden.
  18. Verfahren nach Anspruch 17,
    dadurch gekennzeichnet,
    dass die Dämmstoffbahnen (2) nach dem Verlassen des Härteofens (30) in Längsrichtung besäumt, abgelängt und aufgewickelt oder in einzelne Dämmplatten unterteilt und einer Verpackungsvorrichtung zugeführt werden.
  19. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass beim Auftrennen des Sekundärvlieses (18) in Dämmstoffbahnen (2) entstehender Mineralfaserstaub vor dem Aufbringen der Kaschierung (39) entfernt, insbesondere abgesaugt wird.
  20. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Folie mit einem Glasfaser-Gittergelege bewehrt wird.
  21. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Aluminium-Polyethylen-Verbundfolie derart erwärmt wird, dass die Polyethylenschicht erweicht und mit Mineralfaserspitzen der Dämmstoffbahn (2) verschweißt.
  22. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) aus unterschiedlichen Lagen ausgebildet wird.
  23. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) flächenmäßig größer ausgebildet wird, als die Trennfläche (36), so dass die Kaschierung (39) insbesondere über zumindest eine Längsseite der Dämmstoffbahn (2) hervorsteht.
  24. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass auf der Kaschierung (39) Markierungen angeordnet werden, die dem Ablängen der Dämmstoffbahn (2) dienen.
  25. Dämmstoffbahn aus mit einem Bindemittel gebundenen Mineralfasern, insbesondere aus Mineralwolle und/oder Glaswolle, mit einer großen Oberfläche und einer beim Aufteilen eines Sekundärvlieses in zwei Dämmstoffbahnen entstehenden Trennfläche, wobei die Mineralfasern im Bereich der Trennfläche rechtwinklig zur Trennfläche und im Bereich der Oberfläche unter einem Winkel abweichend von 90° zur großen Oberfläche, insbesondere parallel zur großen Oberfläche verlaufend angeordnet sind, und mit einer Kaschierung,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) auf der Trennfläche (36) angeordnet ist.
  26. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) als ein luftdurchlässiges und/oder wärmefestes Vlies, Gewebe oder Gelege, insbesondere aus Glas- und/oder Naturfasern oder organischen Chemiefasern, wie beispielsweise aus Kohlenstoff, Aramid, Terephthalat, Polyamid, Polypropylen bzw. Mischungen daraus oder als Folie, beispielsweise Aluminium-Polyethylen-Verbundfolie und zumindest einlagig und insbesondere in Form von zugfesten Bahnen ausgebildet ist.
  27. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) mehrlagig ausgebildet ist, wobei die Lagen der Kaschierung vorzugsweise unterschiedlich ausgebildet sind.
  28. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Lagen der Kaschierung (39) aus Glasfaser-Wirrvlies mit Lagen aus Wirrvliesen aus thermoplastischen Fasern und/oder aus gelochten Folien aus Thermoplasten verbunden sind.
  29. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) mit der Dämmstoffbahn (2) verklebt ist, wobei die Verklebung vorzugsweise teilflächig, insbesondere linienförmig und/oder punktförmig ausgebildet und beispielsweise mit einem Heißkleber ausgeführt ist.
  30. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) als äußere Verstärkungs-, Schutz-, Filter-und/oder Dekorationsschicht ausgebildet ist.
  31. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass zwischen der Dämmstoffbahn (2) und der Kaschierung (39) eine Schicht einer Imprägnierung, insbesondere aus einem hochviskosen Dispersionskleber oder aus einem mit Pigmenten gefüllten Wasser-Silikat-Kunststoff-Kleber angeordnet ist.
  32. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Imprägnierung eine hohe Viskosität aufweist, so dass die Imprägnierung nicht von der Kaschierung (39) aufgesaugt wird.
  33. Dämmstoffbahn nach Anspruch 26,
    dadurch gekennzeichnet,
    dass die Folie mit einem Glasfaser-Gittergelege bewehrt ist.
  34. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) aus unterschiedlichen Lagen ausgebildet ist.
  35. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Kaschierung (39) flächenmäßig größer ausgebildet ist, als die Trennfläche (36), so dass die Kaschierung (39) insbesondere über zumindest eine Längsseite der Dämmstoffbahn (2) hervorsteht.
  36. Dämmstoffbahn nach Anspruch 25,
    dadurch gekennzeichnet,
    dass auf der Kaschierung (39) Markierungen angeordnet sind, die dem Ablängen der Dämmstoffbahn (2) dienen.
EP04804050A 2004-01-31 2004-12-18 Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn Active EP1708876B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04804050T PL1708876T3 (pl) 2004-01-31 2004-12-18 Sposób wytwarzania pasma materiału izolacyjnego z włókien mineralnych oraz pasmo materiału izolacyjnego
SI200431923T SI1708876T1 (sl) 2004-01-31 2004-12-18 Postopek za izdelavo mreže izolacijskega materiala in izolacijski material v obliki mreže

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004004954 2004-01-31
DE102004047193A DE102004047193A1 (de) 2004-01-31 2004-09-29 Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern sowie Dämmstoffbahn
PCT/EP2004/014449 WO2005072951A1 (de) 2004-01-31 2004-12-18 Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn

Publications (2)

Publication Number Publication Date
EP1708876A1 EP1708876A1 (de) 2006-10-11
EP1708876B1 true EP1708876B1 (de) 2012-06-13

Family

ID=34828327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804050A Active EP1708876B1 (de) 2004-01-31 2004-12-18 Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn

Country Status (5)

Country Link
US (1) US20070264465A1 (de)
EP (1) EP1708876B1 (de)
CA (1) CA2554902C (de)
PL (1) PL1708876T3 (de)
WO (1) WO2005072951A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044052A1 (de) * 2004-10-08 2006-05-04 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Bauelement
DE102007023368A1 (de) * 2007-05-18 2008-11-27 Deutsche Rockwool Mineralwoll Gmbh + Co Ohg Verfahren zur Herstellung eines Dämmstoffelementes und Dämmstoffelement
CN105295366A (zh) * 2014-06-27 2016-02-03 上海优泰装饰材料有限公司 聚酰胺隔热条制备工艺
AT516749B1 (de) * 2015-07-02 2016-08-15 Destra Gmbh Verfahren und Vorrichtung zur Herstellung von Dämmstoffelementen aus Mineralfasern
DE102015212417B4 (de) 2015-07-02 2020-02-20 Sgl Carbon Se Verwendung von dünnen Carbonfaservliesen hergestellt durch einen Horizontalspaltprozess
US10450742B2 (en) 2016-01-11 2019-10-22 Owens Corning Intellectual Capital, Llc Unbonded loosefill insulation
CN109989259A (zh) * 2019-05-14 2019-07-09 安徽轩鸣新材料有限公司 竖丝岩棉生产线
RU2721593C1 (ru) 2019-07-16 2020-05-20 Роквул Интернэшнл А/С Способ и устройство для горизонтального разъединения полотна из минеральной ваты
CN114987034B (zh) * 2022-06-16 2024-02-09 济南新元净化科技有限公司 一种净化岩棉板全自动生产线及生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1085282A (en) * 1977-04-12 1980-09-09 Paul E. Metcalfe Heat insulating material and method of and apparatus for the manufacture thereof
DE3701592A1 (de) * 1987-01-21 1988-08-04 Rockwool Mineralwolle Verfahren zur kontinuierlichen herstellung einer faserdaemmstoffbahn und vorrichtung zur durchfuehrung des verfahrens
DK165926B (da) * 1990-12-07 1993-02-08 Rockwool Int Fremgangsmaade til fremstilling af isoleringsplader sammensat af indbyrdes forbundne stavformede mineralfiberelementer
DK3593D0 (da) * 1993-01-14 1993-01-14 Rockwool Int A method for producing a mineral fiber-insulating web, a plant for producing a mineral fiber-insulating web, and a mineral fiber-insulated plate
DE4319340C1 (de) * 1993-06-11 1995-03-09 Rockwool Mineralwolle Verfahren zur Herstellung von Mineralfaser-Dämmstoffplatten und Vorrichtung zur Durchführung des Verfahrens
RU2152489C1 (ru) * 1994-01-28 2000-07-10 Роквул Интернэшнл А/С Способ изготовления отвержденного нетканого полотна из минерального волокна и устройство для его осуществления
SK165697A3 (en) * 1995-06-20 1998-05-06 Rockwool Int A method of producing an annular insulating mineral fiber covering, a plant for producing an annular insulating mineral fiber covering, and an annular insulating mineral fiber covering
CA2184836C (en) * 1996-09-04 2000-03-14 Jung-Fu Chien Method for producing a variable density, corrugated resin-bonded or thermo-bonded fiberfill and the structure produced thereby
DE69807331D1 (de) * 1997-06-13 2002-09-26 Rockwool Ltd Feuerschutzabschlüsse für gebäude

Also Published As

Publication number Publication date
CA2554902C (en) 2013-02-19
PL1708876T3 (pl) 2012-12-31
WO2005072951A1 (de) 2005-08-11
US20070264465A1 (en) 2007-11-15
CA2554902A1 (en) 2005-08-11
EP1708876A1 (de) 2006-10-11

Similar Documents

Publication Publication Date Title
DE3701592C2 (de)
EP1708876B1 (de) Verfahren zur herstellung einer dämmstoffbahn aus mineralfasern sowie dämmstoffbahn
DE102005026656A1 (de) Herstellung einer Mineralfaserbahn mit weitgehend aufrecht stehenden Mineralfasern und Nutzung der dabei entstehenden Abfälle
EP1182177B2 (de) Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelements, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern
EP1559845B1 (de) Verfahren zur Herstellung eines Dämmstoffelementes und Dämmstoffelement
DE102004047193A1 (de) Verfahren zur Herstellung einer Dämmstoffbahn aus Mineralfasern sowie Dämmstoffbahn
EP1561847B1 (de) Verfahren und Vorrichtung zur Herstellung von bahnen- oder plattenförmigen Dämmstoffen aus Mineralfasern
EP1893825B1 (de) Verfahren und vorrichtung zur herstellung von dämmstoffelementen aus mineralfasern
DE102006028841B4 (de) Dämmanordnung und Verfahren zur Herstellung eines Dämmstoffstreifens
EP1048887A2 (de) Verfahren und Vorrichtung zur Herstellung von Dämmstoffen aus Mineralfasern sowie Dämmstoffelement aus Mineralfasern
EP1559844B1 (de) Dämmstoffelement und Wärmedämmverbundsystem
EP1106743B1 (de) Verfahren und Vorrichtung zur Herstellung einer Faserdämmstoffbahn
WO2006136389A1 (de) Verfahren zur herstellung eines dämmstoffelementes aus mineralfasern und wärmedämmverbundsystem aus mehreren dämmstoffelementen
WO2000004320A1 (de) Verfahren zur herstellung von rohrisolierungselementen und rohrisolierungselement
DE19958973C2 (de) Verfahren und Vorrichtung zur Herstellung einer Faserdämmstoffbahn
DE102005002649A1 (de) Verfahren und Vorrichtung zur Herstellung von bahnen-oder plattenförmigen Dämmstoffen aus Mineralfasern
EP1335080B1 (de) Dämmstoffplatte zur Wärme- und/oder Schalldämmung sowie Dämmschicht
DE10057431C2 (de) Verwendung von Deckschichten einer Faserdämmstoffbahn
DE102007046100A1 (de) Verfahren und Vorrichtung zur Herstellung von Dämmstoffelementen
EP1152094A1 (de) Verfahren zur Herstellung von Dämmelementen
DE102006028842A1 (de) Dämmstoffelement
DE102006028838A1 (de) Verfahren zur Herstellung eines Dämmstoffelementes aus Mineralfasern und Wärmedämmverbundsystem aus mehreren Dämmstoffelementen
EP1390262A1 (de) Verfahren zur herstellung einer verpackungs- und/oder transporteinheit für plattenförmige dämmstoffe aus mineralfasern, verpackungs- und/oder transporteinheit sowie dämmstoffplatte
DE102006028883A1 (de) Verfahren zur Herstellung eines Dämmstoffelementes aus Mineralfasern und Wärmedämmverbundsystem aus mehreren Dämmstoffelementen
DE102006028835A1 (de) Wärmedämmverbundsystem aus mehreren Dämmstoffelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

RAX Requested extension states of the european patent have changed

Extension state: HR

Payment date: 20060808

17Q First examination report despatched

Effective date: 20090723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 561796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013586

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120914

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 12493

Country of ref document: SK

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121013

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120613

26N No opposition filed

Effective date: 20130314

BERE Be: lapsed

Owner name: DEUTSCHE ROCKWOOL MINERALWOLL G.M.B.H. & CO. OHG

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013586

Country of ref document: DE

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120913

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 561796

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20131122

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013586

Country of ref document: DE

Representative=s name: KILBURN & STRODE LLP, GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013586

Country of ref document: DE

Owner name: ROCKWOOL INTERNATIONAL A/S, DK

Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH + CO OHG, 45966 GLADBECK, DE

Effective date: 20120615

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004013586

Country of ref document: DE

Owner name: ROCKWOOL INTERNATIONAL A/S, DK

Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH & CO. OHG, 45966 GLADBECK, DE

Effective date: 20140814

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004013586

Country of ref document: DE

Representative=s name: KILBURN & STRODE LLP, GB

Effective date: 20140814

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150122 AND 20150128

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: ROCKWOOL INTERNATIONAL A/S; DK

Effective date: 20150728

REG Reference to a national code

Ref country code: SK

Ref legal event code: PC4A

Ref document number: E 12493

Country of ref document: SK

Owner name: ROCKWOOL INTERNATIONAL A/S, HEDEHUSENE, DK

Free format text: FORMER OWNER: DEUTSCHE ROCKWOOL MINERALWOLL GMBH & CO. OHG, GLADBECK, DE

Effective date: 20141204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151216

Year of fee payment: 12

Ref country code: DE

Payment date: 20151215

Year of fee payment: 12

Ref country code: FI

Payment date: 20151209

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151211

Year of fee payment: 12

Ref country code: FR

Payment date: 20151123

Year of fee payment: 12

Ref country code: SK

Payment date: 20151204

Year of fee payment: 12

Ref country code: SI

Payment date: 20151208

Year of fee payment: 12

Ref country code: PL

Payment date: 20151130

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013586

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 12493

Country of ref document: SK

Effective date: 20161218

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20170818

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218