EP1705241B1 - Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen - Google Patents

Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen Download PDF

Info

Publication number
EP1705241B1
EP1705241B1 EP06075497A EP06075497A EP1705241B1 EP 1705241 B1 EP1705241 B1 EP 1705241B1 EP 06075497 A EP06075497 A EP 06075497A EP 06075497 A EP06075497 A EP 06075497A EP 1705241 B1 EP1705241 B1 EP 1705241B1
Authority
EP
European Patent Office
Prior art keywords
region
phase
tablet
solid
perfume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06075497A
Other languages
English (en)
French (fr)
Other versions
EP1705241A1 (de
Inventor
Renee Boerefijn
Anouschka S. L. Eversdijk
Vidyadhar S. Ranade
Harmannus Tammes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to EP06075497A priority Critical patent/EP1705241B1/de
Publication of EP1705241A1 publication Critical patent/EP1705241A1/de
Application granted granted Critical
Publication of EP1705241B1 publication Critical patent/EP1705241B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • This invention relates to detergent compositions in the form of tablets for example, for use in fabric washing or machine dishwashing.
  • Detergent compositions in tablet form have advantages over powdered products in that they do not require measuring and are thus easier to handle and dispense into the wash-load.
  • WO 01/42416 describes the production of multi-phase moulded bodies comprising a combination of core moulded bodies and a particulate premix.
  • WO 00/61717 describes a detergent tablet which is characterised in that at least part of its outer surface is semi-solid.
  • WO 00/04129 describes a multi-phase detergent tablet comprising a first phase in the form of a shaped body having at least one mould therein and a second phase in the form of a particulate solid compressed within said mould.
  • WO_00/11132 describes the incorporation of perfume in cleaning tablets whereby the perfume is not contained in the same phase with the bleaching agent. However, such systems may suffer from bleeding whereby perfume ingredients from one phase of the tablet leek into the other phase. This may still lead to undesirable interaction possibly leading to undesired degradation of ingredients or discoloration of the tablet.
  • WO 99/27069 describes detergent tablets comprising a compressed portion and an non-compressed portion wherein the non-compressed portion comprises a perfume component which could be an encapsulated perfume. However the preparation of a non-compressed phase often involves conditions e.g. elevated temperatures which may lead to damage of the encapsulated perfume.
  • WO 00/75273 discloses multiphase detergent tablets containing perfume, and wherein the perfume content of the individual phases varies by more than 0.75 wt%.
  • Another object of the invention is to try and minimise leakage of perfume ingredients out of the cleaning tablet thereby maximising the amount of perfume.that can be deposited onto the articles to be washed.
  • perfume can be used in the form of encapsulates, whereby the encapsulates are incorporated into a separate phase and whereby preferably said phase is produced by a process which avoids high temperatures and high pressures.
  • a cleaning tablet which has a plurality of discrete regions with differing compositions, wherein at least a first region of the tablet comprises an encapsulated perfume material embedded in a matrix of a material which is plastically deformable under pressure, wherein said first region is a compressed particulate composition, comprising from 30 to 70 wt% of the plastically deformable material, based on the weight of the first phase, and wherein the plastically deformable material or substance is in a solid as particulate form under ambient pressure and temperature and which under moderate pressure can merge or flow together.
  • the invention also relates to a method of producing a cleaning tablet wherein at least a first region of the tablet comprises an encapsulated perfume material embedded in a matrix of a material which is plastically de-formable under pressure, wherein the production of said region comprises the compression of a particulate composition comprising from 30 to 70 wt% of a substance which is plastically de-formable under pressure, based on the weight of the first phase, and from 1 to 20 wt% of perfume encapsulates, and wherein the plastically deformable material or substance is in a solid as particulate form under ambient pressure and temperature and which under moderate pressure can merge or flow together.
  • tablets of the invention comprise at least three regions, the first region comprising the perfume encapsulate embedded in a matrix of a material which is plastically de-formable under pressure, the second region being a smooth region and the third region being a region of a compacted particulate material.
  • tablets of the invention are of cylindrical shape (e.g. round, rectangular or square) wherein the two main surfaces (upper side and bottom side) are substantially flat.
  • tablets of the invention comprises a first phase comprising an encapsulated perfume embedded in a matrix of a material which is plastically de-formable under pressure.
  • a first phase comprising an encapsulated perfume embedded in a matrix of a material which is plastically de-formable under pressure.
  • One preferred arrangement is to utilize the invention for the middle layer of a tablet with three layers.
  • the plastically de-formable material acts as a binder, and promotes adhesion of the two outer layers to the middle layer.
  • the tablet comprises a smooth phase and a compressed phase of compacted particulate materials. Most advantageous is the location of the first phase as a barrier between the compressed phase and the smooth phase.
  • the regions or phases of a multi-phase tablet are preferably separate layers within a detergent tablet.
  • a discrete region of a tablet could also have other forms for example one or more core(s) or insert(s).
  • the first region is a layer of a material which is plastically de-formable under pressure and the second region is a smooth layer and a third layer is a layer of compacted particulate material.
  • the first layer is located substantially as a barrier between the second and third layer.
  • the tablet is a multi-phase tablet comprising the encapsulated perfume embedded in a plastically de-formable material phase of the invention, then preferably this first phase is present as a distinctive region preferably having a weight of from 0.5 to 15 grammes, more preferred from 1 to 10 grammes, most preferred from 1.5 to 8 grammes.
  • the other phases in the tablet each have a weight of 2 to 40 grammes.
  • the total weight of the detergent tablet according to the invention is from 10 to 100 grammes, more preferred from 15 to 60 grammes, most preferred from 15 to 50 grammes.
  • the first phase comprising the encapsulated perfume embedded in the plastically de-formable material may be prepared by any suitable method e.g. mixing, casting, spraying etc, however in a preferred method said first phase is obtained from the compression of particles comprising from 30 to 70 wt% of a de-formable substance. Such particles preferably comprise at least 50%wt (based on the particles) of the plastically de-formable substances.
  • the term "material which is plastically deformable under pressure” refers to any material which on the one hand can exist in a solid form or particulate form under ambient pressure and at ambient temperatures of say 15 to 25°C and preferably somewhat above, but which on the other hand under moderate (gauge) pressure of say from 0.1 to 10, especially from 0.2 to 2 kN/cm 2 can merge or flow together, e.g. when subjected to the compaction pressure.
  • the plastically de-formable material has a softening or melting temperature above ambient, conveniently above 35°C, better at least 40°C.
  • the melting temperature does not exceed 80°C, or even 70°C.
  • the plastically de-formable material is water-soluble. A solubility of at least 10g per 100g de-ionized water at 20°C is desirable. A higher solubility, such as at least 20g per 100 g de-ionized water at 20°C, is preferred.
  • Preferred plastically de-formable substances for inclusion in the plastically deformable material are for example organic polymers containing polar groups, especially polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • Polyethylene glycols of molecular weight from 1000 to 10,000 and above have been found suitable, especially those of molecular weight in a range from 1000 to 5000.
  • Other plastically de-formable organic polymers with a high proportion of hydrophilic groups could be employed.
  • Possibilities are polyacrylates and polyvinyl pyrrolidone.
  • the plastically de-formable substance may have surfactant properties for example nonionic surfactants containing an average of 20 or more (preferably 30 or more) ethylene oxide residues,anionic surfactants for example particles of linear alkyl benzyl sulphonate and soap particles.
  • the level of plasticallyde-formable substance in the first phase is from 30 to 70 wt% based on the weight of the first phase.
  • the first phase may further comprise water-soluble, solid material in addition to the plastically deformable substance used to form the matrix embedding the encapsulated perfume, for example solid non-deformable materials such as soluble mineral salts, bleaches etc.
  • solid non-deformable materials such as soluble mineral salts, bleaches etc.
  • solid materials are hard materials which generally are not plastically deformable.
  • Preferred solid materials include water soluble materials such as electrolyte materials, meltable organic materials and sugars. Examples of preferred materials are water-soluble materials such as for example sodium and potassium citrates, sodium and potassium chloride, sodium or potassiumacetates, alkali metal sulphates or carbonates, urea and sugar.
  • the water solubility at 20 C of these materials is preferably at least 10 grammes per 100 ml of water, more preferred more than-15 grammes, most preferably more than 20 grammes.
  • these solid soluble materials are present, their particle size is preferably chosen such that the phase is a continuous matrix of the plastically de-formable material having dispersed therein particles of the water soluble material.
  • the first phase of the tablet also comprises an encapsulated perfume material.
  • Perfume encapsulates preferably of the are core in shell type such as for example described in GB 0751600 , EP 385,534 , US 3,341,466 and which are commercially available.
  • Preferred perfume encapsulates are melamine-formaldehyde-urea capsules for example as described in US 6,224,795 , US 3,516,941 and US 5,154,842 .
  • Encapsulated perfumes may be added as such to the particles forming the first phase, but may can also advantageously be used e.g as slurries which are applied to particulate materials to be used in the first phase, for example the perfume encapsulates may be applied to cores which comprises for example one or more detergent materials such as sufactants or builders, whereby advantageously said cores comprise from 1 to 10 wt% of perfume encapsulates.
  • a suitable process for producing said granules or particulates is for example disclosed in our non pre-published application WO 2005/059083 .
  • the level of perfume in the first phase is from 0.1 to 20 wt% based on the weight of said phase, more preferred from 1 to 15 wt%. If the perfume is added as part of cores to which the encapsulated perfumes are applied e.g. in amounts up to 10 wt% based on said cores, then preferably the level of such coated cores is preferably from 5 to 50 wt% based on the weight of the first phase, more preferred from 10 to 40 wt%.
  • the detergent tablet comprises in addition to the first phase (as described above) a second phase, which is a smooth phase.
  • smooth phase refers to compositions which are on the one hand solid enough to retain their shape at ambient temperature and on the other hand smooth in appearance. Smooth textures are generally of low or no porosity and have -at normal viewing distance- the appearance of a continuous phase for example as opposed to porous and particulate appearance of a compacted particulate material.
  • the smooth region of the tablet may also contain diluent materials for example polyethyleneglycol, dipropyleneglycol, isopropanol or (mono-)propyleneglycol.
  • diluent materials for example polyethyleneglycol, dipropyleneglycol, isopropanol or (mono-)propyleneglycol.
  • the level of these diluents is from 0 to 40 %wt, more preferred 1 to 20, most preferred from 4 to 15 %wt based on the weight of the smooth phase.
  • the smooth phase comprises no or only low levels of water.
  • the level of water is less than 20 wt % based on the weight of the smooth phase, more preferred less than 15 wt%, most preferred from 5 to 12 wt%.
  • the smooth phases are substantially free from water, which means that apart from low levels of moisture (e.g. for neutralisation or as crystal water) no additional added water is present.
  • the smooth phase is transparent or translucent.
  • this means that the composition has an optical transmissivity of at least 10%, most preferably 20%, still more preferably 30%, through a path length of 0.5 cm at 25° C.
  • These measurements may be obtained using a Perkin Elmer UV/VIS Spectrometer Lambda 12 or a Brinkman PC801 Colorimeter at a wavelength of 520nm, using water as the 100% standard.
  • compositions according to the invention does not preclude the composition being coloured, e.g. by addition of a dye, provided that it does not detract substantially from clarity.
  • the smooth phase comprises from 30-100 %wt of non-soap surfactants, more preferred 40 to 90 %wt (based on the total weight of said smooth phase), more preferred from 50 to 80 %wt. It has been found that the combination of a separate smooth first region and these high non-soap surfactant levels provide very good dispersing and cleaning properties to the tablet.
  • non-soap surfactants in said smooth phase may for example be anionic, nonionic or cationic non-soap surfactants or mixtures thereof.
  • Relatively low levels of soap may also be present, for example up to 10 %wt based on.said third smooth phase.
  • the total weight of surfactants in the smooth phase is from 2 to 20 grammes, more preferred from 3 to 10 grammes.
  • the tablet may be a multi-phase tablet wherein the phases other than the first phase (as described above) and the smooth phases as described above comprise no or only low levels of non-soap surfactants.
  • the third phase is a solid phase of compacted materials.
  • the level of non-soap surfactants in said solid phase is less than 10 %wt (based on the total weight of said phase), more preferred from 0 to 9 %wt, most preferred from 1 to 8 %wt.
  • the detergent tablets comprise a first region (as described above) in combination with a second smooth region (as described above) and a third solid region, for example prepared by compression of a particulate composition.
  • the third region may comprise surfactant materials
  • this region preferably comprises ingredients of the tablet other than surfactants.
  • these ingredients are for example builders, bleach system, enzymes etc.
  • the builders in the tablet are predominantly present in the third region.
  • the bleach system is predominantly present in the third region.
  • the enzymes are predominantly present in the third region.
  • the term "predominantly present” refers to a situation wherein at least 90 %wt of an ingredient is present in the third region, more preferred more than 98 %wt, most preferred substantially 100 %wt.
  • each of the regions may be composed of a limited number of discrete regions.
  • the smooth second region or the solid third region may be composed of a limited number (say 1-5) of parts e.g. separate layers in the tablet.
  • Detergent tablets according to the invention are preferably manufactured by a process involving the application of pressure to a particulate mixture.
  • the preparation of the first phase may involve the dosing of a particulate mixture comprising encapsulated perfume and particles of de-formable material optionally in combination with other materials as described above; followed by the exertion of moderate pressure, preferably above the yield stress of the particles.
  • a multi-phase tablet comprising a first phase may advantageously be made by a process, comprising the steps of:
  • step (a) takes place before step (b).
  • the first particulate composition is such that upon compression a solid phase of compressed particulate material is formed.
  • the first particulate composition is pre-compressed at a force of 0.1 to 20 kN/cm 2 between steps (a) and (b). In another preferred embodiment, the particulate composition is flattened between steps (a) and (b).
  • the (co-) compression of the combination of the first and the solid region(s) takes place at a force of from 0.05 to 20 kN/cm 2 .
  • the co-compression in step (c) can advantageously be at a force of 0.1- 10 kN/cm 2 , more preferred 0.5 to 5 kN/cm 2 .
  • the co-compression preferably takes place at a force of 0.5- 100 kN/cm 2 ., more preferred 0.7-50 kN/cm 2 ., most preferred 1-10 kN/cm 2 .
  • this phase may also be manufactured separately by compression of a particulate material e.g. at the compaction forces as indicated above.
  • the first phase may be prepared by other methods for example the spraying of a composition for example onto the (pre) compressed compacted tablet phase.
  • Another suitable method for the preparation of a soap rich phase may involve casting or extrusion of a composition.
  • the smooth phase may also be prepared e.g. by extrusion, casting or other shaping methods.
  • Separately prepared phases can then be adhered to other parts of the tablet for example by gentle pressing or by usage of an adhesive material.
  • a separately prepared solid phase e.g. of compressed particulate materials can be combined with one or more pre-prepared phases e.g. by gentle co-compression.
  • a tablet of this invention may be intended for use in machine dishwashing. Such tablets will typically contain salts, such as over 60 wt% of the tablet.
  • Water soluble salts typically used in machine dishwashing compositions are phosphates (including condensed phosphates) carbonates and silicates, generally as alkali metal salts.
  • Water soluble alkali metal salts selected from phosphates, carbonates and silicates may provide 60 wt% or more of a dishwashing composition.
  • a tablet of this invention will be intended for fabric washing.
  • the tablet will be likely to contain at least 2 wt%, probably at least 5 wt%, up to 40 or 50 wt% soap surfactant based on the whole tablet, and from 5 to 80 wt% detergency builder, based on the whole tablet.
  • compositions which are used in tablets of the invention will contain one or more detergent surfactants.
  • these preferably provide from 5 to 50% by weight of the overall tablet composition, more preferably from 8 or 9% by weight of the overall composition up to 40% or 50% by weight.
  • Surfactant may be anionic (soap or soap), cationic, zwitter-ionic, amphoteric, nonionic or a combination of these.
  • Anionic surfactant may be present in an amount from 0.5 to 50% by weight, preferably from 2% or 4% up to 30% or 40% by weight of the tablet composition.
  • Synthetic (i.e. non-soap) anionic surfactants are well known to those skilled in the art.
  • alkylbenzene sulphonates particularly sodium linear alkylbenzene sulphonates having an alkyl chain length of C 8 -C 15 ; olefin sulphonates; alkane sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates.
  • Primary alkyl sulphate having the formula ROSO 3 - M + in which R is an alkyl or alkenyl chain of 8 to 18 carbon atoms especially 10 to 14 carbon atoms and M + is a solubilising cation, is commercially significant as an anionic surfactant.
  • Linear alkyl benzene sulphonate of the formula where R is linear alkyl of 8 to 15 carbon atoms and M + is a solubilising cation, especially sodium, is also a commercially significant anionic surfactant.
  • such linear alkyl benzene sulphonate or primary alkyl sulphate of the formula above, or a mixture thereof will be the desired anionic surfactant and may provide 75 to 100 wt% of any anionic soap surfactant in the composition.
  • the amount of non-soap anionic surfactant lies in a range from 5 to 20 wt% of the tablet composition.
  • Soaps for use in accordance to the invention are preferably alkali metal or alkaline earth metal salts of naturally occurring fatty acids, preferably sodium soaps derived from naturally occurring fatty acids, for example, the fatty acids from coconut oil, beef tallow, sunflower or hardened rapeseed oil.
  • soaps are selected from C 10 to C 20 soaps for example from C 16 to C 18 or C 12 soaps.
  • Suitable nonionic surfactant compounds which may be used include in particular the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide.
  • Nonionic surfactant compounds are alkyl (C 8-22 ) phenol-ethylene oxide condensates, the condensation products of linear or branched aliphatic C 8-20 primary or secondary alcohols with ethylene oxide, and products made by condensation of ethylene oxide with the reaction products of propylene oxide and ethylene-diamine.
  • the primary and secondary alcohol ethoxylates especially the C 9-11 and C 12-15 primary and secondary alcohols ethoxylated with an average of from 5 to 20 moles of ethylene oxide per mole of alcohol.
  • the amount of nonionic surfactant lies in a range from 4 to 40%, better 4 or 5 to 30% by weight of the whole tablet.
  • nonionic surfactants are liquids. These may be absorbed onto particles of the composition.
  • the surfactant may be wholy nonionic, in an amount below 5 wt% of the whole tablet, although it is known to include some anionic surfactant and to use up to 10 wt% surfactant in total.
  • a composition which is used in tablets of the invention will usually contain from 5 to 80%, more usually 15 to 60% by weight of detergency builder. This may be provided wholly by water soluble materials, or may be provided in large part or even entirely by water-insoluble material with water-softening properties. Water-insoluble detergency builder may be present as 5 to 80 wt%, better 5 to 60 wt% of the composition.
  • Alkali metal aluminosilicates are strongly favoured as environmentally acceptable water-insoluble builders for fabric washing.
  • Alkali metal (preferably sodium) aluminosilicates may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8 - 1.5 Na 2 O.Al 2 O 3 . 0.8 - 6 SiO 2 . xH 2 O
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units (in the formula above). Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB 1429143 (Procter & Gamble). The preferred sodium aluminosilicates of this type are the well known commercially available zeolites A and X, the novel zeolite P described and claimed in EP 384070 (Unilever) and mixtures thereof.
  • a water-insoluble detergency builder could be a layered sodium silicate as described in US 4664839 .
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated as "SKS-6").
  • NaSKS-6 has the delta-Na 2 SiO 5 morphology form of layered silicate. It can be prepared by methods such as described in DE-A-3,417,649 and DE-A-3,742,043 .
  • Other such layered silicates such as those having the general formula NaMSi x O 2x+1 .yH 2 O wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used.
  • Water-soluble phosphorous-containing inorganic detergency builders include the alkali-metal orthophosphates, metaphosphates, pyrophosphates and polyphosphates.
  • Specific examples of inorganic phosphate builders include sodium and potassium tripolyphosphates, orthophosphates and hexametaphosphates.
  • Non-phosphorous water-soluble builders may be organic or inorganic.
  • Inorganic builders that may be present include alkali metal (generally sodium) carbonate; while organic builders include polycarboxylate polymers, such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphonates, monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono- di- and trisuccinates, carboxymethyloxysuccinates, carboxymethyloxymalonates, dipicolinates and hydroxyethyliminodiacetates.
  • alkali metal generally sodium
  • organic builders include polycarboxylate polymers, such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphonates, monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono- di- and trisuccinates, carboxymethyloxysuccinates, carboxymethyloxymalonates, dip
  • At least one region (preferably the second region) of a fabric washing tablet preferably include polycarboxylate polymers, more especially polyacrylates and acrylic/maleic copolymers which can function as builders and also inhibit unwanted deposition onto fabric from the wash liquor.
  • Tablets according to the invention may contain a bleach system in at least one region of a tablet, preferably in the second region.
  • This preferably comprises one or more peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, which may be employed in conjunction with activators to improve bleaching action at low wash temperatures. If any peroxygen compound is present, the amount is likely to lie in a range from 10 to 25% by weight of the composition.
  • Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate, advantageously employed together with an activator.
  • Bleach activators also referred to as bleach precursors
  • Preferred examples include peracetic acid precursors, for example, tetraacetylethylene diamine (TAED), now in widespread commercial use in conjunction with sodium perborate; and perbenzoic acid precursors.
  • TAED tetraacetylethylene diamine
  • perbenzoic acid precursors perbenzoic acid precursors.
  • the quaternary ammonium and phosphonium bleach activators disclosed in US 4751015 and US 4818426 are also of interest.
  • bleach activator which may be used, but which is not a bleach precursor, is a transition metal catalyst as disclosed in EP-A-458397 , EP-A-458398 and EP-A-549272 .
  • a bleach system may also include a bleach stabiliser (heavy metal sequestrant) such as ethylenediamine tetramethylene phosphonate and diethylenetriamine pentamethylene phosphonate.
  • a bleach is present and is a water-soluble inorganic peroxygen bleach, the amount may well be from 10% to 25% by weight of the composition.
  • the detergent tablets of the invention may also contain (preferably in the second region) one of the detergency enzymes well known in the art for their ability to degrade and aid in the removal of various soils and stains.
  • Suitable enzymes include the various proteases, cellulases, lipases, amylases, and mixtures thereof, which are designed to remove a variety of soils and stains from fabrics.
  • suitable proteases are Maxatase (Trade Mark), as supplied by Gist-Brocades N.V., Delft, Holland, and Alcalase (Trade Mark), and Savinase (Trade Mark), as supplied by Novo Industri A/S, Copenhagen, Denmark.
  • Detergency enzymes are commonly employed in the form of granules or marumes, optionally with a protective coating, in amount of from about 0.1% to about 3.0% by weight of the composition; and these granules or marumes present no problems with respect to compaction to form a tablet.
  • the detergent tablets of the invention may also contain (preferably in the second region) a fluorescer (optical brightener), for example, Tinopal (Trade Mark) DMS or Tinopal CBS available from Ciba-Geigy AG, Basel, Switzerland.
  • a fluorescer optical brightener
  • Tinopal DMS is disodium 4,4'bis-(2-morpholino-4-anilino-s-triazin-6-ylamino) stilbene disulphonate
  • Tinopal CBS is disodium 2,2'-bis-(phenyl-styryl) disulphonate.
  • An antifoam material is advantageously included (preferably in the second region), especially if a detergent tablet is primarily intended for use in front-loading drum-type automatic washing machines.
  • Suitable antifoam materials are usually in granular form, such as those described in EP 266863A (Unilever).
  • Such antifoam granules typically comprise a mixture of silicone oil, petroleum jelly, hydrophobic silica and alkyl phosphate as antifoam active material, absorbed onto a porous absorbed water-soluble carbonate-based inorganic carrier material.
  • Antifoam granules may be present in an amount up to 5% by weight of the composition.
  • a detergent tablet of the invention includes an amount of an alkali metal silicate, particularly sodium ortho-, meta- or disilicate.
  • an alkali metal silicate particularly sodium ortho-, meta- or disilicate.
  • the presence of such alkali metal silicates at levels, for example, of 0.1 to 10 wt%, may be advantageous in providing protection against the corrosion of metal parts in washing machines, besides providing some measure of building and giving processing benefits in manufacture of the particulate material which is compacted into tablets.
  • a tablet for fabric washing will generally not contain more than 15 wt% silicate.
  • a tablet for machine dishwashing will often contain more than 20 wt% silicate.
  • the silicate is present in the second region of the tablet.
  • ingredients which can optionally be employed in a region of a fabric washing detergent of the invention tablet include anti-redeposition agents such as sodium carboxymethylcellulose, straight-chain polyvinyl pyrrolidone and the cellulose ethers such as methyl cellulose and ethyl hydroxyethyl cellulose, fabric-softening agents; heavy metal sequestrants such as EDTA; perfumes; and colorants or coloured speckles.
  • anti-redeposition agents such as sodium carboxymethylcellulose, straight-chain polyvinyl pyrrolidone and the cellulose ethers such as methyl cellulose and ethyl hydroxyethyl cellulose, fabric-softening agents
  • heavy metal sequestrants such as EDTA
  • perfumes and colorants or coloured speckles.
  • dispersing aids are water-swellable polymers (e.g. SCMC) highly soluble materials (e.g. sodium citrate, potassium carbonate or sodium acetate) or sodium tripolyphospate with preferably at least 40% of the anhydrous phase I form.
  • SCMC water-swellable polymers
  • highly soluble materials e.g. sodium citrate, potassium carbonate or sodium acetate
  • sodium tripolyphospate preferably at least 40% of the anhydrous phase I form.
  • the first soap rich region of the detergent tablet may advantageously be prepared by compacting particles with a high soap content as described above. Preferably these particles have a mean particle size of from 100 to 1000 ⁇ m.
  • the second region of a detergent tablet of this invention is a preferably a matrix of compacted particles.
  • the particulate composition has a mean particle size in the range from 200 to 2000 ⁇ m, more preferably from 250 to 1400 ⁇ m. Fine particles, smaller than 180 ⁇ m or 200 ⁇ m may be eliminated by sieving before tableting, if desired, although we have observed that this is not always essential.
  • the starting particulate composition may in principle have any bulk density
  • the present invention is especially relevant to tablets made by compacting powders of relatively high bulk density, because of their greater tendency to exhibit disintegration and dispersion problems.
  • Such tablets have the advantage that, as compared with a tablet derived from a low bulk density powder, a given dose of composition can be presented as a smaller tablet.
  • the starting particulate composition may suitably have a bulk density of at least 400 g/litre, preferably at least 500 g/litre, and perhaps at least 600 g/litre.
  • Tableting machinery able to carry out the manufacture of tablets of the invention is known, for example suitable tablet presses are available from Fette and from Korch.
  • Tableting may be carried out at ambient temperature or at a temperature above ambient which may allow adequate strength to be achieved with less applied pressure during compaction.
  • the particulate composition is preferably supplied to the tableting machinery at an elevated temperature. This will of course supply heat to the tableting machinery, but the machinery may be heated in some other way also.
  • the size of a tablet will suitably range from 10 to 160 grams, preferably from 15 to 60 g, depending on the conditions of intended use, and whether it represents a dose for an average load in a fabric washing or dishwashing machine or a fractional part of such a dose.
  • the tablets may be of any shape. However, for ease of packaging they are preferably blocks of substantially uniform cross-section, such as cylinders or cuboids.
  • the overall density of a tablet preferably lies in a range from 1040 or 1050gm/litre up to 1600gm/litre.
  • a detergent tablet comprising a first phase comprising encapsulated perfumes, a second smooth phase and a third solid compacted phase.
  • Perfume encapsulates were made with the composition below using a two step high shear mixer- fluidised bed process using 34.8 weight parts of zeolite 4A and 17.5 weight parts of sugar onto which 17.7 weight parts of a slurry of perfume capsules (slurry containing 42wt% of melamine formaldehyde-urea capsules incorporating perfume as obtained from Basf)is applied by spraying with a nozzle.
  • a solid compacted -third- phase was prepared as follows.
  • a powder was made of the following composition(I) by pre-granulating the granule ingredients, followed by post-dosing the rest of the ingredients.
  • Composition I Ingredient Parts by weight Linear alkylbenzene sulphonate, sodium salt 8.5 Alcohol ethoxylate nonionic, avg. 7EO 3.7 Zeolite A24 19.0 Sodium acetate, 3aq.
  • 20 grammes of the particulate composition are inserted into a 45 mm die of a tabletting machine, optionally followed by a flattening step.
  • the whole material is compressed at 30kN into a single tablet.
  • the smooth phase was prepared of the following composition: Ingredient Parts by weight Na-las 39.1 Nonionlc 7EO 33.5 C12 soap 7.3 Monopropyleenglycol to 100
  • the mixture was heated to 80°C and cast into moulds and cooled to 20°C to form firm, 5 grams smooth, parts of 45mm diameter.
  • a smooth part is then applied to the top of the tablet e.g. by gentle compression.
  • the resulting tablet is a three layer tablet whereby the perfume rich layer is located as a barrier between the smooth phase and the solid compacted phase.
  • a two-layer reference tablet A was prepared as follows:
  • a two layer tablet according to the invention B was prepared as follows:
  • both tablets were assessed to determine the extent to which the perfume encapsulates were broken during the production process. This was determined by checking the leakage of perfume from the tablet by quietly dissolving the tablet in water at 40 °C and measuring the headspace above the tablets after 30 minutes. The higher the perfume concentration in the headspace, the greater the number of capsules that were broken during tabletting. The leakage was calculated as a % of what the leakage would have been had all the encapsulates suffered damage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Claims (9)

  1. Reinigungstablette, die eine Vielzahl von diskreten Bereichen mit unterschiedlichen Zusammensetzungen hat, wobei wenigstens ein erster Bereich der Tablette ein eingekapseltes Parfümmaterial, eingebettet in einer Matrix aus einem Material, die unter Druck plastisch verformbar ist, umfasst, wobei der genannte erste Bereich eine komprimierte partikuläre Zusammensetzung ist, die 30 bis 70 Gew.-% des plastisch verformbaren Materials, bezogen auf das Gewicht der ersten Phase, umfasst, und wobei das plastisch verformbare Material oder die plastisch verformbare Substanz in einer festen oder partikulären Form unter Umgebungsdruck und -temperatur ist und unter moderatem Druck verschmelzen und zusammenfließen kann.
  2. Reinigungstablette nach den vorangehenden Ansprüchen, wobei die eingekapselten Parfümmaterialien "Core-in-Shell"-eingekapselte Materialien sind.
  3. Reinigungstablette nach einem oder mehreren der vorangehenden Ansprüche, wobei die plastisch verformbare Substanz ausgewählt ist aus Polyethylenglykolen, Seife, langkettigen nicht-ionischen oberflächenaktiven Mitteln, primären Alkylsulfaten, linearen Alkylbenzolsulfonaten oder Gemischen davon, die bei Umgebungstemperatur fest sind.
  4. Reinigungstablette nach einem oder mehreren der vorangehenden Ansprüche, wobei das wasserlösliche feste Material ausgewählt ist aus Natrium- und Kaliumcitraten, -chloriden, -acetaten, -sulfaten, -carbonaten, -percarbonaten und -bicarbonaten; Harnstoff und Zucker oder Gemischen davon.
  5. Reinigungstablette nach einem oder mehreren der vorangehenden Ansprüche, die außerdem einen zweiten Bereich umfasst, der ein glatter Bereich ist.
  6. Reinigungstablette nach einem oder mehreren der vorangehenden Ansprüche, die außerdem einen Bereich aus pressverdichteten partikulären Materialien umfasst.
  7. Reinigungstablette nach Anspruch 1, die zusätzlich einen zweiten glatten Bereich und einen dritten festen Bereich aus pressverdichteten partikulären Materialien umfasst, wobei der erste Bereich als Barriere zwischen dem glatten Bereich und dem festen Bereich vorliegt.
  8. Verfahren zur Herstellung einer Reinigungstablette nach einem oder mehreren der vorangehenden Ansprüche, wobei der erste Bereich durch Komprimieren eines partikulären Materials, das 30 bis 70 Gew.-% plastisch verformbare Substanz, bezogen auf das Gewicht der ersten Phase, und 1 bis 20 Gew.-% eingekapselte Parfümmaterialien umfasst, erhalten wird und wobei das plastisch verformbare Material oder die plastisch verformbare Substanz in einer festen oder partikulären Form unter Umgebungsdruck und -temperatur ist und unter moderatem Druck verschmelzen oder zusammenfließen kann.
  9. Verfahren nach Anspruch 9, wobei das Komprimieren bei einem Druck von 0,1 bis 2 kN/cm2 erfolgt.
EP06075497A 2005-03-23 2006-03-03 Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen Not-in-force EP1705241B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06075497A EP1705241B1 (de) 2005-03-23 2006-03-03 Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05075696 2005-03-23
EP06075497A EP1705241B1 (de) 2005-03-23 2006-03-03 Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen

Publications (2)

Publication Number Publication Date
EP1705241A1 EP1705241A1 (de) 2006-09-27
EP1705241B1 true EP1705241B1 (de) 2008-08-13

Family

ID=34938116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06075497A Not-in-force EP1705241B1 (de) 2005-03-23 2006-03-03 Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen

Country Status (4)

Country Link
EP (1) EP1705241B1 (de)
AT (1) ATE404660T1 (de)
DE (1) DE602006002151D1 (de)
ES (1) ES2313539T3 (de)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012012096A (es) 2010-04-26 2012-12-17 Novozymes As Granulos de enzima.
CN107475235B (zh) 2011-06-20 2022-09-13 诺维信公司 颗粒组合物
WO2012175708A2 (en) 2011-06-24 2012-12-27 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
CN112662734B (zh) 2011-06-30 2024-09-10 诺维信公司 用于筛选α-淀粉酶的方法
CN103797104A (zh) 2011-07-12 2014-05-14 诺维信公司 储存稳定的酶颗粒
WO2013024021A1 (en) 2011-08-15 2013-02-21 Novozymes A/S Polypeptides having cellulase activity and polynucleotides encoding same
WO2013041689A1 (en) 2011-09-22 2013-03-28 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US20140342433A1 (en) 2011-11-25 2014-11-20 Novozymes A/S Subtilase Variants and Polynucleotides Encoding Same
US20140335596A1 (en) 2011-12-20 2014-11-13 Novozymes A/S Subtilase Variants and Polynucleotides Encoding Same
AU2013213601B8 (en) 2012-01-26 2018-01-18 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
EP2814956B1 (de) 2012-02-17 2017-05-10 Novozymes A/S Subtilisinvarianten und polynukleotide zu deren codierung
WO2013131964A1 (en) 2012-03-07 2013-09-12 Novozymes A/S Detergent composition and substitution of optical brighteners in detergent compositions
AR090971A1 (es) 2012-05-07 2014-12-17 Novozymes As Polipeptidos que tienen actividad de degradacion de xantano y polinucleotidos que los codifican
US20150140165A1 (en) 2012-06-20 2015-05-21 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
US9551042B2 (en) 2012-12-21 2017-01-24 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US9902946B2 (en) 2013-01-03 2018-02-27 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
WO2014183921A1 (en) 2013-05-17 2014-11-20 Novozymes A/S Polypeptides having alpha amylase activity
CN114634921B (zh) 2013-06-06 2024-09-10 诺维信公司 α-淀粉酶变体以及对其进行编码的多核苷酸
US10378001B2 (en) 2013-06-27 2019-08-13 Novozymes A/S Subtilase variants and compositions comprising same
EP3013955A1 (de) 2013-06-27 2016-05-04 Novozymes A/S Subtilasevarianten und polynukleotide zur codierung davon
US20160152925A1 (en) 2013-07-04 2016-06-02 Novozymes A/S Polypeptides Having Anti-Redeposition Effect and Polynucleotides Encoding Same
EP3339436B1 (de) 2013-07-29 2021-03-31 Henkel AG & Co. KGaA Waschmittelzusammensetzung mit proteasevarianten
WO2015014803A1 (en) 2013-07-29 2015-02-05 Novozymes A/S Protease variants and polynucleotides encoding same
RU2670946C9 (ru) 2013-07-29 2018-11-26 Новозимс А/С Варианты протеазы и кодирующие их полинуклеотиды
WO2015049370A1 (en) 2013-10-03 2015-04-09 Novozymes A/S Detergent composition and use of detergent composition
US10030239B2 (en) 2013-12-20 2018-07-24 Novozymes A/S Polypeptides having protease activity and polynucleotides encoding same
US20160333292A1 (en) 2014-03-05 2016-11-17 Novozymes A/S Compositions and Methods for Improving Properties of Cellulosic Textile Materials with Xyloglucan Endotransglycosylase
US20160348035A1 (en) 2014-03-05 2016-12-01 Novozymes A/S Compositions and Methods for Improving Properties of Non-Cellulosic Textile Materials with Xyloglucan Endotransglycosylase
EP3126479A1 (de) 2014-04-01 2017-02-08 Novozymes A/S Polypeptide mit alpha-amylase-aktivität
US20170121695A1 (en) 2014-06-12 2017-05-04 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
EP3739029A1 (de) 2014-07-04 2020-11-18 Novozymes A/S Subtilasevarianten und polynukleotide zur codierung davon
EP3878960A1 (de) 2014-07-04 2021-09-15 Novozymes A/S Subtilasevarianten und polynukleotide zur codierung davon
CN107075489A (zh) 2014-11-20 2017-08-18 诺维信公司 脂环酸芽孢杆菌变体以及编码它们的多核苷酸
CN107075493B (zh) 2014-12-04 2020-09-01 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
EP3234121A1 (de) 2014-12-15 2017-10-25 Henkel AG & Co. KGaA Reinigungsmittelzusammensetzung mit subtilasevarianten
EP3310912B1 (de) 2015-06-18 2021-01-27 Novozymes A/S Subtilasevarianten und polynukleotide zur codierung davon
EP3106508B1 (de) 2015-06-18 2019-11-20 Henkel AG & Co. KGaA Reinigungsmittelzusammensetzung mit subtilasevarianten
US10479981B2 (en) 2015-10-14 2019-11-19 Novozymes A/S DNase variants
CN108291215A (zh) 2015-10-14 2018-07-17 诺维信公司 具有蛋白酶活性的多肽以及编码它们的多核苷酸
CN109715792A (zh) 2016-06-03 2019-05-03 诺维信公司 枯草杆菌酶变体和对其进行编码的多核苷酸
WO2018011276A1 (en) 2016-07-13 2018-01-18 The Procter & Gamble Company Bacillus cibi dnase variants and uses thereof
EP3476936B1 (de) 2017-10-27 2022-02-09 The Procter & Gamble Company Reinigungsmittelzusammensetzungen mit polypeptidvarianten
EP3701017A1 (de) 2017-10-27 2020-09-02 Novozymes A/S Dnase-varianten
WO2019180111A1 (en) 2018-03-23 2019-09-26 Novozymes A/S Subtilase variants and compositions comprising same
WO2019201793A1 (en) 2018-04-17 2019-10-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric.
EP3814489A1 (de) 2018-06-29 2021-05-05 Novozymes A/S Subtilasevarianten und zusammensetzungen damit
EP3891264A1 (de) 2018-12-03 2021-10-13 Novozymes A/S Waschmittelpulverzusammensetzung mit niedrigem ph-wert
US20220056379A1 (en) 2018-12-03 2022-02-24 Novozymes A/S Powder Detergent Compositions
EP3702452A1 (de) 2019-03-01 2020-09-02 Novozymes A/S Waschmittelzusammensetzungen mit zwei proteasen
BR112021018731A2 (pt) 2019-03-21 2021-12-21 Novozymes As Variantes de alfa-amilase e polinucleotídeos codificando as mesmas
WO2020207944A1 (en) 2019-04-10 2020-10-15 Novozymes A/S Polypeptide variants
DE102019210899A1 (de) * 2019-07-23 2021-01-28 Henkel Ag & Co. Kgaa Aktivstoffhaltige Formkörper und Verfahren zu deren Herstellung
WO2021037895A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Detergent composition
WO2021053127A1 (en) 2019-09-19 2021-03-25 Novozymes A/S Detergent composition
EP4038170A1 (de) 2019-10-03 2022-08-10 Novozymes A/S Polypeptide mit mindestens zwei kohlenhydratbindungsdomänen
EP3892708A1 (de) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Reinigungszusammensetzungen mit dispersinvarianten
EP4158011A1 (de) 2020-05-26 2023-04-05 Novozymes A/S Subtilasevarianten und zusammensetzungen damit
MX2023002095A (es) 2020-08-28 2023-03-15 Novozymes As Variantes de proteasa con solubilidad mejorada.
EP4225905A2 (de) 2020-10-07 2023-08-16 Novozymes A/S Alpha-amylase-varianten
EP4291646A2 (de) 2021-02-12 2023-12-20 Novozymes A/S Alpha-amylase-varianten
WO2022189521A1 (en) 2021-03-12 2022-09-15 Novozymes A/S Polypeptide variants
EP4060036A1 (de) 2021-03-15 2022-09-21 Novozymes A/S Polypeptidvarianten
US20240060061A1 (en) 2021-03-15 2024-02-22 Novozymes A/S Dnase variants
WO2022268885A1 (en) 2021-06-23 2022-12-29 Novozymes A/S Alpha-amylase polypeptides
WO2023161182A1 (en) 2022-02-24 2023-08-31 Evonik Operations Gmbh Bio based composition
EP4234664A1 (de) 2022-02-24 2023-08-30 Evonik Operations GmbH Zusammensetzung mit glucolipiden und enzymen
AU2023228020A1 (en) 2022-03-04 2024-07-11 Novozymes A/S Dnase variants and compositions
AU2023250091A1 (en) 2022-04-08 2024-10-03 Novozymes A/S Hexosaminidase variants and compositions
WO2024002738A1 (en) 2022-06-28 2024-01-04 Evonik Operations Gmbh Composition comprising biosurfactant and persicomycin
WO2024121070A1 (en) 2022-12-05 2024-06-13 Novozymes A/S Protease variants and polynucleotides encoding same
WO2024126154A1 (en) 2022-12-15 2024-06-20 Evonik Operations Gmbh Composition comprising sophorolipids and rhamnolipids and/or glucolipids
WO2024131880A2 (en) 2022-12-23 2024-06-27 Novozymes A/S Detergent composition comprising catalase and amylase

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL95044C (de) 1953-06-30
US3516941A (en) 1966-07-25 1970-06-23 Minnesota Mining & Mfg Microcapsules and process of making
US3341466A (en) 1966-10-31 1967-09-12 Brynko Carl Process for making capsules
US4605509A (en) 1973-05-11 1986-08-12 The Procter & Gamble Company Detergent compositions containing sodium aluminosilicate builders
US4145184A (en) * 1975-11-28 1979-03-20 The Procter & Gamble Company Detergent composition containing encapsulated perfume
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
DE3417649A1 (de) 1984-05-12 1985-11-14 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung von kristallinen natriumsilikaten
GB8619634D0 (en) 1986-08-12 1986-09-24 Unilever Plc Antifoam ingredient
US4818426A (en) 1987-03-17 1989-04-04 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
US4751015A (en) 1987-03-17 1988-06-14 Lever Brothers Company Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions
DE3742043A1 (de) 1987-12-11 1989-06-22 Hoechst Ag Verfahren zur herstellung von kristallinen natriumschichtsilikaten
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
US4946624A (en) 1989-02-27 1990-08-07 The Procter & Gamble Company Microcapsules containing hydrophobic liquid core
US5154842A (en) 1990-02-20 1992-10-13 The Procter & Gamble Company Coated perfume particles
DE69125310T2 (de) 1990-05-21 1997-07-03 Unilever Nv Bleichmittelaktivierung
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
GB9127060D0 (en) 1991-12-20 1992-02-19 Unilever Plc Bleach activation
ATE287944T1 (de) 1997-11-26 2005-02-15 Procter & Gamble Waschmitteltablette
EP0976819B1 (de) 1998-07-17 2002-01-30 The Procter & Gamble Company Waschmitteltablette
DE19833347A1 (de) 1998-07-24 2000-01-27 Basf Ag Formaldehydarme Dispersion von Mikrokapseln aus Melamin-Formaldehyd-Harzen
DE19838127A1 (de) 1998-08-21 2000-02-24 Henkel Kgaa Reinigungsmittelformkörper
EP1043390A1 (de) 1999-04-09 2000-10-11 The Procter & Gamble Company Wasch- und Reinigungsmittel in Tablettenform
DE19925518B4 (de) * 1999-06-04 2016-06-30 Henkel Ag & Co. Kgaa Mehrphasige Wasch- und Reinigungsmittelformkörper mit Parfüm sowie Verfahren zu ihrer Herstellung
DE19957504A1 (de) * 1999-08-31 2001-03-01 Henkel Kgaa Reinigungsmittelkomponente
DE19959875A1 (de) 1999-12-10 2001-07-05 Henkel Kgaa Preßverfahren für mehrphasige Formkörper
DE10120441C2 (de) * 2001-04-25 2003-09-04 Henkel Kgaa Waschmittelformkörper mit viskoelastischer Phase
DE10215320A1 (de) 2002-04-02 2003-10-23 Metagen Pharmaceuticals Gmbh Verwendungen von TFF3 bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen
AU2003242641A1 (en) 2002-06-11 2003-12-22 Unilever Plc Detergent tablets
ATE386100T1 (de) 2002-06-14 2008-03-15 Unilever Nv Waschmitteltabletten
EP1405902A1 (de) 2002-10-01 2004-04-07 Unilever N.V. Wasch- und Reinigungsmittel
EP1405900B1 (de) 2002-10-01 2006-03-08 Unilever Plc Waschmittelzusammensetzungen
DE60314348T2 (de) 2002-10-01 2008-02-21 Unilever N.V. Waschmittel
DE60208493T2 (de) 2002-10-09 2006-07-06 Unilever N.V. Verfahren zur Herstellung einer Reinigungsmitteltablette
DE10247289A1 (de) * 2002-10-10 2004-04-22 Symrise Gmbh & Co. Kg Riechstoffhaltige feste Reinigungsmittel
ES2310225T3 (es) * 2003-07-10 2009-01-01 Unilever N.V. Composiciones detergentes.

Also Published As

Publication number Publication date
EP1705241A1 (de) 2006-09-27
DE602006002151D1 (de) 2008-09-25
ATE404660T1 (de) 2008-08-15
ES2313539T3 (es) 2009-03-01

Similar Documents

Publication Publication Date Title
EP1705241B1 (de) Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen
EP1382668B1 (de) Waschmitteltabletten
US6306814B1 (en) Detergent compositions
EP1027421B2 (de) Tablettenförmige waschmittelzusammensetzungen
EP0986634B1 (de) Reinigungsmittel in tablettenform
EP1669438B1 (de) Wasch- und Reinigungsmitteltablette
EP1511834B1 (de) Waschmitteltabletten
EP1239029B1 (de) Wasch- oder Reinigungsmittel
EP1375636B1 (de) Waschmitteltabletten
EP1418224B1 (de) Verfahren zur Herstellung einer Reinigungsmitteltablette
EP1405902A1 (de) Wasch- und Reinigungsmittel
EP1405900B1 (de) Waschmittelzusammensetzungen
EP1574563B1 (de) Verwendung von Waschmitteltabletten
EP1405901A1 (de) Waschmittel
EP1371719A1 (de) Waschmitteltabletten
EP1746151A1 (de) Wasch- und Reinigungsmitteltabletten
EP1491622B1 (de) Waschmittel
EP1522575B1 (de) Waschmittelzusammensetzungen
EP1496105B1 (de) Waschmittelzusammensetzungen
EP1746152A1 (de) Wasch- oder Reinigungsmittel
EP1469061B1 (de) Verfahren zur Herstellung Mehrphasiger Reinigungstabletten mit einer glatten Phase
EP1710297A1 (de) Waschmittelzusammensetzungen in Tablettenform
EP1516916A1 (de) Waschmittelzusammensetzung
EP1568762A1 (de) Waschmitteltabletten und deren Herstellung
EP1466964A1 (de) Renigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060819

17Q First examination report despatched

Effective date: 20070219

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006002151

Country of ref document: DE

Date of ref document: 20080925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2313539

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080813

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140326

Year of fee payment: 9

Ref country code: FR

Payment date: 20140317

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140327

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006002151

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331