EP1702046A2 - Systems and methods of producing a crude product - Google Patents

Systems and methods of producing a crude product

Info

Publication number
EP1702046A2
EP1702046A2 EP04814795A EP04814795A EP1702046A2 EP 1702046 A2 EP1702046 A2 EP 1702046A2 EP 04814795 A EP04814795 A EP 04814795A EP 04814795 A EP04814795 A EP 04814795A EP 1702046 A2 EP1702046 A2 EP 1702046A2
Authority
EP
European Patent Office
Prior art keywords
grams
crude product
crude
crude feed
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04814795A
Other languages
German (de)
English (en)
French (fr)
Inventor
Thomas Fairchild Brownscombe
Scott Lee Wellington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP1702046A2 publication Critical patent/EP1702046A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]

Definitions

  • inventions described herein generally relate to systems and methods for contacting a crude feed with one or more catalysts to produce a total product comprising a crude product and, in some embodiments, non-condensable gas. Inventions described herein also generally relate to compositions that have novel combinations of components therein. Such compositions can be obtained by using the systems and methods described herein.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, at least one of the catalysts comprising one or more transition metal sulfides, and the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed, as determined by ASTM Method D5307; and controlling contacting conditions such that the crude product has at most 0.05 grams of coke per gram of crude product, the crude product has at least 0.001 grams of naphtha per gram of crude product, and the naphtha has an octane number of at least 70.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, at least one of the catalysts comprising one or more transition metal sulfides, and the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed; and controlling contacting conditions such that the crude product has at most 0.05 grams of coke per gram of crude product with a weight ratio of atomic hydrogen to atomic carbon (H/C) in the crude product of at most 1.75, as determined by ASTM Method D6730.
  • H/C weight ratio of atomic hydrogen to atomic carbon
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of one or more catalysts comprising a transition metal sulfide catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the transition metal sulfide catalyst having a total of at least 0.4 grams of one or more transition metal sulfides per gram of total transition metal sulfide catalyst, the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed, as determined by ASTM Method D5307; and controlling contacting conditions such that the crude product has at most 0.05 grams of coke per gram of crude product, and the crude product has a residue content of at most 30% of the residue content
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of one or more catalysts comprising a transition metal sulfide catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the transition metal sulfide catalyst having a total of least 0.4 grams of one or more transition metal sulfides per gram of transition metal sulfide catalyst, the crude feed having a nitrogen content of at least 0.001 grams of nitrogen per gram of crude feed, and the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed; and controlling contacting conditions such that the crude product has a nitrogen content of at most 90% of the nitrogen content of the crude feed, and the crude product has a residue content of at most 30% of the residue content of the crude feed, wherein nitrogen content is as determined by ASTM Method D5762 and residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of one or more catalysts comprising a transition metal sulfide catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the transition metal sulfide catalyst has a total of least 0.4 grams of one or more transition metal sulfides per gram of total transition metal sulfide catalyst, the crude feed has a total Ni/V/Fe content of at least 0.0001 grams of Ni/N/Fe per gram of crude feed, and the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed; and controlling contacting conditions such that the crude product has at most 0.05 grams of coke per gram of crude product, the crude product has a total ⁇ i/N/Fe content of at most 90% of the ⁇ i/N/Fe content of the crude feed, the crude product has a residue content
  • the invention also provides a method of producing a transition metal sulfide catalyst composition, comprising: mixing a transition metal oxide and a metal salt to form a transition metal oxide/metal salt mixture; reacting the transition metal oxide/metal salt mixture with hydrogen to form an intermediate; and reacting the intermediate with sulfur in the presence of one or more hydrocarbons to produce the transition metal sulfide catalyst.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, as determined by ASTM Method D5307, the crude product is a liquid mixture at 25 °C and 0.101 MPa, and the crude product has, per gram of crude product: at least 0.001 grams of diesel, and the diesel has at least 0.3 grams of aromatics per gram of diesel, as determined by IP Method 368/90; at least 0.001 grams of NGO, and the NGO has at least 0.3 grams of aromatics per gram of NGO, as determined by IP Method 368/90; and at most 0.05 grams of residue, as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherem the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range between 50 °C and 500 °C, as determined by Temporal Analysis of Products (TAP); and controlling contacting conditions such that the crude product has a residue content, expressed in grams of residue per gram of crude product, of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • TAP Temporal Analysis of Products
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises at least two inorganic metal salts, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range, as deteraiined by Temporal Analysis of Products (TAP), wherein the emitted gas inflection temperature range is between (a) a DSC temperature of at least one of the two inorganic metal salts and (b) a DSC temperature of the inorganic salt catalyst; and controlling contacting conditions such that the crude product has a residue content, expressed in grams of residue per gram of crude product, of at most 30% of the residue content of the crude feed, wherein residue content
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, as determined by ASTM Method D5307, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range between 50 °C and 500 °C, as determined by Temporal Analysis of Products (TAP); and producing the crude product such that a volume of the crude product produced is at least 5% greater than the volume of the crude feed, when the volumes are measured at 25 °C and 0.101 MPa.
  • TAP Temporal Analysis of Products
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range between 50 °C and 500 °C, as determined by Temporal Analysis of Products (TAP); and controlling contacting conditions such that during the contacting at most 0.2 grams of hydrocarbons that are not condensable at 25 °C and 0.101 MPa are formed per gram of crude feed, as determined by mass balance.
  • TAP Temporal Analysis of Products
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed, and the inorganic salt catalyst has a heat transition in a temperature range between 200 °C and 500 °C, as determined by differential scanning calorimetry (DSC), at a rate of 10 °C per minute; and controlling contacting conditions such that the crude product has a residue content, expressed in grams of residue per gram of crude product, of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed having a residue content of at least 0.2 grams of residue per gram of crude feed, and the inorganic salt catalyst has ionic conductivity that is at least the ionic conductivity of at least one of the inorganic salts of the inorganic salt catalyst at a temperature in a range from 300 °C and 500 °C; and controlling contacting conditions such that the crude product has a residue content, expressed in grams of residue per gram of crude product, of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises alkali metal salts, wherein at least one of the alkali metal salts is an alkali metal carbonate, and the alkali metals have an atomic number of at least 11, and at least one atomic ratio of an alkali metal having an atomic number of at least 11 to an alkali metal having an atomic number greater than 11 is in a range from 0.1 to 10; and controlling contacting conditions such that the crude product has a residue content of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product, wherein the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises alkali metal salts, wherein at least one of the alkali metal salts is an alkali metal hydroxide, and the alkali metals have an atomic number of at least 11, and at least one atomic ratio of an alkali metal having an atomic number of at least 11 to an alkali metal having an atomic number greater than 11 is in a range from 0.1 to 10; producing at least a portion of the total product as a vapor; condensing at least a portion of the vapor at 25 °C and 0.101 MPa; and forming the crude product, wherein the crude product has a residue content of at most 30% of the residue content of the crude feed.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product, wherein the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises alkali metal salts, wherein at least one of the alkali metal salts is an alkali metal hydride, and the alkali metals have an atomic number of at least 11 , and at least one atomic ratio of an alkali metal having an atomic number of at least 11 to an alkali metal having an atomic number greater than 11 is in a range from 0.1 to 10; producing at least a portion of the total product as a vapor; condensing at least a portion of the vapor at 25 °C and 0.101 MPa; and forming the crude product, wherein the crude product has a residue content of at most 30% of the residue content of the crude feed.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises one or more alkali metal hydroxides, one or more alkaline-earth metal salts, or mixtures thereof, wherem the alkali metals have an atomic number of at least 11; and controlling contacting conditions such that the crude product has a residue content of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with a hydrogen source in the presence of an inorganic salt catalyst to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, the inorganic salt catalyst comprises one or more alkali metal hydrides, one or more alkaline-earth salts, or mixtures thereof, and wherein the alkali metals have an atomic number of at least 11 ; and controlling contacting conditions such that the crude product has a residue content, expressed in grams of residue per gram of crude product, of at most 30% of the residue content of the crude feed, wherein residue content is as determined by ASTM Method D5307.
  • the invention also provides a method of producing hydrogen gas, comprising: contacting a crude feed with one or more hydrocarbons in the presence of an inorganic salt catalyst and water, the hydrocarbons have carbon numbers in a range from 1 to 6, the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range between 50 °C and 500 °C, as determined by Temporal Analysis of Products (TAP); and producing hydrogen gas.
  • TAP Temporal Analysis of Products
  • the invention also provides a method of producing a crude product, comprising: contacting a first crude feed with an inorganic salt catalyst in the presence of steam to generate a gas stream, the gas stream comprising hydrogen, wherein the first crude feed has a residue content of at least 0.2 grams of residue per gram of first crude feed, as determined using ASTM Method D5307, and the inorganic salt catalyst exhibits an emitted gas inflection of an emitted gas in a temperature range between 50 °C and 500 °C, as determined by Temporal Analysis of Products (TAP); contacting a second crude feed with a second catalyst in the presence of at least a portion of the generated gas stream to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa; and controlling contacting conditions such that one or more properties of the crude product change by at least 10% relative to the respective one or more properties of the second crude feed.
  • TAP Temporal Analysis of Products
  • the invention also provides a method of generating a gas stream, comprising: contacting a crude feed with an inorganic salt catalyst in the presence of steam, wherein the crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed, as determined by ASTM Method 5307; and generating a gas stream, the gas stream comprising hydrogen, carbon monoxide, and carbon dioxide, and wherein a molar ratio of the carbon monoxide to the carbon dioxide is at least 0.3.
  • the invention also provides a crude composition, having, per gram of composition: at most 0.05 grams of residue, as determined by ASTM Method D5307; and at least 0.001 grams of a mixture of hydrocarbons that have a boiling range distribution between 20 °C and 538 °C (1,000 °F), as determined by ASTM Method D5307, and the hydrocarbon mixture has, per gram of hydrocarbon mixture: at least 0.001 grams of paraffins, as determined by ASTM Method D6730; at least 0.001 grams of olefins, as determined by ASTM Method D6730, and the olefins have at least 0.001 grams of terminal olefins per gram of olefins, as determined by ASTM Method D6730; at least 0.001 grams of naphtha; at least 0.001 grams of kerosene, the kerosene having at least 0.2 grams of aromatics per gram of kerosene, as determined by ASTM Method D5186; at least 0.001 grams
  • the invention also provides a crude composition having, per gram of composition: at most 0.05 grams of residue; at least 0.001 grams of hydrocarbons with a boiling range distribution of at most 204 °C (400 °F) at 0.101 MPa, at least 0.001 grams of hydrocarbons with a boiling range distribution between 204 °C and 300 °C at 0.101 MPa, at least 0.001 grams of hydrocarbons with a boiling range distribution between 300 °C and 400 °C at 0.101 MPa, and at least 0.001 grams of hydrocarbons with a boiling range distribution between 400 °C and 538 °C at 0.101 MPa; and greater than 0 grams, but less than 0.01 grams of one or more catalyst, wherein the catalyst has at least one or more alkali metals.
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, a method that comprises contacting a crude feed with an one or more catalysts and that the one or more catalysts are nonacidic.
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, aK 3 Fe 10 S 4 catalyst or a transition metal sulfide catalyst that: (a) has a total of at least 0.4 grams, at least 0.6 grams, or at least 0.8 grams of at least one of transition metal sulfides per gram of the K 3 Fe 10 S 14 catalyst or the transition metal sulfide catalyst; (b) has an atomic ratio of transition metal to sulfur in the K 3 Fe ⁇ oS 14 catalyst or the transition metal sulfide catalyst in a range from 0.2 to 20; (c) further comprises one or more alkali metals, one or more compounds of one or more alkali metals, or mixtures thereof; (d) further comprises one or more alkaline
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, that the K 3 Fe 10 S 14 catalyst is formed in situ.
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, one or more of the transition metal sulfides that or in which: (a) comprise one or more transition metals from Columns 6-10 of the Periodic Table, one or more compounds of one or more transition metals from Columns 6-10, or mixtures thereof; (b) comprise one or more iron sulfides; (c) comprises FeS; (d) comprises FeS 2 ; (e) comprise a mixture of iron sulfides, wherein the iron sulfides are represented by the formula Fe ⁇ S, where b is in a range from above 0 to 0.17; (f) further comprises K 3 Fe 10 S 14 after contact with the crude feed; (g) at least one of the transition metals of the one or more transition metal sulfides is iron; and/or (
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, a method of forming a transition metal sulfide catalyst composition the method comprising mixing a transition metal oxide and a metal salt to form a transition metal oxide/metal salt mixture; reacting the transition metal oxide/metal salt mixture with hydrogen to form an intermediate; and reacting the intermediate with sulfur in the presence of one or more hydrocarbons to produce the transition metal sulfide catalyst: (a) the metal salt comprises an alkali metal carbonate; (b) that further comprises dispersing the intermediate in the one or more liquid hydrocarbons while it is reacted with the sulfur; (c) in which one or more of the .
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, an inorganic salt catalyst that comprises: (a) one or more alkali metal carbonates, one or more alkaline-earth metal carbonates, or mixtures thereof; (b) one or more alkali metal hydroxides, one or more alkaline-earth metal hydroxides, or mixtures thereof; (c) one or more alkali metal hydrides, one or more alkaline-earth metal hydrides, or mixtures thereof; (d) one or more sulfides of one or more alkali metals, one or more sulfides of one or more alkaline-earth metals, or mixtures thereof; (e) one or more amides of one or more alkali metals, one or more amides of one or more alkaline-earth metals, or mixtures thereof; (f) one or more metals from Columns 6-10 of the Periodic Table, one or more compounds of one or more metals from Columns
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, an inorganic salt catalyst that or in which: (a) is liquid or semi-liquid at least at the TAP temperature of the inorganic salt catalyst, and the inorganic salt catalyst is substantially insoluble in the crude feed at least at the TAP temperature, wherein the TAP temperature is the minimum temperature at which the inorganic salt catalyst exhibits an emitted gas inflection; (b) is a mixture of a liquid phase and a solid phase at a temperature in a range from 50 °C to 500 °C; and/or (c) at least one of the two inorganic salts has a DSC temperature above 500 °C.
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, an inorganic salt catalyst that when tested in the form of particles that can pass through a 1000 micron filter, self- deforms under gravity and/or under a pressure of at least 0.007 MPa when heated to a temperature of at least 300 °C, such that the inorganic salt catalyst transforms from a first form to a second form, and the second form is incapable of returning to the first form upon cooling of the inorganic salt catalyst to 20 °C.
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, a crude product that: (a) has at most 0.003 grams, at most 0.02 grams, at most 0.01 grams, at most 0.05 grams, most 0.001 grams, from 0.000001-0.1 grams, 0.00001-0.05 grams, or 0.0001-0.03 grams of residue per gram of crude product; (b) has from 0 grams to 0.05 grams, 0.00001-0.03 grams, or 0.0001-0.01 grams of coke per gram of crude product; (c) has an olefins content of at least 10% greater than the olefins content of the crude feed; (d) has greater than 0 grams, but less than 0.01 grams of total inorganic salt catalyst per gram of crude product, as determined by mass balance; (e) has at least 0.1 grams, from 0.00001-0.99 grams, from 0.04-0.9 grams from 0.6-0.8 grams of NGO per gram of crude product; (f) comprises NGO and the NGO has
  • the invention also provides, in combination with one or more of the methods or compositions according to the invention, a crude product that has at least one of the catalysts comprising one or more alkali metals, in which: (a) at least one of the alkali metals is potassium, rubidium; or cesium, or mixtures thereof; and/or (b) at least one of the catalysts further comprises a transition metal, a transition metal sulfide and/or bartonite.
  • features from specific embodiments of the invention may be combined with features from other embodiments of the invention.
  • features from one embodiment may be combined with features from any of the other embodiments.
  • crude products are obtainable by any of the methods and systems described herein.
  • FIG. 4 is a schematic of an embodiment of a blending zone in combination with a contacting system.
  • FIG. 5 is a schematic of an embodiment of a separation zone, a contacting system, and a blending zone.
  • FIG. 6 is a schematic of an embodiment of multiple contacting systems.
  • FIG. 7 is a schematic of an embodiment of an ionic conductivity measurement system.
  • FIG. 8 is a tabulation of properties of the crude feed and properties of crude products obtained from embodiments of contacting the crude feed with the transition metal sulfide catalyst.
  • FIG. 9 is a tabulation of compositions of the crude feed and compositions of non- condensable hydrocarbons obtained from embodiments of contacting the crude feed with the transition metal sulfide catalyst.
  • Br ⁇ nsted-Lowry acid refers to a molecular entity with the ability to donate a proton to another molecular entity.
  • “Br ⁇ nsted-Lowry base” refers to a molecular entity that is capable of accepting protons from another molecular entity. Examples of Br ⁇ nsted-Lowry bases include hydroxide (OH ⁇ ), water (H 2 O), carboxylate (RCQf), halide (Br ⁇ CF, F ⁇ , IT), bisulfate (HSO 4 ⁇ ), and sulfate (SO 4 2 ⁇ ).
  • “Carbon number” refers to the total number of carbon atoms in a molecule.
  • distillate refers to hydrocarbons with a boiling range distribution between 204 °C and 343 °C (400-650 °F) at 0.101 MPa. Distillate content is as determined by ASTM Method D2887. Distillate may include kerosene and diesel. "DSC” refers to differential scanning calorimetry. "Freeze point” and “freezing point” refer to the temperature at which formation of crystalline particles occurs in a liquid. A freezing point is as determined by ASTM D2386. "GC/MS” refers to gas chromatography in combination with mass spectrometry. “Hard base” refers to anions as described by Pearson in Journal of American
  • n-Paraffins refer to normal (straight chain) saturated hydrocarbons.
  • Ole number refers to a calculated numerical representation of the antiknock properties of a motor fuel compared to a standard reference fuel. A calculated octane number of naphtha is as determined by ASTM Method D6730.
  • Olefins refer to compounds with non-aromatic carbon-carbon double bonds. Types of olefins include, but are not limited to, cis, trans, terminal, internal, branched, and linear.
  • Periodic Table refers to the Periodic Table as specified by the international Union of Pure and Applied Chemistry (TUPAC), November 2003.
  • Polyaromatic compounds refer to compounds that include two or more aromatic rings.
  • SCFB refers to standard cubic feet of gas per barrel of crude feed.
  • Superbase refers to a material that can deprotonate hydrocarbons such as paraffins and olefins under reaction conditions.
  • TAN refers to a total acid number expressed as milligrams ("mg") of KOH per gram ("g") of sample. TAN is as determined by ASTM Method D664.
  • TEP refers to temporal-analysis-of-products.
  • TMS refers to transition metal sulfide.
  • NGO refers to components with a boiling range distribution between 343 °C and 538 °C (650-1000 °F) at 0.101 MPa. VGO content is as determined by ASTM Method D2887.
  • Topped refers to a crude that has been treated such that at least some of the components that have a boiling point below 35 °C at 0.101 MPa are removed.
  • topped crudes typically have a content of at most 0.1 grams, at most 0.05 grams, or at most 0.02 grams of such components per gram of the topped crude.
  • Some stabilized crudes have properties that allow the stabilized crudes to be transported to conventional treatment facilities by transportation carriers (for example, pipelines, trucks, or ships).
  • Other crudes have one or more unsuitable properties that render them disadvantaged. Disadvantaged crudes may be unacceptable to a transportation carrier, and/or a treatment facility, thus imparting a low economic value to the disadvantaged crude.
  • a crude and/or disadvantaged crude that is to be treated may be referred to as "crude feed”.
  • the crude feed may be topped as described herein.
  • the crude product resulting from treatment of the crude feed, using methods described herein, is suitable for transporting and/or refining.
  • the total product includes the crude product that is a liquid mixture at STP and, in some embodiments, hydrocarbons that are not condensable at STP.
  • the total product and/or the crude product may include solids (such as inorganic solids and/or coke).
  • the solids may be entrained in the liquid and/or vapor produced during contacting.
  • a contacting zone typically includes a reactor, a portion of a reactor, multiple portions of a reactor, or multiple reactors.
  • a quantity of the catalyst used in the contacting zone may range from 1-100 grams, 2-80 grams, 3-70 grams, or 4-60 grams, per 100 grams of crude feed in the contacting zone.
  • a diluent may be added to the crude feed to lower the viscosity of the crude feed.
  • the crude feed enters a bottom portion of contacting zone 102 via conduit 104.
  • the crude feed maybe heated to a temperature of at least 100 °C or at least 300 °C prior to and/or during introduction of the crude feed to contacting zone 102.
  • the crude feed may be heated to a temperature in a range from 100-500 °C or 200-400 °C.
  • fresh catalyst may be added to contacting zone 102 during the reaction process.
  • the crude feed and/or a mixture of crude feed with the inorganic salt catalyst is introduced into the contacting zone as an emulsion.
  • the emulsion may be prepared by combining an inorganic salt catalyst/water mixture with a crude feed/surfactant mixture.
  • a stabilizer is added to the emulsion.
  • the emulsion may remain stable for at least 2 days, at least 4 days, or at least 7 days. Typically, the emulsion may remain stable for 30 days, 10 days, 5 days, or 3 days.
  • a 10 mg sample was heated to 520 °C at a rate of 10 °C per min, cooled from 520 °C to 0.0 °C at rate of 10 °C per minute, and then heated from 0 °C to 600 °C at a rate of 10.0 °C per min using a differential scanning calorimeter (DSC) Model DSC-7, manufactured by Perkin-Elmer (Norwalk, Connecticut, U.S.A.).
  • DSC analysis of a K 2 CO /Rb 2 CO 3 /Cs 2 CO 3 catalyst during second heating of the sample shows that the salt mixture exhibited a broad heat transition between 219 °C and 260 °C. The midpoint of the temperature range was 250 °C.
  • FIG. 12 is a graphical representation of log plots of Na 2 CO 3 /K 2 CO 3 /Rb 2 CO 3 /Cs 2 CO 3 catalyst resistance relative to K 2 CO 3 resistance ("log (r K 2 CO 3 )") versus temperature ("T").
  • Curve 182 is a plot of a ratio of Na 2 C ⁇ 3 /K 2 CO 3 /Rb 2 C ⁇ 3 /Cs 2 C ⁇ 3 catalyst resistance relative to K 2 CO 3 resistance (curve 172) versus temperature during heating of the Na 2 CO 3 /K 2 CO 3 /Rb 2 CO 3 /Cs 2 CO 3 catalyst.
  • Addition Vessel An addition vessel (a 250 mL, 316 stainless steel hoke vessel) was equipped with a controlled heating system, suitable gas control valving, a pressure relief device, thermocouples, a pressure gauge, and a high temperature control valve (Swagelok Valve # SS-4UW) capable of regulating flow of a hot, viscous, and/or pressurized crude feed at a flow rate from 0-500 g/min. An outlet side of the high temperature control valve was attached to the first inlet port of the reactor after crude feed was charged to the addition vessel. Prior to use, the addition vessel line was insulated.
  • the crude product included at least 0.001 grams of hydrocarbons with a boiling range distribution of at most 200 °C at 0.101 MPa, at least 0.001 grams of hydrocarbons with a boiling range distribution between 200-300 °C at 0.101 MPa, at least 0.001 grams of hydrocarbons with a boilmg range distribution between 400-538 °C (1000 °F) at 0.101 MPa.
  • Example 15 In Example 15, 36.82 grams (26.68 wt%, based on the weight of the crude feed) of a colorless hydrocarbon liquid with API gravity of at least 50 was produced from contact of the crude feed with the inorganic salt catalyst in the carbon dioxide atmosphere. In Example 16, 15.78 grams (11.95 wt%, based on the weight of the crude feed) of a yellow hydrocarbon liquid with an API gravity of 12 was produced from contact of the crude feed with silicon carbide in the carbon dioxide atmosphere. Although the yield in Example 15 is low, the in-situ generation of a hydrogen source in the presence of the inorganic salt catalyst is greater than the in-situ generation of hydrogen under non-catalytic conditions. The yield of crude product in Example 16 is one-half of the yield of crude product in Example 15. Example 15 also demonstrates that hydrogen is generated during contact of the crude feed in the presence of the inorganic salt and in the absence of a gaseous hydrogen source.
  • Example 19 a crude feed was contacted with CaCO 3 under conditions similar to the conditions described for Example 18. Percentages of crude product, gas, and coke production are tabulated in Table 4 in FIG. 16. Gas production increased in Example 19 relative to the gas production in Example 18. Desulfurization of the crude feed was not as effective as in Example 18. The crude product produced in Example 19 had, per gram of crude product, 0.01 grams of sulfur as compared to the sulfur content of 0.008 grams per gram of crude product for the crude product produced in Example 18.
  • Example 20 is a comparative example for Example 18. In Example 20, 83.13 grams of silicon carbide instead of the inorganic salt catalyst was charged to the reactor. Gas production and coke production significantly increased in Example 20 relative to the gas production and coke production in Example 18.
  • the K 2 CO 3 /Rb2CO 3 /Cs 2 CO 3 catalyst was prepared by combining 27.2 grams of K 2 CO 3 , 32.2 grams of Rb 2 CO 3 and 40.6 grams of Cs 2 CO 3 .
  • the crude feed (130.35 grams) and K 2 CO 3 /Rb 2 CO 3 /Cs 2 CO 3 catalyst (31.6 grams) was charged to the reactor.
  • the Cerro Negro crude included, per gram of crude feed, 0.04 grams total aromatics content in a boiling range distribution between 149-260 °C (300-500 °F), 0.000640 grams of nickel and vanadium combined, 0.042 grams of sulfur, and 0.56 grams of residue.
  • API gravity of the crude feed was 6.7.
  • the crude product included a mixture of hydrocarbons with a boiling range between 100-538 °C.
  • the total liquid product mixture included 0.006 grams ethyl benzene (a monocyclic ring compound with a boiling point of 136.2 °C at 0.101 MPa) per gram of mixture. This product was not detected in the crude feed.
  • the used catalyst (“first used catalyst") was removed from the reactor, weighed, and then analyzed. The first used catalyst had an increase in weight from 31.6 grams to a total weight of 37.38 grams (an increase of 18 wt%, based on the weight of the original
  • the used catalyst (“second used catalyst”) was removed from the reactor, weighed, and then analyzed.
  • the second used catalyst had an increase in weight from 36.63 grams to a total weight of 45.44 grams (an increase of 43 wt%, based on the weight of the original K 2 CO 3 /Rb 2 CO 3 /Cs 2 CO 3 catalyst).
  • the second used catalyst included 0.32 grams of coke, and 0.01 grams of sulfur, and 0.67 grams per gram of second used catalyst. Additional crude feed (104 grams) was contacted with the second used catalyst
  • the average crude product yield (based on the weight of the crude feed) was 89.7 wt%, with a standard deviation of 2.6%; the average coke yield was 7.5 wt% (based on the weight of the crude feed), with a standard deviation of 2.7%, and the average weight yield of gaseous cracked hydrocarbons was 2.3 wt% (based on the weight of the crude feed) with a standard deviation of 0.46%.
  • the comparatively large standard deviation of both liquid and coke was due to the third trial, in which the temperature controller of the feed vessel failed, overheating the crude feed in the addition vessel. Even so, there is no apparent significant deleterious effect of even the large amounts of coke tested here on the activity of the catalyst system.
  • a crude feed (bitumen, Lloydminster, Canada) having an API gravity of 9.4, a sulfur content of 0.02 grams of sulfur, and a residue content of 0.40 grams, per gram of crude feed, was heated in the addition vessel to 150 °C.
  • the hot bitumen was continuously metered from the addition vessel at 10.5 g/min to the reactor in an attempt to maintain the crude feed liquid level of 50% of the reactor volume, however, the rate was insufficient to maintain that level.
  • the methane/steam/crude feed was contacted with the catalyst at an average internal reactor temperature of 456 °C. Contacting of the methane/steam/crude feed with the catalyst produced a total product (in this example in the form of the reactor effluent vapor).
  • the gas included, per gram of gas, 0.014 grams of hydrogen, 0.018 grams of carbon monoxide, 0.08 grams of carbon dioxide, 0.13 grams of hydrogen sulfide, and 0.68 grams of non-condensable hydrocarbons. From the amount of hydrogen sulfide generated, it may be estimated that the sulfur content of the crude feed was reduced by 18 wt%. As shown in this example, hydrogen, carbon monoxide, and carbon dioxide were produced. The molar ratio of carbon monoxide to carbon dioxide was 0.4.
  • the C 2 -C 5 hydrocarbons included, per gram of hydrocarbons, 0.30 grams of C 2 compounds, 0.32 grams of C 3 compounds, 0.26 grams of C 4 compounds, and 0.10 grams of C 5 compounds.
  • the weight ratio of iso-pentane to n-pentane in the non-condensable hydrocarbons was 0.3.
  • the weight ratio of isobutane to n-butane in the non-condensable hydrocarbons was 0.189.
  • the C 4 compounds had, per gram of C 4 compounds, a butadiene content of 0.003 grams.
  • a weight ratio of alpha C 4 olefins to internal C 4 olefins was 0.75.
  • a weight ratio of alpha C 5 olefins to internal C 5 olefins was 1.08.
  • the molar ratio of carbon monoxide to carbon dioxide was 0.6.
  • the C 2 -C 6 hydrocarbons included, per gram of C 2 -C 6 hydrocarbons, 0.44 grams of C 2 compounds, 0.31 grams of C 3 compounds, 0.19 grams of C 4 compound and 0.068 grams of C 5 compounds.
  • the weight ratio of iso-pentane to n-pentane in the non- condensable hydrocarbons was 0.25.
  • the weight ratio of iso-butane to n-butane in the non-condensable hydrocarbons was 0.15.
  • the C 4 compounds had, per gram of C 4 compounds, a butadiene content of 0.003 grams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Hydrogen, Water And Hydrids (AREA)
EP04814795A 2003-12-19 2004-12-16 Systems and methods of producing a crude product Withdrawn EP1702046A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US53150603P 2003-12-19 2003-12-19
US61879904P 2004-10-14 2004-10-14
PCT/US2004/042654 WO2005063936A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product

Publications (1)

Publication Number Publication Date
EP1702046A2 true EP1702046A2 (en) 2006-09-20

Family

ID=34713791

Family Applications (13)

Application Number Title Priority Date Filing Date
EP04814319A Withdrawn EP1702021A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814406A Withdrawn EP1704207A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814322A Withdrawn EP1704202A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814795A Withdrawn EP1702046A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814410A Withdrawn EP1704210A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814793A Withdrawn EP1702041A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814789A Withdrawn EP1702024A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814325A Withdrawn EP1716220A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814326A Withdrawn EP1704212A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814781A Withdrawn EP1702023A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814321A Withdrawn EP1702038A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814520A Withdrawn EP1702048A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814333A Withdrawn EP1704209A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP04814319A Withdrawn EP1702021A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814406A Withdrawn EP1704207A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814322A Withdrawn EP1704202A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product

Family Applications After (9)

Application Number Title Priority Date Filing Date
EP04814410A Withdrawn EP1704210A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814793A Withdrawn EP1702041A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814789A Withdrawn EP1702024A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814325A Withdrawn EP1716220A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814326A Withdrawn EP1704212A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814781A Withdrawn EP1702023A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814321A Withdrawn EP1702038A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814520A Withdrawn EP1702048A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product
EP04814333A Withdrawn EP1704209A2 (en) 2003-12-19 2004-12-16 Systems and methods of producing a crude product

Country Status (13)

Country Link
EP (13) EP1702021A2 (th)
JP (13) JP2007517091A (th)
KR (7) KR20060130111A (th)
AU (7) AU2004312368B2 (th)
BR (13) BRPI0405569A (th)
CA (13) CA2550437C (th)
EA (4) EA009091B1 (th)
MX (10) MXPA06006793A (th)
NL (12) NL1027775C2 (th)
RU (6) RU2006126088A (th)
SG (2) SG149048A1 (th)
TW (7) TW200532011A (th)
WO (13) WO2005063928A2 (th)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416653B2 (en) * 2003-12-19 2008-08-26 Shell Oil Company Systems and methods of producing a crude product
GB2451311A (en) * 2005-10-24 2009-01-28 Shell Int Research Systems,methods and processes for use in treating subsurface formations
JP5506139B2 (ja) * 2007-01-18 2014-05-28 Jx日鉱日石エネルギー株式会社 化学装置に対する腐食を低減する方法
US20080272061A1 (en) * 2007-05-03 2008-11-06 Baker Hughes Incorporated Methods and Compositions for Deactivating Organic Acids in Oil
WO2009073440A2 (en) * 2007-11-28 2009-06-11 Saudi Arabian Oil Company Process to upgrade heavy oil by hot pressurized water and ultrasonic wave generating pre-mixer
US7862708B2 (en) 2007-12-13 2011-01-04 Exxonmobil Research And Engineering Company Process for the desulfurization of heavy oils and bitumens
KR20110018875A (ko) * 2008-04-10 2011-02-24 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 촉매 시스템 및 이 촉매 시스템으로 미정제 공급물을 변환시키는 방법
US8114806B2 (en) * 2008-04-10 2012-02-14 Shell Oil Company Catalysts having selected pore size distributions, method of making such catalysts, methods of producing a crude product, products obtained from such methods, and uses of products obtained
FR2932813B1 (fr) 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
US20120043195A1 (en) * 2009-04-20 2012-02-23 Bo Corporation North America Inc. Process for Regenerating Coked Particles
TR201902099T4 (tr) * 2009-08-31 2019-03-21 W Gunnerman Rudolf Ham petrolden veya onun fraksiyonlarından itibaren düşük kaynama noktalı yakıt üretimi için fraksiyonsuz yöntem.
US9688920B2 (en) 2009-11-02 2017-06-27 Field Upgrading Limited Process to separate alkali metal salts from alkali metal reacted hydrocarbons
US9546325B2 (en) 2009-11-02 2017-01-17 Field Upgrading Limited Upgrading platform using alkali metals
CN102597177B (zh) * 2009-11-02 2014-12-24 塞拉麦泰克股份有限公司 用碱金属和烃对石油原料的提质
US9512368B2 (en) 2009-11-02 2016-12-06 Field Upgrading Limited Method of preventing corrosion of oil pipelines, storage structures and piping
CA2855966C (en) * 2011-11-16 2018-05-01 Ceramatec, Inc. Device and method for upgrading petroleum feedstocks using an alkali metal conductive membrane
TWI481584B (zh) * 2012-11-22 2015-04-21 Ind Tech Res Inst 酯類脫氧的方法
US11440815B2 (en) 2013-02-22 2022-09-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9364773B2 (en) 2013-02-22 2016-06-14 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
CA2843041C (en) 2013-02-22 2017-06-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9708196B2 (en) 2013-02-22 2017-07-18 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
CN104918698B (zh) 2013-07-18 2016-10-12 中国石油大学(北京) 一种铁基加氢催化剂及其应用
CN110665543A (zh) * 2019-11-07 2020-01-10 西安石油大学 一种稠油高温降粘用金属-粘土复合催化剂及其制备方法

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB286206A (en) * 1927-02-28 1928-12-18 Georges Hugel Process for the hydrogenation of organic substances, especially of the products of the distillation of coals and petroleum oils
US1954478A (en) * 1930-02-14 1934-04-10 Universal Oil Prod Co Treatment of hydrocarbon oils
US2652319A (en) * 1949-01-03 1953-09-15 Standard Oil Dev Co Process for water-gas generation
US2738307A (en) * 1951-04-09 1956-03-13 Sinclair Refining Co Hydrocracking of heavy oils
US2854496A (en) * 1953-08-31 1958-09-30 Houdry Process Corp Process for the catalytic hydrogenation of unsaturated hydrocarbons and their derivatives
NL267291A (th) * 1959-05-14 1900-01-01
NL285285A (th) 1961-11-10
US3179584A (en) * 1962-02-23 1965-04-20 Exxon Research Engineering Co Oil coking with increased hydrogen production
US3139398A (en) * 1962-03-01 1964-06-30 California Research Corp Method of operating a hydrocracking process to increase on-stream life of catalyst and improve product quality
US3252773A (en) * 1962-06-11 1966-05-24 Pullman Inc Gasification of carbonaceous fuels
US3164545A (en) * 1962-12-26 1965-01-05 Exxon Research Engineering Co Desulfurization process
US3417029A (en) * 1963-04-05 1968-12-17 Pullman Inc Catalyst composition
US3558747A (en) 1967-01-30 1971-01-26 Ethyl Corp Dihydrocarbylhydroxyphenyl phosphorus-containing antioxidants
US3553279A (en) * 1968-03-29 1971-01-05 Texas Instruments Inc Method of producing ethylene
US3679577A (en) * 1968-11-29 1972-07-25 Shell Oil Co Molten salt hydrofining process
US3663431A (en) * 1969-10-15 1972-05-16 Union Oil Co Two-phase hydrocarbon conversion system
US3622495A (en) * 1970-01-22 1971-11-23 Universal Oil Prod Co Multiple-stage slurry processing for black oil conversion
US3890432A (en) * 1970-05-05 1975-06-17 Chevron Res Catalytic hydrogen manufacture
US3759677A (en) * 1970-05-05 1973-09-18 Chevron Res Catalytic synthesis gas manufacture
US3803023A (en) * 1970-06-09 1974-04-09 Exxon Research Engineering Co Steam gasification of coke
US3745109A (en) * 1970-10-01 1973-07-10 North American Rockwell Hydrocarbon conversion process
US3765851A (en) * 1970-12-14 1973-10-16 Chervon Res Co Gas production
US3740193A (en) * 1971-03-18 1973-06-19 Exxon Research Engineering Co Hydrogen production by catalytic steam gasification of carbonaceous materials
US3816298A (en) * 1971-03-18 1974-06-11 Exxon Research Engineering Co Hydrocarbon conversion process
US3715303A (en) * 1971-05-18 1973-02-06 Standard Oil Co Hydrotreatment of fossil fuels
BE788938A (fr) * 1971-09-24 1973-03-19 Shell Int Research Offracties werkwijze voor de bereiding van lichte koolwaterst
US3847797A (en) 1971-10-05 1974-11-12 Exxon Research Engineering Co Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium
GB1397130A (en) * 1972-06-06 1975-06-11 Exxon Research Engineering Co Process for treating sulphur-containing hydrocarbons
JPS5139645B2 (th) 1972-12-30 1976-10-29
US3862025A (en) * 1973-01-02 1975-01-21 Exxon Research Engineering Co Melt cracking for lubricating oils
US3948759A (en) * 1973-03-28 1976-04-06 Exxon Research And Engineering Company Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen
US3960706A (en) * 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US3960708A (en) 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US3923635A (en) * 1974-06-17 1975-12-02 Exxon Research Engineering Co Catalytic upgrading of heavy hydrocarbons
JPS5153505A (en) * 1974-11-07 1976-05-12 Showa Oil Tankasuisono henkanhoho
US4003823A (en) * 1975-04-28 1977-01-18 Exxon Research And Engineering Company Combined desulfurization and hydroconversion with alkali metal hydroxides
US4003824A (en) * 1975-04-28 1977-01-18 Exxon Research And Engineering Company Desulfurization and hydroconversion of residua with sodium hydride and hydrogen
DE2558505A1 (de) * 1975-04-28 1976-11-18 Exxon Research Engineering Co Verfahren zur entschwefelung und hydrierung von kohlenwasserstoffen
DE2530600C2 (de) * 1975-07-09 1984-02-02 Kraftwerk Union AG, 4330 Mülheim Verfahren zur katalytischen Druckvergasung fossiler Brennstoffe mit Wasserdampf
US4067799A (en) * 1976-07-02 1978-01-10 Exxon Research And Engineering Company Hydroconversion process
US4119528A (en) 1977-08-01 1978-10-10 Exxon Research & Engineering Co. Hydroconversion of residua with potassium sulfide
US4127470A (en) * 1977-08-01 1978-11-28 Exxon Research & Engineering Company Hydroconversion with group IA, IIA metal compounds
CA1094492A (en) 1977-10-24 1981-01-27 Ramaswami Ranganathan Hydrocracking of heavy oils using iron coal catalyst
US4147617A (en) * 1978-04-06 1979-04-03 Mobil Oil Corporation Processing hydrocarbon feed of high carbon residue and high metals content
US4212729A (en) * 1978-07-26 1980-07-15 Standard Oil Company (Indiana) Process for demetallation and desulfurization of heavy hydrocarbons
US4313818A (en) * 1978-10-30 1982-02-02 Exxon Research & Engineering Co. Hydrocracking process utilizing high surface area catalysts
JPS55104920A (en) 1979-01-30 1980-08-11 Nippon Mining Co Ltd Manufacture of lightened oil and hydrogen from heavy oil
GB2056478B (en) * 1979-08-10 1983-03-02 Coal Ind Coal liquefaction process
US4357229A (en) * 1979-11-01 1982-11-02 Exxon Research And Engineering Co. Catalysts and hydrocarbon treating processes utilizing the same
JPS601056B2 (ja) * 1980-02-19 1985-01-11 千代田化工建設株式会社 アスファルテンを含む重質炭化水素油の水素化処理
JPS56118490A (en) * 1980-02-25 1981-09-17 Mitsubishi Chem Ind Ltd Conversion of petroleum heavy hydrocarbon oil to light hydrocarbon oil
US4336034A (en) * 1980-03-10 1982-06-22 Exxon Research & Engineering Co. Process for the catalytic gasification of coal
US4424110A (en) * 1980-08-29 1984-01-03 Exxon Research And Engineering Co. Hydroconversion process
US4438218A (en) * 1981-07-27 1984-03-20 Alberta Oil Sands Technology And Research Authority Catalyst for sulphur removal from hydrocarbons
US4500323A (en) * 1981-08-26 1985-02-19 Kraftwerk Union Aktiengesellschaft Process for the gasification of raw carboniferous materials
US4591426A (en) 1981-10-08 1986-05-27 Intevep, S.A. Process for hydroconversion and upgrading of heavy crudes of high metal and asphaltene content
GB2120675B (en) * 1982-05-22 1986-07-16 Ca Minister Energy Hydrocracking of heavy oils in presence of pyrite particles
DE3222653C1 (de) * 1982-06-16 1983-04-21 Kraftwerk Union AG, 4330 Mülheim Verfahren zum Umsetzen von kohlenstoffhaltigem Brennstoff zu einem brennbaren Produktgas
US4437980A (en) * 1982-07-30 1984-03-20 Rockwell International Corporation Molten salt hydrotreatment process
US4886594A (en) * 1982-12-06 1989-12-12 Amoco Corporation Hydrotreating catalyst and process
FR2559497B1 (fr) * 1984-02-10 1988-05-20 Inst Francais Du Petrole Procede de conversion de residus petroliers lourds en hydrogene et hydrocarbures gazeux et distillables
US4626412A (en) 1984-12-14 1986-12-02 Monsanto Company Method and apparatus for carrying out catalyzed chemical reactions and for studying catalysts
US5264183A (en) 1984-12-14 1993-11-23 Monsanto Company Method and apparatus for carrying out catalyzed chemical reactions and for studying catalysis
US4913799A (en) * 1984-12-18 1990-04-03 Uop Hydrocracking catalysts and processes employing non-zeolitic molecular sieves
ATE45177T1 (de) * 1984-12-27 1989-08-15 Mobil Oil Corp Verfahren zur hydrocracking und katalytischen entwachsung.
US4666878A (en) * 1984-12-28 1987-05-19 Exxon Research And Engineering Company Amorphous, iron promoted Mo and W sulfide hydroprocessing catalysts and uses thereof
US4665261A (en) 1985-06-21 1987-05-12 Atlantic Richfield Company Hydrocarbon conversion process using a molten salt
FR2588879B1 (fr) * 1985-10-18 1988-09-16 Elf France Procede d'hydrotraitement des charges hydrocarbonees
US5166118A (en) 1986-10-08 1992-11-24 Veba Oel Technologie Gmbh Catalyst for the hydrogenation of hydrocarbon material
DE3737370C1 (de) 1987-11-04 1989-05-18 Veba Oel Entwicklungs Gmbh Verfahren zur hydrierenden Konversion von Schwer- und Rueckstandsoelen,Alt- und Abfalloelen in Mischung mit Klaerschlaemmen
GB8727777D0 (en) * 1987-11-27 1987-12-31 Shell Int Research Heavy oil cracking process
CA1300068C (en) * 1988-09-12 1992-05-05 Keith Belinko Hydrocracking of heavy oil in presence of ultrafine iron sulphate
GB8912698D0 (en) * 1989-06-02 1989-07-19 Shell Int Research Heavy oil conversion process
US5039489A (en) 1990-04-17 1991-08-13 Gleaves John T Apparatus for catalyst analysis
US5171727A (en) * 1991-08-26 1992-12-15 Uop Method of preparing a catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks
US5296130A (en) 1993-01-06 1994-03-22 Energy Mines And Resources Canada Hydrocracking of heavy asphaltenic oil in presence of an additive to prevent coke formation
US5358629A (en) * 1993-01-21 1994-10-25 Texaco Inc. Hydroconversion process containing a molybdenum complex recovered from epoxidation of olefinic hydrocarbons
US5374348A (en) * 1993-09-13 1994-12-20 Energy Mines & Resources - Canada Hydrocracking of heavy hydrocarbon oils with heavy hydrocarbon recycle
FR2758278B1 (fr) * 1997-01-15 1999-02-19 Inst Francais Du Petrole Catalyseur comprenant un sulfure mixte et utilisation en hydroraffinage et hydroconversion d'hydrocarbures
US5928497A (en) * 1997-08-22 1999-07-27 Exxon Chemical Pateuts Inc Heteroatom removal through countercurrent sorption
US5897769A (en) * 1997-08-29 1999-04-27 Exxon Research And Engineering Co. Process for selectively removing lower molecular weight naphthenic acids from acidic crudes
FR2780307B1 (fr) * 1998-06-25 2000-08-11 Inst Francais Du Petrole Catalyseur d'hydrocraquage a base d'une zeolithe desaluminee et d'une phase sulfure mixte comprenant du soufre, au moins un element du groupe vb et au moins un element du groupe vib
WO2002020702A1 (en) * 2000-09-04 2002-03-14 Akzo Nobel N.V. Process for effecting ultra-deep hds of hydrocarbon feedstocks
US6547957B1 (en) 2000-10-17 2003-04-15 Texaco, Inc. Process for upgrading a hydrocarbon oil
US6797126B2 (en) * 2001-04-24 2004-09-28 Reactive Energy Llc Process for the desulphurization and upgrading fuel oils
US6841062B2 (en) 2001-06-28 2005-01-11 Chevron U.S.A. Inc. Crude oil desulfurization
US20030149317A1 (en) 2002-02-04 2003-08-07 Rendina David Deck Hydrogenation catalysts and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005063936A2 *

Also Published As

Publication number Publication date
NL1027783A1 (nl) 2005-06-22
MXPA06006900A (es) 2006-12-19
EP1704212A2 (en) 2006-09-27
BRPI0405583A (pt) 2005-09-20
MXPA06006741A (es) 2006-08-18
BRPI0405574A (pt) 2005-08-30
CA2549584A1 (en) 2005-07-14
EP1702021A2 (en) 2006-09-20
NL1027776A1 (nl) 2005-06-22
CA2550437C (en) 2014-02-11
EP1702023A2 (en) 2006-09-20
EA200601186A1 (ru) 2007-02-27
JP2007514822A (ja) 2007-06-07
JP2007514839A (ja) 2007-06-07
WO2005061664A2 (en) 2005-07-07
CA2550255A1 (en) 2005-07-21
JP2007514846A (ja) 2007-06-07
JP2007514823A (ja) 2007-06-07
EP1716220A2 (en) 2006-11-02
EP1704207A2 (en) 2006-09-27
RU2006126091A (ru) 2008-02-10
WO2005063928A3 (en) 2005-11-10
EP1702041A2 (en) 2006-09-20
TW200535233A (en) 2005-11-01
CA2551092A1 (en) 2005-07-07
NL1027777C2 (nl) 2006-08-22
TW200535229A (en) 2005-11-01
MXPA06006797A (es) 2006-12-19
JP2007518846A (ja) 2007-07-12
CA2549880A1 (en) 2005-07-14
JP2007514848A (ja) 2007-06-07
AU2004312372A1 (en) 2005-07-21
WO2005063936A2 (en) 2005-07-14
EA200601185A1 (ru) 2006-10-27
CA2549405C (en) 2013-07-23
MXPA06006793A (es) 2006-12-19
WO2005063932A2 (en) 2005-07-14
RU2006126089A (ru) 2008-02-10
EP1702038A2 (en) 2006-09-20
WO2005066305A2 (en) 2005-07-21
NL1027774C2 (nl) 2006-08-29
JP4712723B2 (ja) 2011-06-29
CA2549418C (en) 2014-04-22
CA2559839C (en) 2013-03-12
KR20060134026A (ko) 2006-12-27
WO2005066304A2 (en) 2005-07-21
RU2006126085A (ru) 2008-02-10
RU2372381C2 (ru) 2009-11-10
NL1027781A1 (nl) 2005-06-22
EP1704210A2 (en) 2006-09-27
RU2006126084A (ru) 2008-02-10
CA2559798A1 (en) 2005-07-14
EA012632B1 (ru) 2009-12-30
WO2005066316A2 (en) 2005-07-21
WO2005063928A2 (en) 2005-07-14
CA2549418A1 (en) 2005-07-21
WO2005066304A3 (en) 2005-09-22
KR20070001098A (ko) 2007-01-03
BRPI0405569A (pt) 2005-08-30
SG149056A1 (en) 2009-01-29
NL1027784C2 (nl) 2006-08-23
NL1027779A1 (nl) 2005-06-22
EA200601184A1 (ru) 2006-12-29
JP2007514829A (ja) 2007-06-07
AU2004312368A1 (en) 2005-07-21
WO2005061665A2 (en) 2005-07-07
JP2007516330A (ja) 2007-06-21
NL1027778C2 (nl) 2006-09-11
TW200532011A (en) 2005-10-01
JP2007514844A (ja) 2007-06-07
AU2004309352A1 (en) 2005-07-14
BRPI0405575A (pt) 2005-09-20
EA200601183A1 (ru) 2006-10-27
NL1027782A1 (nl) 2005-06-22
MXPA06006743A (es) 2006-08-18
AU2004312366A1 (en) 2005-07-21
NL1027781C2 (nl) 2006-08-22
NL1027775C2 (nl) 2008-06-10
BRPI0405580A (pt) 2005-09-20
BRPI0405585A (pt) 2005-09-27
AU2004303865A1 (en) 2005-07-07
AU2004308916B2 (en) 2007-12-13
AU2004312366B2 (en) 2008-07-10
WO2005066316A3 (en) 2005-09-22
TW200535232A (en) 2005-11-01
MXPA06006804A (es) 2006-08-23
NL1027784A1 (nl) 2005-06-22
MXPA06006796A (es) 2006-12-19
RU2006126088A (ru) 2008-02-10
WO2005061664A3 (en) 2006-05-11
BRPI0405723A (pt) 2005-10-04
BRPI0405581A (pt) 2005-09-20
KR20060130116A (ko) 2006-12-18
JP2007514825A (ja) 2007-06-07
CA2548838C (en) 2013-08-13
AU2004312368B2 (en) 2008-10-16
NL1027780A1 (nl) 2005-06-22
WO2005066305A3 (en) 2006-01-19
WO2005066302A2 (en) 2005-07-21
WO2005066309A3 (en) 2006-01-05
NL1027773C2 (nl) 2006-08-24
CA2567554A1 (en) 2005-07-07
EA009091B1 (ru) 2007-10-26
BRPI0405563A (pt) 2005-09-20
CA2559839A1 (en) 2005-07-07
CA2559798C (en) 2012-12-04
NL1027783C2 (nl) 2006-08-23
EP1704202A2 (en) 2006-09-27
NL1027778A1 (nl) 2005-06-22
SG149048A1 (en) 2009-01-29
CA2550244A1 (en) 2005-07-21
BRPI0405724A (pt) 2005-10-04
CA2551164A1 (en) 2005-07-14
JP4768631B2 (ja) 2011-09-07
AU2004309348A1 (en) 2005-07-14
BRPI0405935A (pt) 2005-10-04
WO2005063932A3 (en) 2005-12-22
KR20070055994A (ko) 2007-05-31
RU2379331C2 (ru) 2010-01-20
WO2005061671A2 (en) 2005-07-07
WO2005066308A3 (en) 2006-03-30
EP1704209A2 (en) 2006-09-27
CA2549405A1 (en) 2005-07-21
AU2004309348B2 (en) 2009-02-12
AU2004308916A1 (en) 2005-07-14
NL1027775A1 (nl) 2005-06-22
NL1027773A1 (nl) 2005-06-22
WO2005063675A3 (en) 2006-02-09
WO2005066302A3 (en) 2006-01-05
NL1027777A1 (nl) 2005-06-22
KR20060130112A (ko) 2006-12-18
WO2005066309A2 (en) 2005-07-21
JP2007514535A (ja) 2007-06-07
WO2005063675A2 (en) 2005-07-14
WO2005061671A3 (en) 2006-02-23
KR20060130115A (ko) 2006-12-18
TW200533738A (en) 2005-10-16
WO2005066308A2 (en) 2005-07-21
AU2004312372B2 (en) 2009-03-12
EA011220B1 (ru) 2009-02-27
TW200530389A (en) 2005-09-16
JP2007517091A (ja) 2007-06-28
NL1027774A1 (nl) 2005-06-22
MXPA06006790A (es) 2007-03-23
EP1702048A2 (en) 2006-09-20
BRPI0405721A (pt) 2005-10-04
EP1702024A2 (en) 2006-09-20
MXPA06006742A (es) 2006-08-18
KR20060130111A (ko) 2006-12-18
NL1027779C2 (nl) 2006-09-20
WO2005061665A3 (en) 2006-04-20
NL1027782C2 (nl) 2006-08-22
RU2006126086A (ru) 2008-01-27
TW200535231A (en) 2005-11-01
NL1027780C2 (nl) 2006-08-22
AU2004309352B2 (en) 2009-03-26
WO2005063936A3 (en) 2006-02-09
MXPA06006791A (es) 2006-12-19
NL1027776C2 (nl) 2006-08-24
BRPI0405536A (pt) 2005-09-20
EA010396B1 (ru) 2008-08-29
JP2007516329A (ja) 2007-06-21
CA2548838A1 (en) 2005-07-21
CA2550437A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US8163166B2 (en) Systems and methods of producing a crude product
AU2004308916B2 (en) Systems and methods of producing a crude product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060709

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120703