EP1687523B1 - Einspritzanlage und einspritzverfahren f r eine brennkraftma schine - Google Patents

Einspritzanlage und einspritzverfahren f r eine brennkraftma schine Download PDF

Info

Publication number
EP1687523B1
EP1687523B1 EP04819234A EP04819234A EP1687523B1 EP 1687523 B1 EP1687523 B1 EP 1687523B1 EP 04819234 A EP04819234 A EP 04819234A EP 04819234 A EP04819234 A EP 04819234A EP 1687523 B1 EP1687523 B1 EP 1687523B1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
pressure
valve
servo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04819234A
Other languages
English (en)
French (fr)
Other versions
EP1687523A1 (de
Inventor
Richard Lang
Gerald Plank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1687523A1 publication Critical patent/EP1687523A1/de
Application granted granted Critical
Publication of EP1687523B1 publication Critical patent/EP1687523B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Definitions

  • the present invention relates to an injection system and a method for operating an injection system for an internal combustion engine according to the preamble of claim 1 or of claim 7.
  • an injector assembly includes at least one servo-injector operable by a piezoelectric actuator to cause movement of a servo-valve nozzle body (nozzle needle) toward an opening of an injection passageway between a nozzle space to initiate an injection process by depressurizing a control space the servo injection valve and a combustion chamber of the respective internal combustion engine is provided.
  • An essential advantage of using a servo-injection valve actuated by means of a piezoelectric actuator is that with a comparatively small stroke of the piezoelectric actuator, it is possible to achieve a stroke of the nozzle body that is independent of it, generally many times greater (stroke translation).
  • the Injector therefore satisfies a piezoelectric actuator with a comparatively small stroke and comparatively low actuator force.
  • a piezoelectric actuator has a stack of piezo elements lying on top of one another, which rapidly changes its length when an electrical voltage is applied, to an extent dependent on the voltage, among other things.
  • Piezoelectric ceramics suitable for this purpose are known in great variety, for example as lead zirconate titanate ceramics, and are of particular interest for use in injection valves, above all because of their high rate of change and their high piezoelectric forces.
  • the length of the piezoelectric actuator does not depend exclusively on the applied voltage, but is also subject to manufacturing tolerances and a dependence on the temperature of the actuator, in the construction of a actuated by a piezoelectric actuator servo injection valve, a more or less large gap in the path of effect Actuator provided to a control valve body, which serves as a tolerance range for unwanted deviations and / or changes in the actuator length.
  • this so-called tolerance gap in the piezo-actuated injection valve should be as small as possible in order to maximize the usable stroke of the actuator and, on the other hand, should be as large as possible in order to avoid, in all possible operating states, a change in the length of the piezoelectric actuator caused by the operation exceeds the tolerance gap and so, without the actuator is driven, already actuated the control valve.
  • a particularly important thermally driven expansion of the piezoelectric ceramic at elevated actuator temperature as may occur in particular during operation of the internal combustion engine under certain circumstances. Accordingly, the tolerance gap can hardly be dimensioned in practice "optimal".
  • a method and an arrangement for presetting and dynamic tracking piezoelectric actuators is known in which for this purpose the piezoelectric actuator, a DC voltage is supplied, which is optionally superimposed on a pulsed drive voltage.
  • This DC component determines a new rest position of the actuator and can thus be used to set the idle and for tracking the idle stroke during operation.
  • a piezo control valve which consists of a piezo actuator arranged in a housing and a valve.
  • a hydraulic clearance compensation element within the control valve possible changes in length of the reference system are automatically compensated, so that with the same working stroke of the piezo actuator member always a same stroke is ensured on the valve.
  • the leakage line is provided with a controllable valve which inhibits the fuel flow in the leakage line in a controlled state or that in the injection method, an optional inhibition of the fuel flow is provided in the leakage line.
  • actuator overhang When exceeding the tolerance gap by one of the actual piezo control independent length change of the actuator, hereinafter also referred to as "actuator overhang" for short, can be mitigated by the fuel flow inhibition, the negative effects of this situation in a relatively simple manner or even eliminated. If there is an actuator protrusion and the flow of fuel in the leakage line is inhibited, this results in a pressure increase in the leakage line between the location of the escapement and the leakage output of the servo injection valve.
  • Another advantage of the solution according to the invention is that it can be easily realized in the context of retrofitting, as this essentially only a modification of the leakage line arrangement, for. B. by installing another, controllable valve, and a comparatively simple modification or addition of the engine control electronics is required in which in practice often already existing sensor devices for detecting operating conditions of the internal combustion engine and / or the injection system can be advantageously shared.
  • said hydraulic solution can be used not only in the starting phase of the internal combustion engine but also during operation to "catch" about an operational change in length of the actuator.
  • the measures according to the invention can be used in combination with the measures already implemented so far, such. B. with the above-mentioned active electrical adjustment or tracking of the actuator idle stroke ("active piezo contraction") or a cooling of the internal combustion engine.
  • the injector arrangement comprises a plurality of servo-injection valves, which are connected via the pressure line arrangement to the pressure accumulator shared for this plurality of servo injection valves.
  • Such injection systems per se are known as so-called storage injection systems, in which work is generally carried out with very high injection pressures (for example in the range of a few 100 bar to about 1,600 bar).
  • Such systems are known as common-rail systems (for diesel engines) and HPDI injection systems (for gasoline engines).
  • each of the plurality of leak lines could be provided with its own controllable fuel-flow-blocking valve.
  • fuel flow inhibition in the leakage line hardly affects the proper operation of a servo injection valve connected thereto in which there is no actuator overflow, it is possible to have a Simplification thereby achieve that the leakage lines of these plurality of servo-injection valves are merged and the fuel flow inhibition is provided in the merged leakage line part, so z.
  • the controllable valve is arranged only in this merged leakage line part.
  • a simple operation of the control valve results when the piezoelectric actuator acts via a plunger on a valve body of the control valve, wherein the tolerance gap between the actuator and plunger or between the plunger and the valve body can be provided.
  • the effect of the fuel flow inhibition in the leakage line can be made particularly large by blocking the flow of fuel in the controlled state of the controllable valve, d. H. is completely inhibited.
  • the injection system further comprises an electronic injection control unit for operating the injector assembly and for driving the controllable valve.
  • an electronic injection control unit for operating the injector assembly and for driving the controllable valve.
  • controllable valve is controlled depending on predetermined, in particular measured operating parameters of the internal combustion engine and / or the injection system.
  • operating parameters can in particular the fuel pressure in the accumulator, the fuel pressure in the leakage line, the temperature in a region of the internal combustion engine or the injector, the speed of the internal combustion engine and their load or their control ("accelerator pedal position"), etc. include.
  • Operating parameters which are representative of the state of individual or all piezoelectric actuators can also be used with particular advantage. The latter parameters can be obtained indirectly, for example, from an electronic device for controlling the piezoelectric actuators (engine control unit), z. B. by detecting the electrical capacity of the actuators.
  • suitable parameters can also be derived from the characteristic of the movement of the nozzle body which is often already detected (eg for injection quantity control) in response to a piezo control during operation of the injection system.
  • known servo injection valves of the type of interest here are often equipped with a sensor system sensitive to the position of the nozzle body.
  • a plurality of operating parameters are combined in an electronic evaluation and are generated from a pre-stored map drive signals for the one or more controllable valves for fuel flow inhibition in the leakage line and supplied for electronic control of these valves.
  • controllable valve for fuel flow inhibition is controlled in the presence of a certain operating parameter state for the fuel flow inhibition and after a fixed predetermined (or alternatively according to one of the time course certain operating parameters dependent) period is brought back into hibernation. This state of rest can then be forced, z. B. for a fixed predetermined additional period of time (dead time) are maintained.
  • the fuel flow inhibition can be greatly limited in terms of time, so that in particular a retrofitted according to the invention system is not significantly affected in its normal function.
  • the fuel flow inhibition is designed such that a predetermined maximum pressure in the leakage line can not be exceeded. This could be realized, for example, by measuring the leakage line pressure and forcibly shutting off the fuel flow inhibition based on it when the maximum pressure is reached.
  • the relevant fuel flow inhibitor valve
  • bypass or bypass line arranged in parallel, which automatically opens when the maximum pressure is reached and thus reliably prevents undesired overpressure in the leakage line.
  • the avoidance of overpressure in the leakage line serves, in particular, for the protection of the relevant injection servo valves, the leakage path of which must not have too great a pressure to avoid damage (typically, for example, 3.5 bar).
  • Fig. 1 is a part of a high-pressure injection servo valve for an internal combustion engine in its closed state shown schematically.
  • This high-pressure valve has a low-pressure region L communicating with a leakage line (not shown) and a high-pressure region H connected to a pressure accumulator via a pressure line (not shown). These two acted upon with different pressure areas L, H are separated by a control valve, which is formed by a control valve seat S and a driven by the high pressure in the high pressure region H against the control valve seat S control valve body K.
  • the high-pressure region H forms a control chamber, not shown, or is connected to such a control chamber, in which the prevailing pressure on the rear (upper) end of an axially movably mounted and guided nozzle body (nozzle needle) acts to a front (lower) end of this nozzle body against an injector valve seat (not shown) to urge and so close to a combustion chamber of the engine leading injection passages.
  • the front end of the nozzle body is located in a nozzle space which is also under high pressure, so the nozzle body in the illustrated state of rest is still pushed down to close the injection passages, since the nozzle body downward urging force due to a relatively large sized cross-sectional area of the nozzle body at its upper end is greater than the force acting at the lower end of the nozzle body force.
  • the pressure in the control chamber or in the high-pressure region H is reduced in the manner described below in order to cause a movement of the nozzle body in the direction of an opening of the injection passage.
  • the pressure reduction in the high-pressure region H takes place by controlled opening of the control valve formed by the valve seat S and the valve body K by means of a piezoelectric actuator P, which is surrounded by a housing G in the low-pressure region L and is provided with electrical connections A for driving it.
  • a piezoelectric actuator P By applying a voltage to the terminals A of the actuator P, the actuator length can be extended in the direction of the arrow VR (preferential polarization of the piezoelectric ceramic) to act on the valve body K via a plunger T.
  • a tolerance gap d is provided which serves as a safety margin for thermal changes in length of the piezoceramic and typically z.
  • B. has a dimension between 3 and 5 microns.
  • this "actuator overhang” means an opening tendency for the servo injection valve, even if this is not actively driven electrically via the terminals A. In the case of a hot start of the internal combustion engine, this means that the pressure build-up in the accumulator can not or can not be built up quickly to an extent that is required for the beginning of the fuel injection.
  • Fig. 2 shows an injection system 10 for an internal combustion engine (not shown), comprising a pressure accumulator 12 for storing by means of a high pressure pump 14 from a fuel tank 16 in the pressure accumulator 12 funded fuel and via a pressure line assembly 18 connected to the pressure accumulator 12 injector 20 for injecting the fuel in the internal combustion engine.
  • the injector 20 consists of four servo injection valves, which are supplied via four separate pressure lines 18 from the pressure accumulator 12 provided together for this purpose with fuel.
  • Each of the servo-injectors is hereby referred to with reference to Fig. 1 explained design and has a control chamber and a nozzle chamber, both of which are supplied via the respective pressure line with fuel from the pressure accumulator 12, said fuel is under the provided by the high-pressure pump 14, high system pressure.
  • Servo injection valves of this type are well known to those skilled in the art, so that can be dispensed with a more detailed explanation here.
  • an injection process is initiated in each case by reducing the pressure in the control chamber of the respective servo injection valve, which is provided for this purpose with a piezoelectrically actuated control valve for releasing fuel from the control chamber into a leakage line 22.
  • Fig. 2 Further, one recognizes two fuel filters 24 and 26 for coarse and fine filtering of the fuel, which is conveyed via a prefeed pump 28 to an input of the high pressure pump 14, a high pressure line 30 for promoting the pressurized system pressure from the high pressure pump 14 into the accumulator 12, a High-pressure sensor 32 for measuring the pressure in the pressure accumulator 12, a fuel return line 34 from the high-pressure pump 14 for removing excess fuel from the pump 14 to the leakage line 22 and thus further back into the fuel tank 16, and an electronic engine control unit ECU with a number of input terminals 36 and a number of output terminals 38, by means of which in a known manner operating parameters of the internal combustion engine and the injection system via the input terminals 36 are detected and evaluated and signals are generated at the output terminals 38, with which the electrical and electroni components of the system are controlled, for.
  • the illustrated components 28, 14, 20th the illustrated components 28, 14, 20th
  • the engine control unit ECU controls a leakage control valve 40 arranged in the combined course of the leakage line 22, with which the fuel return flow from the individual injectors depends on the detected operating parameters and by means of a suitably designed map the injector 20 can be blocked via the leakage line 22 in the fuel tank 16.
  • the engine control unit ECU detects methods known per se by evaluating the measured operating parameters any occurring actuator overhang in one of the injectors and causes in this case a short-term driving the leakage control valve 40 for a short-term blocking of the fuel return, z. B. for a fixed predetermined period of a few seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Einspritzanlage sowie ein Verfahren zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 7.
  • Eine derartige Einspritzanlage sowie ein derartiges Einspritzverfahren sind beispielsweise aus der DE 100 15 740 A1 oder der DE 101 04634 A1 bekannt. Bei dieser bekannten Technik umfasst eine Injektoranordnung wenigstens ein Servoeinspritzventil, welches mittels eines piezoelektrischen Aktors betätigbar ist, um zur Initiierung eines Einspritzvorganges durch Druckverringerung in einem Steuerraum eine Bewegung eines Servoventil-Düsenkörpers (Düsennadel) in Richtung einer Öffnung einer Einspritzpassage hervorzurufen, die zwischen einem Düsenraum des Servoeinspritzventils und einer Brennkammer der betreffenden Brennkraftmaschine vorgesehen ist.
  • Ein wesentlicher Vorteil der Verwendung eines mittels eines piezoelektrischen Aktors betätigten Servoeinspritzventils ist es, dass mit einem vergleichsweise kleinen Hub des piezoelektrischen Aktors ein davon unabhängiger, in der Regel um ein Vielfaches größerer Hub des Düsenkörpers erzielt werden kann (Hubübersetzung). Zudem ergibt sich hierbei der Vorteil, dass die Bewegung des Düsenkörpers zum Öffnen und Schließen der Einspritzpassage durch den Druck des Kraftstoffs getrieben wird, der zu Zwecken der Einspritzung in die Brennkammer ohnehin unter vergleichsweise großem Druck stehend im Bereich des Einspritzventils bereitsteht. Für die Ansteuerung des Einspritzventils genügt daher ein piezoelektrischer Aktor mit vergleichsweise geringem Hub und vergleichsweise geringer Aktorkraft.
  • Ein piezoelektrischer Aktor weist in der Regel einen Stapel aufeinander liegender Piezoelemente auf, der beim Anlegen einer elektrischen Spannung rasch seine Länge um ein unter anderem von der Spannung abhängiges Ausmaß verändert. Hierfür geeignete piezoelektrische Keramiken sind in großer Vielfalt bekannt, beispielsweise als Bleizirkonat-Titanat-Keramiken, und sind vor allem wegen ihrer großen Änderungsgeschwindigkeit und ihrer hohen Piezokräfte für den Einsatz bei Einspritzventilen interessant.
  • Da jedoch die Länge des piezoelektrischen Aktors nicht ausschließlich von der angelegten Spannung abhängt, sondern beispielsweise auch fertigungstechnischen Toleranzen sowie einer Abhängigkeit von der Temperatur des Aktors unterliegt, wird bei der Konstruktion eines von einem piezoelektrischen Aktor betätigten Servoeinspritzventils ein mehr oder weniger großer Spalt im Wirkungsweg vom Aktor zu einem Steuerventilkörper vorgesehen, der als Toleranzbereich für unerwünschte Abweichungen und/oder Änderungen der Aktorlänge dient.
  • Dieser so genannte Toleranzspalt im piezobetätigten Einspritzventil sollte einerseits möglichst klein bemessen sein, um den nutzbaren Hub des Aktors zu maximieren, und andererseits möglichst groß bemessen sein, um in möglichst allen Betriebszuständen zu vermeiden, dass eine durch den Betrieb hervorgerufene Änderung der Länge des piezoelektrischen Aktors den Toleranzspalt überschreitet und so, ohne dass der Aktor angesteuert wird, bereits das Steuerventil betätigt. In letzterer Hinsicht besonders bedeutend ist beispielsweise eine thermisch getriebene Ausdehnung der piezoelektrischen Keramik bei erhöhter Aktortemperatur, wie sie insbesondere im Betrieb der Brennkraftmaschine unter Umständen auftreten kann. Dementsprechend kann der Toleranzspalt in der Praxis schwerlich "optimal" bemessen werden.
  • Wenn der Toleranzspalt auf Grund einer Temperaturerhöhung des Aktors überschritten werden kann und somit der vom Druckspeicher über eine Druckleitung zum Steuerraum geführte Kraftstoff über das Steuerventil weiter in die praktisch drucklose (verglichen mit dem Kraftstoffsystemdruck im Druckspeicher) Leckageleitung freigesetzt werden kann, so ergibt sich noch eine weitere Problematik. Wenn nämlich die Brennkraftmaschine in "heißem Zustand" gestartet werden soll, z. B. nach einem vorangegangenen längeren Betrieb mit nachfolgendem Abstellen der Brennkraftmaschine, so kann auf Grund der Freisetzung von Kraftstoff aus dem Steuerraum in die Leckageleitung der Druckaufbau im Druckspeicher erheblich erschwert oder verzögert werden. Der Aufbau eines gewissen Mindestsystemdrucks, der typischerweise einige 100 bar beträgt, ist jedoch notwendig, um überhaupt eine Einspritzung vom Düsenraum in die Brennkammer zu realisieren.
  • Aus der DE 199 05 340 C2 ist ein Verfahren und eine Anordnung zur Voreinstellung und dynamischen Nachführung piezoelektrischer Aktoren bekannt, bei welchen zu diesem Zweck dem Piezoaktor eine Gleichspannung zugeführt wird, die gegebenenfalls einer gepulsten Ansteuerspannung überlagert wird. Dieser Gleichspannungsanteil bestimmt dann eine neue Ruhelage des Aktors und kann somit zur Einstellung des Leerhubs und zur Nachführung des Leerhubs im Betrieb genutzt werden.
  • Aus der DE 37 42 241 A1 ist ein Piezosteuerventil bekannt, welches aus einem in einem Gehäuse angeordneten Piezostellglied und einem Ventil besteht. Durch ein hydraulisches Spielausgleichselement innerhalb des Steuerventils werden mögliche Längenänderungen des Bezugssystems automatisch ausgeglichen, so dass bei gleichem Arbeitshub des Piezostellgliedes auch stets ein gleicher Hub am Ventil gewährleistet ist. Nachteilig ist bei diesen beiden Ansätzen zur Lösung der eingangs erläuterten Problematik der damit verbundene Aufwand im Bereich der elektronischen Einrichtungen zur Ansteuerung der Injektoranordnung bzw. im Bereich der Injektoranordnung selbst.
  • Dementsprechend ist es eine Aufgabe der vorliegenden Erfindung, eine Einspritzanlage sowie ein Einspritzverfahren für eine Brennkraftmaschine anzugeben, bei welchen die für den Betrieb der Einspritzanlage bzw. der Brennkraftmaschine abträglichen Auswirkungen einer den Toleranzspalt im Servoeinspritzventil überschreitenden Längenänderung des piezoelektrischen Aktors vermindert oder beseitigt werden können.
  • Diese Aufgabe wird gelöst durch eine Einspritzanlage nach Anspruch 1 bzw. ein Verfahren zum Betreiben einer Einspritzanlage nach Anspruch 7. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen der Erfindung.
  • Für die Erfindung wesentlich ist, dass bei der Einspritzanlage die Leckageleitung mit einem steuerbaren Ventil versehen ist, welches in einem angesteuerten Zustand den Kraftstofffluss in der Leckageleitung hemmt bzw. dass bei dem Einspritzverfahren eine wahlweise Hemmung des Kraftstoffflusses in der Leckageleitung vorgesehen wird. Bei einem Überschreiten des Toleranzspalts durch eine von der eigentlichen Piezoansteuerung unabhängige Längenänderung des Aktors, im Folgenden auch kurz als "Aktorüberstand" bezeichnet, können durch die Kraftstoffflusshemmung die negativen Auswirkungen dieser Situation in relativ einfacher Weise gemildert oder sogar beseitigt werden. Wenn ein Aktorüberstand vorliegt und der Kraftstofffluss in der Leckageleitung gehemmt wird, so führt dies zu einem Druckanstieg in der Leckageleitung zwischen dem Ort der Hemmung und dem Leckageausgang des Servoeinspritzventils. Damit lässt sich einerseits vermeiden, dass durch den Aktorüberstand der Düsenkörper sich ungewollt (ohne aktive Ansteuerung des Aktuators) in Richtung einer Öffnung der Einspritzpassage verlagert, was insbesondere im Betrieb der Brennkraftmaschine von Bedeutung ist. Andererseits kann damit das auf Grund des verzögerten Systemdruckaufbaus vorliegende Problem des Heißstarts der Brennkraftmaschine (bei temperaturbedingtem Aktorüberstand) beseitigt werden, da die Druckerhöhung in der Leckageleitung den Druckaufbau im Druckspeicher erheblich beschleunigt.
  • Ein weiterer Vorteil der erfindungsgemäßen Lösung ist es, dass diese auch im Rahmen einer Nachrüstung einfach realisiert werden kann, da hierfür im Wesentlichen lediglich eine Modifikation der Leckageleitungsanordnung, z. B. durch Einbau eines weiteren, steuerbaren Ventils, sowie eine vergleichsweise einfache Modifikation oder Ergänzung der Motorsteuerelektronik erforderlich ist, bei welcher in der Praxis oftmals ohnehin vorhandene Sensorikeinrichtungen zur Erfassung von Betriebszuständen der Brennkraftmaschine und/oder der Einspritzanlage vorteilhaft mitgenutzt werden können.
  • Vorteilhaft kann mit der Erfindung eine stetige Fahrbereitschaft eines mittels einer Brennkraftmaschine betriebenen Fahrzeugs auch bei möglicherweise auftretendem Aktorüberstand in Einspritzventilen sichergestellt werden, wobei diese hydraulische Lösung nicht nur in der Startphase der Brennkraftmaschine sondern auch während des Betriebs eingesetzt werden kann, um etwa eine betriebsbedingte Längenänderung des Aktors "abzufangen".
  • Selbstverständlich können die erfindungsgemäßen Maßnahmen mit den bislang bereits realisierten Maßnahmen kombiniert eingesetzt werden, wie z. B. mit der oben erwähnten aktiven elektrischen Einstellung oder Nachführung des Aktor-Leerhubs ("active piezo contraction") oder einem Abkühlen der Brennkraftmaschine.
  • In einer Ausführungsform ist vorgesehen, dass die Injektoranordnung eine Mehrzahl von Servoeinspritzventilen umfasst, welche über die Druckleitungsanordnung mit dem für diese Mehrzahl von Servoeinspritzventilen gemeinsam genutzten Druckspeicher verbunden sind. Derartige Einspritzanlagen an sich sind als so genannte Speichereinspritzsysteme bekannt, bei denen in der Regel mit sehr hohen Einspritzdrücken (z. B. im Bereich einiger 100 bar bis etwa 1.600 bar) gearbeitet wird. Solche Systeme sind als Common-Rail-Systeme (für Dieselmotoren) und HPDI-Einspritzsysteme (für Ottomotoren) bekannt.
  • Wenn die Injektoranordnung eine Mehrzahl von Servoeinspritzventilen umfasst, wie dies zumeist der Fall sein wird, so könnte jede der Mehrzahl von Leckageleitungen mit einem eigenen steuerbaren Ventil zur Kraftstoffflusshemmung versehen werden. Da eine Kraftstoffflusshemmung in der Leckageleitung jedoch den ordnungsgemäßen Betrieb eines daran angeschlossenen Servoeinspritzventils, bei welchem kein Aktorüberstand vorliegt, in der Praxis kaum beeinträchtigt, lässt sich eine Vereinfachung dadurch erreichen, dass die Leckageleitungen dieser Mehrzahl von Servoeinspritzventilen zusammengeführt werden und die Kraftstoffflusshemmung im zusammengeführten Leckageleitungsteil vorgesehen wird, also z. B. das steuerbare Ventil lediglich in diesem zusammengeführten Leckageleitungsteil angeordnet wird.
  • Eine einfache Betätigung des Steuerventils ergibt sich, wenn der piezoelektrische Aktor über einen Stössel auf einen Ventilkörper des Steuerventils wirkt, wobei der Toleranzspalt zwischen Aktor und Stössel oder zwischen Stössel und Ventilkörper vorgesehen sein kann.
  • Die Wirkung der Kraftstoffflusshemmung in der Leckageleitung kann besonders groß vorgesehen werden, indem der Kraftstofffluss im angesteuerten Zustand des steuerbaren Ventils blockiert, d. h. vollständig gehemmt wird.
  • In einer Ausführungsform umfasst die Einspritzanlage ferner eine elektronische Einspritzsteuereinheit zum Betreiben der Injektoranordnung und zum Ansteuern des steuerbaren Ventils. In diesem Fall sind die Funktionen der eigentlichen Einspritzsteuerung sowie der Ansteuerung des steuerbaren Ventils zur Kraftstoffflusshemmung vorteilhaft zusammengefasst. In diesem Fall können insbesondere zur Ansteuerung des steuerbaren Ventils benötigte Betriebsparameter unmittelbar aus der Einspritzsteuerung herangezogen oder abgeleitet werden.
  • In einer bevorzugten Ausführungsform wird das steuerbare Ventil abhängig von vorbestimmten, insbesondere gemessenen Betriebsparametern der Brennkraftmaschine und/oder der Einspritzanlage angesteuert. Solche Betriebsparameter können insbesondere den Kraftstoffdruck im Druckspeicher, den Kraftstoffdruck in der Leckageleitung, die Temperatur in einem Bereich der Brennkraftmaschine oder der Injektoranordnung, die Drehzahl der Brennkraftmaschine sowie deren Last oder deren Ansteuerung ("Gaspedalstellung") etc. umfassen. Besonders vorteilhaft können auch Betriebsparameter herangezogen werden, welche repräsentativ für den Zustand einzelner oder aller piezoelektrischer Aktoren (z. B. für deren Temperatur und/oder Ruhelänge) sind. Letztere Parameter können beispielsweise aus einer elektronischen Einrichtung zur Ansteuerung der Piezoaktoren (Motorsteuergerät) indirekt gewonnen werden, z. B. durch Erfassung der elektrischen Kapazität der Aktoren. Schließlich können geeignete Parameter auch abgeleitet werden aus der oftmals ohnehin (z. B. zur Einspritzmengenregelung) erfassten Charakteristik der Bewegung des Düsenkörpers in Reaktion auf eine Piezoansteuerung im Betrieb der Einspritzanlage. Zur Erfassung dieser Charakteristik sind bekannte Servoeinspritzventile der hier interessierenden Art oftmals mit einer auf die Stellung des Düsenkörpers empfindlichen Sensorik ausgestattet.
  • In einer bevorzugten Ausführungsform wird eine Mehrzahl von Betriebsparametern, wie etwa die oben erwähnten, in einer elektronischen Auswerteeinrichtung zusammengeführt und werden aus einem vorab gespeichertem Kennfeld Ansteuersignale für das oder die ansteuerbaren Ventile zur Kraftstoffflusshemmung in der Leckageleitung generiert und zur elektronischen Ansteuerung diesen Ventilen zugeführt.
  • In einer Weiterbildung der Erfindung ist vorgesehen, dass das steuerbare Ventil zur Kraftstoffflusshemmung bei Vorliegen eines bestimmten Betriebsparameterzustands für die Kraftstoffflusshemmung angesteuert wird und nach einer fest vorgegebenen (oder alternativ nach einer von dem zeitlichen Verlauf bestimmter Betriebsparameter abhängigen) Zeitspanne wieder in den Ruhezustand gebracht wird. Dieser Ruhezustand kann dann zwangsweise, z. B. für eine fest vorgegebene weitere Zeitspanne (Totzeit) aufrechterhalten werden. Mit derartigen Maßnahmen lässt sich die Kraftstoffflusshemmung zeitlich betrachtet stark begrenzen, so dass insbesondere ein nachträglich gemäß der Erfindung umgerüstetes System in seiner normalen Funktion nicht nennenswert beeinträchtigt wird.
  • In einer anderen Weiterbildung der Erfindung ist vorgesehen, dass die Kraftstoffflusshemmung derart ausgelegt ist, dass ein vorgegebener Maximaldruck in der Leckageleitung nicht überschritten werden kann. Dies könnte beispielsweise durch Messung des Leckageleitungsdrucks und einer darauf basierenden, zwangsweisen Abschaltung der Kraftstoffflusshemmung im Falle des Erreichens des Maximaldrucks realisiert werden. Alternativ oder zusätzlich besteht jedoch die einfache Möglichkeit, das betreffende Kraftstoffflusshemmungsmittel (Ventil) mit einer parallel angeordneten Umgehungs- oder "Bypass"-Leitung zu versehen, die beim Erreichen des Maximaldrucks selbsttätig öffnet und so einen unerwünschten Überdruck in der Leckageleitung zuverlässig verhindert. Die Vermeidung eines Überdrucks in der Leckageleitung dient hierbei insbesondere dem Schutz der betreffenden Einspritzservoventile, deren Leckagepfad zur Vermeidung von Beschädigungen keinen allzu großen Druck aufweisen darf (typisch z. B. 3,5 bar).
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels mit Bezug auf die beigefügten Zeichnungen näher erläutert. Es stellen dar:
  • Fig. 1
    eine schematische Darstellung zur Erläuterung des Toleranzspalts in einem piezobetätigten Servoeinspritzventil, und
    Fig. 2
    eine schematische Darstellung einer Einspritzanlage, bei welcher eine Mehrzahl von Servoeinspritzventilen der in Fig. 1 dargestellten Art eingesetzt wird.
  • In Fig. 1 ist ein Teil eines Hochdruck-Einspritzservoventils für eine Brennkraftmaschine in dessen geschlossenen Zustand schematisch dargestellt.
  • Dieses Hochdruckventil weist einen mit einer nicht dargestellten Leckageleitung in Verbindung stehenden Niederdruckbereich L und einen über eine nicht dargestellte Druckleitung mit einem Druckspeicher in Verbindung stehenden Hochdruckbereich H auf. Diese beiden mit unterschiedlichem Druck beaufschlagten Bereiche L, H sind durch ein Steuerventil voneinander getrennt, welches von einem Steuerventilsitz S und einem durch den hohen Druck im Hochdruckbereich H gegen den Steuerventilsitz S getriebenen Steuerventilkörper K gebildet wird.
  • Der Hochdruckbereich H bildet einen nicht dargestellten Steuerraum oder ist mit einem solchen Steuerraum verbunden, in welchem der dort herrschende Druck auf das hintere (obere) Ende eines axial beweglich gelagerten und geführten Düsenkörpers (Düsennadel) wirkt, um ein vorderes (unteres) Ende dieses Düsenkörpers gegen einen Einspritzdüsenventilsitz (nicht dargestellt) zu drängen und so zu einem Brennraum der Brennkraftmaschine führende Einspritzpassagen zu verschließen. Wenngleich das vordere Ende des Düsenkörpers in einem Düsenraum angeordnet ist, der ebenfalls unter hohem Druck steht, so wird der Düsenkörper im dargestellten Ruhezustand dennoch nach unten zum Verschließen der Einspritzpassagen gedrängt, da die den Düsenkörper nach unten drängende Kraft auf Grund einer relativ groß bemessenen Querschnittsfläche des Düsenkörpers an dessen oberen Ende größer ist als die am unteren Ende des Düsenkörpers wirkende Kraft. Zur Initiierung eines Einspritzvorganges wird der Druck im Steuerraum bzw. in dem Hochdruckbereich H in der nachfolgend beschriebenen Weise verringert, um eine Bewegung des Düsenkörpers in Richtung einer Öffnung der Einspritzpassage hervorzurufen.
  • Die Druckverringerung im Hochdruckbereich H erfolgt durch angesteuertes Öffnen des durch den Ventilsitz S und den Ventilkörper K gebildeten Steuerventils mittels eines piezoelektrischen Aktors P, der im Niederdruckbereich L von einem Gehäuse G umgeben ist und zu dessen Ansteuerung mit elektrischen Anschlüssen A versehen ist. Durch Anlegen einer Spannung an den Anschlüssen A des Aktors P lässt sich die Aktorlänge in Richtung des Pfeils VR (Vorzugspolarisierung der piezoelektrischen Keramik) verlängern, um über einen Stössel T auf den Ventilkörper K einzuwirken. Zwischen dem Aktor P und dem Stössel T ist hierbei ein Toleranzspalt d vorgesehen, der als Sicherheitsabstand für thermische Längenänderungen der Piezokeramik dient und typischerweise z. B. ein Maß zwischen 3 und 5 µm aufweist. Treten nun am piezoelektrischen Aktor P, z. B. auf Grund von widrigen Umgebungseinflüssen, Längenänderungen auf, die über das Maß dieses Spaltes d hinausgehen, so drückt der Aktor P bereits im Ruhezustand über den Stössel T auf den Ventilkörper K was, letztendlich zu einer Leckage von Kraftstoff aus dem Hochdruckbereich H in den Niederdruckbereich L und die daran angeschlossene Leckageleitung führt. Im Betrieb der Brennkraftmaschine bedeutet dieser "Aktorüberstand" eine Öffnungstendenz für das Servoeinspritzventil, selbst wenn dieses nicht aktiv elektrisch über die Anschlüsse A angesteuert wird. Für den Fall eines Heißstarts der Brennkraftmaschine bedeutet dies, dass der Druckaufbau im Druckspeicher nicht oder nicht rasch in einem Ausmaß aufgebaut werden kann, das für den Beginn der Kraftstoffeinspritzung erforderlich ist.
  • Diese Probleme werden jedoch vermieden durch den nachfolgend mit Bezug auf Fig. 2 beschriebenen Aufbau einer Einspritzanlage, bei welcher insbesondere auf eine Erfassung eines solchen Aktorüberstands hin der hydraulische Druck in dem Niederdruckbereich L zeitweise erhöht wird.
  • Fig. 2 zeigt eine Einspritzanlage 10 für eine Brennkraftmaschine (nicht dargestellt), umfassend einen Druckspeicher 12 zum Speichern von mittels einer Hochdruckpumpe 14 aus einem Kraftstofftank 16 in den Druckspeicher 12 gefördertem Kraftstoff und eine über eine Druckleitungsanordnung 18 mit dem Druckspeicher 12 verbundene Injektoranordnung 20 zum Einspritzen des Kraftstoffs in die Brennkraftmaschine. Bei dem dargestellten Ausführungsbeispiel besteht die Injektoranordnung 20 aus vier Servoeinspritzventilen, die über vier separate Druckleitungen 18 aus dem hierfür gemeinsam vorgesehenen Druckspeicher 12 mit Kraftstoff versorgt werden.
  • Jedes der Servoeinspritzventile ist hierbei von der mit Bezug auf Fig. 1 erläuterten Bauart und weist einen Steuerraum sowie einen Düsenraum auf, die beide über die jeweilige Druckleitung mit Kraftstoff aus dem Druckspeicher 12 versorgt werden, wobei dieser Kraftstoff unter dem von der Hochdruckpumpe 14 bereitgestellten, hohen Systemdruck steht. Servoeinspritzventile dieser Art sind dem Fachmann hinlänglich bekannt, so dass hier auf eine weitergehende Erläuterung verzichtet werden kann.
  • Wie bereits mit Bezug auf Fig. 1 beschrieben, wird ein Einspritzvorgang jeweils initiiert durch Druckverringerung im Steuerraum des jeweiligen Servoeinspritzventils, welches zu diesem Zweck mit einem piezoelektrisch betätigten Steuerventil zum Freisetzen von Kraftstoff aus dem Steuerraum in eine Leckageleitung 22 versehen ist.
  • In Fig. 2 erkennt man ferner zwei Kraftstofffilter 24 und 26 zur Grob- und Feinfilterung des Kraftstoffs, der über eine Vorförderpumpe 28 zu einem Eingang der Hochdruckpumpe 14 gefördert wird, eine Hochdruckleitung 30 zur Förderung des unter Systemdruck gesetzten Kraftstoffs von der Hochdruckpumpe 14 in den Druckspeicher 12, einen Hochdrucksensor 32 zur Messung des Drucks im Druckspeicher 12, eine von der Hochdruckpumpe 14 ausgehende Kraftstoffrückleitung 34 zur Abfuhr von überschüssigem Kraftstoff von der Pumpe 14 zur Leckageleitung 22 und somit weiter zurück in den Kraftstofftank 16, sowie ein elektronisches Motorsteuergerät ECU mit einer Reihe von Eingangsanschlüssen 36 und einer Reihe von Ausgangsanschlüssen 38, mittels welcher in an sich bekannter Weise Betriebsparameter der Brennkraftmaschine und der Einspritzanlage über die Eingangsanschlüsse 36 erfasst und ausgewertet werden und Signale an den Ausgangsanschlüssen 38 erzeugt werden, mit welchen die elektrischen und elektronischen Komponenten des Systems gesteuert werden, z. B. die dargestellten Komponenten 28, 14, 20.
  • Darüber hinaus steuert das Motorsteuergerät ECU ein im zusammengefassten Verlauf der Leckageleitung 22 angeordnetes Leckagesteuerventil 40, mit welchem abhängig von den erfassten Betriebsparametern und mittels eines geeignet ausgelegten Kennfelds der Kraftstoffrückfluss von den einzelnen Injektoren der Injektoranordnung 20 über die Leckageleitung 22 in den Kraftstofftank 16 blockiert werden kann. Das Motorsteuergerät ECU detektiert mit an sich bekannten Methoden durch Auswertung der gemessenen Betriebsparameter einen etwaig auftretenden Aktorüberstand in einem der Injektoren und veranlasst in diesem Fall ein kurzzeitiges Ansteuern des Leckagesteuerventils 40 für eine kurzzeitige Blockierung des Kraftstoffrückflusses, z. B. für eine fest vorgegebene Zeitspanne von einigen Sekunden. Damit ist es möglich, sowohl den bei einem Aktorüberstand tendenziell verzögerten Druckaufbau im Druckspeicher 12 bei einem Heißstart der Brennkraftmaschine zu beschleunigen als auch die Brennkraftmaschine bei einem während des Betriebs auftretenden Aktorüberstand abzufangen und den ordnungsgemäßen Betrieb so aufrechtzuerhalten.

Claims (9)

  1. Einspritzanlage für eine Brennkraftmaschine, umfassend
    - einen Druckspeicher (12) zum Speichern von mittels einer Hochdruckpumpe (14) aus einem Kraftstofftank (16) in den Druckspeicher gefördertem Kraftstoff, und
    - eine über eine Druckleitungsanordnung (18) mit dem Druckspeicher (12) verbundene Injektoranordnung (20) zum Einspritzen des Kraftstoffs in die Brennkraftmaschine,
    wobei die Injektoranordnung (20) wenigstens ein Servoeinspritzventil umfasst, in welchem über eine Druckleitung sowohl ein Düsenraum als auch ein Steuerraum mit Kraftstoff aus dem Druckspeicher (12) versorgt wird und in welchem ein Düsenkörper zum Öffnen und Schließen einer vom Düsenraum zu einer Brennkammer führenden Einspritzpassage bewegbar geführt ist und der Düsenkörper an seinem der Einspritzpassage zugewandten Ende dem Druck des Kraftstoffs in der Düsenkammer und an seinem entgegengesetzten Ende dem Druck des Kraftstoffs in der Steuerkammer ausgesetzt ist,
    wobei das Servoeinspritzventil mit einem Steuerventil zum Freisetzen von Kraftstoff aus dem Steuerraum in eine zum Kraftstofftank (16) führende Leckageleitung (22) versehen ist, welches mittels eines piezoelektrischen Aktors betätigbar ist, um zur Initiierung eines Einspritzvorganges durch Druckverringerung im Steuerraum eine Bewegung des Düsenkörpers in Richtung einer Öffnung der Einspritzpassage hervorzurufen,
    dadurch gekennzeichnet, dass die Leckageleitung (22) mit einem steuerbaren Ventil (40) versehen ist, welches in einem angesteuerten Zustand den Kraftstofffluss in der Leckageleitung (22) blockiert, wobei das Ventil(40) abhängig von vorbestimmten Betriebsparametern der Brennkraftmaschine und/oder der Einspritzanlage angesteuert wird und erst nach Ablauf einer vorgebbaren Zeitspanne wieder in einen Ruhezustand gebracht wird.
  2. Einspritzanlage nach Anspruch 1, wobei die Injektoranordnung (20) eine Mehrzahl von Servoeinspritzventilen umfasst, welche über die Druckleitungsanordnung (18) mit dem für diese Mehrzahl von Servoeinspritzventilen gemeinsam genutzten Druckspeicher (12) verbunden sind.
  3. Einspritzanlage nach Anspruch 1 oder 2, wobei die Injektoranordnung (20) eine Mehrzahl von Servoeinspritzventilen umfasst, deren Leckageleitungen (22) zusammengeführt sind, wobei der zusammengeführte Leckageleitungsteil mit dem steuerbaren Ventil (40) versehen ist.
  4. Einspritzanlage nach Anspruch 1, 2 oder 3, wobei die vorbestimmten Betriebsparameter das Vorliegen oder Nichtvorliegen eines Aktorüberstands am Servoeinspritzventil umfassen.
  5. Einspritzanlage nach einem der Ansprüche 1 bis 4, wobei der Ruhezustand des Ventils (40) nach einer Ansteuerung zwangsweise für eine fest vorgegebene weitere Zeitspanne aufrechterhalten wird.
  6. Einspritzanlage nach einem der Ansprüche 1 bis 5, ferner umfassend eine elektronische Einspritzsteuereinheit (ECU) zum Betreiben der Injektoranordnung (20) und zum Ansteuern des steuerbaren Ventils (40).
  7. Verfahren zum Betreiben einer Einspritzanlage (10) für eine Brennkraftmaschine, wobei die Einspritzanlage umfasst:
    - einen Druckspeicher (12) zum Speichern von mittels einer Hochdruckpumpe aus einem Kraftstofftank in den Druckspeicher gefördertem Kraftstoff, und
    - eine über eine Druckleitungsanordnung (18) mit dem Druckspeicher (12) verbundene Injektoranordnung (20) zum Einspritzen des Kraftstoffs in die Brennkraftmaschine,
    wobei die Injektoranordnung wenigstens ein Servoeinspritzventil umfasst, in welchem über eine Druckleitung sowohl ein Düsenraum als auch ein Steuerraum mit Kraftstoff aus dem Druckspeicher versorgt wird und in welchem ein Düsenkörper zum Öffnen und Schließen einer vom Düsenraum zu einer Brennkammer führenden Einspritzpassage bewegbar geführt ist und der Düsenkörper an seinem der Einspritzpassage zugewandten Ende dem Druck des Kraftstoffs in der Düsenkammer und an seinem entgegengesetzten Ende dem Druck des Kraftstoffs in der Steuerkammer ausgesetzt wird,
    wobei das Servoeinspritzventil mit einem Steuerventil zum Freisetzen von Kraftstoff aus dem Steuerraum in eine zum Kraftstofftank führende Leckageleitung versehen ist,
    wobei das Verfahren den Schritt des Betätigens des Steuerventils mittels eines piezoelektrischen Aktors umfasst, um zur Initiierung eines Einspritzvorganges durch Druckverringerung im Steuerraum eine Bewegung des Düsenkörpers in Richtung einer Öffnung der Einspritzpassage hervorzurufen,
    gekennzeichnet durch eine abhängig von vorbestimmten Betriebsparametern der Brennkraftmaschine und/oder der Einspritzanlage vorgesehene Blockierung des Kraftstoffflusses in der Leckageleitung (22), die erst nach Ablauf einer vorgebbaren Zeitspanne wieder aufgehoben wird.
  8. Verfahren nach Anspruch 7, wobei die vorbestimmten Betriebsparameter das Vorliegen oder Nichtvorliegen eines Aktorüberstands am Servoeinspritzventil umfassen.
  9. Verfahren nach Anspruch 7 oder 8, wobei die Aufhebung der Blockierung zwangsweise für eine fest vorgegebene weitere Zeitspanne aufrechterhalten wird.
EP04819234A 2003-11-27 2004-11-03 Einspritzanlage und einspritzverfahren f r eine brennkraftma schine Expired - Fee Related EP1687523B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355411A DE10355411B3 (de) 2003-11-27 2003-11-27 Einspritzanlage und Einspritzverfahren für eine Brennkraftmaschine
PCT/EP2004/052775 WO2005052355A1 (de) 2003-11-27 2004-11-03 Einspritzanlage und einspritzverfahren für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1687523A1 EP1687523A1 (de) 2006-08-09
EP1687523B1 true EP1687523B1 (de) 2009-01-21

Family

ID=34625296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04819234A Expired - Fee Related EP1687523B1 (de) 2003-11-27 2004-11-03 Einspritzanlage und einspritzverfahren f r eine brennkraftma schine

Country Status (6)

Country Link
US (1) US7318417B2 (de)
EP (1) EP1687523B1 (de)
JP (1) JP4404906B2 (de)
CN (1) CN100443713C (de)
DE (2) DE10355411B3 (de)
WO (1) WO2005052355A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285235A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd ディーゼルエンジンの燃料供給装置
EP1860311B1 (de) * 2006-05-23 2009-04-22 Delphi Technologies, Inc. Steuerung für eine Einspritzdüse und Verfahren für den Betrieb einer Einspritzdüse
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
FR2921440A3 (fr) * 2007-09-20 2009-03-27 Renault Sas Dispositif d'injection de carburant
DE102007052092B4 (de) * 2007-10-31 2011-06-01 Continental Automotive Gmbh Verfahren und Kraftstoffsystem zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine
US7640919B1 (en) 2008-01-31 2010-01-05 Perkins Engines Company Limited Fuel system for protecting a fuel filter
CN101806266B (zh) * 2010-03-04 2012-07-11 哈尔滨工程大学 电控单体泵与电控喷油器双阀燃油喷射装置
WO2012031636A1 (en) * 2010-09-10 2012-03-15 Lemoptix Sa A method and device for projecting an image
JP2012167559A (ja) * 2011-02-10 2012-09-06 Denso Corp 燃料噴射装置
DE102011081161A1 (de) * 2011-08-18 2013-02-21 Continental Automotive Gmbh Ansteuerung und Ansteuerverfahren für einen piezoelektrischen Aktor
DE112012004564T5 (de) 2011-11-01 2014-08-21 Cummins Inc. Kraftstoff-Einspritzungsvorrichtung mit Einspritzregelventilpatrone
US9700222B2 (en) 2011-12-02 2017-07-11 Lumiradx Uk Ltd Health-monitor patch
US9734304B2 (en) 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
DE102017220328A1 (de) * 2017-11-15 2019-05-16 Robert Bosch Gmbh Schwingungsdämpfungsanordnung für Einspritzanlagen von Kraftfahrzeugen, insbesondere für Brennstoffeinspritzsysteme, und Einspritzanlage mit solch einer Schwingungsdämpfungsanordnung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3742241A1 (de) 1987-02-14 1988-08-25 Daimler Benz Ag Piezosteuerventil zur steuerung der kraftstoffeinspritzung ueber ein einspritzventil bei brennkraftmaschinen
DE19649139B4 (de) * 1995-12-08 2007-05-10 Volkswagen Ag Einspritzvorrichtung für Kraftstoff-Verbrennungsmotoren
DE19742320A1 (de) * 1997-09-25 1999-04-01 Bosch Gmbh Robert Kraftstoffeinspritzventil
IT1296143B1 (it) * 1997-11-18 1999-06-09 Elasis Sistema Ricerca Fiat Dispositivo di comando di un iniettore di combustibile per motori a combustione interna.
DE19822503C1 (de) * 1998-05-19 1999-11-25 Siemens Ag Steuerventil für Kraftstoffeinspritzventil
DE19905340C2 (de) * 1999-02-09 2001-09-13 Siemens Ag Verfahren und Anordnung zur Voreinstellung und dynamischen Nachführung piezoelektrischer Aktoren
US6253736B1 (en) * 1999-08-10 2001-07-03 Cummins Engine Company, Inc. Fuel injector nozzle assembly with feedback control
DE19938169A1 (de) * 1999-08-16 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
JP4048699B2 (ja) * 1999-11-10 2008-02-20 株式会社デンソー 燃料噴射弁
DE10001099A1 (de) * 2000-01-13 2001-08-02 Bosch Gmbh Robert Steuerventil für einen Injektor eines Kraftstoffeinspritzsystems für Brennkraftmaschinen mit Druckerhöhung im Steuerraum
DE10015740C2 (de) * 2000-03-29 2003-12-18 Siemens Ag Einspritzventil für die Einspritzung von Kraftstoff in eine Verbrennungskraftmaschine
EP1138912A1 (de) * 2000-04-01 2001-10-04 Robert Bosch GmbH Online Optimierung eines Einspritzsystems mit piezolektrischen Elementen
DE10104634A1 (de) * 2001-02-02 2002-09-19 Bosch Gmbh Robert Kraftstoffeinspritzsystem für Brennkraftmaschinen mit verbesserter Druckversorgung der Injektoren
DE10109610A1 (de) * 2001-02-28 2002-09-05 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
DE10113654A1 (de) * 2001-03-21 2002-09-26 Bosch Gmbh Robert Kraftsotffeinspritzeinrichtung für Brennkraftmaschinen
DE10149004C1 (de) * 2001-10-04 2003-02-27 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
KR100820024B1 (ko) * 2002-05-14 2008-04-07 가부시키가이샤 미쿠니 전자제어 연료분사장치

Also Published As

Publication number Publication date
DE10355411B3 (de) 2005-07-14
EP1687523A1 (de) 2006-08-09
JP2007512463A (ja) 2007-05-17
JP4404906B2 (ja) 2010-01-27
CN100443713C (zh) 2008-12-17
US20070095329A1 (en) 2007-05-03
CN1886589A (zh) 2006-12-27
WO2005052355A1 (de) 2005-06-09
DE502004008927D1 (de) 2009-03-12
US7318417B2 (en) 2008-01-15

Similar Documents

Publication Publication Date Title
DE19640826B4 (de) Speicherkraftstoffeinspritzvorrichtung und Druckregelvorrichtung hierfür
EP1825124B1 (de) Verfahren zum steuern eines piezoelektrischen aktors und steuereinheit zum steuern eines piezoelektrischen aktors
EP1687523B1 (de) Einspritzanlage und einspritzverfahren f r eine brennkraftma schine
EP3114346B1 (de) Verfahren zur regelung eines common-rail-injektors
DE102011005285B4 (de) Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
DE10002270C1 (de) Ventil zum Steuern von Flüssigkeiten
EP2536942B1 (de) Hochdruck-kraftstoff-einspritzventil für einen verbrennungsmotor
EP0959243A1 (de) Steuerventil für Kraftstoffeinspritzventil
DE10162651A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10221384A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1865192B1 (de) Kraftstoffinjektor mit Servounterstützung
EP1241347B1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
WO2017157736A1 (de) VERFAHREN ZUM ERMITTELN EINES SOLLWERTES FÜR EINE STELLGRÖßE ZUR ANSTEUERUNG EINER NIEDERDRUCKPUMPE
EP1483498A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2017157750A1 (de) Verfahren zum ermitteln eines sollwertes für eine stellgrösse zur ansteuerung einer niederdruckpumpe
DE102015217776A1 (de) Verfahren zur Erkennung einer Schädigung einer Düsennadel eines Kraftstoffinjektors oder des Düsennadelsitzes
EP1260702A2 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1377745B1 (de) Verfahren zum betreiben einer pumpe-düse-einheit sowie pumpe-düse-einheit
DE102015214599B3 (de) Verfahren zur Kompensation eines Fehlers eines Drucksensors
DE102015212378B4 (de) Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
WO2001081751A1 (de) Ventil zum steuern von flüssigkeiten
DE102019220172A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
WO2002018765A1 (de) Verfahren zur verkürzung der startzeit bei brennkraftmaschinen mit speichereinspritzsystem
DE102007053156A1 (de) Kraftstoffeinspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004008927

Country of ref document: DE

Date of ref document: 20090312

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004008927

Country of ref document: DE

Effective date: 20140603