EP1668240B1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
EP1668240B1
EP1668240B1 EP04787123.1A EP04787123A EP1668240B1 EP 1668240 B1 EP1668240 B1 EP 1668240B1 EP 04787123 A EP04787123 A EP 04787123A EP 1668240 B1 EP1668240 B1 EP 1668240B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
edge
needle
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04787123.1A
Other languages
English (en)
French (fr)
Other versions
EP1668240A1 (de
Inventor
Martin Mueller
Michael Huebel
Marco Vorbach
Alexander Hantke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1668240A1 publication Critical patent/EP1668240A1/de
Application granted granted Critical
Publication of EP1668240B1 publication Critical patent/EP1668240B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air

Definitions

  • the invention relates to a fuel injection valve according to the preamble of the main claim.
  • a fuel injection valve which has an outwardly opening valve needle with a valve closing body abutting correspondingly outside on a valve seat.
  • a valve closing body of a valve needle is provided with an outflow edge which peripherally encloses the downstream end side of the valve closing body and which is set back relative to the discharge edge of the valve seat with respect to the flow direction when the valve is closed.
  • the return offset is defined so that in the fully open position of the valve needle, the downstream end face of the valve closing body, which comprises the trailing edge, lies in a plane with the plane of the discharge edge of the valve seat. In this respect, the return offset corresponds to the maximum stroke of the valve needle.
  • the fuel injector according to the invention with the characterizing features of the main claim has the advantage that the beam angle scattering is reduced in a simple manner by the trailing edge of the valve needle in a predetermined range of 2 microns to 20 microns back compared to the Abspritzkante the valve seat in the direction of a valve longitudinal axis is. In this not disclosed in the prior art region of the return offset of the trailing edge occur no deposits on the trailing edge of the valve needle.
  • the outflow edge of the valve needle is recessed in a predetermined range of two micrometers to twelve micrometers with respect to the discharge edge of the valve seat, since in this area particularly low beam angle scattering occur.
  • the return offset of the outflow edge of the valve needle with respect to the discharge edge of the valve seat is ten micrometers.
  • valve needle interacts with an actuator, wherein the actuator is for example a piezoelectric actuator.
  • valve needle when opening the fuel injection valve, a stroke in the direction of Performs combustion chamber, as this represents a particularly simple structural embodiment.
  • the drawing shows an inventive fuel injection valve.
  • the fuel injector is used to inject fuel, such as gasoline, in a combustion chamber of an internal combustion engine and is used for example in the so-called direct injection.
  • the fuel injection valve has a valve housing 1 with an inlet channel 2.
  • a schematically illustrated actuator 3 for the axial adjustment of a valve needle 4 is arranged in the valve housing.
  • the actuator 3 is for example a cooperating with an excitable coil armature, a hydraulic element, a piezoelectric actuator or the like.
  • the actuator 3 is designed, for example, encapsulated with respect to the fuel.
  • the valve needle 4 is provided axially movable in the valve housing 1 and has, for example, a needle shaft 7 facing the actuator 3 and a valve closing body 8 facing away from the actuator 3.
  • the actuator 3 transmits its movement directly or indirectly to the needle shaft 7 of the valve needle 4, whereby the cooperating with a valve seat 9 valve closing body 8 the Fuel injector opens or closes.
  • the fuel injection valve has, for example, a so-called ball-cone seat, wherein the valve seat 9 is formed, for example, conical and the valve closing body 8 has a cooperating with the valve seat 9 ball or radius section 10. When the fuel injection valve is closed, the valve closing body 8 lies tight against the valve seat 9 with line or surface contact over its entire circumference, which is referred to below as the sealing seat 11.
  • the valve seat 9 may be a separate part of the fuel injection valve within the valve housing 1 or integrally connected to the valve housing 1.
  • the valve closing body 8 has, for example, a larger diameter than the needle shaft 7. Starting from the needle shank 7, the valve closing body 8 having the ball section 10 widens to a maximum diameter trailing edge 14 of the valve closing body 8. Downstream of the trailing edge 14, the valve closing body 8 has, for example, a conical section 15, in which the valve closing body 8 tapers.
  • valve seat 9 extends downstream of the sealing seat 11 to a spray edge 16.
  • the fuel is conducted in the valve housing 1, starting from the inlet channel 2 to the valve closing body 8 upstream of the sealing seat 11.
  • the valve closing body 8 lifts from the sealing seat 11, whereby a connection is opened to a combustion chamber 20 of the internal combustion engine, so that fuel via a between the valve closing body 8 and the valve seat 9 formed annular output gap 19 flows into the combustion chamber 20.
  • the annular output gap 19 expands, for example, in the flow direction and thereby acts as a diffuser. The larger the stroke of the valve needle 4 in the opening direction, the larger the output gap 19 and the more fuel is injected into the combustion chamber 20.
  • the fuel injection valve is for example a so-called outward-opening valve, the valve needle 4 executing a stroke in the direction of the combustion chamber 20.
  • the output gap 19 extends from the sealing seat 11, starting in the flow direction.
  • the fuel flows along the valve closing body 8 to the outflow edge 14 and along the valve seat 9 to Abspritzkante 16.
  • Downstream of the trailing edge 14 and the Abspritzkante 16 forms a free rotationally symmetrical fuel jet, which is guided for example in a region near a spark plug, not shown.
  • the forming beam angle of the fuel jet results essentially from a tangent applied to the trailing edge 14 of the valve needle 4.
  • the fuel injector performs a stroke on the order of about 40 microns.
  • So-called spray-guided fuel methods for example for gasoline direct injection, require a predetermined jet angle during operation of the internal combustion engine, so that the fuel jet with a low scattering reaches a predetermined region, for example into the region of the spark plug.
  • the trailing edge 14 and the discharge edge 16 is almost free of burrs and the valve closing body 8 and the valve seat 9 in the region of the sealing seat 11 with a high surface quality.
  • the burrs at the outflow edge 14 and the discharge edge 16 are, for example, less than five micrometers, preferably less than one micrometer.
  • valve surfaces of the fuel injection valve which are in direct contact with the combustion chamber 20 are wetted with fuel, which burns only incompletely on the valve surfaces in the combustion processes in the combustion chamber 20, so that deposits on the in direct contact with the combustion chamber 20 can form standing valve surfaces.
  • the formation of deposits in the region of the combustion chamber 20 is also referred to as coking.
  • the deposits consist essentially of unburned hydrocarbons and other burnt residues.
  • the formation of deposits at the trailing edge 14 of the valve needle 4 is to be avoided over the life of the fuel injector considered essential, since the trailing edge 14 substantially determines the predetermined jet angle so that it would come to deposits at the trailing edge 14 to a change in the predetermined beam angle and thus to undefined combustion states, which are characterized for example by so-called misfires.
  • the predetermined beam angle is therefore to be kept approximately constant over the life of the fuel injection valve, so that only small beam angle scattering occur.
  • the trailing edge 14 of the valve needle 4 is arranged such that the trailing edge 14 when closed Seen in reverse, the Ab moussekante 16 is opposite to the trailing edge 14 seen in the flow direction by the value of the return offset 21 vorset with compressed fuel injection valve ,
  • the return offset 21 is in a range between 2 micrometers and 20 micrometers in the direction of a longitudinal valve axis 22.
  • the offset 21 is preferably to be provided in a range between 2 micrometers and 12 micrometers, since particularly low beam angle scattering occurs in this range.
  • the offset 21 is ten microns.
  • the resetting of the trailing edge 14 with respect to the ejection edge 16 is particularly effective with regard to low beam angle scattering.
  • the edge 14,16 which protrudes in the direction of the combustion chamber 20 with respect to the other edge 14,16, is more exposed to coking than the recessed edge 14,16. Since the beam angle in the range of the return offset 21 according to the invention is essentially determined by the trailing edge 14 of the valve needle 4, the ejection edge 16 is to be arranged in an offset manner.
  • the deposits on the spray edge 16 grow with time, wherein the growth of the deposits in the region of the spray edge 16 in the radial direction to the valve closing body 8 is limited since in the radial region of the valve closing body 8 protruding deposits by the lifting movements of the Valve-closing body 8 sheared or torn off when opening and closing the fuel injection valve. In this case, deposits outside the radial area of the valve closing body 8 can also be torn off.
  • the offset 21 is outside the range according to the invention and is, for example, less than 2 micrometers or greater than 20 micrometers, a disturbing change in the predetermined beam angle occurs over time. If the offset 21, for example, greater than 20 microns, the deposits on the Abspritzkante 16 can grow such that they change the predetermined beam angle to smaller beam angles. If the offset 21, for example, smaller than 2 microns, the protection of the recessed trailing edge 14 by the pre-offset Abspritzkante 16 is too low, so that deposits on the trailing edge 14 may occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
  • Es ist schon ein Brennstoffeinspritzventil aus der US 4 759 335 bekannt, das eine Ventilnadel, die an einer Abströmkante einen maximalen Durchmesser hat, und einen mit der Ventilnadel zusammenwirkenden Ventilsitz mit einem Dichtsitz aufweist, wobei sich der Ventilsitz von dem Dichtsitz ausgehend bis zu einer Abspritzkante erweitert und wobei die Abströmkante der Ventilnadel bei geschlossenem Brennstoffeinspritzventil gegenüber der Abspritzkante des Ventilsitzes bezüglich der Strömungsrichtung zurückversetzt ist. Das Brennstoffeinspritzventil spritzt den Kraftstoff unter einem vorbestimmten Strahlwinkel in einen Brennraum einer Brennkraftmaschine ein. Nachteilig ist, daß bei zu geringem oder zu großem Rückversatz der Abströmkante eine unzulässig hohe Strahlwinkelstreuung auftreten kann.
  • Aus der US 5,090,625 A ist bereits ein Brennstoffeinspritzventil bekannt, das eine nach außen öffnende Ventilnadel mit einem entsprechend außen an einem Ventilsitz anschlagendem Ventilschließkörper aufweist. Bei diesem bekannten Brennstoffeinspritzventil (Fig. 2) ist ein Ventilschließkörper einer Ventilnadel mit einer Abströmkante versehen, die die stromabwärtig Stirnseite des Ventilschließkörpers randseitig umlaufend abschließt und die bei geschlossenem Ventil gegenüber der Abspritzkante des Ventilsitzes bezüglich der Strömungsrichtung zurückversetzt ist. Der Rückversatz ist so definiert, dass in der vollständig geöffneten Position der Ventilnadel die stromabwärtige Stirnseite des Ventilschließkörpers, die die Abströmkante umfasst, in einer Ebene mit der Ebene der Abspritzkante des Ventilsitzes liegt. Insofern entspricht der Rückversatz dem maximalen Hub der Ventilnadel.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß auf einfache Art und Weise die Strahlwinkelstreuung verringert wird, indem die Abströmkante der Ventilnadel in einem vorbestimmten Bereich von 2 Mikrometern bis 20 Mikrometern gegenüber der Abspritzkante des Ventilsitzes in Richtung einer Ventillängsachse zurückversetzt ist. In diesem beim Stand der Technik nicht offenbarten Bereich des Rückversatzes der Abströmkante treten keine Ablagerungen an der Abströmkante der Ventilnadel auf.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
  • Besonders vorteilhaft ist, wenn die Abströmkante der Ventilnadel in einem vorbestimmten Bereich von zwei Mikrometern bis zwölf Mikrometern gegenüber der Abspritzkante des Ventilsitzes zurückversetzt ist, da in diesem Bereich besonders geringe Strahlwinkelstreuungen auftreten. Gemäß einer vorteilhaften Ausgestaltung beträgt der Rückversatz der Abströmkante der Ventilnadel gegenüber der Abspritzkante des Ventilsitzes zehn Mikrometer.
  • Weiterhin vorteilhaft ist, daß die Ventilnadel mit einem Aktor zusammenwirkt, wobei der Aktor beispielsweise ein Piezoaktor ist.
  • Auch sehr vorteilhaft ist, wenn die Ventilnadel beim Öffnen des Brennstoffeinspritzventils einen Hub in Richtung des Brennraums ausführt, da dies eine besonders einfache konstruktive Ausführungsform darstellt.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Beschreibung des Ausführungsbeispiels
  • Die Zeichnung zeigt ein erfindungsgemäßes Brennstoffeinspritzventil.
  • Das Brennstoffeinspritzventil dient dazu, Kraftstoff, beispielsweise Benzin, in einen Brennraum einer Brennkraftmaschine einzuspritzen und wird beispielsweise bei der sogenannten Direkteinspritzung verwendet.
  • Das Brennstoffeinspritzventil hat ein Ventilgehäuse 1 mit einem Eingangskanal 2. In dem Ventilgehäuse ist ein schematisch dargestellter Aktor 3 zur axialen Verstellung einer Ventilnadel 4 angeordnet. Der Aktor 3 ist beispielsweise ein mit einer erregbaren Spule zusammenwirkender Magnetanker, ein Hydraulikelement, ein Piezoaktor oder ähnliches. Der Aktor 3 ist beispielsweise gegenüber dem Kraftstoff gekapselt ausgeführt.
  • Die Ventilnadel 4 ist in dem Ventilgehäuse 1 axial beweglich vorgesehen und weist beispielsweise einen dem Aktor 3 zugewandten Nadelschaft 7 und einen dem Aktor 3 abgewandten Ventilschließkörper 8 auf. Der Aktor 3 überträgt seine Bewegung direkt oder indirekt auf den Nadelschaft 7 der Ventilnadel 4, wodurch der mit einem Ventilsitz 9 zusammenwirkende Ventilschließkörper 8 das Brennstoffeinspritzventil öffnet oder schließt. Das Brennstoffeinspritzventil weist beispielsweise einen sogenannten Kugel-Kegelsitz auf, wobei der Ventilsitz 9 beispielsweise kegelförmig ausgebildet ist und der Ventilschließkörper 8 einen mit dem Ventilsitz 9 zusammenwirkenden Kugel- oder Radienabschnitt 10 aufweist. Bei geschlossenem Brennstoffeinspritzventil liegt der Ventilschließkörper 8 über seinen gesamten Umfang an dem Ventilsitz 9 mit Linien- oder Flächenberührung dicht an, was im folgenden als Dichtsitz 11 bezeichnet wird.
  • Der Ventilsitz 9 kann ein separates Teil des Brennstoffeinspritzventils innerhalb des Ventilgehäuses 1 oder einteilig mit dem Ventilgehäuse 1 verbunden sein.
  • Der Ventilschließkörper 8 weist beispielsweise einen größeren Durchmesser auf als der Nadelschaft 7. Vom Nadelschaft 7 ausgehend erweitert sich der den Kugelabschnitt 10 aufweisende Ventilschließkörper 8 bis zu einer Abströmkante 14 mit maximalem Durchmesser des Ventilschließkörpers 8. Stromab der Abströmkante 14 weist der Ventilschließkörper 8 beispielsweise einen Kegelabschnitt 15 auf, in dem sich der Ventilschließkörper 8 verjüngt.
  • Der Ventilsitz 9 erweitert sich stromab des Dichtsitzes 11 bis zu einer Abspritzkante 16.
  • Der Kraftstoff wird im Ventilgehäuse 1 ausgehend vom Eingangskanal 2 bis an den Ventilschließkörper 8 stromauf des Dichtsitzes 11 geleitet. Beim Öffnen des Brennstoffeinspritzventils hebt der Ventilschließkörper 8 von dem Dichtsitz 11 ab, wodurch eine Verbindung zu einem Brennraum 20 der Brennkraftmaschine geöffnet wird, so daß Kraftstoff über einen zwischen dem Ventilschließkörper 8 und dem Ventilsitz 9 gebildeten ringförmigen Ausgangsspalt 19 in den Brennraum 20 ausströmt. Der ringförmige Ausgangsspalt 19 erweitert sich beispielsweise in Strömungsrichtung und wirkt dadurch als Diffusor. Je größer der Hub der Ventilnadel 4 in Öffnungsrichtung ist, desto größer ist der Ausgangsspalt 19 und desto mehr Kraftstoff wird in den Brennraum 20 eingespritzt.
  • Das Brennstoffeinspritzventil ist beispielsweise ein sogenanntes nach außen öffnendes Ventil, wobei die Ventilnadel 4 einen Hub in Richtung des Brennraums 20 ausführt.
  • Der Ausgangsspalt 19 erweitert sich vom Dichtsitz 11 ausgehend in Strömungsrichtung. Dabei strömt der Kraftstoff entlang dem Ventilschließkörper 8 bis zur Abströmkante 14 und entlang dem Ventilsitz 9 bis zur Abspritzkante 16. Stromab der Abströmkante 14 und der Abspritzkante 16 bildet sich ein freier rotationssymmetrischer Kraftstoffstrahl, der beispielsweise in einen Bereich nahe einer nicht dargestellten Zündkerze geführt wird. Der sich ausbildende Strahlwinkel des Kraftstoffstrahls ergibt sich im wesentlichen aus einer an die Abströmkante 14 der Ventilnadel 4 angelegten Tangente.
  • Das Brennstoffeinspritzventil führt beispielsweise einen Hub in der Größenordnung von etwa 40 Mikrometern aus.
  • Sogenannte strahlgeführte Brennstoffverfahren, beispielsweise für die Benzindirekteinspritzung, erfordern während des Betriebs der Brennkraftmaschine einen vorbestimmten Strahlwinkel, damit der Kraftstoffstrahl mit geringer Streuung in einen vorbestimmten Bereich, beispielsweise in den Bereich der Zündkerze, gelangt. Dazu ist die Abströmkante 14 und die Abspritzkante 16 nahezu gratfrei und der Ventilschließkörper 8 und der Ventilsitz 9 im Bereich des Dichtsitzes 11 mit einer hohen Oberflächengüte auszuführen. Die Grate an der Abströmkante 14 und der Abspritzkante 16 sind beispielsweise kleiner als fünf Mikrometer, vorzugsweise kleiner als ein Mikrometer, ausgebildet.
  • Während des Betriebs der Brennkraftmaschine werden die in unmittelbarem Kontakt mit dem Brennraum 20 stehenden Ventiloberflächen des Brennstoffeinspritzventils mit Kraftstoff benetzt, der bei den Verbrennungsvorgängen im Brennraum 20 aber nur unvollständig an den Ventiloberflächen verbrennt, so daß sich Ablagerungen an den in unmittelbarem Kontakt mit dem Brennraum 20 stehenden Ventiloberflächen bilden können. Die Bildung von Ablagerungen im Bereich des Brennraums 20 wird auch als Verkokung bezeichnet. Die Ablagerungen bestehen im wesentlichen aus unverbrannten Kohlenwasserstoffen und anderen Verbrenungsrückständen.
  • Die Bildung von Ablagerungen an der Abströmkante 14 der Ventilnadel 4 ist über die Lebensdauer des Brennstoffeinspritzventils betrachtet unbedingt zu vermeiden, da die Abströmkante 14 im wesentlichen den vorbestimmten Strahlwinkel bestimmt, so daß es bei Ablagerungen an der Abströmkante 14 zu einer Änderung des vorbestimmten Strahlwinkels käme und damit zu undefinierten Verbrennungszuständen, die beispielsweise durch sogenannte Verbrennungsaussetzer gekennzeichnet sind. Der vorbestimmte Strahlwinkel ist deshalb über die Lebensdauer des Brennstoffeinspritzventils gesehen annähernd konstant zu halten, so nur geringe Strahlwinkelstreuungen auftreten.
  • Zur Vermeidung der Bildung von Ablagerungen an der Abströmkante 14 ist die Abströmkante 14 der Ventilnadel 4 derart angeordnet, daß die Abströmkante 14 bei geschlossenem Brennstoffeinspritzventil gegenüber der Abspritzkante 16 des Ventilsitzes 9 in Strömungsrichtung gesehen einen vorbestimmten Rückversatz 21 aufweist, d.h. die Abspritzkante 16 liegt innerhalb des Ventilsitzes 9. Umgekehrt ausgedrückt ist die Abspritzkante 16 bei geschlossenem Brennstoffeinspritzventil gegenüber der Abströmkante 14 in Strömungsrichtung gesehen um den Wert des Rückversatzes 21 vorversetzt.
  • Erfindungsgemäß liegt der Rückversatz 21 in einem Bereich zwischen 2 Mikrometern und 20 Mikrometern in Richtung einer Ventillängsachse 22. Der Rückversatz 21 ist vorzugsweise in einem Bereich zwischen 2 Mikrometern und 12 Mikrometern vorzusehen, da in diesem Bereich besonders geringe Strahlwinkelstreuungen auftreten. Beispielsweise beträgt der Rückversatz 21 zehn Mikrometer. In dem erfindungsgemäßen Bereich zwischen 2 Mikrometern und 20 Mikrometern ist das Rückversetzen der Abströmkante 14 gegenüber der Abspritzkante 16 hinsichtlich einer geringen Strahlwinkelstreuung besonders wirksam.
  • Diejenige Kante 14,16, die gegenüber der anderen Kante 14,16 in Richtung des Brennraums 20 vorsteht, ist stärker der Verkokung ausgesetzt als die zurückversetzte Kante 14,16. Da der Strahlwinkel im erfindungsgemäßen Bereich des Rückversatzes 21 im wesentlichen durch die Abströmkante 14 der Ventilnadel 4 bestimmt wird, ist die Abspritzkante 16 vorversetzt anzuordnen. Dadurch bilden sich die Ablagerungen im wesentlichen an der Abspritzkante 16 anstatt an der Abströmkante 14. Die Ablagerungen an der Abspritzkante 16 wachsen mit der Zeit an, wobei das Wachsen der Ablagerungen im Bereich der Abspritzkante 16 in radialer Richtung zum Ventilschließkörper 8 hin begrenzt ist, da in den radialen Bereich des Ventilschließkörpers 8 hineinragende Ablagerungen durch die Hubbewegungen des Ventilschließkörpers 8 beim Öffnen und Schließen des Brennstoffeinspritzventils abgeschert oder abgerissen werden. Dabei können auch Ablagerungen außerhalb des radialen Bereichs des Ventilschließkörpers 8 mit abgerissen werden.
  • Liegt der Rückversatz 21 außerhalb des erfindungsgemäßen Bereiches und ist beispielsweise kleiner als 2 Mikrometer oder größer als 20 Mikrometer, kommt es mit der Zeit zu einer störenden Veränderung des vorbestimmten Strahlwinkels. Ist der Rückversatz 21 beispielsweise größer als 20 Mikrometer, können die Ablagerungen an der Abspritzkante 16 derart anwachsen, daß sie den vorbestimmten Strahlwinkel zu kleineren Strahlwinkeln hin verändern. Ist der Rückversatz 21 beispielsweise kleiner als 2 Mikrometer, ist der Schutz der rückversetzten Abströmkante 14 durch die vorversetzte Abspritzkante 16 zu gering, so daß auch Ablagerungen an der Abströmkante 14 auftreten können.

Claims (7)

  1. Brennstoffeinspritzventil, insbesondere zum direkten Einspritzen von Brennstoff in einen Brennraum einer Brennkraftmaschine, mit einer Ventilnadel, die an einer Abströmkante einen maximalen Durchmesser aufweist, und mit einem mit der Ventilnadel zusammenwirkenden Ventilsitz mit einem Dichtsitz, wobei sich der Ventilsitz von dem Dichtsitz ausgehend bis zu einer Abspritzkante erweitert und wobei die Abströmkante der Ventilnadel bei geschlossenem Brennstoffeinspritzventil gegenüber der Abspritzkante des Ventilsitzes bezüglich der Strömungsrichtung zurückversetzt ist, dadurch gekennzeichnet, dass die Abströmkante (14) der Ventilnadel (4) in einem vorbestimmten Bereich von 2 Mikrometern bis 20 Mikrometern gegenüber der Abspritzkante (16) des Ventilsitzes (9) in Richtung einer Ventillängsachse (22) zurückversetzt ist.
  2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Abströmkante (14) der Ventilnadel (4) in einem vorbestimmten Bereich von 2 Mikrometern bis 12 Mikrometern gegenüber der Abspritzkante (16) des Ventilsitzes (9) zurückversetzt ist.
  3. Brennstoff einspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Abströmkante (14) der Ventilnadel (4) um 10 Mikrometer gegenüber der Abspritzkante (16) des Ventilsitzes (9) zurückversetzt ist.
  4. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilschließkörper (8) als Teil der Ventilnadel (4) stromab der Abströmkante (14) einen Kegelabschnitt (15) aufweist, in dem sich der Ventilschließkörper (8) verjüngt.
  5. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (4) mit einem Aktor (3) zusammenwirkt.
  6. Brennstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, dass der Aktor ein Piezoaktor ist.
  7. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (4) beim Öffnen des Brennstoffeinspritzventils einen Hub in Richtung des Brennraums (20) ausführt.
EP04787123.1A 2003-09-25 2004-09-10 Brennstoffeinspritzventil Active EP1668240B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10344585A DE10344585A1 (de) 2003-09-25 2003-09-25 Brennstoffeinspritzventil
PCT/EP2004/052123 WO2005031153A1 (de) 2003-09-25 2004-09-10 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP1668240A1 EP1668240A1 (de) 2006-06-14
EP1668240B1 true EP1668240B1 (de) 2014-11-12

Family

ID=34384284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04787123.1A Active EP1668240B1 (de) 2003-09-25 2004-09-10 Brennstoffeinspritzventil

Country Status (6)

Country Link
US (1) US8727240B2 (de)
EP (1) EP1668240B1 (de)
JP (1) JP4542100B2 (de)
BR (1) BRPI0414709B1 (de)
DE (1) DE10344585A1 (de)
WO (1) WO2005031153A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3347470A (en) * 1965-04-07 1967-10-17 Borg Warner Fuel injection nozzle
DE3004454A1 (de) * 1980-02-07 1981-08-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstofeinspritzduese fuer brennkraftmaschinen
CA1279798C (en) * 1985-07-19 1991-02-05 Peter William Ragg Fuel injection
GB2219627B (en) 1988-06-10 1992-10-28 Orbital Eng Pty Improvements relating to nozzles for in-cylinder fuel injection systems
JP2768740B2 (ja) 1988-06-10 1998-06-25 オービタル、エンジン、カンパニー、プロプライエタリ、リミテッド 燃料噴射ノズル
JP2767005B2 (ja) * 1990-11-14 1998-06-18 トヨタ自動車株式会社 エアブラスト弁
JPH05113871A (ja) 1991-10-23 1993-05-07 Mitsubishi Electric Corp 演算処理装置
US5170766A (en) * 1992-01-16 1992-12-15 Orbital Walbro Corporation Fuel and air injection for multi-cylinder internal combustion engines
DE10204655A1 (de) * 2002-02-05 2003-08-28 Bosch Gmbh Robert Brennstoffeinspritzventil

Also Published As

Publication number Publication date
DE10344585A1 (de) 2005-04-28
US8727240B2 (en) 2014-05-20
BRPI0414709B1 (pt) 2017-10-24
US20090008482A1 (en) 2009-01-08
EP1668240A1 (de) 2006-06-14
JP4542100B2 (ja) 2010-09-08
BRPI0414709A (pt) 2006-11-14
JP2007506036A (ja) 2007-03-15
WO2005031153A1 (de) 2005-04-07

Similar Documents

Publication Publication Date Title
EP2087228B1 (de) Brennstoffeinspritzventil
DE10118164B4 (de) Brennstoffeinspritzventil
EP1395749B1 (de) Brennstoffeinspritzventil
DE10055483B4 (de) Brennstoffeinspritzventil
EP1312796B1 (de) Brennstoffeinspritzventil
EP1570174A1 (de) Brennstoffeinspritzventil
DE10046306A1 (de) Brennstoffeinspritzventil
EP1668240B1 (de) Brennstoffeinspritzventil
DE10103051B4 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
DE102017218224A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
EP1307652A1 (de) Brennstoffeinspritzventil
DE10046305A1 (de) Brennstoffeinspritzventil
EP1328721B1 (de) Brennstoffeinspritzventil
DE10038098A1 (de) Brennstoffeinspritzventil
WO2002031352A2 (de) Brennstoffeinspritzventil
EP1327070A2 (de) Brennstoffeinspritzventil
WO2003072929A1 (de) Brennstoffeinspritzventil
EP3397851A1 (de) Brennstoffeinspritzventil
EP1308618B1 (de) Brennstoffeinspritzventil
DE10152419A1 (de) Brennstoffeinspritzventil
DE102005024067A1 (de) Brennstoffeinspritzventil
DE102019219019A1 (de) Ventil zum Zumessen eines Fluids
DE10331805A1 (de) Brennstoffeinspritzventil
DE102018200341A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20130527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014762

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014762

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150813

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170925

Year of fee payment: 14

Ref country code: IT

Payment date: 20170926

Year of fee payment: 14

Ref country code: FR

Payment date: 20170925

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231124

Year of fee payment: 20