EP1648890A2 - Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen - Google Patents

Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen

Info

Publication number
EP1648890A2
EP1648890A2 EP04763272A EP04763272A EP1648890A2 EP 1648890 A2 EP1648890 A2 EP 1648890A2 EP 04763272 A EP04763272 A EP 04763272A EP 04763272 A EP04763272 A EP 04763272A EP 1648890 A2 EP1648890 A2 EP 1648890A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
compounds
halogen
haloalkyl
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04763272A
Other languages
English (en)
French (fr)
Inventor
Oliver Wagner
Thomas Grote
Carsten Blettner
Markus Gewehr
Wassilios Grammenos
Andreas Gypser
Bernd Müller
Joachim Rheinheimer
Peter Schäfer
Frank Schieweck
Anja Schwögler
Jordi Tormo I Blasco
Alan Akers
John-Bryan Speakman
Michael Rack
Reinhard Stierl
Maria Scherer
Siegfried Strathmann
Ulrich Schöfl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1648890A2 publication Critical patent/EP1648890A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to new, aryl-condensed 3-aryipyridine compounds and their use for controlling harmful fungi and crop protection agents which contain such compounds as an active ingredient.
  • EP-A 71792, US 5,994,360, EP-A 550113, WO 02/48151 describe fungicidally active pyrazolo [1, 5-a] pyrimidines and triazolo [1, 5a] pyrimidines which in the 5-position of the pyrimidine ring optionally substituted one Wear phenyl group.
  • WO 03/022850 discloses imidazolo [1, 2-a] pyrimidines with a fungicidal action.
  • New active ingredients should kill the harmful fungi at the lowest possible application rates and reduce or even prevent them from forming again.
  • the active ingredients should have good crop tolerance, i.e. H. do not harm the crop plants or only do so to a small extent.
  • 111, 2813-2824 (1978) are 4-hydroxy-3- (4-methoxyphenyl) -1, 8-naphthyridin-2 (1 H) -one; 4-hydroxy-3- (4-methylphenyl) -1, 8-naphthyridin-2 (1 H) -one, 4-hydroxy-3- (3-methylphenyl) -1, 8-naphthyridin-2 (1 H) - on and 4-hydroxy-3- (2-methylphenyl) -, 8-naphthyridin-2 (1 H) -one known.
  • the object of the present invention is therefore to provide new compounds with good fungicidal activity, in particular with low application rates and / or good crop tolerance.
  • This object is achieved by bicyclic, ie aryl-fused 3-arylpyridine compounds of the general formula I
  • X, Y are independently N or CR 4 ; n represents 1, 2, 3, 4 or 5;
  • R a is halogen, cyano, CC 6 alkyl, C r C 6 alkoxy, haloalkyl CC 6, CC 6 - haloalkoxy, C 2 -C 6 alkenyl, C 2 -C 6 alkenyloxy or C (O) R 5 stands;
  • R 1 halogen, cyano, CC 6 alkyl, CrC-e-haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, optionally with alkyl and / or halogen - or is multiply substituted, C 5 -C 8 cycloalkenyl, which is optionally mono- or polysubstituted with alkyl and / or halogen, is OR 6 , SR 6 or NR 7 R 8 ;
  • R 2 halogen, cyano, CC 6 alkyl, CC 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, which may be substituted with alkyl and / or halogen or is multiply substituted, Cs-C ⁇ -cycloalkenyl, which is optionally mono- or polysubstituted by alkyl and / or halogen, is OR 6 , SR 6 or NR 7 R 8 ;
  • R 3 represents hydrogen, CC 6 alkyl, CC 6 haloalkyl or C 3 -C 6 cycloalkyl, which is optionally mono- or polysubstituted by alkyl and / or halogen;
  • R 4 represents hydrogen, halogen, Ct-C 6 alkyl, CC 6 haloalkyl or C 3 -C 6 cycloalkyl, which is optionally mono- or polysubstituted by alkyl and / or halogen;
  • R 5 is hydrogen, OH, CRCE alkyl, CC 6 alkoxy, CC 6 haloalkyl, -C 6 - haloalkoxy, C 2 -C 6 alkenyl, CC 6 alkylamino or di-CrC 6 alkylamino, piperidin-1-yl , Pyrrolidin-1-yl or morpholin-4-yl;
  • R 6 is hydrogen, CC 6 -alkyl, CrCe-haloalkyl, phenyl-C C -alkyl, where phenyl can be mono- or polysubstituted by halogen, alkyl or alkoxy, is C 2 -C 6 -alkenyl or COR 9 ;
  • R 7 , R 8 independently of one another for hydrogen, C -C 0 alkyl, C 2 -C 10 alkenyl, C 4 - C 10 alkadienyl, C 2 -C 10 alkynyl, C 3 -C 8 cycloalkyl, C 5 -C 8 cycloalkenyl, C 5 -C 10 bicycloalkyl, phenyl, phenyl-C C 4 alkyl, naphthyl, a 5- or 6-membered, saturated or partially unsaturated heterocycle, which may have 1, 2 or 3 heteroatoms, selected from N, O and S, as ring members, or a 5- or 6-membered aromatic heterocycle, which Can have 1, 2 or 3 hetero atoms, selected from N, O and S, as ring members, it being possible for the radicals mentioned as R 7 , R 8 to be partially or completely halogenated and / or to have 1, 2 or 3 radicals R b can, wherein R b is selected from cyano
  • the compounds I are new with the exception of those described in US Pat. No. 5,801,183, WO 96/22990, in J. of Heterocyclic Chemistry, 30, 1993, 909-912 and in Chem. Ber. 111, 2813-2824 (1978) called 1,8-naphthyridines. Accordingly, the present invention also relates to bicyclic compounds of the general formula I and their agriculturally acceptable salts, with the exception of: compounds of the general formula I in which R 1 is OH when Y and X are each CR 4 ; and - 2,4-dichloro-3- (o-methoxyphenyl) -1, 8-naphthyridine.
  • the present invention furthermore relates to an agent for combating harmful fungi, comprising at least one compound of the general formula I. and / or an agriculturally acceptable salt thereof and at least one liquid or solid carrier.
  • the compounds of the formula I can have one or more centers of chirality and are then present as pure enantiomers or diastereomers or as enantiomer or diastereomer mixtures.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • the invention also relates to tautomers of compounds of the formula I.
  • Agriculturally useful salts include, in particular, the salts of those cations or the acid addition salts of those acids whose cations or anions do not adversely affect the fungicidal activity of the compounds I.
  • cations in particular the ions of the alkali metals, preferably sodium and potassium, the alkaline earth metals, preferably calcium, magnesium and barium, and the transition metals, preferably manganese, copper, zinc and iron, and the ammonium ion, which if desired one to four C ⁇ -C 4 alkyl substituents and / or can carry a phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri (C 1 -C 4 -alkyl) sulfonium and preferably sulfoxonium ions Tri (
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and also the anions of CrC ⁇ alkanoic acids, preferably formate and butyrate. They can be formed by reacting I with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • Halogen fluorine, chlorine, bromine and iodine
  • Haloalkyl straight-chain or branched alkyl groups with 1 to 4 or to 6 carbon atoms (as mentioned above), it being possible for part or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkyl such as chloromethyl, Bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trich
  • Phenyl -CC-C 4 alkyl for a substituted by phenyl - as mentioned above - substituted CC 4 alkyl group, for. B. for benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylprop-1-yl, 2-phenylprop-1-yl, 3-phenylprop-1-yl, 1-phenylbut-1-yl, 2-phenylbut-1 -yl, 3-phenylbut-1-yl, 4-phenylbut-1-yl, 1-phenylbut-2-yl, 2-phenylbut-2-yl, 3-phenylbut-2-yl, 4-phenylbut-2-yl , 1- (phenylmeth) -eth-1-yl, 1- (phenylmethyl) -1- (methyl) -eth-1-yl or - (phenylmethyl) -1- (methyl) -prop-1-yl; preferably benzyl;
  • Phenyl-CrC ⁇ alkyl which is optionally mono- or polysubstituted by halogen, alkoxy or alkyl: a phenyl-substituted CrC -alkyl group, the phenyl group being unsubstituted or 1, 2, 3 or 4, preferably 1, substituents selected from Fluorine, chlorine, bromine, dC 6 alkoxy or -CC 6 alkyl, can carry, for. B. for p-bromophenylmethyl, p-chlorophenylmethyl, p-methylphenylmethyl, p-methylphenylmethyl, p-methoxyphenylmethyl, p-methoxyphenylethyl;
  • Alkenyl monounsaturated, straight-chain or branched hydrocarbon radicals with 2 to 4, to 6 to 8 or to 10 carbon atoms and a double bond in any position, for example C 2 -C 6 alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1 - Methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl , 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2 -butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1, 1-di
  • Alkadienyl double-unsaturated, straight-chain or branched hydrocarbon radicals with 4 to 10 carbon atoms and two double bonds in any position, e.g. 1, 3-butadienyl, 1-methyl-1,3-butadienyl, 2-methyl-1, 3-butadienyl, penta-1,3-dien-1-yl, hexa-1,4-dien-1-yl, Hexa-1,4-dien-3-yl, hexa-1, 4-dien-6-yl, hexa-1,5-dien-1-yl, hexa-1, 5-dien-3-yl, hexa- 1, 5-dien-4-yl, hepta-1,4-dien-1-yl, hepta-1, 4-dien-3-yl, hepta-1,4-dien-6-yl, hepta-1, 4-dien-3-yl, hepta-1,4-dien-6-yl, h
  • Alkynyl straight-chain or branched hydrocarbon groups with 2 to 4, 2 to 62 to 8 or 2 to 10 carbon atoms and a triple bond in any position, for example C 2 -C 6 -alkynyl such as ethynyl, 1-propynyl, 2-propynyl, 1- Butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2
  • Cycloalkyl which is optionally mono- or polysubstituted by halogen or alkyl: a - as mentioned above - unsubstituted or 1, 2, 3 or 4, preferably 1, substituent-bearing cycloalkyl group, the substituents being selected from fluorine, chlorine, bromine or CC 6 alkyl, e.g.
  • substituents being selected from fluorine, chlorine, bromine or CC 6 alkyl, e.g.
  • Cycloalkenyl monocyclic, monounsaturated hydrocarbon groups with 5 to 8, preferably up to 6 carbon ring members, such as cyclopenten-1-yl, cyclopenten-3-yl, cyclohexen-1-yl, cyclohexen-3-yl and cyclohexen-4-yl;
  • Cycloalkenyl which is optionally mono- or polysubstituted by halogen or alkyl: a - as mentioned above - unsubstituted or 1, 2, 3 or 4, preferably 1, substituent-bearing cycloalkenyl group, the substituents being selected from fluorine, chlorine, bromine or CC 6 alkyl, e.g. B.
  • Bicycloalkyl bicyclic hydrocarbon radical with 5 to 10 carbon atoms, such as bicyclo [2.2.1] hept-1-yl, bicyclo [2.2.1] hept-2-yl, bicyclo [2.2.1] hept-7-yl, Bicyclo [2.2.2] oct-1-yl, bicyclo [2.2.2] oct-2-yl, bicyclo [3.3.0] octyl and bicyclo [4.4.0] decyl.
  • CrC 4 alkoxy for an oxygen-bonded alkyl group having 1 to 4 carbon atoms z. B. methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or 1, 1-dimethylethoxy;
  • Ci-Ce alkoxy for CC 4 alkoxy, as mentioned above, and z.
  • B pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3- Methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1, 2-
  • C ⁇ -C 6 haloalkoxy for CC 4 haloalkoxy, as mentioned above, and for example 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy , 6-iodohexoxy or dodecafluorohexoxy;
  • Alkenyloxy alkenyl as mentioned above, which is bonded via an oxygen atom, for example C 2 -C 6 alkenyloxy such as vinyloxy, 1-propenyloxy, 2-propenyloxy, 1-methylethenyloxy, 1-butenyloxy, 2-butenyloxy, 3-butenyloxy, 1 -Methyl-1-propeny!
  • Alkynyloxy alkynyl as mentioned above which is bonded via an oxygen atom, for example C 3 -C 6 -alkynyloxy such as 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl-2-propynyloxy, 2-pentynyloxy, 3-pentynyloxy , 4-pentynyloxy, 1-methyl-2-butynyloxy, 1-methyl-3-butynyloxy, 2-methyl-3-butynyloxy, 1-ethyl-2-propynyloxy, 2-hexynyloxy, 3-hexynyloxy, 4-hexynyloxy, 5 -Hexynyloxy, 1-methyl-2-pentynyloxy, 1-methyl-3-pentynyloxy and the like;
  • heterocyclyl containing, in addition to carbon ring members, one to three nitrogen atoms and / or an oxygen or sulfur atom or one or two oxygen and / or sulfur atoms, for example 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl Isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-ox
  • a first preferred embodiment of the present invention relates to compounds of the formula I in which X and Y each represent CR 4 , where R 4 can each be the same or different. These compounds are referred to below as compounds a.
  • connections 1b Another preferred embodiment of the present invention relates to compounds of the formula I in which X is CR 4 and Y is N. These connections are referred to below as connections 1b.
  • Another preferred embodiment of the present invention relates to compounds of the formula I in which X is N and Y is CR 4 . These connections are referred to below as connections lc.
  • variables n, R a , R 1 , R 2 , R 3 and R 4 have the following meanings independently of one another and preferably in combination:
  • R a halogen, in particular fluorine or chlorine, CrC 4 -alkyl, in particular methyl, CC 4 -alkoxy, in particular methoxy, CrC 2 -fluoroalkyl, in particular difluoromethyl and trifluoromethyl, CrC 2 -fluoroalkoxy, in particular difluoromethoxy and trifluoromethoxy, CrC 4 - Alkoxycarbonyl, especially methoxycarbonyl and cyano ;
  • R a is particularly preferably selected from halogen, especially fluorine or chlorine, CrC 4 alkyl, especially methyl, and CC alkoxy, especially methoxy;
  • R 1 halogen, especially chlorine, hydroxy or a group NR 7 R 8 ;
  • R 2 halogen, especially chlorine, hydroxy, CrC 6 alkyl, especially methyl; CrC 6 haloalkyl or a group NR'R;
  • R 3 is hydrogen, CrCe-alkyl, preferably CrC 3 -alkyl, CrCe-haloalkyl, preferably CrC 3 -haloalkyl, and particularly preferably hydrogen;
  • R 4 is hydrogen, halogen, CC 6 alkyl, preferably CrC 3 alkyl, CrCe haloalkyl, preferably CrC 3 haloalkyl, and particularly preferably hydrogen. If R 1 is halogen, especially chlorine, R 2 is preferably halogen, especially chlorine, CrCe-alkyl, especially methyl, CrC 6 -haloalkyl or a group NR 7 R 8 .
  • R 1 is hydroxy
  • R 2 is preferably hydroxy, CC 6 alkyl or C Ce-haloalkyl.
  • R 1 represents a group NR 7 R 8
  • R 2 is preferably selected from halogen, especially chlorine, CC 6 alkyl, especially methyl, and -C 6 haloalkyl.
  • R 1 is a group NR 7 R 8
  • at least one of the radicals R 7 , R 8 is preferably different from hydrogen.
  • R 7 represents CrC 6 alkyl.
  • C 3 -C 8 cycloalkyl which is optionally mono- or polysubstituted with alkyl, CrCe-haloalkyl, phenyl-CrC 4 -alkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl.
  • R 8 stands in particular for hydrogen, CrC 6 alkyl or C 2 -C 6 alkenyl and very particularly preferably for hydrogen and CC 4 alkyl.
  • the preferred groups NR 7 R 8 also include those which represent a saturated or partially unsaturated heterocyclic radical which, in addition to the nitrogen atom, can have a further heteroatom selected from O, S and NR 10 as a ring member, and one or two May have substituents which are selected from halogen, hydroxy, CrC 6 alkyl and CC 6 haloalkyl.
  • the heterocyclic radical preferably has 5 to 7 atoms as ring members. Examples of such heterocyclic radicals are pyrrolidine, piperidine, morpholine, tetrahydropyridine, for example 1, 2,3,6 tetrahydropyridine, piperazine and azepane, which can be substituted in the aforementioned manner.
  • R 2 represents a group NR 7 R 8
  • at least one of the radicals R 7 , R 8 is preferably different from hydrogen.
  • R 7 has the meanings previously mentioned as preferred.
  • R a examples include halogen, especially F or Cl, trifluoromethyl,
  • the rest is preferably a radical of the formula
  • R a1 has the meanings given above for R a and the radicals R a2 , R a3 , R a4 and R a5 have the meanings indicated for R a or are hydrogen.
  • R a1 has the meanings given above for R a and the radicals R a2 , R a3 , R a4 and R a5 have the meanings indicated for R a or are hydrogen.
  • R a1 for fluorine, chlorine, trifluoromethyl or methyl
  • R a2 for hydrogen or fluorine
  • R a3 for hydrogen, fluorine, chlorine, cyano, C 1 -C 4 alkyl, especially methyl, CC alkoxy, especially methoxy or CC 4 alkoxycarbonyl, especially methoxycarbonyl;
  • R a4 for hydrogen, chlorine or fluorine;
  • R a5 for hydrogen, fluorine, chlorine or CC 4 -alkyl, especially methyl, or CrC 4 -alkoxy, especially methoxy.
  • At least one of the radicals R a3 or R a5 is preferably different from hydrogen.
  • a preferred embodiment of the compounds of the invention are those wherein R 2 is halo, cyano, -C 6 alkyl, CrC 6 -HalogenaIkyl, C 2 -C 6 alkenyl, C 2 lb - C 6 alkynyl C 3 -C 8 cycloalkyl , which is optionally mono- or polysubstituted with alkyl and / or halogen, C 5 -C 8 cycloalkenyl which is optionally monosubstituted or polysubstituted with alkyl and / or halogen, or NR 7 R 8 , in which R 7 and R 8 are each different from hydrogen.
  • La and lc relates to those, wherein R 2 is halogen, cyano, -C 6 alkyl, -C 6 haloalkyl, C 2 - Ce alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 -Cycloalkyl, which is optionally mono- or polysubstituted with alkyl and / or halogen, C 5 -C 8 -cycloalkenyl, which is mono- or polysubstituted or substituted with alkyl and / or halogen, OR 6 , SR 6 or NR 7 R 8 means in which R 6 , R 7 and R 8 have the abovementioned and in particular the preferred meanings.
  • R 3 , R 4 , R 5 and R 6 are independent of one another and preferably in combination with the preferred meanings of the variables n, R a , R 1 and R 2 have the following meanings:
  • R 3 is hydrogen, -C 6 alkyl, preferably -C 3 alkyl, -C 6 haloalkyl, preferably -C 3 haloalkyl, and particularly preferably hydrogen;
  • R 4 is hydrogen, CC 6 alkyl, preferably CC 3 alkyl, -C 6 haloalkyl, preferably -C 3 haloalkyl, and particularly preferably hydrogen;
  • R 5 is hydrogen, CC 4 alkyl or CC 4 alkoxy
  • R 6 is hydrogen, CC 4 alkyl, benzyl or CC 4 alkyl carbonyl.
  • Particularly preferred compounds of the general formula I with regard to use as a fungicide are the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2-methyl-4-chlorine (compounds la1, lblund lc1). Examples of these are compounds la1, lblund lc1, in which R 2 and R 1 each represent hydroxy. Examples of these are also compounds la1, lblund lc1, in which R 2 and R 1 each represent chlorine. Examples of these are also compounds la1, lblund lc1, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la1, lblund lc1, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la1, lblund lc1, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-fluoro-4-methyl (compounds la2, lb2 and lc2).
  • Examples include compounds LA2, LB2 and LC2, in which R 2 and R 1 each represent hydroxy. Examples of these are also compounds la2, lb2 and lc2, in which R 2 and R 1 are each chlorine. Examples of these are also compounds la2, lb2 and lc2, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la2, lb2 and lc2, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la2, lb2 and lc2, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,6-dimethyl (compounds la3, lb3 and lc3).
  • R 3 and R 4 are each hydrogen
  • R 2 is hydroxyl
  • chlorine or methyl and (R a ) n stands for 2,6-dimethyl
  • R 3 and R 4 are each hydrogen
  • R 2 is hydroxyl, chlorine or methyl
  • (R a ) n stands for 2,6-dimethyl
  • Examples of these are also compounds la3, lb3 and lc3, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la3, lb3 and lc3, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,4,6-trimethyl (compounds la4, lb4 and lc4).
  • R 3 and R 4 are each hydrogen
  • R 2 is hydroxyl
  • chlorine or methyl and (R a ) n stands for 2,4,6-trimethyl
  • compounds la4, lb4 and lc4 examples of these are compounds la4, lb4 and lc4, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds la4, lb4 and lc4, in which R 2 and R 1 are each chlorine.
  • Examples of these are also compounds la4, lb4 and lc4, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA4, LB4 and LC4, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together have the meanings given in one row of Table A.
  • Examples of these are also compounds la4, lb4 and lc4, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2,6-difluoro-4-methyl (compounds la5, lb5 and lc5).
  • Examples include compounds LA5, LB5 and LC5, in which R 2 and R 1 each represent hydroxy. Examples of this are also compounds LA5, LB5 and LC5, in which R 2 and R 1 each represent chlorine. Examples of these are also compounds la5, lb5 and lc5, in which R 2 is methyl and R is chlorine.
  • Examples of these are also compounds la5, lb5 and lc5, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA5, LB5 and LC5, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,6-difluoro-4-cyano (compounds la6, lb6 and lc6).
  • Examples include compounds LA6, LB6 and LC6, in which R 2 and R 1 each represent hydroxy. Examples of these are also compounds LA6, LB6 and LC6, in which R 2 and R 1 each represent chlorine. Examples of these are also compounds la6, lb6 and lc6, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la6, lb6 and lc6, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA6, LB6 and LC6, in which R 2 is methyl and R is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2,6-difluoro-4-methoxycarbonyl (compounds la7, lb7 and lc7).
  • Examples of these are compounds LA7, LB7 and LC7, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA7, LB7 and LC7, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds la7, lb7 and lc7, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la7, lb7 and lc7, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA7, LB7 and LC7, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicide are also the compounds of the general formulas a, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-trifluoromethyl-4-fluorine (compounds la8, lb8 and lc8).
  • R 3 and R 4 are each hydrogen
  • R 2 is hydroxyl
  • chlorine or methyl methyl
  • (R a ) n is 2-trifluoromethyl-4-fluorine
  • Examples of these are also compounds LA8, LB8 and LC8, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds LA8, LB8 and LC8, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-trifluoromethyl-5-fluorine (compounds la9, lb9 and lc9).
  • Examples include compounds LA9, LB9 and LC9, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA9, LB9 and LC9, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA9, LB9 and LC9, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la9, lb9 and lc9, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la9, lb9 and lc9, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n represents 2-trifluoromethyl-5-chlorine (compounds LA10, LB10 and LC10).
  • compounds LA10, LB10 and LC10 in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA10, LB10 and LC10, in which R 2 and R 1 each represent chlorine. Examples of this are also fertilize la10, lb10 and lc10, where R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA10, LB10 and LC10, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds LA10, LB10 and LC10, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-chloro-6-fluorine (compounds la11, lb11 and lc11).
  • Examples include compounds LA11, LB11 and LC11, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA11, LB11 and LC11, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds la11, lb11 and lc11, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la11, lb11 and lc11, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la11, lb11 and lc11, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,6-difluoro (compounds la12, Lb.12 and lc12).
  • Examples include compounds LA12, Lb.12 and LC12, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA12, Lb.12 and LC12, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA12, Lb.12 and LC12, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA12, Lb.12 and LC12, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA12, Lb.12 and LC12, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as a fungicide are also the compounds of the general formula La, Ib and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxy, chlorine or methyl and (R a ) n is 2,6-dichloro (compounds la13, lb13 and lc13).
  • Examples include compounds LA13, LB13 and LC13, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA13, LB13 and LC13, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA13, LB13 and LC13, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA13, LB13 and LC13, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA13, LB13 and LC13, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-fluoro-6-methyl (compounds la14, lb14 and lc14).
  • Examples of these are compounds LA14, LB14 and LC14, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA14, LB14 and LC14, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA14, LB14 and LC14, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA14, LB14 and LC14, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds LA14, LB14 and LC14, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,4,6-trifluoro (compounds la15, lb15 and lc15).
  • Examples include compounds LA15, LB15 and LC15, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA15, LB15 and LC15, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA15, LB15 and LC15, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA15, LB15 and LC15, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA15, LB15 and LC15, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2,6-difluoro-4-methoxy (compounds La.16, LB16 and LC16).
  • Examples include compounds LA16, LB16 and LC16, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA16, LB16 and LC16, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA16, LB16 and LC16, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA16, LB16 and LC16, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA16, LB16 and LC16, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to use as a fungicide are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2,3,4,5,6-pentafluoro (compounds la17, lb17 and lc17).
  • Examples include compounds LA17, LB17 and Lc.17, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA17, LB17 and LC17, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA17, LB17 and LC17, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA17, LB17 and Lc.17, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds la17, lb17 and Lc.17, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-methyl-4-fluorine (compounds la18, lb18 and lc18).
  • Examples include compounds LA18, LB18 and LC18, in which R 2 and R 1 each represent hydroxy.
  • Examples include compounds LA18, LB18 and LC18, in which R 2 and R 1 each represent chlorine.
  • Examples include connections gen la18, lb18 and lc18, wherein R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la18, lb18 and lc18, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la18, lb18 and lc18, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicide are also the compounds of the general formulas a, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-fluoro-6-methoxy (compounds La.19, lb19 and lc19).
  • Examples include compounds LA19, LB19 and LC19, in which R 2 and R 1 each represent hydroxy.
  • Examples include compounds LA19, LB19 and LC19, in which R 2 and R 1 each represent chlorine.
  • Examples include compounds LA19, LB19 and LC19, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA19, LB19 and LC19, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds la19, lb19 and lc19, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,4-difluoro (compounds LA20, LB20 and LC20).
  • compounds LA20, LB20 and LC20 in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA20, LB20 and LC20, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA20, LB20 and LC20, in which R 2 is methyl and R is chlorine.
  • Examples of these are also compounds LA20, LB20 and LC20, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds LA20, LB20 and LC20, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as a fungicide are also the compounds of the general formula a, Ib and lc, where R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-fluoro-4-chlorine (compounds la21, lb21 and lc21).
  • Examples include compounds LA21, LB21 and LC21, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA21, LB21 and LC21, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA21, LB21 and LC21, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA21, LB21 and LC21, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds la21, lb21 and lc21, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n is 2-chloro-4-fluorine (compounds la22, lb.22 and lc22).
  • Examples include compounds LA22, Lb.22 and LC22, in which R 2 and R 1 each represent hydroxy. Examples of these are also compounds LA22, Lb.22 and LC22, in which R 2 and R 1 each represent chlorine. Examples of these are also compounds LA22, Lb.22 and LC22, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA22, Lb.22 and LC22, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Examples of these are also compounds LA22, Lb.22 and LC22, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,3-difluoro (compounds la23, lb23 and Lc.23).
  • R 3 and R 4 are each hydrogen
  • R 2 is hydroxyl
  • chlorine or methyl and (R a ) n stands for 2,3-difluoro
  • Examples of these are compounds la23, lb23 and Lc.23, in which R 2 and R 1 each represent hydroxy. Examples of these are also compounds la23, lb23 and Lc.23, in which R 2 and R 1 are each chlorine. Examples of these are also compounds la23, lb23 and Lc.23, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la23, lb23 and Lc.23, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la23, lb23 and Lc.23, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,5-difluoro (compounds la24, lb24 and lc24).
  • Examples include compounds LA24, LB24 and LC24, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA24, LB24 and LC24, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds LA24, LB24 and LC24, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds LA24, LB24 and LC24, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds LA24, LB24 and LC24, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 , R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n stands for 2,3,4-trifluoro (compounds la25, lb25 and lc25).
  • Examples include compounds LA25, LB25 and LC25, in which R 2 and R 1 each represent hydroxy.
  • examples of these are also compounds LA25, LB25 and LC25, in which R 2 and R 1 each represent chlorine.
  • Examples of these are also compounds la25, lb25 and lc25, in which R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la25, lb25 and lc25, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la25, lb25 and lc25, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • Particularly preferred compounds of the general formula I with regard to their use as fungicides are also the compounds of the general formulas La, lb and lc, in which R 3 and R 4 are each hydrogen, R 2 is hydroxyl, chlorine or methyl and (R a ) n represents 2,4-dimethyl (compounds la26, lb26 and lc26).
  • Examples include compounds LA26, LB26 and LC26, in which R 2 and R 1 each represent hydroxy.
  • Examples of these are also compounds LA26, LB26 and LC26, in which R 2 and R 1 each represent chlorine. Examples of this are connections la26, lb26 and lc26, wherein R 2 is methyl and R 1 is chlorine.
  • Examples of these are also compounds la26, lb26 and lc26, in which R 2 is chlorine and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A. Examples of these are also compounds la26, lb26 and lc26, in which R 2 is methyl and R 1 is NR 7 R 8 , where R 7 and R 8 together each have the meanings given in one row of Table A.
  • R stands for CC 4 -alkyl, in particular for methyl or ethyl
  • W stands for CrCe-alkyl, C Ce-alkoxy, in particular for methoxy or ethoxy, CrC 6 -haloalkyl, optionally substituted C 3 -C 8 -cycloalkyl, optionally substituted C 5 -C 8 cycloalkenyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl
  • U represents OH, CrCe alkyl, CC 6 haloalkyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted C 5 -C 8 cycloalkenyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl.
  • a hetarylamine of the general formula II is condensed with a CH-acidic compound of the general formula III in a first step.
  • suitable CH-acidic compounds of the general formula III are substituted phenylacetic acid (CrC 4 ) alkyl esters and substituted benzyl (halogen) alkyl ketones, benzyl cycloalkyl ketones, benzylalkenyl ketones, benzylcycloalkenyl ketones and benzylalkynyl ketones.
  • hetarylamines of the general formula II are 2-amino pyridine-3-carboxylic acid ester (2-aminonicotinic acid ester), 3-aminopyrazine-2-carboxylic acid ester and 4-aminopyrimidine-5-carboxylic acid ester.
  • the condensation is usually carried out in the presence of a Brönstedt or Lewis acid as an acid catalyst or in the presence of a basic catalyst, see e.g. B. Organikum, 15th edition, VEB German Publishing House of Sciences, Berlin 1976, 552ff.
  • a basic catalyst see e.g. B. Organikum, 15th edition, VEB German Publishing House of Sciences, Berlin 1976, 552ff.
  • suitable acidic catalysts are zinc chloride, phosphoric acid, hydrochloric acid, acetic acid and mixtures of acetic acid and zinc chloride.
  • suitable basic catalysts are inorganic and organic basic catalysts.
  • Suitable inorganic basic catalysts are, for example, alkali or alkaline earth metal hydrides, preferably alkali metal hydrides such as sodium hydride or potassium hydride and alkali and alkaline earth metal hydroxides such as sodium hydroxide or potassium hydroxide. Furthermore, the condensation can be carried out in the presence of metallic sodium when using substituted phenylacetic acid ester.
  • Suitable organic basic catalysts are alkali metal or alkaline earth metal alkoxides such as sodium methylate, sodium ethylate, sodium n-propylate, sodium isopropylate, sodium n-butoxide, sodium sec-butoxide, sodium tert-butoxide, potassium methylate, potassium ethylate, potassium n-propylate, potassium isopropylate, potassium n-butoxide, potassium sec-butoxide, potassium tert-butoxide, secondary amines such as ethyldiisopropylamine and amidine bases such as 1,5-diazabicyclo- [4.3.0] non-5-ene ( DBN) or 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU).
  • alkali metal or alkaline earth metal alkoxides such as sodium methylate, sodium ethylate, sodium n-propylate, sodium isopropylate, sodium n-butoxide, sodium sec
  • the reaction can be carried out in the absence of a solvent or in a solvent.
  • the CH-acidic compound III is generally used in excess, based on the hetarylamine.
  • the OH group (s) in these compounds can be converted into other functional groups in one or more steps. As a rule, the OH group (s) will first be converted into halogen, especially chlorine (see Scheme 1a).
  • Suitable halogenating agents are phosphorus trihalides, phosphorus oxyhalides or phosphorus pentahalides, such as phosphorus tribromide, phosphorus oxytribromide, and in particular chlorinating agents, such as POCI 3 , PC C ⁇ 2 or PCI 5 , and mixtures of these reagents.
  • chlorinating agents such as POCI 3 , PC C ⁇ 2 or PCI 5 , and mixtures of these reagents.
  • a mixture of phosphorus pentachloride and phosphorus oxychloride is preferably used for the chlorination.
  • the reaction can occur in excess halogenating agent (POCI 3 ) or an inert solvent such as acetonitrile or 1, 2-dichloroethane.
  • reaction usually takes place between 10 and 180 ° C.
  • reaction temperature often corresponds to the boiling point of the chlorinating agent (POCI 3 ) or solvent used.
  • POCI 3 chlorinating agent
  • the process is optionally carried out with the addition of N, N-dimethylformamide or nitrogen bases, such as N, N-dimethylaniline in catalytic or stoichiometric amounts.
  • This method is known in principle, for example from II Farmaco, 57, 2002, 631, and can be used in an analogous manner for the preparation of the compounds according to the invention.
  • Protic solvents such as alcohols, for example ethanol, and aprotic solvents, for example aromatic hydrocarbons, halogenated hydrocarbon and ethers, for example toluene, o-, m- and p-xylene, diethyl- ether, diisopropyl ether, tert-butyl methyl ether, dioxane, tetrahydrofuran, dichloromethane, and mixtures of the abovementioned solvents.
  • aromatic hydrocarbons for example aromatic hydrocarbons, halogenated hydrocarbon and ethers, for example toluene, o-, m- and p-xylene, diethyl- ether, diisopropyl ether, tert-butyl methyl ether, dioxane, tetrahydrofuran, dichloromethane, and mixtures of the abovementioned solvents.
  • halogenated hydrocarbon and ethers for example toluen
  • Suitable auxiliary bases are, for example, those mentioned below: alkali metal carbonates and hydrogen carbonates such as NaHCO 3 and Na 2 CO 3 , alkali metal hydrogen phosphates such as Na 2 HPO 4 , alkali metal borates such as Na 2 B 4 O 7 , tertiary amines such as triethylamine, ethyldiisopropylamine or diethylaniline and pyridine compounds. An excess of the amine HNR 7 R 8 can also be used as an auxiliary base.
  • the components are usually used in an approximately stoichiometric ratio. However, it may be advantageous to use the amine HNR 7 R 8 in excess. If an excess of amine HNR 7 R 8 is used , the amine can simultaneously act as a solvent.
  • the amines HNR 7 R 8 are commercially available or known from the literature or can be prepared by known methods.
  • Suitable bases are alkali metal hydrides such as sodium hydride or potassium hydride, alkali or alkaline earth metal alkoxides such as sodium t-butoxide or potassium tert-butoxide or tertiary amines such as triethylamine or pyridine.
  • the alcohol R 6 OH can first be reacted with an alkali metal, preferably sodium, to form the corresponding alcoholate.
  • the reaction can be carried out in excess alcohol or in an inert solvent such as carboxamides, for example N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone.
  • the reaction is usually carried out at 0 ° C to 150 ° C, preferably at 10 ° C to 100 ° C.
  • step a) can be carried out in a manner known per se, for example in analogy to the method given in scheme 1b.
  • the ether linkage can be catalyzed by hydrogenolysis, e.g. B. split according to the method described in Org. Lett., 3, 2001, 4263.
  • Suitable catalysts are, for example, noble metals or transition metals such as palladium or platinum. As a rule, the catalyst is supported, for example on activated carbon. Hydrogenolysis is usually carried out in a solvent.
  • Suitable solvents are, for example, alcohols such as methanol or cyclic ethers such as tetrahydrofuran or dioxane.
  • Hydrogenolysis takes place at normal pressure. Hydrogenolysis is generally carried out at temperatures between room temperature and the boiling point of the solvent, preferably at temperatures between room temperature and 40 ° C.
  • Methods for converting alcohols into the corresponding halides are known from the prior art, e.g. B. from J. Chem. Soc. 1947, 899.
  • Suitable halogenating agents are, for example, the aforementioned halogenating agents (see scheme 1a).
  • the reaction can be carried out in excess halogenating agent, for example POCI 3 , or in an inert solvent such as acetonitrile or 1,2-dichloroethane.
  • the reaction is usually carried out between 10 and 180 ° C, preferably between room temperature and 130 ° C.
  • R 2 Cl ⁇ in compounds of formula I, wherein R 2 is -C 6 alkyl, -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 - C 6 -alkynyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted C 5 -C 8 cycloalkenyl, can be achieved in a manner known per se by reaction with organometallic compounds R 2a -Met, in which R 2a is CrC 6 alkyl, halo-CrC 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 -alkynyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted C 5 -C 8 cycloalkenyl, and Met is lithium, Magnesium or zinc means.
  • the reaction is preferably carried out in the presence of catalytic or in particular at least equimolar amounts of transition metal salts and / or compounds, in particular in the presence of Cu salts such as Cu (l) halides and especially Cu (l) iodide.
  • the reaction takes place in an inert organic solvent, for example an ether, in particular tetrahydrofuran, an aliphatic or cycloaliphatic hydrocarbon such as hexane, cyclohexane and the like, an aromatic hydrocarbon such as toluene or in a mixture of these solvents.
  • the temperatures required for this are in the range of -100 to + 100 ° C and especially in the range of -80 ° C to + 40 ° C.
  • R 1 is CrC 6 alkyl, CrCe haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl or C 5 -C 8 -Cycloalkenyl
  • R 1a is C r C 6 -alkyl, CrC 6 Halogenoalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, optionally substituted C 3 -C 8 cycloalkyl or optionally substituted C 5 - C 8 cycloalkenyl and Met stands for lithium, magnesium or zinc.
  • Hetarylamines of the general formula II are commercially available, known from the literature or can be prepared based on known processes from the literature, for. B. J. Chem. Soc. 1937, 367; J. Chem. Soc. 1953, 331; Bioorg. Med. Chem. 9, (2001) 2061; JACS 67, 1945, 1711.
  • Substituted phenylacetic acid esters of the general formula III are known from the literature or can be prepared based on known processes.
  • ketones of the general formula III are new, provided the rest
  • R a1 for fluorine, chlorine, trifluoromethyl or methyl
  • R a2 for hydrogen or fluorine
  • R a3 for hydrogen, fluorine, chlorine, cyano, CC 4 -alkyl, especially methyl, CC 4 -alkoxy, especially methoxy or CrC 4 -alkoxycarbonyl, especially methoxycarbonyl
  • R a4 for hydrogen, chlorine or fluorine
  • R a5 is hydrogen, fluorine, chlorine or C r C 4 alkyl, especially methyl, or CrC 4 alkoxy, especially methoxy.
  • the present invention thus also relates to ketones of the general formula IIID
  • R a1 , R a2 , R a3 , R a4 and R a5 have the meanings given above and
  • W is CrCe alkyl, CrC 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 8 cycloalkyl, which is optionally mono- or polysubstituted by alkyl and / or halogen, C 5 -C 8 cycloalkenyl, which is optionally mono- or polysubstituted with alkyl and / or halogen.
  • W ' is preferably CrC 6 alkyl, in particular methyl.
  • At least one of the radicals R a3 or R a5 is preferably different from hydrogen.
  • Preferably at least one and particularly preferably both radicals R a2 , R a4 are hydrogen.
  • (R a ) n is 2-CH 3 -4-CI, 2-F-4-CH 3 , 2,6-di-F-4-CH 3 , 2.6 -di-F-4-CN, 2,6-di-F-4- COOCH 3 , 2-CF 3 -4-F, 2-CF 3 -5-F, 2-CF 3 -5-CI, 2 -F-6-CH 3 , 2,6-di-F-4-OCH 3 , 2-CH 3 -4-F, 2-F-6-OCH 3, 2-F-4-CI, 2-C1 -4-F, 2,5-di-F, 2,4,6-tri-F or 2,3,4-tri-F.
  • ketones of the general formula III in particular the ketones of the general formula IIID, can be prepared, for example, according to scheme 2 by heating a phenyl- ⁇ -keto ester of the general formula IV in the presence of a weak aqueous acid, for example lithium chloride.
  • a weak aqueous acid for example lithium chloride.
  • R a and n have the meanings given above, in particular the meanings mentioned as preferred, W 'stands for C r Ce alkyl, CrC 6 haloalkyl, optionally substituted C 3 -C 8 cycloalkyl, optionally substituted C 5 -C 8 - cycloalkenyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl.
  • compound IV is used as its ethyl ester.
  • the acid is used in excess, based on the phenyl- ⁇ -ketoester IV.
  • the phenyl- ⁇ -ketoester IV is usually heated in a solvent. Suitable solvents are dipolar aprotic solvents such as dimethyl sulfoxide.
  • the reaction temperature is usually in the range from room temperature to the boiling point of the solvent, preferably in the range from 60 ° C. to the boiling point of the solvent.
  • the phenyl- ⁇ -keto esters IV are either known from the literature, for example from WO 99/41255, or can be prepared based on known processes from the literature, for example based on Houben-Weyl, volume Vll / 2a, p. 521 become.
  • the compounds I are suitable as fungicides. They are characterized by excellent activity against a broad spectrum of phytopathogenic fungi, in particular from the class of the Ascomycetes, Deuteromycetes, Oomycetes and Basidiomycetes. Some of them are systemically effective and can be used in plant protection as leaf and soil fungicides.
  • the compounds I are also suitable for combating harmful fungi such as Pacilomyces variotii in the protection of materials (e.g. wood, paper, dispersions for painting, fibers or fabrics) and in the protection of stored products.
  • harmful fungi such as Pacilomyces variotii in the protection of materials (e.g. wood, paper, dispersions for painting, fibers or fabrics) and in the protection of stored products.
  • the compounds I are used by treating the fungi or the plants, seeds, materials or the soil to be protected against fungal attack with a fungicidally active amount of the active compounds.
  • the application can take place both before and after the infection of the materials, plants or seeds by the fungi.
  • the fungicidal compositions generally contain between 0.1 and 95, preferably between 0.5 and 90% by weight of active ingredient.
  • the application rates in crop protection are between 0.01 and 2.0 kg of active ingredient per ha.
  • amounts of active ingredient of 0.001 to 1 g, preferably 0.01 to 0.5 g, are generally required per kilogram of seed.
  • the amount of active ingredient applied depends on the type of application and the desired effect. Usual application rates in material protection are, for example, 0.001 g to 2 kg, preferably 0.005 g to 1 kg of active ingredient per cubic meter of treated material.
  • the compounds I can be converted into the usual formulations, e.g. Solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the form of application depends on the respective purpose; in any case, it should ensure a fine and uniform distribution of the compound according to the invention.
  • the formulations are prepared in a known manner, e.g. by stretching the active ingredient with solvents and / or carriers, if desired using emulsifiers and dispersants, where, in the case of water as the diluent, other organic solvents can also be used as auxiliary solvents.
  • auxiliaries solvents such as aromatics (e.g. xylene), chlorinated aromatics (e.g. chlorobenzenes), paraffins (e.g. petroleum fractions), alcohols (e.g. methanol, butanol), ketones (e.g. cyclohexanone), amines (e.g.
  • Carriers such as natural stone powder (e.g. kaolins, clays, talc, chalk) and synthetic stone powder (e.g. highly disperse silica, silicates); Emulsifiers such as nonionic and anionic emulsifiers (e.g. polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • Carriers such as natural stone powder (e.g. kaolins, clays, talc, chalk) and synthetic stone powder (e.g. highly disperse silica, silicates)
  • Emulsifiers such as nonionic and anionic emulsifiers (e.g. polyoxyethylene fatty alcohol ethers, alkyl sulfonates and aryl sulfonates) and dispersants such as lignin sulfite waste liquors and methyl cellulose.
  • Mineral oil fractions of medium to high boiling point such as kerosene are used to produce directly sprayable solutions, emulsions, pastes or oil dispersions.
  • sin or diesel oil also coal tar oils as well as oils of plant or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g.
  • benzene toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, chloroform, carbon tetrachloride, cyclohe - xanol, cyclohexanone, chlorobenzene, isophorone, strongly polar solvents, for example dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidone, water, into consideration.
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coating, impregnation and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are e.g. Mineral earths, such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers, e.g. Ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products, such as grain flour, tree bark, wood and nutshell flour, cellulose powder and other solid carriers.
  • Mineral earths such as silica gels, silicates, talc, kaolin, attack clay, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics
  • the formulations generally contain between 0.01 and 95% by weight, preferably between 0.1 and 90% by weight of the active ingredient.
  • the active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • V. 80 parts by weight of a compound according to the invention are mixed well with 3 parts by weight of the sodium salt of diisobutylnaphthalene- ⁇ -sulfonic acid, 10 parts by weight of the sodium salt of lignosulfonic acid from a sulfite waste liquor and 7 parts by weight of powdered silica gel and grind in a hammer mill (active ingredient content 80% by weight).
  • the active ingredients as such in the form of their formulations or the use forms prepared therefrom, for example in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, scattering agents, granules by spraying, atomizing, dusting, scattering or Pouring can be applied.
  • the application forms depend entirely on the Twist purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (wettable powders, old dispersions) by adding water.
  • emulsions, pastes or old dispersions the substances as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates composed of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • the active ingredient concentrations in the ready-to-use preparations can be varied over a wide range. In general, they are between 0.0001 and 10%, preferably between 0.01 and 1%.
  • the active ingredients can also be used with great success in the ultra-low-volume process (ULV), it being possible to apply formulations with more than 95% by weight of active ingredient or even the active ingredient without additives.
  • UUV ultra-low-volume process
  • Oils of various types, herbicides, fungicides, other pesticides, bactericides can be added to the active compounds, if appropriate also only immediately before use (tank mix). These agents can be added to the agents according to the invention in a weight ratio of 1:10 to 10: 1.
  • compositions according to the invention can also be present together with other active compounds which, e.g. with herbicides, insecticides, growth regulators, fungicides or also with fertilizers. Mixing the compounds I or the compositions containing them in the use form as fungicides with other fungicides results in an enlargement of the fungicidal spectrum of action in many cases.
  • Acylalanines such as benalaxyl, metalaxyl, ofurace, oxadixyl,
  • Amine derivatives such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidin, guazatine, iminoctadine, spiroxamine, tridemorph, Anilinopyrimidines such as pyrimethanil, mepanipyrim or cyrodinyl,
  • Antibiotics such as cycioheximide, griseofulvin, kasugamycin, natamycin, polyoxin or streptomycin,
  • azoles such as bitertanol, bromoconazole, cyproconazole, difenoconazole, Dinitroco- Nazole, epoxiconazole, fenbuconazole, Fluquiconazol, flusilazole, hexaconazole, I mazalil, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, prothioconazole, tebuconazole, triadimefon, triadimenol, triflumizole, triticonazole .
  • Dicarboximides such as iprodione, myclozolin, procymidone, vinclozolin,
  • Dithiocarbamates such as Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propinerb, Polycarbamat, Thiram, Ziram, Zineb,
  • Heterocyclic compounds such as anilazine, benomyl, boscalid, carbendazim, carboxin, oxycarboxin, cyazofamid, Dazomet, dithianon, famoxadone, fenamidon, fenarimol, fuberidazole, flutolanil, furametpyr, isoprothiolan, mepronquin, probolene, probuene, nu- arifonil, probu- Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
  • Copper fungicides such as Bordeaux broth, copper acetate, copper oxychloride, basic copper sulfate,
  • Nitrophenyl derivatives such as binapacryl, dinocap, dinobutone, nitrophthal-isopropyl,
  • Phenylpyrroles such as fenpiclonil or fludioxonil, sulfur,
  • fungicides such as acibenzolar-S-methyl, benthiavalicarb, carpropamide, chlorothalonil, cyflufenamid, cymoxanil, Dazomet, diclomezin, diclocymet, diethofencarb, edifenphos, ethaboxam, fenhexamide, fentin acetate, fenoxanil, fosetylamino, fefosetone, ferimosone, ferimzone Iprovalicarb, hexachlorobenzene, metrafenone, pencycuron, propamocarb, phthalide, toloclofos-methyl, quintocene, zoxamide,
  • Strobilurins such as azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin or trifloxystrobin, • Sulfenic acid derivatives such as captafol, captan, dichlofluanid, folpet, tolylfluanid,
  • Cinnamic acid amides and analogues such as dimethomorph, flumetover or flumorph.
  • the aqueous reaction mixture was extracted with ethyl acetate.
  • the organic layer was dried, the drying agent was filtered off and the mixture was evaporated to dryness, 8.6 g of ethyl 2,4,6-trifluorophenylacetate being recovered.
  • the aqueous phase was adjusted to pH 5.5 with acetic acid, a solid precipitating out. The precipitated solid was filtered off and dried to give 1.6 g (30%) of the title compound.
  • the reaction mixture was stirred from 0.12 g (0.3 mmol) of 7-benzyloxy-5-chloro-6- (2,4,6-trifluorophenyl) pyrido [2,3-d] pyrimidine from Example 3, 1.5 g of 4-methylpiperidine and 0.05 g of triethylamine for 3 hours at 80 ° C.
  • the reaction mixture was taken up in water and the aqueous mixture was washed three times with dichloromethane. After the combined organic phases had dried, the drying agent was filtered off and the filtrate was concentrated.
  • the active ingredients were prepared as a stock solution with 0.25% by weight of active ingredient in acetone or DMSO (dimethyl sulfoxide). 1% by weight of the emulsifier Uniperol® EL (wetting agent with emulsifying and dispersing action based on ethoxylated alkylphenols) was added to this solution and diluted with water to the desired concentration.
  • DMSO dimethyl sulfoxide
  • Pots with wheat plants of the "Kanzler” variety were sprayed to runoff point with an aqueous suspension in the active compound concentration given below. At the the following day the pots were inoculated with an aqueous spore suspension of Leptosphaeria nodorum. The plants were then placed in a chamber at 20 ° C. and maximum air humidity. After 8 days, the leaf spot disease on the untreated but infected control plants had developed to such an extent that the infestation could be determined visually in%.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung betrifft bicyclische Verbindungen der allgemeinen Formel I, worin X, Y unabhängig voneinander für N oder C-R4 stehen; n für 1, 2, 3, 4 oder 5 steht; Ra für Halogen, Cyano, C1,-C6-Alkyl, C1,-C6-Alkoxy, C1,-C6-Halogenalkyl, C1,-C6-Halogenalkoxy, C2-C6-Alkenyl, C2-C6-Alkenyloxy oder C(O)R5 steht; R1 Halogen, Cyano, C1-C6-Alkyl, C1,-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8 Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R2 Halogen, Cyano, C1,-C6-Alkyl, C1,-C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alky und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R3 für Wasserstoff, C1,-C6-Alkyl, C1-C6-Halogenalkyl oder C3-C6-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; sowie die landwirtschaftlich verträglichen Salze von Verbindungen (I), Pflanzenschutzmittel, enthaltend wenigstens eine Verbindung der allgemeinen Formel (I) und/oder ein landwirtschaftlich verträgliches Salz von (I) und wenigstens einen flüssigen oder festen Trägerstoff sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen.

Description

Arylkondensierte 3-Arylpyridinverbindungen und ihre Verwendung zur Bekämpfung von Schadpilzen
Beschreibung
Die vorliegende Erfindung betrifft neue, arylkondensierte 3-AryIpyridinverbindungen und ihre Verwendung zur Bekämpfung von Schadpilzen sowie Pflanzenschutzmittel, die derartige Verbindungen als wirksamen Bestandteil enthalten.
Die EP-A 71792, US 5,994,360, EP-A 550113, WO 02/48151 beschreiben fungizid wirksame Pyrazolo[1 ,5-a]pyrimidine und Triazolo[1 ,5a]pyrimidine, die in der 5-Position des Pyrimidinrings eine gegebenenfalls substituierte Phenylgruppe tragen. Aus der WO 03/022850 sind lmidazolo[1 ,2-a]pyrimidine mit fungizider Wirkung bekannt.
Prinzipiell besteht ein beständiger Bedarf an neuen fungizid wirksamen Verbindungen, um das Wirkungsspektrum zu verbreitern und um eine mögliche Resistenzbildung gegen bekannte Fungizide zu umgehen. Neue Wirkstoffe sollten die Schadpilze bei möglichst geringen Aufwandmengen abtöten und deren Neubildung verringern oder besser noch verhindern. Außerdem sollten die Wirkstoffe eine gute Nutzpflanzenverträglichkeit aufweisen, d. h. die Nutzpflanzen nicht oder nur in geringem Ausmaß schädigen.
Die US 5,801,183 und die WO 96/22990 beschreiben 2,4-Dihydraxy-1,8-naphthyridine, die in 3-Position einen gegebenenfalls substituierten Phenylrest tragen, als Aza- Analoge von Glycin/NMDA Rezeptor Antagonisten.
Aus J. of Heterocyclic Chemistry, 30, 1993, 909 - 912 sind die Verbindungen 4- Hydroxy-3-(o-methoxyphenyl)-1 ,8-naphthyridin-2(1 H)-on und 2,4-Dichlor-3-(o- methoxyphenyl)-1 ,8-naphthyridin und aus Chem. Ber. 111, 2813 - 2824 (1978) sind 4-Hydroxy-3-(4-methoxyphenyl)-1 ,8-naphthyridin-2(1 H)-on; 4-Hydroxy-3-(4- methylphenyl)-1 ,8-naphthyridin-2(1 H)-on, 4-Hydroxy-3-(3-methylphenyl)-1 ,8- naphthyridin-2(1 H)-on und 4-Hydroxy-3-(2-methylphenyl)- ,8-naphthyridin-2(1 H)-on bekannt.
Im Hinblick auf mögliche Resistenzbildung und Verbreiterung des Wirkspektrums ist die Bereitstellung neuer Wirkstoffe grundsätzlich von Interesse.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, neue Verbindungen mit guter fungizider Wirksamkeit, insbesondere bei geringen Aufwandmengen und/oder einer guten Nutzpflanzenverträglichkeit bereitzustellen. Diese Aufgabe wird durch bi- cyclische, d.h. arylkondensierte 3-Arylpyridinverbindungen der allgemeinen Formel I
gelöst, worin
X, Y unabhängig voneinander für N oder C-R4 stehen; n für 1 , 2, 3, 4 oder 5 steht;
Ra für Halogen, Cyano, C C6-Alkyl, CrC6-Alkoxy, C C6-Halogenalkyl, C C6- Halogenalkoxy, C2-C6-Alkenyl, C2-C6-Alkenyloxy oder C(O)R5 steht;
R1 Halogen, Cyano, C C6-Alkyl, CrC-e-Halogenalkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet;
R2 Halogen, Cyano, C C6-Alkyl, C C6-Halogenalkyl, C2-C6-Alkenyl, C2-C6- Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, Cs-Cβ-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet;
R3 für Wasserstoff, C C6-Alkyl, C C6-Halogenalkyl oder C3-C6-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht;
R4 für Wasserstoff, Halogen, Ct-C6-Alkyl, C C6-Halogenalkyl oder C3-C6- Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; R5 Wasserstoff, OH, CrCe-Alkyl, C C6-Alkoxy, C C6-Halogenalkyl, CrC6- Halogenalkoxy, C2-C6-Alkenyl, C C6-Alkylamino oder Di-CrC6-alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl bedeutet;
R6 Wasserstoff, C C6-Alkyl, CrCe-Halogenalkyl, Phenyl-C C -alkyl, worin Phenyl mit Halogen, Alkyl oder Alkoxy ein- oder mehrfach substituiert sein kann, C2-C6-Alkenyl oder COR9 bedeutet;
R7, R8 unabhängig voneinander für Wasserstoff, C Cι0-Alkyl, C2-C10-Alkenyl, C4- C10-Alkadienyl, C2-C10-Alkinyl, C3-C8-Cycloalkyl, C5-C8-Cycloalkenyl, C5- C10-Bicycloalkyl, Phenyl, Phenyl-C C4-alkyl, Naphthyl, ein 5- oder 6-gliedriger, gesättigter oder teilweise ungesättigter Heterocyc- lus, der 1, 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, oder ein 5- oder 6-gliedriger, aromatischer Heterocyclus, der 1 , 2 oder 3 Hetero- atome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, wobei die als R7, R8 genannten Reste teilweise oder vollständig halogeniert sein können und/oder 1 , 2 oder 3 Reste Rb aufweisen können, wobei Rb ausgewählt ist unter Cyano, Nitro, OH, d-Cg-Alkyl, C C6-Alkoxy, C C6-Halogenalkyl, C C6-Halogenalkoxy, C C6-AlkyIthio, C2-C6- Alkenyl, C2-C6-Alkenyloxy, C2-C6-Alkinyl, C2-C6-Alkinyloxy, C C6- Alkylamino, Di-C C-e-alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl; R7 mit R8 auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der 1 , 2, 3 oder 4 weitere Heteroatome, ausgewählt unter O, S, N und NR10 als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann und der 1 , 2 oder 3 der Reste Rb aufweisen kann; und R9, R10 unabhängig voneinander Wasserstoff oder CrC6-Alkyl bedeuten; sowie die landwirtschaftlich verträglichen Salze von Verbindungen I.
Gegenstand der vorliegenden Erfindung ist daher die Verwendung der bicyclischen Verbindungen der allgemeinen Formel I und ihrer landwirtschaftlich verträglichen Salze zur Bekämpfung von pflanzenpathogenen Pilzen (=Schadpilzen) sowie ein Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, das dadurch gekennzeichnet ist, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I und/oder mit einem landwirtschaftlich verträglichen Salz von I behandelt.
Die Verbindungen I sind neu mit Ausnahme der in der US 5,801,183, der WO 96/22990, in J. of Heterocyclic Chemistry, 30, 1993, 909 - 912 und in Chem. Ber. 111, 2813 - 2824 (1978) genannten 1 ,8-Naphthyridine. Dementsprechend betrifft die vorliegende Erfindung auch bicyclische Verbindungen der allgemeinen Formel I und deren landwirtschaftlich verträglichen Salze, ausgenommen: - Verbindungen der allgemeinen Formel I, worin R1 für OH steht, wenn gleichzeitig Y und X jeweils für C-R4 stehen; sowie - 2,4-Dichlor-3-(o-methoxyphenyl)-1 ,8-naphthyridin.
, Gegenstand der vorliegenden Erfindung ist weiterhin ein Mittel zur Bekämpfung von Schadpilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I und/oder ein landwirtschaftlich verträgliches Salz davon und wenigstens einen flüssigen oder festen Trägerstoff.
Die Verbindungen der Formel I können je nach Substitutionsmuster ein oder mehrere Chiralitätszentren aufweisen und liegen dann als reine Enantiomere oder Diastereome- re oder als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomere oder Diastereomere als auch deren Gemische. Gegenstand der Erfindung sind auch Tautomere von Verbindungen der Formel I.
Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die fungizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesi- um und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier Cι-C4-Alkylsubsti- tuenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzyl- ammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(Cι-C4-alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(C C4-alkyl)sulf- oxonium, in Betracht.
Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von CrC^AIkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.
Bei den in den vorstehenden Formeln angegebenen Definitionen der Variablen werden Sammelbegriffe verwendet, die allgemein repräsentativ für die jeweiligen Substituenten stehen. Die Bedeutung Cn-Cm gibt die jeweils mögliche Anzahl von Kohlenstoffatomen in dem jeweiligen Substituenten oder Substituententeil an:
Halogen: Fluor, Chlor, Brom und lod;
Alkyl sowie alle Alkylteile in Alkoxy, Alkylthio, Alkylamino und Dialkylamino: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, bis 6, bis 8 oder bis 10 Kohlenstoffatomen, z.B. CrC6-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1 ,1-Dimethylethyl, Pentyl, 1- Methylbutyl, 2-Methyibutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1 -Methyl pentyl, 2-MethyIpentyl, 3- Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1 ,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1 ,1,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1-Ethyl-1-methyipropyl und 1-Ethyl-2- methylpropyl;
Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 4 oder bis 6 Koh- lenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Cι-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlor- fluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifiuorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2- Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl;
Phenyl-Cι-C4-alkyl: für eine durch Phenyl -wie vorstehend genannte - substituierte C C4-Alkylgruppe, z. B. für Benzyl, 1-Phenylethyl, 2-Phenylethyl, 1-Phenylprop-1-yl, 2- Phenylprop-1-yl, 3-Phenylprop-1-yl, 1-Phenylbut-1-yl, 2-Phenylbut-1-yl, 3-Phenylbut-1- yl, 4-PhenyIbut-1-yl, 1-Phenylbut-2-yl, 2-Phenylbut-2-yl, 3-Phenylbut-2-yl, 4-Phenylbut- 2-yl, 1-(Phenylmeth)-eth-1-yl, 1-(Phenylmethyl)-1-(methyl)-eth-1-yl oder - (Phenylmethyl)-1-(methyl)-prop-1-yl; vorzugsweise Benzyl;
Phenyl-CrC^alkyl, das gegebenenfalls mit Halogen, Alkoxy oder Alkyl ein- oder mehrfach substituiert ist: eine durch Phenyl substituierte CrC -Alkylgruppe, wobei die Phenylgruppe unsubstituiert oder 1 , 2, 3 oder 4, vorzugsweise 1 Substituenten, die ausgewählt sind unter Fluor, Chlor, Brom, d-C6-Alkoxy oder Cι-C6-Alkyl, tragen kann, z. B. für p-Bromphenylmethyl, p-Chlorphenylmethyl, p-Methylphenylmethyl, p- Methylphenylmethyl, p-Methoxyphenylmethyl, p-Methoxyphenylethyl;
Alkenyl: einfach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, bis 6 bis 8 oder bis 10 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1- Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1- propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3- Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1- Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl- 3-butenyl, 3-Methyl-3-butenyl, 1 ,1-Dimethyl-2-propenyl, 1 ,2-Dimethyl-1-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-1propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3- Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1- pentenyl, 4-Methyl-1-pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2- pentenyl, 4-Methyl-2-pentenyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3- pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4- pentenyl, 4-Methyl-4-pentenyl, 1 ,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2- Dimethyl-1 -butenyl, 1 ,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1- butenyl, 1 ,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3- Dimethyl-1 -butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1- butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1 -butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1 -butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1 ,1 ,2-Trimethyl-2-propenyl, 1 - Ethyl-l-methyl-2-propenyl, 1-Ethyl-2-methyl-1propenyl und 1-Ethyl-2-methyl-2- propenyl;
Alkadienyl: zweifach ungesättigte, geradkettige oder verzweigte Kohlenwasserstoff- reste mit 4 bis 10 Kohlenstoffatomen und zwei Doppelbindungen in einer beliebigen Position z.B. 1 ,3-Butadienyl, 1-Methyl-1,3-butadienyl, 2-Methyl-1 ,3-butadienyl, Penta- 1,3-dien-1-yl, Hexa-1,4-dien-1-yl, Hexa-1,4-dien-3-yl, Hexa-1 ,4-dien-6-yl, Hexa-1,5- dien-1-yl, Hexa-1 ,5-dien-3-yl, Hexa-1 ,5-dien-4-yl, Hepta-1,4-dien-1-yl, Hepta-1 ,4-dien- 3-yl, Hepta-1,4-dien-6-yl, Hepta-1,4-dien-7-yl, Hepta-1,5-dien-1-yl, Hepta-1,5-dien-3-yl, Hepta-1 ,5-dien-4-yl, Hepta-1 ,5-dien-7-yl, Hepta-1 ,6-dien-1-yl, Hepta-1 ,6-dien-3-yl, Hep- ta-1 ,6-dien-4-yl, Hepta-1,6-dien-5-yl, Hepta-1,6-dien-2-yl, Octa-1 ,4-dien-1-yl, Octa-1,4- dien-2-yl, Octa-1,4-dien-3-yl, Octa-1 ,4-dien-6-yl, Octa-1 ,4-dien-7-yl, Octa-1,5-dien-1-yl, Octa-1,5-dien-3-yl, Octa-1 ,5-dien-4-yl, Octa-1 ,5-dien-7-yl, Octa-1,6-dien-1-yl, Octa-1 ,6- dien-3-yl, Octa-1,6-dien-4-yl, Octa-1 ,6-dien-5-yl, Octa-1,6-dien-2-yl, Deca-1 ,4-dienyl, Deca-1 ,5-dienyl, Deca-1 ,6-dienyl, Deca-1 ,7-dienyl, Deca-1 ,8-dienyl, Deca-2,5-dienyl, Deca-2,6-dienyl, Deca-2,7-dienyl, Deca-2,8-dienyI und dergleichen;
Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 2 bis 62 bis 8 oder 2 bis 10 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3- Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2- butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2- propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1- Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2- Methyl-4-pentinyl, 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4- Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1 ,2-Dimethyl-3- butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3- butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl; Cycloalkyl: monocyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;
Cycloalkyl, das gegebenenfalls mit Halogen oder Alkyl ein- oder mehrfach substituiert ist: eine - wie vorstehend genannte - unsubstituierte oder 1 , 2, 3 oder 4, vorzugsweise 1 , Substituenten tragende Cycloalkylgruppe, wobei die Substituenten ausgewählt sind unter Fluor, Chlor, Brom oder C C6-Alkyl, z. B. für 4-Chlorcyclohexyl, 4- Bromcyclohexyl, 4-Methylcyclohexyl, 4-Ethylcyclohexyl, 2-ChIorcyclopropyl, 2- Fluorcyclopropyl, 1-Chlorcyclopropyl, 1-Fluorcyclopropyl;
Cycloalkenyl: monocyclische, einfach ungesättigte Kohlenwasserstoffgruppen mit 5 bis 8, vorzugsweise bis 6 Kohlenstoffringgliedern, wie CycIopenten-1-yl, Cyclopenten- 3-yl, Cyclohexen-1-yl, Cyclohexen-3-yl und Cyclohexen-4-yl;
Cycloalkenyl, das gegebenenfalls mit Halogen oder Alkyl ein- oder mehrfach substituiert ist: eine - wie vorstehend genannte - unsubstituierte oder 1 , 2, 3 oder 4, vorzugsweise 1 , Substituenten tragende Cycloalkenylgruppe, wobei die Substituenten ausgewählt sind unter Fluor, Chlor, Brom oder C C6-Alkyl, z. B. für 4-Chlorcyclohexen- 1-yl, 4-Bromcyclohexen-1-yl, 4-Methylcyclohexen-1-yl, 4-Ethylcyclohex-1-enyl, 4- Chlorcyclohexen-3-yl, 4-Bromcyclohexen-3-yl, 4-Methylcyclohexen-3-yl, 4- Ethylcyclohex-3-enyl;
Bicycloalkyl: bicyclischer Kohlenwasserstoffrest mit 5 bis 10 C-Atomen wie Bicyc- lo[2.2.1]hept-1-yl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.1]hept-7-yl, Bicyclo[2.2.2]oct-1-yl, Bicyclo[2.2.2]oct-2-yl, Bicyclo[3.3.0]octyl und Bicyclo[4.4.0]decyl.
CrC4-Alkoxy für eine über ein Sauerstoff gebundene Alkylgruppe mit 1 bis 4 C- Atomen: z. B. Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1 ,1 -Dimethylethoxy;
C-i-Ce-Alkoxy: für C C4-Alkoxy, wie voranstehend genannt, sowie z. B. Pentoxy, 1- Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 1,1-Dimethylpropoxy, 1,2- Dimethylpropoxy, 2,2-Dimethylpropoxy, 1-Ethylpropoxy, Hexoxy, 1-Methylpentoxy, 2- Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1 ,1-Dimethylbutoxy, 1 ,2-
Dimethylbutoxy, 1 ,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3- Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1 ,1 ,2-Trimethylpropoxy, 1,2,2- Trimethylpropoxy, 1-Ethyl-1-methylpropoxy oder 1-Ethyl-2-methylpropoxy; Cι-C4-Halogenalkoxy: für einen C C -Alkoxyrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder lod, vorzugsweise durch Fluor substituiert ist, also z.B. OCH2F, OCHF2) OCF3, OCH2CI, OCHCI2, OCCI3, Chlorfluor- methoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 2-Fluorethoxy, 2-Chlorethoxy, 2-Bromethoxy, 2-lodethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2- fluorethoxy, 2-Chlor-2,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, OC2F5, 2-Fluorpropoxy, 3-Fluorpropoxy, 2,2-Difluorpropoxy, 2,3-Difluorpropoxy, 2-Chlorpropoxy, 3-Chlorpropoxy, 2,3-Dichlorpropoxy, 2-Brompropoxy, 3-Brompropoxy, 3,3,3-Trifluorpropoxy, 3,3,3-Trichlorpropoxy, OCH2-C2F5l OCF2-C2F5l 1-(CH2F)-2- fluorethoxy, 1-(CH2CI)-2-chlorethoxy, 1-(CH2Br)-2-bromethoxy, 4-Fluorbutoxy, 4- Chlorbutoxy, 4-Brombutoxy oder Nonafluorbutoxy;
Cι-C6-Halogenalkoxy: für C C4-Halogenalkoxy, wie voranstehend genannt, sowie z.B. 5-Fluorpentoxy, 5-Chlorpentoxy, 5-Brompentoxy, 5-lodpentoxy, Undecafluorpento- xy, 6-Fluorhexoxy, 6-Chlorhexoxy, 6-Bromhexoxy, 6-lodhexoxy oder Dodecafluorhexo- xy;
Alkenyloxy: Alkenyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z.B. C2-C6-Alkenyloxy wie Vinyloxy, 1-Propenyloxy, 2-Propenyloxy, 1- Methylethenyloxy, 1-Butenyloxy, 2-Butenyloxy, 3-Butenyloxy, 1-Methyl-1-propeny!oxy, 2-Methyl-1-propenyloxy, 1-Methyl-2-propenyloxy, 2-Methyl-2-propenyloxy, 1- Pentenyloxy, 2-Pentenyloxy, 3-Pentenyloxy, 4-Pentenyloxy, 1-Methyl-1-butenyloxy, 2- Methyl-1 -butenyloxy, 3-Methyl-1-butenyloxy, 1-Methyl-2-butenyloxy, 2-Methyl-2- butenyloxy, 3-Methyl-2-butenyloxy, 1-Methyl-3-butenyloxy, 2-Methyl-3-butenyloxy, 3- Methyl-3-butenyl, 1,1-Dimethyl-2-propenyloxy, 1,2-Dimethyl-1-propenyloxy, 1,2-
Dimethyl-2-propenyloxy, 1-Ethyl-1propenyloxy, 1-Ethyl-2-propenyloxy, 1-Hexenyloxy, 2-Hexenyloxy, 3-Hexenyloxy, 4-Hexenyloxy, 5-Hexenyloxy, 1-Methyl-1-pentenyloxy, 2- Methyl-1-pentenyloxy, 3-Methyl-1-pentenyloxy, 4-Methyl-1-pentenyloxy, 1-Methyl-2- pentenyloxy, 2-Methyl-2-pentenyloxy, 3-Methyl-2-pentenyloxy, 4-Methyl-2-pentenyloxy, 1-Methyl-3-pentenyloxy, 2-Methyl-3pentenyloxy, 3-Methyl-3-pentenyloxy, 4-Methyl-3- pentenyloxy, 1-Methyl-4-pentenyloxy, 2-Methyl-4-pentenyloxy, 3-Methyl-4-pentenyloxy, 4-Methyl-4-pentenyloxy, 1,1-Dimethyl-2-butenyloxy, 1,1-Dimethyl-3-butenyloxy, 1,2- Dimethyl-1 -butenyloxy, 1 ,2-Dimethyl-2-butenyloxy, 1 ,2-Dimethyl-3-butenyloxy, 1,3- Dimethyl-1 -butenyloxy, 1 ,3-Dimethyl-2-butenyloxy, 1 ,3-Dimethyl-3-butenyloxy, 2,2- Dimethyl-3-butenyloxy, 2,3-Dimethyl-1 -butenyloxy, 2,3-Dimethyl-2-butenyloxy, 2,3- Dimethyl-3-butenyloxy, 3,3-Dimethyl-1 -butenyloxy, 3,3-Dimethyl-2-butenyloxy, 1-Ethyl- 1 -butenyloxy, 1-Ethyl-2-butenyloxy, 1-Ethyl-3-butenyloxy, 2-Ethyl-1 -butenyloxy, 2- Ethyl-2-butenyloxy, 2-Ethyl-3-butenyloxy, 1,1,2-Trimethyl-2-propenyIoxy, 1-Ethyl-1- methyl-2-propenyloxy, 1-Ethyl-2-methyl-1propenyloxy und 1-Ethyl-2-methyl-2- propenyloxy;
Alkinyloxy: Alkinyl wie vorstehend genannt, das über ein Sauerstoffatom gebunden ist, z.B. C3-C6-Alkinyloxy wie 2-Propinyloxy, 2-Butinyloxy, 3-Butinyloxy, 1-Methyl-2- propinyloxy, 2-Pentinyloxy, 3-Pentinyloxy, 4-Pentinyloxy, 1-Methyl-2-butinyloxy, 1- Methyl-3-butinyloxy, 2-Methyl-3-butinyloxy, 1-Ethyl-2-propinyloxy, 2-Hexinyloxy, 3- Hexinyloxy, 4-Hexinyloxy, 5-Hexinyloxy, 1-Methyl-2-pentinyloxy, 1-Methyl-3-pentinyloxy und dergleichen;
fünf- oder sechsgliedriger gesättigtes oder partiell ungesättigter Heterocyclus, enthaltend ein, zwei oder drei Heteroatome aus der Gruppe Sauerstoff, Stickstoff und Schwefel: z.B. mono- und bicyclische Heterocyclen (Heterocyclyl) enthaltend neben Kohlenstoffringgliedern ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2- Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl, 3-Tetrahydrothienyl, 2- Pyrrolidinyl, 3-Pyrrolidinyl, 3-lsoxazolidinyl, 4-lsoxazolidinyl, 5-lsoxazolidinyl, 3- Isothiazolidinyl, 4-lsothiazolidinyl, 5-lsothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5- Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4- Thiazolidinyl, 5-Thiazolidinyl, 2-lmidazolidinyl, 4-lmidazolidinyl, 1,2,4-Oxadiazolidin-3- yl, 1 ,2,4-Oxadiazolidin-5-yl, 1 ,2,4-Thiadiazolidin-3-yl, 1,2,4-Thiadiazolidin-5-yl, 1,2,4- Triazolidin-3-yl, 1 ,3,4-Oxadiazolidin-2-yl, 1 ,3,4-Thiadiazolidin-2-yl, 1 ,3,4-Triazolidin-2-yl, 2,3-Dihydrofur-2-yl, 2,3-Dihydrofur-3-yl, 2,4-Dihydrofur-2-yl, 2,4-Dihydrofur-3-yl, 2,3- Dihydrothien-2-yl, 2,3-Dihydrothien-3-yl, 2,4-Dihydrothien-2-yl, 2,4-Dihydrothien-3-yl, 2- Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 2-lsoxazolin-3-yl, 3- lsoxazolin-3-yl, 4-lsoxazolin-3-yl, 2-lsoxazolin-4-yl, 3-lsoxazolin-4-yl, 4-lsoxazolin-4-yl, 2-lsoxazolin-5-yl, 3-lsoxazolin-5-yl, 4-lsoxazolin-5-yl, 2-lsothiazolin-3-yl, 3-lsothiazolin- 3-yl, 4-lsothiazolin-3-yl, 2-lsothiazolin-4-yl, 3-lsothiazolin-4-yl, 4-lsothiazolin-4-yl, 2- lsothiazolin-5-yl, 3-lsothiazolin-5-yl, 4-lsothiazolin-5-yl, 2,3-Dihydropyra∑ol-l-yl, 2,3- Dihydropyrazol-2-yl, 2,3-Dihydropyrazol-3-yl, 2,3-Dihydropyrazol-4-yl, 2,3- Dihydropyrazol-5-yl, 3,4-Dihydropyrazol-1-yl, 3,4-Dihydropyrazol-3-yl, 3,4- Dihydropyrazol-4-yl, 3,4-Dihydropyrazol-5-yl, 4,5-Dihydropyrazol-1-yl, 4,5- Dihydropyrazol-3-yl, 4,5-Dihydropyrazol-4-yl, 4,5-Dihydropyrazol-5-yl, 2,3- Dihydrooxazol-2-yl, 2,3-Dihydrooxazol-3-yl, 2,3-Dihydrooxazol-4-yl, 2,3-Dihydrooxazol- 5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol-4-yl, 3,4- Dihydrooxazol-5-yl, 3,4-Dihydrooxazol-2-yl, 3,4-Dihydrooxazol-3-yl, 3,4-Dihydrooxazol- 4-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4- Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5- Hexahydropyrimidinyl, 2-Piperazinyl, 1,3,5-Hexahydro-triazin-2-yl und 1,2,4- H exa hyd rotriazi n-3-y l ;
fünf- bis sechsgliedriger aromatischer Heterocyclus, enthaltend ein, zwei oder drei Heteroatome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel: ein- oder zweikerniges Heteroaryl, z.B. C-gebundenes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome oder ein oder zwei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder wie 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3- Pyrrolyl, 3-lsoxazolyl, 4-lsoxazolyl, 5-lsoxazolyl, 3-lsothiazolyl, 4-lsothiazolyl, 5- Isothiazolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-lmidazolyl, 4-lmidazolyl, 1 ,2,4-Oxadiazol-3-yl, 1,2,4-Oxadiazol-5-yl, 1 ,2,4-Thiadiazol-3-yl, 1,2,4-Thiadiazol-5-yl, 1,2,4-Triazol-3-yl, 1 ,3,4-Oxadiazol-2-yl, 1 ,3,4-Thiadiazol-2-yl und 1,3,4-Triazol-2-yl; über Stickstoff gebundenes 5-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome als Ringglieder wie Pyrrol-1-yl, Pyrazol-1-yl, lmidazol-1-yl, 1,2,3-Triazol-1-yl und 1,2,4-Triazol-1-yl; 6-gliedriges Heteroaryl, enthaltend ein bis drei Stickstoffatome ein bis drei Stickstoffatome als Ringglieder wie Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, 3-Pyridazinyl, 4- Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl, 2-Pyrazinyl, 1,3,5-Triazin-2-yl und 1 ,2,4-Triazin-3-yl.
Eine erste bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin X und Y jeweils für C-R4steht, wobei R4 jeweils gleich oder verschieden sein können. Diese Verbindungen werden im Folgenden als Verbindungen a bezeichnet.
Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin X für C-R4 steht und Y für N steht. Diese Verbindungen werden im Folgenden als Verbindungen l.b bezeichnet.
Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung betrifft Verbindungen der Formel I, worin X für N steht und Y für C-R4 steht. Diese Verbindungen werden im Folgenden als Verbindungen l.c bezeichnet.
In den Formeln der Formel La, l.b ind l.c haben die Variablen Ra, n, R1, R2, R3 und R4 die zuvor genannten Bedeutungen, insbesondere die im Folgenden als bevorzugt an- gegebenen Bedeutungen.
Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen I als Fungizide weisen die Variablen n, Ra, R1, R2, R3 und R4 unabhängig voneinander und vorzugsweise in Kombination die folgenden Bedeutungen auf:
n 2, 3, 4 oder 5, insbesondere 2 oder 3;
Ra Halogen, insbesondere Fluor oder Chlor, CrC4-Alkyl, insbesondere Methyl, C C4-Alkoxy, insbesondere Methoxy, CrC2-Fluoralkyl, insbesondere Difluormethyl und Trifluormethyl, CrC2-Fluoralkoxy, insbesondere Difluormethoxy und Trifluor- methoxy, CrC4-Alkoxycarbonyl, insbesondere Methoxycarbonyl und Cyano;. Besonders bevorzugt ist Ra ausgewählt unter Halogen, speziell Fluor oder Chlor, CrC4-Alkyl, speziell Methyl, und C C -Alkoxy, speziell Methoxy;
R1 Halogen, speziell Chlor, Hydroxy oder eine Gruppe NR7R8;
R2 Halogen, speziell Chlor, Hydroxy, CrC6-Alkyl, speziell Methyl; CrC6 Halogenalkyl oder eine Gruppe NR'R ;
R3 Wasserstoff, CrCe-Alkyl, vorzugsweise CrC3-Alkyl, CrCe-Halogenalkyl, vorzugsweise CrC3-Halogenalkyl, und besonders bevorzugt Wasserstoff;
R4 Wasserstoff, Halogen, C C6-Alkyl, vorzugsweise CrC3-Alkyl, CrCe- Halogenalkyl, vorzugsweise CrC3-Halogenalkyl, und besonders bevorzugt Wasserstoff. Sofern R1 für Halogen, speziell Chlor steht, bedeutet R2 vorzugsweise Halogen, speziell Chlor, CrCe-Alkyl, speziell Methyl, CrC6-Halogenalkyl oder eine Gruppe NR7R8.
Sofern R1 für Hydroxy steht, bedeutet R2 vorzugsweise Hydroxy, C C6-Alkyl oder C Ce-Halogenalkyl.
Sofern R1 für eine Gruppe NR7R8 steht, ist R2 vorzugsweise ausgewählt unter Halogen, speziell Chlor, C C6-Alkyl, speziell Methyl und CrC6-Halogenalkyl.
Sofern R1 für eine Gruppe NR7R8 steht, ist vorzugsweise wenigstens einer der Reste R7, R8 von Wasserstoff verschieden. Insbesondere steht R7 für CrC6-Alkyl. C3-C8- Cycloalkyl, das gegebenenfalls mit Alkyl ein- oder mehrfach substituiert ist, CrCe- Halogenalkyl, Phenyl-CrC4-alkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl. R8 steht insbeson- dere für Wasserstoff, CrC6-Alkyl oder C2-C6-Alkenyl und ganz besonders bevorzugt für Wasserstoff und C C4-Alkyl.
Zu den bevorzugten Gruppen NR7R8 zählen auch solche, die für einen gesättigten oder teilweise ungesättigten heterocyclischen Rest stehen, der neben dem Stickstoffatom ein weiteres Heteroatom, ausgewählt unter O, S, und NR10 als Ringglied aufweisen kann, und der ein oder zwei Substituenten aufweisen kann, die ausgewählt sind unter Halogen, Hydroxy, CrC6-Alkyl und C C6-Halogenalkyl. Vorzugsweise weist der hete- rocyclische Rest 5 bis 7 Atome als Ringglieder auf. Beispiele für derartige heterocycli- sche Reste sind Pyrrolidin, Piperidin, Morpholin, Tetrahydropyridin, z.B. 1 ,2,3,6 Tetra- hydropyridin, Piperazin und Azepan, die in der vorgenannten Weise substituiert sein können.
Sofern R2 für eine Gruppe NR7R8 steht, ist vorzugsweise wenigstens einer der Reste R7, R8 von Wasserstoff verschieden. Insbesondere weist R7 die zuvor als bevorzugt genannten Bedeutungen auf.
Bevorzugte Bedeutungen von Ra umfassen Halogen, speziell F oder Cl, Trifluormethyl,
CN, CrC4-Alkoxy, C C -Alkoxycarbonyl, insbesondere Methoxycarbonyl.
Im Hinblick auf die Verwendung der erfindungsgemäßen Verbindungen I als Fungizide
steht der Rest vorzugsweise für einen Rest der Formel
worin Ra1 die zuvor für Ra genannten Bedeutungen aufweist und die Reste Ra2, Ra3, Ra4 und Ra5 die für Ra angegebenen Bedeutungen haben oder für Wasserstoff stehen. Ins- besondere stehen:
Ra1 für Fluor, Chlor, Trifluormethyl oder Methyl;
Ra2 für Wasserstoff oder Fluor;
Ra3 für Wasserstoff, Fluor, Chlor, Cyano, C1-C4-Alkyl, speziell Methyl, C C -Alkoxy, speziell Methoxy oder C C4-Alkoxycarbonyl, speziell Methoxycarbonyl; Ra4 für Wasserstoff, Chlor oder Fluor;
Ra5 für Wasserstoff, Fluor, Chlor oder C C4-Alkyl, speziell Methyl, oder CrC4-Alkoxy, speziell Methoxy.
Hierbei ist vorzugsweise wenigstens einer der Reste Ra3 oder Ra5 von Wasserstoff ver- schieden. Vorzugsweise steht wenigstens einer und besonders bevorzugt beide Reste Ra2, Ra4 für Wasserstoff.
Eine bevorzugte Ausführungsform der erfindungsgemäßen Verbindungen l.b sind solche, worin R2 für Halogen, Cyano, CrC6-Alkyl, CrC6-HalogenaIkyl, C2-C6-Alkenyl, C2- C6-AlkinyL C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, oder NR7R8 steht, worin R7 und R8 jeweils von Wasserstoff verschieden sind.
Eine andere bevorzugte Ausführungsform der erfindungsgemäßen Verbindungen La und l.c betrifft solche, worin R2 Halogen, Cyano, CrC6-Alkyl, CrC6-Halogenalkyl, C2- Ce-Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 be- deutet, worin R6, R7 und R8 die zuvor genannten und insbesondere die bevorzugten Bedeutungen aufweisen.
Im Übrigen weisen die Variablen R3, R4, R5 und R6 unabhängig voneinander und vorzugsweise in Kombination mit den bevorzugten Bedeutungen der Variablen n, Ra, R1 und R2 die folgenden Bedeutungen auf: R3 Wasserstoff, CrC6-Alkyl, vorzugsweise CrC3-Alkyl, CrC6-Halogenalkyl, vorzugsweise CrC3-Halogenalkyl, und besonders bevorzugt Wasserstoff; R4 Wasserstoff, C C6-Alkyl, vorzugsweise C C3-Alkyl, CrC6-Halogenalkyl, vor- zugsweise CrC3-Halogenalkyl, und besonders bevorzugt Wasserstoff;
R5 Wasserstoff, C C4-Alkyl oder C C4-Alkoxy; R6 Wasserstoff, C C4-Alkyl, Benzyl oder C C4-Alkylcarbonyl.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Methyl-4-chlor steht (Verbindungen l.a.1, l.b.l.und l.c.1). Beispiele hierfür sind Verbindungen l.a.1, l.b.l.und l.c.1, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.1, l.b.l.und l.c.1, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.1, l.b.l.und l.c.1, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.1, l.b.l.und l.c.1, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.1, l.b.l.und l.c.1, worin R2 Me- thyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Tabelle A:
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Fluor-4-methyl steht (Verbindungen l.a.2, l.b.2 und l.c.2). Beispiele hierfür sind Verbindungen l.a.2, l.b.2 und l.c.2, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.2, l.b.2 und l.c.2, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.2, l.b.2 und l.c.2, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.2, l.b.2 und l.c.2, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.2, l.b.2 und l.c.2, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Dimethyl steht (Verbindungen l.a.3, l.b.3 und l.c.3). Beispiele hierfür sind Verbindungen l.a.3, l.b.3 und l.c.3, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.3, l.b.3 und l.c.3, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.3, l.b.3 und l.c.3, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.3, l.b.3 und l.c.3, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeu- tungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.3, l.b.3 und l.c.3, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,4,6-Trimethyl steht (Verbindungen l.a.4, l.b.4 und l.c.4). Beispiele hierfür sind Verbindungen l.a.4, l.b.4 und l.c.4, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.4, l.b.4 und l.c.4, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.4, l.b.4 und l.c.4, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.4, l.b.4 und l.c.4, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.4, l.b.4 und l.c.4, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Difluor-4-methyl steht (Verbindungen l.a.5, l.b.5 und l.c.5). Beispiele hierfür sind Verbindungen l.a.5, l.b.5 und l.c.5, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.5, l.b.5 und l.c.5, wor- in R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.5, l.b.5 und l.c.5, worin R2 Methyl bedeutet und R Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.5, l.b.5 und l.c.5, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.5, l.b.5 und l.c.5, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Difluor-4-cyano steht (Verbindungen l.a.6, l.b.6 und l.c.6). Beispiele hierfür sind Verbindungen l.a.6, l.b.6 und l.c.6, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.6, l.b.6 und l.c.6, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.6, l.b.6 und l.c.6, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.6, l.b.6 und l.c.6, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.6, l.b.6 und l.c.6, worin R2 Methyl bedeutet und R für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Difluor-4-methoxycarbonyl steht (Verbindungen l.a.7, l.b.7 und l.c.7). Beispiele hierfür sind Verbindungen l.a.7, l.b.7 und Lc.7, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.7, l.b.7 und l.c.7, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.7, l.b.7 und l.c.7, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.7, l.b.7 und l.c.7, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.7, l.b.7 und l.c.7, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel a, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Trifluormethyl-4-fluor steht (Verbindungen l.a.8, l.b.8 und l.c.8). Beispiele hierfür sind Verbindungen l.a.8, l.b.8 und l.c.8, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.8, l.b.8 und l.c.8, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.8, l.b.8 und l.c.8, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.8, l.b.8 und l.c.8, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.8, l.b.8 und l.c.8, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Trifluormethyl-5-fluor steht (Verbindungen l.a.9, l.b.9 und l.c.9). Beispiele hierfür sind Verbindungen l.a.9, l.b.9 und l.c.9, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.9, l.b.9 und l.c.9, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.9, l.b.9 und l.c.9, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.9, l.b.9 und l.c.9, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.9, l.b.9 und l.c.9, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Trifluormethyl-5-chlor steht (Verbindungen l.a.10, l.b.10 und l.c.10). Beispiele hierfür sind Verbindungen l.a.10, l.b.10 und l.c.10, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.10, l.b.10 und l.c.10, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbin- düngen l.a.10, l.b.10 und l.c.10, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.10, l.b.10 und l.c.10, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.10, l.b.10 und l.c.10, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Chlor-6-fluor steht (Verbindungen l.a.11, l.b.11 und l.c.11). Beispiele hierfür sind Verbindungen l.a.11 , l.b.11 und l.c.11 , worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.11, l.b.11 und l.c.11, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.11, l.b.11 und l.c.11, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.11, l.b.11 und l.c.11 , worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.11 , l.b.11 und l.c.11 , worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Difluor steht (Verbindungen l.a.12, Lb.12 und l.c.12). Beispiele hierfür sind Verbindungen l.a.12, Lb.12 und l.c.12, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.12, Lb.12 und l.c.12, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.12, Lb.12 und l.c.12, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.12, Lb.12 und l.c.12, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.12, Lb.12 und l.c.12, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Dichlor steht (Verbindungen l.a.13, l.b.13 und l.c.13). Beispiele hierfür sind Verbindungen l.a.13, l.b.13 und l.c.13, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.13, l.b.13 und l.c.13, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.13, l.b.13 und l.c.13, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.13, l.b.13 und l.c.13, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.13, l.b.13 und l.c.13, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Fluor-6-methyl steht (Verbindungen l.a.14, l.b.14 und l.c.14). Beispiele hierfür sind Verbindungen l.a.14, l.b.14 und l.c.14, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.14, l.b.14 und l.c.14, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.14, l.b.14 und l.c.14, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.14, l.b.14 und l.c.14, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.14, l.b.14 und l.c.14, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,4,6-Trifluor steht (Verbindungen l.a.15, l.b.15 und l.c.15). Beispiele hierfür sind Verbindungen l.a.15, l.b.15 und l.c.15, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.15, l.b.15 und l.c.15, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.15, l.b.15 und l.c.15, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.15, l.b.15 und l.c.15, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.15, l.b.15 und l.c.15, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,6-Difluor-4-methoxy steht (Verbindungen La.16, l.b.16 und l.c.16). Beispiele hierfür sind Verbindungen l.a.16, l.b.16 und l.c.16, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.16, l.b.16 und l.c.16, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.16, l.b.16 und l.c.16, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.16, l.b.16 und l.c.16, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.16, l.b.16 und l.c.16, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formei La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,3,4,5,6-Pentafluor steht (Verbindungen l.a.17, l.b.17 und l.c.17). Beispiele hierfür sind Verbindungen l.a.17, l.b.17 und Lc.17, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.17, l.b.17 und l.c.17, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.17, l.b.17 und l.c.17, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.17, l.b.17 und Lc.17, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.17, l.b.17 und Lc.17, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Methyl-4-fluor steht (Verbindungen l.a.18, l.b.18 und l.c.18). Beispiele hierfür sind Verbindungen l.a.18, l.b.18 und l.c.18, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.18, l.b.18 und l.c.18, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindun- gen l.a.18, l.b.18 und l.c.18, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.18, l.b.18 und l.c.18, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.18, l.b.18 und l.c.18, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel a, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Fluor-6-methoxy steht (Verbindungen La.19, l.b.19 und l.c.19). Beispiele hierfür sind Verbindungen l.a.19, l.b.19 und l.c.19, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.19, l.b.19 und l.c.19, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.19, l.b.19 und l.c.19, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.19, l.b.19 und l.c.19, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.19, l.b.19 und l.c.19, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,4-Difluor steht (Verbindungen l.a.20, l.b.20 und l.c.20). Beispiele hierfür sind Verbindungen l.a.20, l.b.20 und l.c.20, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.20, l.b.20 und l.c.20, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.20, l.b.20 und l.c.20, worin R2 Methyl bedeutet und R Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.20, l.b.20 und l.c.20, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.20, l.b.20 und l.c.20, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel a, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Fluor-4-chlor steht (Verbindungen l.a.21 , l.b.21 und l.c.21). Beispiele hierfür sind Verbindungen l.a.21, l.b.21 und l.c.21, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.21, l.b.21 und l.c.21, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.21, l.b.21 und l.c.21, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.21, l.b.21 und l.c.21, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.21 , l.b.21 und l.c.21 , worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2-Chlor-4-fluor steht (Verbindungen l.a.22, Lb.22 und l.c.22). Beispiele hierfür sind Verbindungen l.a.22, Lb.22 und l.c.22, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.22, Lb.22 und l.c.22, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.22, Lb.22 und l.c.22, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.22, Lb.22 und l.c.22, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.22, Lb.22 und l.c.22, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,3-Difluor steht (Verbindungen l.a.23, l.b.23 und Lc.23). Beispiele hierfür sind Verbindungen l.a.23, l.b.23 und Lc.23, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.23, l.b.23 und Lc.23, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.23, l.b.23 und Lc.23, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.23, l.b.23 und Lc.23, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.23, l.b.23 und Lc.23, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,5-Difluor steht (Verbindungen l.a.24, l.b.24 und l.c.24). Beispiele hierfür sind Verbindungen l.a.24, l.b.24 und l.c.24, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.24, l.b.24 und l.c.24, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.24, l.b.24 und l.c.24, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.24, l.b.24 und l.c.24, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.24, l.b.24 und l.c.24, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,3,4-Trifluor steht (Verbindungen l.a.25, l.b.25 und l.c.25). Beispiele hierfür sind Verbindungen l.a.25, l.b.25 und l.c.25, worin R2 und R1 für jeweils Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.25, l.b.25 und l.c.25, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.25, l.b.25 und l.c.25, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.25, l.b.25 und l.c.25, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.25, l.b.25 und l.c.25, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Besonders bevorzugte Verbindungen der allgemeinen Formel I im Hinblick auf die Verwendung als Fungizid sind weiterhin die Verbindungen der allgemeinen Formel La, l.b und l.c, worin R3 und R4 jeweils für Wasserstoff stehen, R2 für Hydroxy, Chlor oder Methyl steht und (Ra)n für 2,4-Dimethyl steht (Verbindungen l.a.26, l.b.26 und l.c.26). Beispiele hierfür sind Verbindungen l.a.26, l.b.26 und l.c.26, worin R2 und R1 jeweils für Hydroxy stehen. Beispiele hierfür sind auch Verbindungen l.a.26, l.b.26 und l.c.26, worin R2 und R1 jeweils Chlor bedeuten. Beispiele hierfür sind auch Verbindungen l.a.26, l.b.26 und l.c.26, worin R2 Methyl bedeutet und R1 Chlor bedeutet. Beispiele hierfür sind auch Verbindungen l.a.26, l.b.26 und l.c.26, worin R2 Chlor bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen. Beispiele hierfür sind auch Verbindungen l.a.26, l.b.26 und l.c.26, worin R2 Methyl bedeutet und R1 für NR7R8 steht, wobei R7, R8 gemeinsam jeweils die in einer Zeile der Tabelle A angegebenen Bedeutungen aufweisen.
Die erfindungsgemäßen Verbindungen der Formel I können in Analogie zu an sich be- kannten Verfahren des Standes der Technik nach den in den folgenden Schemata dargestellten Synthesen hergestellt werden:
Schema 1 :
In Schema 1 haben n, Ra, R , R2, R3, X und Y die zuvor genannten Bedeutungen. R steht für C C4-Alkyl, insbesondere für Methyl oder Ethyl, W steht für CrCe-Alkyl, C Ce-Alkoxy, insbesondere für Methoxy oder Ethoxy, CrC6-Halogenalkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl, gegebenenfalls substituiertes C5-C8-Cycloalkenyl, C2- C6-Alkenyl oder C2-C6-Alkinyl und U steht für OH, CrCe-Alkyl, C C6-Halogenalkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl, gegebenenfalls substituiertes C5-C8- Cycloalkenyl, C2-C6-Alkenyl oder C2-C6-Alkinyl.
Gemäß Schema 1 wird in einem ersten Schritt ein Hetarylamin der allgemeinen Formel II mit einer CH-aciden Verbindung der allgemeinen Formel III kondensiert. Beispiele für geeignete CH-acide Verbindungen der allgemeinen Formel III sind substituierte Phe- nylessigsäure-(CrC4)-alkylester und substituierte Benzyl(halogen)alkylketone, Benzyl- cycloalkylketone, Benzylalkenylketone, Benzylcycloalkenylketone und Benzylalkinylke- tone. Beispiele für geeignete Hetarylamine der allgemeinen Formel II sind 2-Amino- pyridin-3-carbonsäureester (2-Aminonicotinsäureester), 3-Aminopyrazin-2-carbon- säureester und 4-Aminopyrimidin-5-carbonsäureester.
So erhält man beim Einsatz von 2-Aminopyridin-3-carbonsäureester (2-Aminonicotin- säureester) die Verbindungen La mit R1 = OH; beim Einsatz von 3-Aminopyrazin-2- carbonsäureester die Verbindungen l.b mit R1 = OH und beim Einsatz von 4- Aminopyrimidin-5-carbonsäureester die Verbindungen l.c mit R1 = OH.
Die Kondensation erfolgt in der Regel in Gegenwart einer Brönstedt- oder Lewissäure als saurem Katalysator oder in Gegenwart eines basischen Katalysators, siehe z. B. Organikum, 15. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin 1976, 552ff. Beispiele für geeignete saure Katalysatoren sind Zinkchlorid, Phosphorsäure, Salzsäure, Essigsäure sowie Mischungen aus Essigsäure und Zinkchlorid. Beispiele für geeignete basische Katalysatoren sind anorganische und organische basische Ka- talysatoren. Geeignete anorganische basische Katalysatoren sind beispielsweise Alkali- oder Erdalkalihydride, vorzugsweise Alkalimetallhydride wie Natriumhydrid oder Kaliumhydrid und Alkali- und Erdalkalimetallhydroxide wie Natriumhydroxid oder Kaliumhydroxid. Weiterhin kann die Kondensation bei Einsatz von substituiertem Phenyles- sigsäureester in Gegenwart von metallischem Natrium erfolgen. Beispiele für geeignete organische basische Katalysatoren sind Alkali- oder Erdalkalimetallalkoxide wie Natri- ummethylat, Natriumethylat, Natrium-n-propylat, Natriumisopropylat, Natrium-n-butylat, Natrium-sec-butylat, Natrium-tert-butylat, Kaliummethylat, Kaliumethylat, Kalium-n-pro- pylat, Kaliumisopropylat, Kalium-n-butylat, Kalium-sec-butylat, Kalium-tert-butylat, sekundäre Amine wie Ethyldiisopropylamin und Amidinbasen wie 1 ,5-Diazabicyclo- [4.3.0]non-5-en (DBN) oder 1 ,8-Diazabicyclo[5.4.0]undec-7-en (DBU).
Die Umsetzung kann in Abwesenheit eines Lösungsmittels oder in einem Lösungsmittel durchgeführt werden. Bei Abwesenheit eines Lösungsmittels setzt man die CH- acide Verbindung III in der Regel im Überschuss, bezogen auf das Hetarylamin, ein.
Kondensationsreaktionen zwischen einem Hetarylamin der allgemeinen Formel II mit einem geeignet substituiertem Phenylessigsäureester der allgemeinen Formel III sind aus der Literatur prinzipiell bekannt, z. B. aus Archiv der Pharmazie, 290, 1957, 136, Chem. Ber. 96, 1963, 1868, Chem. Ber. 111, 1978, 2813 - 2824 oder J. Heterocyclic Chem. 30, 909 (1963) und können in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen genutzt werden.
Bei der in Schema 1 gezeigten Kondensation erhält man bei Verwendung von Phenyl- essigsäureestem der allgemeinen Formeln III Verbindungen I, worin R1 und R2 jeweils für Hydroxy stehen. Bei Verwendung von Ketonen der allgemeinen Formel III erhält man Verbindungen I mit R1 = Hydroxy und R2 = CrC6-(Halogen)alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl oder gegebenenfalls substituiertes C5-C8-Cycloalkenyl.
Derartige Verbindungen I (R1 = OH) sind als Zwischenprodukte für die Herstellung anderer Verbindungen I von besonderem Interesse. Die OH-Gruppe(n) in diesen Verbindungen kann (können) in einem oder mehreren Schritten in andere funktioneile Gruppen umgewandelt werden. In der Regel wird man hierzu zunächst die OH-Gruppe(n) in Halogen, insbesondere Chlor überführen (siehe Schema 1a).
Schema 1a:
(I: R1 = Cl; R2 = Cl)
(I: R1 = Cl; (I: R1 = OH; R2 = Alkyl, Halogenalkyl, R2 = Alkyl, Halogenalkyl, Cycloalkyl) Cycloalkyl)
In Schema 1a haben die Variablen n, Ra, R3, X und Y die zuvor genannten Bedeutungen. Diese Umwandlung gelingt beispielsweise durch Umsetzung von I {R1 = OH, R2 = OH, CrC6-(Halogen)alkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl } mit einem geeigneten Halogenierungsmittel (in Schema 1a für ein Chlorierungsmittel [Cl] gezeigt). Diese Methode ist prinzipiell bekannt, z. B. aus Archiv der Pharmazie, 290, 1957, S. 136 oder J. Heterocyclic Chem., 30, 909 (1993).
Als Halogenierungsmittel eignen sich beispielsweise Phosphortrihalogenide, Phosphor- oxyhalogenide oder Phosphorpentahalogenide wie Phosphortribromid, Posphoroxy- tribromid, und insbesondere Chlorierungsmittel wie POCI3, PC C\2 oder PCI5, und Mischungen dieser Reagenzien. Vorzugsweise verwendet man für die Chlorierung ein Gemisch aus Phosphorpentachlorid und Phosphoroxychlorid. Die Reaktion kann in überschüssigem Halogenierungsmittel (POCI3) oder einem inerten Lösungsmittel, wie beispielsweise Acetonitril oder 1 ,2-Dichlorethan durchgeführt werden.
Diese Umsetzung erfolgt üblicherweise zwischen 10 und 180 °C. Aus praktischen Gründen entspricht häufig die Reaktionstemperatur der Siedetemperatur des eingesetzten Chlorierungsmittels (POCI3) oder des Lösungsmittels. Das Verfahren wird gegebenenfalls unter Zusatz von N,N-Dimethylformamid oder von Stickstoff basen, wie beispielsweise N,N-Dimethylanilin in katalytischen oder stöchiometrischen Mengen durchgeführt.
Die hierbei erhaltenen Monohalogenverbindungen I, z. B. die Chlorverbindung I {R1 = Cl; R2 = CrC6-(Halogen)alkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl) oder die Dichlorverbindung I { R1 = R2 = Cl} können dann in Analogie zu bekannten Verfahren aus dem Stand der Technik in andere Verbindungen I umgewandelt werden.
Verbindungen der Formel I, worin R1 für OR6 steht, werden aus den entsprechenden Chlorverbindungen der Formel I {R1 = Cl, R2 = Alkyl, Halogenalkyl, Cycloalkyl} durch Umsetzung mit Alkalimetallhydroxiden {OR6 = OH}, Alkali- oder Erdalkalimetallalkoho- laten {OR6 = O-Alkyl, O-Halogenalkyl} erhalten [vgl.: Heterocycles, Bd. 32, S. 1327- 1340 (1991); J. Heterocycl. Chem. Bd. 19, S. 1565-1567 (1982); Geterotsikl. Soedin, S. 400-402 (1991)]. Veresterung von Verbindungen mit R1 = OH nach an sich bekannten Methoden liefert Verbindungen I, worin R1 für O-C(O)R9 steht. Verbindungen mit R1 = OH können auch nach an sich bekannten Methoden der Veretherung in die entsprechenden Verbindungen I überführt werden, worin R für O-Alkyl, O-Halogenalkyl oder O-Alkenyl steht.
Verbindungen der Formel I, in der R1 für Cyano steht, können aus den entsprechenden Chlorverbindungen der Formel I {R = Cl, R2 = Alkyl, Halogenalkyl, Cycloalkyl} durch Umsetzung mit Alkali-, Erdalkalimetall- oder Metallcyaniden, wie NaCN, KCN oder Zn(CN)2, erhalten werden [vgl.: Heterocycles, Bd. 39, S. 345-356 (1994); Collect.
Czech. Chem. Commun. Bd. 60, S. 1386-1389 (1995); Acta Chim. Scand., Bd. 50, S. 58-63 (1996)]
Verbindungen der allgemeinen Formel I, worin R1 für Halogen steht sowie Verbindun- gen der allgemeinen Formel I, worin R1 und R2 gleichzeitig für Halogen stehen, sind daher als Zwischenprodukte für die Herstellung anderer Verbindungen I von besonderem Interesse. Einen Überblick über weitere derartige Umwandlungen geben die Schemata 1b, 1c und 1d. So kann man beispielsweise, wie in Schema 1b gezeigt, die Monochlorverbindung I {R1 = Cl, R2 = CrC6-(Halogen)alkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl} mit einem Amin HNR7R8, worin R7 und R8 die zuvor genannten Bedeutungen aufweisen, umsetzen, wobei man eine Verbindung I erhält, worin R für NR7R8 steht und R2 für d- C6-(Halogen)alkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl steht. Setzt man die Dichlorverbindung I {R1 = R2 = Cl) mit einem Amin HNR7R8 um, worin R7 und R8 die zuvor genannten Bedeutungen aufweisen, so erhält man eine Verbindung I, worin R1 für Chlor steht und R2 für NR7R8 steht.
Schema lb:
(I: R1 = NR7RΘ; R2 = Alkyl, Halogenalkyl, Cycloalkyl)
(I: R1 = R2 = Cl)
In Schema 1b haben die Variablen n, Ra, R3, R7, R8, X und Y die zuvor genannten Bedeutungen.
Die Umsetzung der Monochlorverbindung I {R1 = Cl, R2 = CrC6-Alkyl, CrCe-Halogenalkyl oder gegebenenfalls substituiertes C3-C8-Cycloalkyl} oder der Dichlorverbindun- gen I {R = R2 = Cl} mit einem Amin HNR7R8 erfolgt üblicherweise bei 0 bis 150 °C, vorzugsweise bei 10 bis 120 °C in einem inerten Lösungsmittel, gegebenenfalls in Gegenwart einer Hilfsbase. Diese Methode ist prinzipiell bekannt, z.B. aus II Farmaco, 57, 2002, 631 und kann in analoger Weise zur Herstellung der erfindungsgemäßen Verbindungen angewendet werden.
Als Lösungsmittel kommen protische Lösungsmittel, wie Alkohole, beispielsweise E- thanol, sowie aprotische Lösungsmittel, beispielsweise aromatische Kohlenwasserstoffe, Halogenkohlenwasserstoff und Ether, z.B. Toluol, o-, m- und p-Xylol, Diethyl- ether, Diisopropylether, tert.-Butylmethylether, Dioxan Tetrahydrofuran, Dichlormethan, sowie Mischungen der vorgenannten Lösungsmittel, in Betracht. Geeignete Hilfsbasen sind beispielsweise die im Folgenden genannten: Alkalimetallcarbonate und -hydrogen- carbonate wie NaHCO3, und Na2CO3, Alkalimetallhydrogenphosphate wie Na2HPO4, Alkalimetallborate wie Na2B4O7, tertiäre Amine wie Triethylamin, Ethyldiisopropylamin oder Diethylanilin und Pyridinverbindungen. Als Hilfsbase kommt auch ein Uberschuss des Amins HNR7R8in Betracht.
Üblicherweise werden die Komponenten in etwa stöchiometrischem Verhältnis einge- setzt. Es kann jedoch vorteilhaft sein, das Amin HNR7R8 im Uberschuss einzusetzen. Bei Verwendung eines Überschusses an Amin HNR7R8, kann das Amin gleichzeitig als Lösungsmittel fungieren.
Die Amine HNR7R8 sind käuflich oder literaturbekannt oder können nach bekannten Methoden hergestellt werden.
Verbindungen der Formel I, worin R2 für O-CrC4-Alkyl-phenyl steht, wobei Phenyl gegebenenfalls ein- oder mehrfach substituiert ist, lassen sich auch aus der entsprechenden Dichlorverbindung I {R1 = Cl, R2 = Cl} durch Umsetzung mit einem Alkohol R6OH wie in Schema 1c gezeigt herstellen. Solche Umsetzungen sind prinzipiell bekannt, beispielsweise aus JACS, 69, 1947, 1204. Die Umsetzung erfolgt in der Regel in Gegenwart einer Base. Geeignete Basen sind Alkalimetallhydride, wie Natriumhydrid oder Kaliumhydrid, Alkali- oder Erdalkalimetallalkoxide wie Natrium-t-butylat oder Kalium- tert-butylat oder tertiäre Amine wie Triethylamin oder Pyridin. Alternativ kann man auch den Alkohol R6OH zunächst mit einem Alkalimetall, vorzugsweise Natrium, unter Bildung des entsprechenden Alkoholats umsetzen. Die Reaktion kann in überschüssigem Alkohol oder in einem inerten Lösungsmittel wie Carbonsäureamide beispielsweise N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylpyrrolidon durchgeführt werden. Die Umsetzung erfolgt üblicherweise bei 0 °C bis 150 °C, vorzugsweise bei 10 °C bis 100 °C.
Schema 1c:
(I: R1 = Cl; R2 = OR6 mit R6 = Phenyl-CrC^alkyl) In Schema 1c haben n, Ra, R3, X und Y die zuvor genannten Bedeutungen und der Phenylrest in R6 kann gegebenenfalls ein- oder mehrfach durch Alkyl, Alkoxy oder Halogen substituiert sein.
Verbindungen der Formel I, worin R1 für NR7R8 steht und R2 für Halogen, insbesondere Chlor, steht, können beispielsweise aus den entsprechenden Halogenverbindungen der Formel I {R1 = Halogen, R2 = OR6 mit R6 = Phenyl-C C4-alkyl) erhalten werden. Die Reaktionssequenz ist in Schema 1d für die Herstellung von Verbindungen I mit R1 = NR7R8 und R2 = Cl gezeigt. In Schema 1d haben n, Ra, R3, R7, R8, X und Y die zuvor genannten Bedeutungen und der Phenylrest in R6 kann gegebenenfalls ein- oder mehrfach durch Alkyl, Alkoxy oder Halogen substituiert sein.
Schema 1d:
(I: R8;
Die in Schritt a) dargestellte Umsetzung kann in an sich bekannter Weise, beispielsweise in Analogie zu der in Schema 1b angegebenen Methode, erfolgen. In der erhaltenen Verbindung I {R1 = NR7R8 und R2 = OR6 mit R6 = Phenyl-C C4-alkyl} lässt sich die Etherbindung durch katalytische Hydrogenolse, z. B. nach der aus Org. Lett., 3, 2001 , 4263 beschrieben Methode, spalten. Geeignete Katalysatoren sind beispielsweise Edelmetalle oder Übergangsmetalle wie Palladium oder Platin. In der Regel ist der Katalysator geträgert, beispielsweise auf Aktivkohle. Die Hydrogenolyse erfolgt üblicherweise in einem Lösungsmittel. Geeignete Lösungsmittel sind beispielsweise Alkohole wie Methanol oder cyclische Ether wie Tetrahydrofuran oder Dioxan. In der Regel erfolgt die Hydrogenolyse bei Normaldruck. Die Hydrogenolyse erfolgt in der Regel bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des Lösungsmittels, vorzugsweise bei Temperaturen zwischen Raumtemperatur und 40 °C. Die auf diese Weise erhaltenen Verbindungen der Formel I mit R1 = NR7R8 und R2 = OH lassen sich dann in die entsprechenden Verbindungen mit R1 = NR7R8 und R2 = Halogen, vorzugsweise Chlor, überführen. Verfahren zur Umwandlung von Alkoholen in die entsprechenden Halogenide sind aus dem Stand der Technik bekannt, z. B. aus J. Chem. Soc. 1947, 899. Geeignete Halogenierungsmittel sind beispielsweise die zuvor genannten Halogenierungsmittel (siehe Schema 1a). Die Umsetzung kann in überschüssigem Halogenierungsmittel, beispielsweise POCI3, oder in einem inerten Lösungsmittel wie Acetonitril oder 1 ,2-Dichlorethan durchgeführt werden.
Die Umsetzung erfolgt in der Regel zwischen 10 und 180 °C, vorzugsweise zwischen Raumtemperatur und 130 °C.
Verbindungen der Formel I, in der R2 für Cyano steht, können aus den entsprechenden Chlorverbindungen der Formel I {R1 = NR7R8, R2 = Cl} durch Umsetzung mit Alkali-, Erdalkalimetall- oder Metallcyaniden, wie NaCN, KCN oder Zn(CN)2, erhalten werden [vgl.: Heterocycles, Bd. 39, S. 345-356 (1994); Collect. Czech. Chem. Commun. Bd. 60, S. 1386-1389 (1995); Acta Chim. Scand., Bd. 50, S. 58-63 (1996)].
Die Umwandlung von Chlorverbindungen der Formel I {R1 = NR7R8, R2 = Cl} in Verbindungen der Formel I, worin R2 für CrC6-Alkyl, CrC6-Halogenalkyl, C2-C6-Alkenyl, C2- C6-Alkinyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl, gegebenenfalls substituiertes C5-C8-Cycloalkenyl steht, gelingt in an sich bekannter Weise durch Umsetzung mit metallorganischen Verbindungen R2a-Met, worin R2a für CrC6-Alkyl, CrC6-Halogen- alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl, gegebenenfalls substituiertes C5-C8-Cycloalkenyl steht und Met Lithium, Magnesium oder Zink bedeutet. Die Umsetzung erfolgt vorzugsweise in Gegenwart katalytischer oder insbesondere wenigstens äquimolarer Mengen an Übergangsmetallsalzen und/oder - Verbindungen, insbesondere in Gegenwart von Cu-Salzen wie Cu(l)halogenide und speziell Cu(l)iodid. In der Regel erfolgt die Umsetzung in einem inerten organischen Lösungsmittel, beispielsweise einem Ether, insbesondere Tetrahydrofuran, einem a- liphatischen oder cycloaliphatischen Kohlenwasserstoff wie Hexan, Cyclohexan und dergleichen, einem aromatischen Kohlenwasserstoff wie Toluol oder in einer Mischung dieser Lösungsmittel. Die hierfür erforderlichen Temperaturen liegen im Bereich von -100 bis +100°C und speziell im Bereich von -80°C bis +40°C.
In analoger Weise gelingt auch die Umwandlung von Chlorverbindungen der Formel I {R1 = Cl, R2 = NR7R8}, worin R1 für d-Ce-Alkyl, d-Ce-Halogenalkyl, C2-C6-Alkenyl, C2- Ce-Alkinyl, C3-C8-Cycloalkyl oder C5-C8-Cycloalkenyl steht. Die Herstellung von Verbindungen der Formel I, worin R1 für CrC6-Alkyl, CrCe-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl oder C5-C8-Cycloalkenyl steht, gelingt beispielsweise, indem man die Chlorverbindung I {R1 = Cl und R2 = Alkyl, Cycloalkyl) in der oben beschriebenen Weise mit metallorganischen Verbindungen R1a umsetzt, worin R1a für CrC6-Alkyl, CrC6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl oder gegebenenfalls substituiertes C5- C8-Cycloalkenyl steht und Met für Lithium, Magnesium oder Zink steht.
Durch entsprechende Abwandlung der in Schema 1 b gezeigten Synthese kann man in Verbindungen I mit R1 = Cl und R2 = Alkyl, Halogenalkyl, gegebenenfalls substituiertes Cycloalkyl als Substituent R1 anstelle der Gruppe NR7R8 eine Nitrilgruppe, eine Gruppe OR6' {R6' = Alkyl} oder eine Gruppe S- R6"{R6"=H oder Alkyl} nach den hier angegebenen Methoden einführen.
Hetarylamine der allgemeinen Formel II sind teilweise käuflich, aus der Literatur bekannt oder können in Anlehnung an bekannte Verfahren aus der Literatur hergestellt werden, z. B. J. Chem. Soc. 1937, 367; J. Chem. Soc. 1953, 331 ; Bioorg. Med. Chem. 9, (2001) 2061; JACS 67, 1945, 1711.
Substituierte Phenylessigsäureester der allgemeinen Formel III sind aus der Literatur bekannt oder können in Anlehnung an bekannte Verfahren hergestellt werden.
Die als Edukt eingesetzten Ketone der allgemeinen Formel III stellen wertvolle Ausgangsmaterialien zur Herstellung der erfindungsgemäßen Verbindungen I {R2 =CrC6- Alkyl, CrCe-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8- Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist} dar.
Die Ketone der allgemeinen Formel III sind neu, sofern der Rest
für einen Rest der Formel
steht, worin
Ra1 für Fluor, Chlor, Trifluormethyl oder Methyl;
Ra2 für Wasserstoff oder Fluor;
Ra3 für Wasserstoff, Fluor, Chlor, Cyano, C C4-Alkyl, speziell Methyl, C C4-Alkoxy, speziell Methoxy oder CrC4-Alkoxycarbonyl, speziell Methoxycarbonyl; Ra4 für Wasserstoff, Chlor oder Fluor; Ra5 für Wasserstoff, Fluor, Chlor oder CrC4-Alkyl, speziell Methyl, oder CrC4-Alkoxy, speziell Methoxy, stehen.
Gegenstand der vorliegenden Erfindung sind somit auch Ketone der allgemeinen Formel IIID
worin
Ra1, Ra2, Ra3, Ra4 und Ra5 die zuvor genannten Bedeutungen aufweisen und
W für CrCe-Alkyl, CrC6-Halogenalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C3-C8- Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht.
Vorzugsweise steht W' für CrC6-Alkyl, insbesondere für Methyl. Vorzugsweise ist wenigstens einer der Reste Ra3 oder Ra5 von Wasserstoff verschieden. Vorzugsweise steht wenigstens einer und besonders bevorzugt beide Reste Ra2, Ra4 für Wasserstoff.
In einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung steht (Ra)nfür 2-CH3-4-CI, 2-F-4-CH3, 2,6-di-F-4-CH3, 2,6-di-F-4-CN, 2,6-di-F-4- COOCH3 , 2-CF3-4-F, 2-CF3-5-F, 2-CF3-5-CI, 2-F-6-CH3, 2,6-di-F-4-OCH3, 2-CH3-4-F, 2-F-6-OCH3, 2-F-4-CI, 2-C1-4-F, 2,5-di-F, 2,4,6-tri-F oder 2,3,4-tri-F.
Die Ketone der allgemeinen Formel III, insbesondere die Ketone der allgemeinen Formel IIID, kann man beispielsweise gemäß Schema 2 herstellen, indem man einen Phenyl-ß-ketoester der allgemeinen Formel IV in Gegenwart einer schwachen wässri- gen Säure, beispielsweise Lithiumchlorid erhitzt. Schema 2:
(IV) (III: W" = W = Alkyl, Halogenalkyl, W' = Alkyl, Halogenalkyl, Cycloalkyl, Alkenyl, Cycloalkyl, Alkenyl, Cycloalkenyl, Alkinyl) Cycloalkenyl, Alkinyl
In Schema 2 weisen Ra und n die zuvor genannten Bedeutungen, insbesondere die als bevorzugt genannten Bedeutungen auf, W' steht für CrCe-Alkyl, CrC6-Halogenalkyl, gegebenenfalls substituiertes C3-C8-Cycloalkyl, gegebenenfalls substituiertes C5-C8- Cycloalkenyl, C2-C6-Alkenyl oder C2-C6-Alkinyl. In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt man die Verbindung IV als ihren Ethylester ein.
In der Regel setzt man die Säure im Uberschuss, bezogen auf den Phenyl-ß-ketoester IV, ein. Üblicherweise erhitzt man den Phenyl-ß-ketoester IV in einem Lösungsmittel. Geeignete Lösungsmittel sind dipolare aprotische Lösungsmittel wie Dimethylsulfoxid. Die Reaktionstemperatur liegt üblicherweise im Bereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittel, vorzugsweise im Bereich von 60 °C bis zum Siedepunkt des Lösungsmittels. Die Phenyl-ß-ketoester IV sind entweder aus der Literatur bekannt, beispielsweise aus der WO 99/41255, oder können in Anlehnung an bekannte Verfahren aus der Literatur, beispielsweise in Anlehnung an Houben-Weyl, Band Vll/2a, S. 521 hergestellt werden.
Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Ba- sidiomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt- und Bodenfungizide eingesetzt werden.
Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen. Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten: Altemaria-Aύen an Gemüse und Obst, Bipolaris- und DrecΛs/era-Arten an Getreide, Reis und Rasen, Blumeria graminis (echter Mehltau) an Getreide, - Botrytis cinerea (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben, Erysiphθ cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen, Fusarium- und Verticillium-Arten an verschiedenen Pflanzen, Mycosphaerella-Men an Getreide, Bananen und Erdnüssen, - Phytophthora infestans an Kartoffeln und Tomaten, Plasmopara viticola an Reben, Podosphaera leucotricha an Äpfeln, Pseudocercosporella herpotrichoides an Weizen und Gerste, Pseudoperonospora-Arten an Hopfen und Gurken, - Puccinia-AΛen an Getreide, Pyricularia oryzae an Reis, Rhizoctonia-Aήen an Baumwolle, Reis und Rasen, Rhynchosporium secalis (Blattfleckenkrankheit) an Getreide Septoria tritici und Stagonospora nodorum an Weizen, - Uncinula necator an Reben, Us./.ago-Arten an Getreide und Zuckerrohr, sowie Ven.i/r/a-Arten (Schorf) an Äpfeln und Birnen.
Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie Pae- cilomyces variotii im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.
Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.
Die fungiziden Mittel enthalten im Allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.
Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.
Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 0,001 bis 1 g, vorzugsweise 0,01 bis 0,5 g je Kilogramm Saatgut benötigt. Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.
Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.
Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwen- düng von Emulgiermitteln und Dispergiermitteln, wobei im Falle von Wasser als Verdünnungsmittel auch andere organische Lösungsmittel als Hilfslösungsmittel verwendet werden können. Als Hilfsstoffe kommen dafür im wesentlichen in Betracht: Lösungsmittel wie Aromaten (z.B. Xylol), chlorierte Aromaten (z.B. Chlorbenzole), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol), Ketone (z.B. Cyclohexa- non), Amine (z.B. Ethanolamin, Dimethylformamid) und Wasser; Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionoge- ne und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.
Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsul- fonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate und Fettsäuren sowie deren Alkali- und Erdalkalisalze, Salze von sulfatiertem Fettalkoholglykolether, Kon- densationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphtalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphe- nol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykol- ether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Konden- säte, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.
Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldis- persionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kero- sin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Benzol, Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohe- xanol, Cyclohexanon, Chlorbenzol, Isophoron, stark polare Lösungsmittel, z.B. Di- methylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser, in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsul- fat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Ge- treidemehl, Baumrinden-, Holz- und Nussschalenmehl, Cellulosepulver und andere feste Trägerstoffe.
Die Formulierungen enthalten im Allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.
Beispiele für Formulierungen sind:
I. 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 95 Gew.-Teilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gew.-% des Wirkstoffs enthält.
II. 30 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit einer Mischung aus 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähig- keit (Wirkstoffgehalt 23 Gew.-%).
III. 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 90 Gew.-Teilen Xylol, 6 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 2 Gew.- Teilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gew.-Teilen des Anla- gerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 9 Gew.-%).
IV. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 60 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 5 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooc- tylphenol und 5Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht (Wirkstoffgehalt 16 Gew.-%).
V. 80 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gew.- Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen (Wirkstoffgehalt 80 Gew.-%).
VI. Man vermischt 90 Gew.-Teile einer erfindungsgemäßen Verbindung mit 10 Gew.- Teilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist (Wirkstoffgehalt 90 Gew.-%).
VII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einer Mischung gelöst, die aus 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gew.-Teilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lö- sung in 100 000 Gew.-Teilen Wasser erhält man eine wässrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.
VIII. 20 Gew.-Teile einer erfindungsgemäßen Verbindung werden mit 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gew.- Teilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Ver- Wendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.
Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netz- baren Pulvern (Spritzpulver, Oldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Oldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermitttel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und even- tuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.
Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.
Zu den Wirkstoffen können Öle verschiedenen Typs, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.
Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.
Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:
• Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
• Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph, • Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,
• Antibiotika wie Cycioheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
• Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroco- nazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Hexaconazol, I- mazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,
• Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
• Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Pro- pineb, Polycarbamat, Thiram, Ziram, Zineb,
• Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenami- don, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nu- arimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,
• Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,
• Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl,
• Phenylpyrrole wie Fenpiclonil oder Fludioxonil, • Schwefel,
• Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorben- zol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quinto- zene, Zoxamid,
• Strobilurine wie Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystro- bin, • Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid,
• Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.
Synthesebeispiele
Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in den anschließenden Tabellen mit physikalischen Angaben aufgeführt. Vorstufenbeispiel 1 :
1-(2,4,6-Trifluorphenyl)propan-2-on
Zu 15 g (0,052 mol) 3-Oxo-2-(2,4,6-trifluorphenyll)butansäureethylester in 100 ml Di- methylsulfoxid gab man portionsweise 42,4 g (0,103 mol) Lithiumchlorid. Danach tropfte man 18 g (0,052 mol) Wasser zu und rührte das erhaltene Reaktionsgemisch 6,5 Stunden bei 110 °C. Man ließ das Reaktionsgemisch abkühlen, gab 50 ml Wasser zu und extrahierte das wässrige Reaktionsgemisch mehrmals mit Cyclohexan. Die vereinigten organischen Phasen trocknete man, filtrierte danach das Trockenmittel ab und engte das Filtrat ein. Den erhaltenen Rückstand chromatographierte man an Kieselgel (Cyclohexan/Essigsäureethylester 99:1), wobei man nach dem Einengen 4,5 g (46 %) der Titelverbindung erhielt.
In analoger Weise können die in der nachfolgenden Tabelle 1 angegebenen Verbindungen III erhalten werden:
Tabelle 1:
Beispiel 1:
6-(2,4,6-Trifluorphenyl)pyrido[2,3-d]pyrimidin-5,7-diol
Zu 6,7 g (0,033 mol) 2,4,6-Trifluorphenylessigsäureethylester gab man bei Raumtemperatur 2,44 g (0,036 mol) Natriumethanolat und rührte etwa 5 Minuten nach. Danach gab man 3 g (0,018 mol) 4-Aminopyrimidin-5-carbonsäureethylester zu und erhitzte die erhaltene Suspension auf 130 °C. Um die Suspension besser rühren zu können, gab man weitere 8 ml 2,4,6-Trifluorphenylessigsäureethylester zu. Man erhitzte die Sus- pension 6 Stunden und destillierte das gebildete Ethanol ab. Danach ließ man abkühlen und goss das Reaktionsgemisch auf Wasser. Das wässrige Reaktionsgemisch extrahierte man mit Essigsäureethylester. Die organische Schicht trocknete man, filtrierte das Trockenmittel ab und engte bis zur Trockne ein, wobei man 8,6 g 2,4,6-Trifluor- phenylessigsäureethylester zurückgewann. Die wässrige Phase stellte man mit Essig- säure auf einen pH-Wert von 5,5, wobei ein Feststoff ausfiel. Der ausgefallene Feststoff wurde abfiltriert und getrocknet, wobei man 1,6 g (30 %) der Titelverbindung erhielt.
Beispiel 2:
5,7-Dichlor-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin
Zu 4,2 g (0,014 mol) 6-(2,4,6-Trifluorphenyl)pyrido[2,3-d]pyrimidin-5,7-diol aus Beispiel 1 in 40 ml Phosphoroxychlorid gab man unter Rühren 7,74 g (0,037 mol) Phosphorpen- tachlorid und erwärmte unter Rühren 8 Stunden auf 130 °C. Nach dem Abkühlen engte man das Reaktionsgemisch ein und nahm den Rückstand in Dichlormethan auf. Danach gab man vorsichtig 150 ml Wasser zu und stellte das wässrige Reaktionsgemisch mit Natriumcarbonat-Lösung alkalisch. Die organische Phase trennte man ab, extrahierte die wässrige Phase zweimal mit Dichlormethan und trocknete die vereinigten organischen Phasen. Nach dem Abfiltrieren des Trockenmittels und Einengen der organischen Phase erhielt man 4,4 g (95 %) der Titelverbindung.
Beispiel 3:
7-Benzyloxy-5-chlor-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin
Zu 0,29 g (0,0073 mol) 60%igem Natriumhydrid in Weißöl tropfte man vorsichtig unter Kühlen 10 ml Benzylalkohol und rührte 30 Minuten bei Raumtemperatur nach. Danach gab man vorsichtig 2,4 g (0,0073 mol) 5,7-Dichlor-6-(2,4,6-trifluorphenyl)pyrido[2,3- d]pyrimidin aus Beispiel 2 zu und ließ etwa 100 Stunden bei Raumtemperatur stehen. Man gab das Reaktionsgemisch auf Wasser und extrahierte dreimal mit Essigsäure- ethylester und trocknete die vereinigten organischen Phasen. Nach dem Abfiltrieren des Trockenmittels und Einengen der organischen Phase erhielt man 3 g (100 %) der Titelverbindung, die geringfügig verunreinigt war.
Beispiel 4:
5-Chlor-7-(4-methylpiperidinyl)-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin
Man löste 0,1 g (0,3 mmol) 5,7-Dichlor-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin aus Beispiel 2 in 1 ml Dichlormethan und 0,04 ml Triethylamin. Danach gab man 0,03 g (3 mmol) 4-Methylpiperidin zu und rührte 12 Stunden bei Raumtemperatur. Das Reaktionsgemisch nahm man in wenig Wasser und Dichlormethan auf und wusch die organische Phase mit verdünnter wässriger Salzsäure. Nach dem Trocknen der organischen Phase filtrierte man das Trockenmittel ab und engte das Filtrat bis zur Trockne ein, wobei man 0,1 g (85 %) der Titelverbindung erhielt.
Beispiel 5:
2,7-Dimethyl-3-(2,4,6-trifluorphenyl)-[1,8]naphthyridin-4-ol
Man gab 1 ,3 g (0,0072 mol) 2-Amino-6-methylnicotinsäureethylester und 1 ,48 g (0,0079 mol) 1-(2,4,6-Trifluorphenyl)-propan-2-on aus Vorstufenbeispiel 1 portionsweise und abwechselnd bei 120 °C zu 5 g Polyphosphorsäure und erhitzte nach beende- ter Zugabe noch 5 Stunden auf 150 °C. Man ließ das Reaktionsgemisch abkühlen, gab danach etwa 60 ml Eiswasser zu und stellte mit 4 N Natriumhydroxid-Lösung auf pH 7, wobei ein Niederschlag ausfiel. Den Niederschlag filtrierte man ab und trocknete ihn, wobei man 0,56 g der Titelverbindung erhielt.
Beispiel 6:
4-Chlor-2,7-dimethyl-3-(2,4,6-trifluorphenyl)-[1,8]naphthyridin
Zu 0,165 g (0,54 mmol) 2,7-Dimethyl-3-(2,4,6-trifluorphenyl)-[1,8]naphthyridin-4-ol aus Beispiel 5 in 1,26 ml Phosphoroxychlorid gab man 0,147 g (0,7 mmol) Phosphorpen- tachlorid. Das erhaltene Reaktionsgemisch rührte man 3 Stunden bei 110 °C, ließ danach abkühlen, gab Eiswasser zu und stellte mit wässriger Natriumcarbonat-Lösung alkalisch. Das wässrige Reaktionsgemisch extrahierte man viermal mit Dichlormethan, trocknete die vereinigten organischen Phasen, filtrierte das Trockenmittel ab und engte ein, wobei man 0,18 g der Titelverbindung erhielt. Beispiel 7:
7-Benzyloxy-5-(4-methylpiperidinyl)-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin und 5- Chlor-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin-7-ol
Man rührte das Reaktionsgemisch aus 0,12 g (0,3 mmol) 7-Benzyloxy-5-chlor-6-(2,4,6- trifluorphenyl)pyrido[2,3-d]pyrimidin aus Beispiel 3, 1,5 g 4-Methylpiperidin und 0,05 g Triethylamin 3 Stunden bei 80 °C. Das Reaktionsgemisch nahm man in Wasser auf und wusch das wässrige Gemisch dreimal mit Dichlormethan. Nach dem Trocknen der vereinigten organischen Phasen filtrierte man das Trockenmittel ab und engte das Filt- rat ein. Den Rückstand chromatographierte an Kieselgel mit Cyclohexan:Essigsäure- ethylester (95:5), wobei man 0,06 g eines Gemisches aus der Titelverbindung und 5- Chlor-6-(214,6-trifluorphenyl)pyrido[2,3-d]pyrimidin-7-ol erhielt.
Beispiel 8:
5-(4-Methylpiperidin-1-yl)-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]pyrimidin-7-ol
In einer Laborhydrierapparatur mit Begasungsrührer (2000 min"1) legte man 0,6 g (0,0013 mol) 7-Benzyloxy-5-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluorphenyl)pyrido[2,3- d]pyrimidin (80 %ig) aus Beispiel 7 in 20 ml Methanol vor. Anschließend gab man 0,03 g Pd/C (10%ig) zu und hydrierte bis zur maximalern Wasserstoffaufnahme. Bei einer Temperatur von 30 °C hydrierte man etwa 90 min. Danach saugte man das Gemisch über Kieselgur ab und engte den erhaltenen Rückstand unter vermindertem Druck ein. Nach säulenchromatographischer Reinigung erhielt man 0,25 g (52 %) der Titelverbindung.
Beispiel 9:
7-Chlor-5-(4-methylpiperidin-1-yl)-6-(2,4,6-trifluormphenyl)pyrido[2,3-d]pyrimidin
Zu 0,1 g (2,67 mmol) 5-(4-Methylpiperidin-1-yl)-6-(2,4,6-trifluorphenyl)pyrido[2,3-d]py- rimidin-7-ol in 1,5 ml Phosphoroxychlorid gab man 0,09 g (0,43 mmol) Phosphorpenta- chlorid und rührte das Gemisch 5 Stunden bei 120 °C. Man goss das Reaktionsgemisch danach auf Wasser, stellte mit wässriger Natriumcarbonatlösung alkalisch und extrahierte das wässrige Gemisch mit Essigester. Man trennte die organische Phase ab, trocknete sie, filtrierte das Trockenmittel ab und engte ein. Den erhaltenen Rückstand chromatographierte man an Kieselgel (Cyclohexan/Essigester), wobei man nach dem Einengen bis zur Trockne 0,05 g (48 %) der Titelverbindung erhielt. In analoger Weise wurden die in den nachfolgenden Tabellen 2 bis 9 angegebenen Verbindungen der allgemeinen Formeln La, l.b und l.c erhalten.
Tabelle 2:
Tabelle 3:
Tabelle 4:
Tabelle 5:
Tabelle 6:
Tabelle 7
Tabelle 8
Tabelle 9
Anwendungsbeispiele:
Die Wirkstoffe wurden als Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Ace- ton oder DMSO (Dimethylsulfoxid). Dieser Lösung wurde 1 Gew.-% Emulgator Unipe- rol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.
Wirksamkeit gegen die Blattfleckenkrankheit an Weizen verursacht durch Leptosphae- ria nodorum bei protektiver Anwendung
Töpfe mit Weizenpflanzen der Sorte "Kanzler" wurden mit einer wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Töpfe mit einer wässrigen Sporensuspension von Lep- tosphaeria nodorum inokuliert. Anschließend wurden die Pflanzen in einer Kammer bei 20 °C und maximaler Luftfeuchte aufgestellt. Nach 8 Tagen hatte sich die Blattfleckenkrankheit auf den unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall visuell in % ermittelt werden konnte.

Claims

Patentansprüche
1. Bicyclische Verbindungen der allgemeinen Formel I
worin X, Y unabhängig voneinander für N oder C-R4 stehen; n für 1 , 2, 3, 4 oder 5 steht; Ra für Halogen, Cyano, CrCβ-Alkyl, CrC6-Alkoxy, CrC6-Halogenalkyl, Cι-C6-Halogenalkoxy, C2-C6-Alkenyl, C2-C6-Alkenyloxy oder C(O)R5 steht; R1 Halogen, Cyano, C C6-Alkyl, CrC6-Halogenalkyl, C2-C6- Alkenyl, C2- C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R2 Halogen, Cyano, CrC6-Alkyl, CrCe-Halogenalkyl, C2-C6-Alkenyl, C2- Ce-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R3 für Wasserstoff, Cι-C6-Alkyl, C C6-Halogenalkyl oder C3-C6- Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; R4 für Wasserstoff, Halogen, CrC6-AlkyI, CrC6-Halogenalkyl oder C3- C6-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; R5 Wasserstoff, OH, C C6-Alkyl, CrC6-Alkoxy, d-C6-Halogenalkyl, d-Ce-Halogenalkoxy, C2-C6-Alkenyl, d-C6-Alkylamino oder Di-C C6- alkylamino, Piperidin-1 -yl, Pyrrolidin-1 -yl oder Morpholin-4-yl bedeutet; R6 Wasserstoff, CrC8-Alkyl, C C6-Halogenalkyl, Phenyl-C C4-alkyl, worin Phenyl mit Halogen, Alkyl oder Alkoxy ein- oder mehrfach sub- stituiert sein kann, C2-C6-Alkenyl oder COR9 bedeutet; R7, R8 unabhängig voneinander für Wasserstoff, CrC10-Alkyl, C2-C-|0- Alkenyl, C4-C10-Alkadienyl, C2-C10-Alkinyl, C3-C8-Cycloalkyl, C5-C8- Cycloalkenyl, C -C 0-Bicycloalkyl, Phenyl, Phenyl-C C4-alkyl, Naphthyl, ein 5- oder 6-gliedriger, gesättigter oder teilweise ungesättigter Heterocyclus, der 1 , 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, oder ein 5- oder 6-gliedriger, aromatischer Heterocyclus, der 1 , 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufwei- sen kann, wobei die als R7, R8 genannten Reste teilweise oder vollständig halo- geniert sein können und/oder 1 , 2 oder 3 Reste Rb aufweisen können, wobei Rb ausgewählt ist unter Cyano, Nitro, OH, CrC6-Alkyl, CrC6-Alkoxy, d-Ce-Halogenalkyl, CrC6-Halogenalkoxy, CrC6-Alkylthio, C2-C6- Alkenyl, C2-C6-Alkenyloxy, C2-C6- Alkinyl, C2-C6-Alkinyloxy, d-C6- Alkylamino, Di-d-Ce-alkylamino, Piperidin-1-yl, Pyrrolidin-1 -yl oder Morpholin-4-yl; R7 mit R8 auch gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der 1 , 2, 3 oder 4 weitere Heteroatome, ausgewählt unter O, S, N und NR10 als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann und der 1 , 2 oder 3 der Reste Rb aufweisen kann; und R9, R10 unabhängig voneinander Wasserstoff oder C C6-Alkyl bedeuten; sowie die landwirtschaftlich verträglichen Salze von Verbindungen I, ausgenommen Verbindungen der allgemeinen Formel I, worin R1 für OH steht, wenn gleichzeitig Y und X jeweils für C-R4 stehen; sowie ausgenommen 2,4-Dichlor-3-(o-methoxyphenyl)-1 ,8-naphthyridin.
2. Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin Y und X jeweils für C-R4 stehen.
3. Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin Y für N steht und X für C-R4 steht.
4. Verbindungen nach Anspruch 1 der allgemeinen Formel l, worin Y für C-R4 steht und X für N steht.
5. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin R4 für Wasserstoff, d-C6-Alkyl oder CrC6-Halogenalkyl steht.
6. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen For- mel I, worin n für 2, 3, 4 oder 5 steht.
7. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin die Gruppe
steht, worin Ra1 für Fluor, Chlor, Trifluormethyl oder Methyl; Ra2 für Wasserstoff oder Fluor; Ra3 für Wasserstoff, Fluor, Chlor, Cyano, C C4-Alkyl, C C4-Alkoxy oder d-C -Alkoxycarbonyl; Ra4 für Wasserstoff, Chlor oder Fluor; Ra5 für Wasserstoff, Fluor, Chlor, C C4-Alkyl oder d-C -Alkoxy stehen.
8. Verbindungen nach einem der vorhergehenden Ansprüche der allgemeinen Formel I, worin R1 für eine Gruppe NR7R8 steht, worin wenigstens einer der Reste R7, R8 von Wasserstoff verschieden ist.
9. Verbindungen nach Anspruch 8 der allgemeinen Formel I, worin R7 für d-Ce-Alkyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, CrC6-Halogenalkyl, Phenyl-C C4-alkyl, C2-C6-A!kenyl oder C2-C6-Alkinyl steht; R8 für Wasserstoff, d-C6-Alkyl oder C2-C6-Alkenyl steht; oder R7, R8 gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gesättigten oder teilweise ungesättigten 5-, 6- oder 7-gliedrigen Stickstoff- heterocyclus stehen, der 1 weiteres Heteroatom, ausgewählt unter O, S, und NR10 als Ringglied aufweisen kann, und der 1 oder 2 Substituenten, ausgewählt unter CrC6-Alkyl, -Ce-Halogenalkyl, Halogen und Hydroxy, aufweisen kann, wobei R10 die in Anspruch 1 angegebene Bedeutung auf- weist.
10. Verbindungen nach Anspruch 1 der allgemeinen Formel I, worin R1 für Hydroxy steht und einer der Reste Y oder X für N steht.
1 1. Verbindungen nach einem der Ansprüche 1 bis 7 der allgemeinen Formel I, worin R1 für Halogen steht. 2. Verbindungen nach Anspruch 1 , worin R2 für Hydroxy steht, Y für C-R4 steht und X für C-R4 oder N steht.
13. Verbindungen nach einem der Ansprüche 1 bis 11 , worin R2 für Halogen, d-C6- Alkyl oder C C6-Halogenalkyl steht.
14. Verwendung von Verbindung der allgemeinen Formel I
woπn X, Y unabhängig voneinander für N oder C-R4 stehen; n für 1 , 2, 3, 4 oder 5 steht; Ra für Halogen, Cyano, d-Ce-Alky!, d-C6-Alkoxy, C C6-Halogenalkyl, d-Ce-Halogenalkoxy, C2-C8-Alkenyl, C2-C8-Alkenyloxy oder C(O)R5 steht; R1 Halogen, Cyano, C C6-Alkyl, C C6-Halogenalkyl, C2-C6-Alkenyl, C2- Ce-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R2 Halogen, Cyano, d-C6-Alkyl, d-Ce-Halogenalkyl, C2-C6-Alkenyl, C2- Ce-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, OR6, SR6 oder NR7R8 bedeutet; R3 für Wasserstoff, CrCe-Alkyl, C C6-Halogenalkyl oder C3-C6- Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; R4 für Wasserstoff, Halogen, CrC6-Alkyl, C C6-Halogenalkyl oder C3- Ce-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, steht; R5 Wasserstoff, OH, CrC6-Alkyl, CrC6-Alkoxy, CrCe-Halogenalkyl; C Ce-Halogenalkoxy, C2-C6-Alkenyl, CrC6-Alkylamino oder Di- C C6- alkylamino, Piperidin-1-yl, Pyrrolidin-1-yl oder Morpholin-4-yl bedeu- tet;
R6 Wasserstoff, C C6-Alkyl, d-C6-Halogenalkyl, Phenyl-d-C4-alkyl, worin Phenyl mit Halogen, Alkyl oder Alkoxy ein- oder mehrfach substituiert sein kann, C2-C6-Alkenyl oder COR9 bedeutet; R7, R8 unabhängig voneinander für Wasserstoff, d-Cι0-Alkyl, C2-C10- Alkenyl, C -d0-Alkadienyl, C2-Cιo-Alkinyl, Ca-Ca-Cycloalkyl, C5-C8- Cycloalkenyl, C5-C10-Bicycloalkyl, Phenyl, Phenyl-d-C -alkyl, Naphthyl, ein 5- oder 6-gliedriger, gesättigter oder teilweise ungesättigter Heterocyclus, der 1 , 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, oder ein 5- oder 6-gliedriger, aromatischer Heterocyclus, der 1 , 2 oder 3 Heteroatome, ausgewählt unter N, O und S, als Ringglieder aufweisen kann, wobei die als R7, R8 genannten Reste teilweise oder vollständig halo- geniert sein können und/oder 1 , 2 oder 3 Reste Rb aufweisen können, wobei Rb ausgewählt ist unter Cyano, Nitro, OH, d-C6-Alkyl, d-C6-Alkoxy, CrCe-Halogenalkyl, d-C6-Halogenalkoxy, d-C6-Alkylthio, C2-C6- Alkenyl, C2-C6-Alkenyloxy, C2-C6-Alkinyl, C2-C6-Alkinyloxy, d-C6- Atkyiamino, Di-CrC6-alkylamino, Piperidin-1 -yl, Pyrrolidin-1 -yl oder Morpholin-4-yl; R7 mit R8 auch gemeinsam mit dem Stickstoff atom, an das sie gebunden sind, einen 5-, 6 oder 7-gliedrigen, gesättigten oder ungesättigten Heterocyclus bilden können, der 1 , 2, 3 oder 4 weitere Heteroatome, aus- gewählt unter O, S, N und NR10 als Ringglied aufweisen kann, der teilweise oder vollständig halogeniert sein kann und der 1 , 2 oder 3 der Reste R aufweisen kann; und R9, R10 unabhängig voneinander Wasserstoff oder CrC6-Alkyl bedeuten; und von deren landwirtschaftlich verträglichen Salzen zur Bekämpfung von pflanzenpathogenen Pilzen.
15. Verfahren zur Bekämpfung von pflanzenpathogenen Pilzen, dadurch gekenn- zeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der allgemeinen Formel I gemäß Anspruch 14 und/oder mit einem landwirtschaftlich verträglichen Salz von I behandelt.
16. Mittel zur Bekämpfung von pflanzenpathogenen Pilzen, enthaltend wenigstens eine Verbindung der allgemeinen Formel I gemäß Anspruch 14 und/oder ein landwirtschaftlich verträgliches Salz von I und wenigstens einen flüssigen oder festen Trägerstoff.
17. Ketone der allgemeinen Formel IIID,
worin W d-C6-Alkyl, d-Ce-Halogenalkyl, C2-C6- Alkenyl, C2-C6-Alkinyl, C3-C8-Cycloalkyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, C5-C8-Cycloalkenyl, das gegebenenfalls mit Alkyl und/oder Halogen ein- oder mehrfach substituiert ist, bedeutet, Ra1 Fluor, Chlor, Trifluormethyl oder Methyl bedeutet; Ra2 Wasserstoff oder Fluor bedeutet;
Ra3 Wasserstoff, Fluor, Chlor, Cyano, C C -Alkyl, C C4-Alkoxy, oder C C4- Alkoxycarbonyl bedeutet; Ra4 Wasserstoff, Chlor oder Fluor bedeutet;
Ra5 Wasserstoff, Fluor, Chlor, d-C -Alkyl oder C C4-Alkoxy bedeutet.
EP04763272A 2003-07-18 2004-07-15 Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen Withdrawn EP1648890A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332790 2003-07-18
PCT/EP2004/007924 WO2005010000A2 (de) 2003-07-18 2004-07-15 Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen

Publications (1)

Publication Number Publication Date
EP1648890A2 true EP1648890A2 (de) 2006-04-26

Family

ID=34088682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763272A Withdrawn EP1648890A2 (de) 2003-07-18 2004-07-15 Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen

Country Status (13)

Country Link
US (1) US20060160811A1 (de)
EP (1) EP1648890A2 (de)
KR (1) KR20060063892A (de)
CN (1) CN1826341A (de)
AR (1) AR046075A1 (de)
AU (1) AU2004259269A1 (de)
BR (1) BRPI0412704A (de)
CA (1) CA2532917A1 (de)
CR (1) CR8177A (de)
EA (1) EA200600214A1 (de)
IL (1) IL173182A0 (de)
MX (1) MXPA06000034A (de)
WO (1) WO2005010000A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323345A1 (de) 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
GB0413953D0 (en) * 2004-06-22 2004-07-28 Syngenta Participations Ag Chemical compounds
US7737155B2 (en) * 2005-05-17 2010-06-15 Schering Corporation Nitrogen-containing heterocyclic compounds and methods of use thereof
MX2007014517A (es) * 2005-05-17 2008-02-11 Schering Corp Heterociclos como agonistas del receptor de acido nicotinico para el tratamiento de dislipidemia.
GB0614471D0 (en) * 2006-07-20 2006-08-30 Syngenta Ltd Herbicidal Compounds
WO2008024977A2 (en) * 2006-08-24 2008-02-28 Serenex, Inc. Isoquinoline, quinazoline and phthalazine derivatives
EP1920654A1 (de) 2006-09-13 2008-05-14 Syngeta Participations AG Neue Pyridopyrazine N-Oxide
US20100093738A1 (en) * 2006-10-06 2010-04-15 Basf Se Fungicidal Compounds and Fungicidal Compositions
GB0624760D0 (en) 2006-12-12 2007-01-17 Syngenta Ltd Herbicidal compounds
GB0800855D0 (en) * 2008-01-17 2008-02-27 Syngenta Ltd Herbicidal compounds
EP2350069A1 (de) 2008-10-29 2011-08-03 Basf Se Substituierte pyridine mit herbizider wirkung
US8841298B2 (en) 2009-06-05 2014-09-23 Basf Se Substituted pyrano[2,3-B]pyrazines as herbicides
CN102858780A (zh) * 2010-03-23 2013-01-02 巴斯夫欧洲公司 具有除草作用的取代哒嗪
BR112012023765A2 (pt) * 2010-03-23 2015-09-29 Basf Se piridina substituída, composição e método para controlar vegetação indesejada

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130633A1 (de) * 1981-08-01 1983-02-17 Basf Ag, 6700 Ludwigshafen 7-amino-azolo(1,5-a)pyrimidine und diese enthaltende fungizide
DE3644825A1 (de) * 1986-12-31 1988-07-14 Basf Ag Substituierte 1,8-naphthyridin-derivate und diese enthaltende fungizide
US5801183A (en) * 1995-01-27 1998-09-01 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Aza and aza (N-oxy) analogs of glycine/NMDA receptor antagonists
US5994360A (en) * 1997-07-14 1999-11-30 American Cyanamid Company Fungicidal 5-alkyl-triazolopyrimidines
ES2287312T3 (es) * 2001-09-04 2007-12-16 Sumitomo Chemical Company, Limited Imidazo(1,2-a)pirimidinas y composiciones fungicidas que las contienen.
GB0230018D0 (en) * 2002-12-23 2003-01-29 Syngenta Ltd Fungicides
GB0230019D0 (en) * 2002-12-23 2003-01-29 Syngenta Ltd Fungicides
GB0230020D0 (en) * 2002-12-23 2003-01-29 Syngenta Ltd Fungicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005010000A2 *

Also Published As

Publication number Publication date
US20060160811A1 (en) 2006-07-20
BRPI0412704A (pt) 2006-09-26
CR8177A (es) 2006-10-06
CA2532917A1 (en) 2005-02-03
CN1826341A (zh) 2006-08-30
WO2005010000A2 (de) 2005-02-03
AR046075A1 (es) 2005-11-23
EA200600214A1 (ru) 2006-08-25
MXPA06000034A (es) 2006-03-21
KR20060063892A (ko) 2006-06-12
WO2005010000A3 (de) 2005-05-19
IL173182A0 (en) 2006-06-11
AU2004259269A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP2049498A1 (de) Pyrimidinverbundungen zur bekämpfung von schadpilzen und krebs
EP1648890A2 (de) Arylkondensierte 3-arylpyridinverbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1720879A2 (de) Azolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1751132A1 (de) 2-substituierte pyrimidine und ihre verwendung als pestizide
WO2007012642A1 (de) 7-amino-6-thiadiazolyl- und -oxadiazolyl- 1 , 2 , 4-triazolo [1 , 5 -a] pyrimidin- verbindungen und ihre verwendung zur bekämpfung von schadpilzen
DE60015817T2 (de) 6-phenyl-pyrazolpyrimidine
EP1828191A2 (de) 7-amino-6-hetaryl-1,2,4-triazolo[1,5-a]pyrimidin-verbindungen und ihre verwendung zur bek[mpfung von schadpilzen
EP1761544A1 (de) Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1592695A1 (de) Pyrimidine, verfahren zu deren herstellung sowie deren verwendung
EP1620436A1 (de) Heterobicyclische verbindungen als fungizide
EP1751162A1 (de) Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1931643A1 (de) 2-substituierte hydroxylaminopyrimidine, verfahren zu ihrer herstellung und ihre verwendung als pestizid
EP1797097A1 (de) 7-aminomethyl-1,2,4-triazolo[1,5-a]pyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1758457A1 (de) Triazolopyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
EP1575958B1 (de) Fungizide triazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
WO2007023018A1 (de) 7-amino-6-triazolyl-1,2,4-triazolo[1,5-a]pyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
WO2007023020A1 (de) 7-amino-6-heteroaryl-1,2,4-triazolo[1,5-a]pyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen
WO2005121146A2 (de) 1, 2, 4-TRIAZOLO[1,5a]PYRIMIDINE UND DEREN VERWENDUNG ZUR BEKÄMPFUNG VON PFLANZEN-PATHOGENEN PILZEN
EP1828190A1 (de) 7-amino-6-heteroaryl-1,2,4-triazoloý1,5-a¨pyrimidine und ihre verwendung zur bek[mpfung von schadpilzen
EP1613605A1 (de) 2-substituierte pyrimidine
WO2007118844A1 (de) Substituierte pyrazolopyrimidine, verfahren zu ihrer herstellung und ihre verwendung zur bekämpfung von schadpilzen sowie sie enthaltende mittel
EP1590350A1 (de) Triazolopyrimidine,verfahren zu ihrer herstellung und ihre verwendung zur bek mpfung von schadpilzen sowie sie enthaltende mi ttel
WO2007006722A1 (de) 2 -substituierte 7-amino-6-heteroaryl-1 , 2 , 4-triazolo [1, 5-a] pyrimidin-verbindungen und ihre? verwendung zur bekämpfung von schadpilzen
WO2006122740A2 (de) 7-AMINO-6-HETARYLIMIDAZOLO[1,2-a]PYRIMIDIN-VERBINDUNGEN UND IHRE VERWENDUNG ZU BEKÄMPFUNG VON SCHADPILZEN
WO2007006723A1 (de) 7-amino-6-tetrazolyl-1,2,4-triazolo[1,5-a]pyrimidin-verbindungen und ihre verwendung zur bekämpfung von schadpilzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHOEFL, ULRICH

Inventor name: STRATHMANN, SIEGFRIED

Inventor name: SCHERER, MARIA

Inventor name: STIERL, REINHARD

Inventor name: RACK, MICHAEL

Inventor name: SPEAKMAN, JOHN-BRYAN

Inventor name: AKERS, ALAN

Inventor name: TORMO I BLASCO, JORDI

Inventor name: SCHWOEGLER, ANJA

Inventor name: SCHIEWECK, FRANK

Inventor name: SCHAEFER, PETER

Inventor name: RHEINHEIMER, JOACHIM

Inventor name: MUELLER, BERND

Inventor name: GYPSER, ANDREAS

Inventor name: GRAMMENOS, WASSILIOS

Inventor name: GEWEHR, MARKUS

Inventor name: BLETTNER, CARSTEN

Inventor name: GROTE, THOMAS

Inventor name: WAGNER, OLIVER

DAX Request for extension of the european patent (deleted)
17P Request for examination filed

Effective date: 20060220

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

R17P Request for examination filed (corrected)

Effective date: 20060220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090203