EP1643035B1 - Procedée de rénovation de ballast de voie - Google Patents

Procedée de rénovation de ballast de voie Download PDF

Info

Publication number
EP1643035B1
EP1643035B1 EP05021587A EP05021587A EP1643035B1 EP 1643035 B1 EP1643035 B1 EP 1643035B1 EP 05021587 A EP05021587 A EP 05021587A EP 05021587 A EP05021587 A EP 05021587A EP 1643035 B1 EP1643035 B1 EP 1643035B1
Authority
EP
European Patent Office
Prior art keywords
ground penetrating
penetrating radar
track
improvement machine
measuring head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05021587A
Other languages
German (de)
English (en)
Other versions
EP1643035A3 (fr
EP1643035A2 (fr
Inventor
Jürgen NIESSEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GBM Wiebe Gleisbaumaschinen GmbH
Original Assignee
GBM Wiebe Gleisbaumaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GBM Wiebe Gleisbaumaschinen GmbH filed Critical GBM Wiebe Gleisbaumaschinen GmbH
Publication of EP1643035A2 publication Critical patent/EP1643035A2/fr
Publication of EP1643035A3 publication Critical patent/EP1643035A3/fr
Application granted granted Critical
Publication of EP1643035B1 publication Critical patent/EP1643035B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/06Renewing or cleaning the ballast in situ, with or without concurrent work on the track
    • E01B27/10Renewing or cleaning the ballast in situ, with or without concurrent work on the track without taking-up track
    • E01B27/105Renewing or cleaning the ballast in situ, with or without concurrent work on the track without taking-up track the track having been lifted

Definitions

  • the invention relates to a method for repairing track railways using a tarmac improvement machine and a tarmac improvement machine.
  • a track construction machine for receiving ballast material which comprises a clearing device for receiving ballast material of a track and which is supported by means of two height-adjustable crawler tracks and track bound on the subfloor or track.
  • a gravel excavator chain system is provided, with the help of which the gravel of a ballast layer subtracted below the thresholds. So that the rails do not sag due to the now lack of support, they are held by a special holding device.
  • a tarmac excavator In the direction of travel of the tarmac improvement machine behind the ballast excavation chain plant, there is a tarmac excavator, which removes the tarmac layer by means of a tarmac excavation chain.
  • the stripped protection layer is, like the gravel, either recycled or disposed of.
  • the anti-fouling layer serves to protect the gravel layer located above the anti-fouling layer against the ingress of impurities from the upcoming earth.
  • fine-grained material must be kept away from the ballast layer, so that the power dissipation from the rail or the threshold in the earth body is not deteriorated.
  • geotextile between the surface protection layer and pending earth body is fed by means of a geotextile dispenser.
  • a geotextile consists of a plastic, in particular a high-performance plastic, i. a plastic that is particularly mechanically stable and resistant to aging.
  • the geotextile does not hinder the passage of water from the surface protection layer into the impending earth body, but prevents the movement of fine grain material from the impending earth body into the surface protection layer.
  • the geotextile dispenser In the direction of travel behind the tarmac layer introduction device and optionally the geotextile dispenser is a bulkhead insertion, which fills the remaining space between the upper edge of the tarmac layer and the rail or sleepers with gravel.
  • Such a leveler machine advances at a speed of about 100 m / h during the execution of the remediation work, so that about one kilometer of a rail track can be rehabilitated during an 8-hour shift.
  • the object is achieved by a tarmac improvement machine on which at least one georadar measuring head is arranged.
  • the superstructure typically includes the track (which includes the sleepers, rails and fasteners) and the trackbed.
  • the Gieisbett lies on the upcoming earth body and covers if necessary a layer protection layer and the ballast layer.
  • a georadar measuring head is understood to mean a device for emitting and receiving radar waves, which comprises an evaluation electronics or means for transmitting measured data to an evaluation electronics.
  • the georadar head is part of a georadar system that also includes auxiliary equipment such as power source, holder and so on.
  • An advantage of the inventive solution is first that by the measurement of the ground by means of georadar during the phase of execution of the renovation work, ie after the second phase in which the rehabilitation of the Superstructure is planned, those points are determined on which the use of a geotextile is displayed.
  • a survey of the superstructure by Georadar before the second phase of the implementation of the Oberbausan ist is dispensable. Due to the low feed rate of about 100 m / h, there is sufficient time for an interpretation of the measured georadar data and preparing a feeding of a geotextile, in the resulting, rehabilitated track bed.
  • Georadar surveying of the track-board since the georadar measuring head is located on the tarmac-improving machine, takes place at a position relative to the tarmac-improving machine.
  • the time is selected which is available for interpreting the measured data and, if appropriate, for initiating geological situation appropriate building measures.
  • the georadar measuring data are used for quality assurance of the building measure. Due to the low feed rate of the tarmac improving a very high spatial resolution of the Georadarflop is possible, which can only be achieved at a high cost when using known measures for quality assurance.
  • a method comprising the additional step of: determining a fouling horizon of the ballast layer of the track bed from the Measurement data obtained by measuring the track bed by pattern recognition.
  • a pattern identifier is understood to be a method, preferably carried out by means of a computer, in which characteristic parameters are determined from the measured data. For example, threshold analyzes or neural networks are used for this purpose.
  • the amplitudes of the reflected georadar waves are evaluated (contrast amplitude analysis). At interfaces, the reflection of georadar waves is particularly strong, thus resulting in a high amplitude, i. E. a high measured field strength of the reflected georadar wave.
  • a height of the amplitude is determined from which the presence of an interface is assumed. If the amplitude of the reflected georadar waves exceeds this threshold, it is assumed that reflection has occurred at an interface. The duration of the reflected georadar wave is used to calculate the depth at which the interface is located.
  • Georadar tugen in several places an image, for example in the form of a surface representation of this interface in the superstructure is obtained.
  • a pollution horizon for example, the highest lying interface within the ballast bed is selected. Below this fouling horizon, the concentration of impurities is above a preselected value.
  • a neural network is used to determine the pollution horizon.
  • the neural network is fed the amplitudes of the reflected georadar readings on a variety of georadar measurements.
  • the neural network is trained by the fact that a person experienced in the analysis of measurement data obtained by georadar measurement determines the contamination horizon from this and compares this result with the calculation results of the neural network. This training of neural networks is done, for example, according to the backpropagation algorithm.
  • an experienced person is used to analyze the measurement data.
  • the evaluation of the contamination horizon serves to document the execution of the construction work as specified.
  • Georadarmesskopf arranged on the lying in front in the direction of travel of the planum improving machine, it is derived from changes in the pollution horizon of the not yet rehabilitated track bed, whether in the future at the appropriate place with increased pollution is expected: On track sections, a particularly high-lying Contamination horizon, a higher probability is assumed that the gravel layer of the rehabilitated superstructure quickly polluted. At such locations, a geotextile is then introduced.
  • a message is output in the event that the determined contamination horizon deviates from a predetermined level.
  • a message consists, for example, in a sound or light signal which is output to the worker operating the tarmac improvement machine.
  • the message is delivered to a controller of the geotextile dispenser that controls the installation of the geotextile.
  • Such a message has the effect that, optionally after a grace period, the geotextile is automatically installed in the superstructure.
  • further messages are sent to other units of the Ptanum improvement machine.
  • Another alternative is to issue a message as a text message to a mobile phone or in the form of an automatically generated call from a phone.
  • the georadum measuring head is moved perpendicular to the track profile during measurement of the track bed with a movement component.
  • a movement component In order to achieve a three-dimensional image of the underground, it is necessary to scan the superstructure two-dimensionally with the georadar measuring head. If the Georadarmesskopf moves with a component of motion perpendicular to the track, so only a single Georadarmesskopf is sufficient to achieve a two-dimensional scanning of the substrate.
  • the georadynamic head is moved during the measurement of the track bed so that the position of the plane of polarization of the electric field of the georadar waves remains constant relative to the rail and / or relative to the horizon.
  • Areas of metallic objects reflect the radar waves almost completely and lead to a particularly strong measurement signal when the reflected radar wave reaches the detector. The strength of this measurement signal depends on the angle at which the field vector of the electric field falls on a surface of the corresponding metallic object.
  • Metallic components used in track construction usually have surfaces that run either vertically or parallel to the track.
  • the polarization plane of the electric field of the georadar waves is kept constant relative to the rail and / or relative to the horizon, the same reflection patterns always result for identical metallic components (such as claws or screws). This facilitates the evaluation of the measured data. It is favorable to choose the position of the field vector of the electric field so that it does not impinge at an angle on surfaces of the metallic components which deviates by less than 10 ° from the angle at which the corresponding surface forms a radar wave in the detector of the georadar measuring head reflected.
  • the measuring rate and the speed of the movement of the Georadarmesskopfs depending on the feed rate of Planum improvement machine are selected so that the Georadarmessoire obtained in a spatial resolution of less than 100 cm, in particular less than 50 cm, in particular less than 30 cm.
  • the number of measuring points represents a compromise between a high spatial resolution and a low data rate.
  • the measuring rate is selected in dependence on the feed rate so that the Georadarmessoire obtained have a constant spatial resolution. This is accomplished, for example, by changing the speed of movement of the georadar gauge in proportion to the rate of advance of the tarmac improvement machine.
  • the advantage of this is that a graph with equidistant interpolation points can be calculated from the georadar measurement data thus acquired without interpolation.
  • the constant spatial resolution initially refers to the distance of the measuring points along a line running parallel to the rails. It is particularly favorable to choose the movement of the georadar measuring head so that the measuring points lie on the points of an equidistant grid. It is favorable to choose the movement of the Georadarmesskopfs so that the upper resolution along the rails under 10 cm and across the rails is less than 30 cm.
  • the measurement of the track bed comprises moving, in particular pivoting, a georadar measuring head with a movement component perpendicular to the rail path.
  • a pivoting movement is that it is technically very easy to implement.
  • the Georadarmesskopf must only be pivoted to the Planumsverêtungsmaschlne be articulated.
  • the tarmac improvement machine has a drive that provides for reciprocating the georadar gauge head.
  • the position data of the Georadarmesskopfs are thereby obtained in various ways: One way is to equip the Georadarmesskopf with a GPS receiver. This GPS receiver determines the absolute position of the georadar head. Another possibility is to measure the position of the Georadarmesskopfs relative to the tarmac improvement machine in that, for example, the pivot angle is determined. From the length of the pivot arm and the position of the tarmac improvement machine can thus calculate the exact position of the Georadarmesskopfs. Alternatively, a triangulation sensor is used. The position of the tarmac improvement machine is either itself determined by an absolute position measurement with a GPS receiver or in the classical way by rotation angle measurement on a wheel.
  • the successive Georadarwellenimpulse are preferably radiated from each other at a fixed time interval.
  • the frequency at which the georadar wave pulses are emitted is the pulse repetition frequency.
  • Short georadar wave pulses are generated by placing short electrical pulses generated, for example, by a one-shot circuit on a radar transmitter. The shorter the georadar wave pulses, the higher the spatial resolution in depth.
  • the reflected georadar wave pulses are received by an antenna, which may be part of the georadar probe.
  • An electronic evaluation circuit is connected to this antenna. This evaluation circuit determines the field strength of the reflected Georadarwellenimpulse at different, preferably temporally equidistant to each other, times after transmission of the respective Georadarwellenimpulses. For this purpose, the time interval of the preceding short electrical pulse is determined by the evaluation circuit. After a predetermined time, the field strength of the reflected Georadarwellenimpulses is then measured. Times equidistant from each other are obtained by the fact that the evaluation circuit measures the field strength at times after generation of the short electrical pulses whose time interval is constant from one another. If the reflected georadar wave pulses are all the same, for example, because georadar head has not moved between two transmitting two successive georadar wave pulses, then the procedure described achieves little-consuming sampling of the reflected georadar wave pulses.
  • the georadar wave pulses have a pulse duration of less than 20 ns. especially below 3 ns.
  • the short electrical impulses which are applied to the radar transmitter also have a pulse duration of less than 20 ns, in particular less than 3 ns.
  • the Georadarmesskopf is operated pulsed at a pulse repetition frequency of 50 kHz to 700 kHz.
  • the pulse repetition frequency is the inverse of the time interval between two georadar pulses.
  • the georadar measuring head is operated triggered to the position relative to the rail.
  • Triggered operation is understood to mean that the georadar probe will pick up a measurement point if it has received a corresponding signal from an external controller or sensor.
  • Such a trigger signal is output, for example, when the Georadarmesskopf is at a predetermined position relative to the rails.
  • the georadar gauge is triggered to the position relative to the thresholds. This ensures that measuring points are always recorded at comparable points of the track bed.
  • a tarmac improvement machine in which at least one Georadarmesskopf is disposed on a front side
  • the tarmac improvement machine on a Georadarmesskopf or GeoradarmesskONE which are arranged to be driven perpendicular to the working direction drivable.
  • means for determining the position of the georadar measuring head are formed.
  • Such means are, for example, angle sensors or triangulation sensors.
  • a tarmac improvement machine is provided with at least one receiving element for the GeoradarmesskÜ or Georadarkopf, at least one sensor for detecting bodies in the vicinity of the receiving element and means for tracking the at least one receiving element, which are formed so that neither receiving element nor Georadarmesskmü the clearance space leave the tarmac improvement machine.
  • the clearance gauge is the maximum permissible extent of a rail vehicle in height and width, with which it can safely move within the control clearance.
  • the control clearance is the distance that all buildings adjacent to the railroad must comply with.
  • the means for tracking the at least one receiving element ensures that neither receiving element, nor Georadarmesskopf can collide with bodies outside the clearance space.
  • the sensor for detecting bodies in the vicinity of the receiving element also ensures that bodies that are nevertheless located in the clearance profile of the tilling improvement machine do not collide with the (expensive) georadar measuring head. This measure is used to protect the Georadarmesskopfs but also the people and objects that may be only briefly in the area in which a collision with the Georadarmesskopf or the receiving element is possible.
  • a tarmac improvement machine with an associated, track-bound boom, which forms the working direction front part of the tarmac improvement machine, which moves at an adjustable distance in front of the working direction next following part of the tilling machine and on which the Georadarmessekopf is arranged.
  • the Georadarmesskopf bearing component of the tarmac improvement machine is mounted on a boom that runs in the direction of travel at a fixed distance from the rest of the tarmac improvement machine.
  • the distance between the boom and the next following part of the tarmac improvement machine is made by a rigid connection, such as a steel cable, or other connection.
  • Another connection is made, for example, in that a rangefinder mounted on the boom drives a drive of the boom so that the distance between boom and the next following part of the tilling improving machine remains constant.
  • FIG. 1 shows a detail of a tarmac improvement machine 10 running on rails 11 and comprising a ballast excavator 12, a tarmac layer excavator 14, a tarmac layering device 16, and a bulkhead tucker not shown here.
  • the ballast excavator 12 removes a ballast layer 20 that is part of a track 22 of a rail track 23.
  • the superstructure 22 additionally comprises a layer protection layer 24, which adjoins a pending earth body 26. Between the protective cover layer 24 and the superstructure 22 is located in the direction of travel behind the tarmac layering device 16, a geotextile dispenser 28, with the aid of a geotextile 30 is introduced into the superstructure.
  • the ballast layer 20 is first picked up and either returned for recycling or disposal. Subsequently, the tarmac layer 24 is taken up and also recycled or disposed of.
  • the rails 11 and the thresholds 32 attached to the rails are no longer supported by a ballast layer in this state but are held by a rail holder 34 of the tarmac improvement machine 10.
  • the tarmac improvement machine 10 has an end face 36 in the forward feed direction, which is not shown in FIG.
  • a receiving element 38 is pivotally mounted on which in turn a Georadarmesskopf 40 is arranged.
  • the receiving element 38 is pivoted by an electric motor 42 so that it moves back and forth, so that the Georadarmesskopf 40 travels a path that is shown in dashed lines in Figure 2.
  • a position sensor 39 continuously measures the pivot angle by which the receiving element 38 is pivoted relative to the end face 36.
  • the georadar sensing data collected by the georadar head 40 is passed through a cable 44 to a central controller 46 which processes and stores it in a memory 48.
  • the central controller 46 also provides a trigger pulse to the georadizer head 40 when the position sensor 39 sets a value for the swivel angle measures at a pre-set interval. Due to this trigger pulse the georadar measuring head 40 picks up a measuring point.
  • the georadar measuring head 40 comprises a control unit which activates a radar transmitter at regular time intervals or after receiving a trigger pulse.
  • Figure 3 shows in the upper diagram schematically over the time t applied, short electrical pulses 41a, 41b, 41c, ..., which are delivered to the radar transmitter.
  • the time length t1 of these short electrical pulses 41a, 41b, 41c with a predetermined voltage U is approximately 2 ns.
  • These pulses are generated by a one-shot circuit within the control unit.
  • a one-shot circuit includes, for example, a Scholtky diode.
  • the control unit emits such short electrical pulses 41a, 41b, 41c at regular time intervals or after receiving a trigger pulse at a constant time interval of t2.
  • the radar transmitter generates corresponding Georadarwellenimpulse and emits these due to these short electrical pulses.
  • the time interval t2 is about 2.5 ⁇ s to 10 ⁇ s.
  • FIG. 3 schematically shows reflected georadar wave pulses 37a, 37b, 37c picked up by the antenna.
  • the digitizing support points are recorded on successive reflected georadar wave pulses; This is the first sampling point t a1 at the radar wave train 37a, the subsequent second sampling point t s1 at the second radar wave train 37b, and so on. All in all, 1024 sampling points are recorded.
  • the sampling time t s ie the time that would pass if all sampling points were recorded at only one radar wave train, lies between 5 ns and 200 ns depending on the application.
  • This type of sampling (ie the sampling of the registered reflected georadar wave pulses) does not result in any serious error compared to sampling only a single reflected radar wave train, since the path taken by the georadical probe in the time taken in the sample pit in Example 1024 is so it is small that the reflection properties of the soil have not changed in a good approximation.
  • the type of sampling described above ensures that less expensive components can be used for the sampling.
  • the georadar measurement data thus obtained by the sampling which represent a georadar measurement point, are transmitted to the central controller 46 and further processed there.
  • a fan laser sensor 49 is attached on the web side of the tarmac improvement machine 10, in Figure 2 so on the left side.
  • This fan laser sensor 49 scans the working area of the georadar measuring head 40 for obstacles. Once an obstacle is detected, a signal is sent to the central controller 46, whereupon it pivots the receiving element 38 so that there is no collision of the georadar measuring head 40 with the detected obstacle. Alternatively, the pivotal movement is stopped by the central controller 46.
  • FIG 4 shows an alternative embodiment of the attachment of Georadarmesskopfs 40.
  • a threaded rod 54 is driven by a motor 56 driven.
  • the threaded rod 54 passes through a nut 58, to which the Georadarmesskopf 40 is attached.
  • the georadar measuring head 40 is moved to the left or to the right.
  • the georadar measurement data taken by the georadar probe is forwarded via the cable 44 to the central controller 46, which in turn writes this data into the memory 48.
  • the central controller 46 controls the motor 56 so that the georadar gauge head 40 reciprocates along the threaded rod 54.
  • the boom 50 is driven by a motor 60.
  • a rope 62 is provided which extends between the boom 50 and the next following part of the tarmac improvement machine and connects them together.
  • the cable 62 is stretched taut by the motor 60 of the boom 50.
  • the recorded georadar and position measurement data are first processed to obtain a three-dimensional graph indicating the depth profile of the ground. This graph is continuously output on a screen not shown here.
  • the pollution horizon is calculated from the measured data.
  • a pattern recognition program running on the central controller 46 is used. The pattern recognition program relies on a narrow-value analysis as described above. Alternatively, a neural network based pattern recognition program is used.
  • a sound signal is output via a loudspeaker 64.
  • a message is issued via a not-shown radio link to the geotextile dispenser 28, so that they installed the geotextile 30 in the superstructure.
  • the waiting times are chosen to be less than the time that passes between the measurement of a track section and the time at which this track section passes through the geotextile dispenser 28.
  • FIG. 5 shows a path 64 which the georadar measuring head 40 travels relative to the ground and on which it receives measuring points 66. It does not necessarily have to be sinusoidal.
  • the pivoting or reciprocating movement of Georadarmesskopfs 40 is controlled so and the number of measuring points 66 selected so high that a spatial resolution Y in the direction along the rails of about 20 cm and a spatial resolution X in the direction transverse to the rails of about 5 cm is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Soil Working Implements (AREA)
  • Road Repair (AREA)

Claims (23)

  1. Procédé pour la rénovation de superstructures de voies ferrées (23) en utilisant une machine de rectification de plate-forme de voie (10),
    caractérisé par l'étape consistant à
    mesurer le ballast (20 ; 24) au moyen d'une tête de mesure à radar géographique (40) agencée sur la machine de rectification de plate-forme (10) pendant la phase d'exécution des travaux de rénovation.
  2. Procédé selon la revendication 1,
    caractérisé par l'étape supplémentaire consistant à
    déterminer un niveau d'encrassement de la couche de pierrailles du ballast (20 ; 24) à partir des données obtenues par mesurage du ballast (20 ; 24) par reconnaissance de motifs.
  3. Procédé selon la revendication 2,
    caractérisé par l'étape supplémentaire consistant à
    délivrer un avertissement lorsque le niveau d'encrassement déterminé s'écarte d'un niveau prédéterminé.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé par l'étape/les étapes supplémentaire(s) consistant à
    le cas échéant éliminer une couche de protection de plate-forme existante (24),
    appliquer une nouvelle couche de protection de plate-forme (24).
  5. Procédé selon la revendication 4,
    caractérisé par l'étape supplémentaire consistant à :
    appliquer un géotextile (30) entre la couche de protection de plate-forme (24) et le sol avoisinant (26), en particulier aux emplacements auxquels le niveau d'encrassement déterminé de la couche de pierrailles (20) s'écarte du niveau préétabli, est dans leur environnement.
  6. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la tête de mesure à radar géographique (40) est déplacée avec une composante de déplacement perpendiculaire au tracé des rails lors de la mesure du ballast (20 ; 24).
  7. Procédé selon la revendication 6,
    caractérisé en ce que la tête de mesure à radar géographique (40) est déplacée, lors de la mesure du ballast (20 ; 24), de telle façon que la position du plan de polarisation du champ électrique des ondes radar géographiques reste constante par rapport aux rails (11) et/ou par rapport à l'horizon.
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que, lors de la mesure du ballast (20 ; 24), la cadence de mesure et la vitesse du déplacement de la tête de mesure à radar géographique (40) sont choisies en fonction de la vitesse d'avance de telle façon que les données de mesure par radar géographique obtenues présentent une résolution locale inférieure à 100 cm, en particulier inférieure à 50 cm, en particulier inférieure à 30 cm.
  9. Procédé selon la revendication 8,
    caractérisé en ce que, lors de la mesure du ballast (20 ; 24), la cadence de mesure est choisie en fonction de la vitesse d'avance de telle façon que les données de mesure par radar géographique obtenues présentent une résolution locale constante.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la mesure du ballast (20 ; 24) comprend un mouvement, en particulier un pivotement, d'une tête de mesure à radar géographique (40) avec une composante de mouvement perpendiculaire au tracé des rails (23).
  11. Procédé selon la revendication 10, comprenant en plus les étapes consistant à :
    enregistrer des données de position de la tête de mesure à radar géographique (40), et
    mémoriser les données de mesure par radar géographique avec les données de position.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que, à partir des données de mesure par radar géographique obtenues par la mesure du ballast (20 ; 24) on mesure une section de voie et, par intégration, on calcule à partir de cette section de voie le volume de la couche de pierrailles (20) et/ou de la couche de protection de plate-forme (24).
  13. Procédé selon l'une des revendications précédentes, caractérisé en ce que la mesure du ballast au moyen de la tête de mesure à radar géographique comprend les étapes suivantes consistant à :
    envoyer des impulsions d'ondes radar géographiques qui se suivent mutuellement,
    recevoir des impulsions d'ondes radar géographiques réfléchies, et
    mesurer l'intensité de champ des impulsions d'ondes radar géographiques réfléchies à des instants différents, de préférence temporellement équidistants les uns des autres après émission de l'impulsion d'onde radar géographique respective.
  14. Procédé selon la revendication 13,
    caractérisé en ce que les impulsions d'ondes radar géographiques ont une durée d'impulsion inférieure à 20 ns, en particulier inférieure à 3ns.
  15. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la tête de mesure à radar géographique (40) est amenée à fonctionner de façon pulsée avec une fréquence de succession d'impulsions de 50 kHz à 700 kHz.
  16. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que la tête de mesure à radar géographique (40) est amenée à fonctionner de façon déclenchée par rapport au rail (11).
  17. Machine de rectification de plate-forme pour la mise en oeuvre d'un procédé selon l'une des revendications 1 à 14 pour la rénovation de superstructures de voies ferrées (23), caractérisée par au moins une tête de mesure à radar géographique (40) agencée sur la machine de rectification de plate-forme (10).
  18. Machine de rectification de plate-forme selon la revendication 17,
    caractérisée en ce que ladite au moins une tête de mesure à radar géographique (40) est agencée sur une face frontale (36) de la machine de rectification de plate-forme (10).
  19. Machine de rectification de plate-forme selon l'une des revendications 17 ou 18, caractérisée en ce que la tête de mesure à radar géographique (40) ou les têtes de mesure à radar géographique (40) est/sont agencée(s) de façon à pouvoir être entraînée(s) de manière mobile perpendiculairement à la direction de travail.
  20. Machine de rectification de plate-forme selon l'une des revendications 17 à 19, caractérisée par des moyens pour déterminer la position de la tête de mesure à radar géographique (40).
  21. Machine de rectification de plate-forme selon l'une des revendications 17 à 20, caractérisée par :
    au moins un élément récepteur (38) pour les têtes de mesure à radar géographique (40) ou la tête de mesure à radar géographique (40) ;
    au moins un capteur (49) pour reconnaître des corps dans l'environnement de l'élément de réception (38) ; et
    des moyens pour faire avancer ledit au moins un élément de réception (38) de telle façon que ni l'élément de réception (38) ni les têtes de mesure à radar géographique (40) quittent le profil du volume éclairé par la machine de rectification de plate-forme (10).
  22. Machine de rectification de plate-forme selon l'une des revendications 17 à 21, caractérisé en ce qu'elle comprend un bras associé (50) fixe par rapport à la voie, qui forme la partie antérieure, en direction de travail, de la machine de rectification de plate-forme (10), qui se déplace à une distance réglable depuis la partie successive la plus proche en direction de travail, de la machine de rectification de plate-forme, et sur laquelle est agencée la tête de mesure à radar géographique (40).
  23. Machine de rectification de plate-forme selon l'une des revendications 17 à 22, comprenant des moyens pour exécuter les étapes ou les étapes selon un procédé d'après l'une des revendications 1 à 16.
EP05021587A 2004-10-02 2005-10-04 Procedée de rénovation de ballast de voie Not-in-force EP1643035B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004048169A DE102004048169A1 (de) 2004-10-02 2004-10-02 Verfahren zur Oberbausanierung von Schienenwegen unter Einsatz einer Planumsverbesserungsmaschine, Planumsverbesserungsmaschine

Publications (3)

Publication Number Publication Date
EP1643035A2 EP1643035A2 (fr) 2006-04-05
EP1643035A3 EP1643035A3 (fr) 2006-04-19
EP1643035B1 true EP1643035B1 (fr) 2007-07-25

Family

ID=35539291

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05021587A Not-in-force EP1643035B1 (fr) 2004-10-02 2005-10-04 Procedée de rénovation de ballast de voie

Country Status (3)

Country Link
EP (1) EP1643035B1 (fr)
AT (1) ATE368150T1 (fr)
DE (2) DE102004048169A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007011501U1 (de) 2007-08-16 2008-12-24 Wiebe Holding Gmbh & Co. Kg Gleiswegsanierungsmaschine mit dreifach separiertem Aushub
DE102008007705A1 (de) * 2008-02-04 2009-09-03 Gbm Wiebe Gleisbaumaschinen Gmbh Vorrichtung und Verfahren zur Grenzflächendetektion in Bodenschichten

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505679B1 (de) * 2007-09-05 2009-07-15 Swietelsky Baugesellschaft M B Schienenfahrzeug zur gleisunterbausanierung
CN101590858B (zh) * 2009-06-30 2011-02-02 中南大学 一种剔除轨枕干扰的铁路路基检测雷达数据处理方法
DE202010012355U1 (de) * 2010-09-08 2011-12-14 Wiebe Holding Gmbh & Co. Kg Gleiswegsanierungsmaschine mit PSS-Aufbereitung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340254C2 (de) * 1993-11-26 2001-10-04 Gmb Gleisbaumaschinen Hermann Verfahren zur Erfassung des Zustandes des Oberbaues, Unterbaues und Untergrundes von Eisenbahngleisen
DE4344145C1 (de) * 1993-12-20 1995-08-17 Deutsche Bahn Ag Gleisbettungs-Reinigungsmaschine mit elektronischer Meßeinrichtung für eine Auswerte-, Anzeige-, Steuer- und Registriereinrichtung
DE29521474U1 (de) * 1994-10-04 1997-05-07 Plasser Bahnbaumasch Franz Maschine zur Einbringung eines Geokunststoffes unterhalb eines Gleises
DE29507117U1 (de) * 1995-04-27 1995-11-09 Braun Carlheinz Dipl Geophys Vorrichtung zur automatisierten Durchführung von Georadar-Messungen im Gleiskern von Eisenbahntrassen
US5553407A (en) * 1995-06-19 1996-09-10 Vermeer Manufacturing Company Excavator data acquisition and control system and method of use
JP3297983B2 (ja) * 1996-09-13 2002-07-02 三井造船株式会社 線路下探査装置
DE19704220A1 (de) * 1997-02-05 1998-08-06 Ingbuero Spies Verfahren und Vorrichtung zum Bestimmen eines Abstandes zwischen Fahrzeug und Hindernis
AT405425B (de) * 1997-08-20 1999-08-25 Plasser Bahnbaumasch Franz Gleisbaumaschine mit einem laser-bezugsystem und verfahren
DE19829762A1 (de) * 1998-07-03 2000-01-13 Adc Automotive Dist Control Verfahren zum Betrieb eines Radarsystems
CZ291486B6 (cs) * 1999-04-13 2003-03-12 České Dráhy, Státní Organizace Způsob zjišťování poruchy v podloží komunikace a zařízení k provádění tohoto způsobu
AT4620U3 (de) * 2001-06-06 2002-05-27 Plasser Bahnbaumasch Franz Gleisbaumaschine zur aufnahme von bettungsmaterial
AT4764U3 (de) * 2001-07-10 2002-05-27 Plasser Bahnbaumasch Franz Gleisbaumaschine
AT6488U3 (de) * 2003-07-18 2004-10-25 Plasser Bahnbaumasch Franz Räumkette mit abgesenktem gelenk
DE102004026916A1 (de) * 2003-08-21 2005-03-17 Eichholz Gmbh & Co. Kg Verfahren zum Durchführen von Baumaßnahmen in einem Gleisbereich und Vorrichtung zum Durchführen dieses Verfahrens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007011501U1 (de) 2007-08-16 2008-12-24 Wiebe Holding Gmbh & Co. Kg Gleiswegsanierungsmaschine mit dreifach separiertem Aushub
EP2025810A1 (fr) 2007-08-16 2009-02-18 Wiebe Holding GmbH & Co.KG Machine de nettoyage de voie ferrée dotée d'une excavation à triple séparation
DE102008007705A1 (de) * 2008-02-04 2009-09-03 Gbm Wiebe Gleisbaumaschinen Gmbh Vorrichtung und Verfahren zur Grenzflächendetektion in Bodenschichten

Also Published As

Publication number Publication date
DE502005001088D1 (de) 2007-09-06
ATE368150T1 (de) 2007-08-15
EP1643035A3 (fr) 2006-04-19
DE102004048169A1 (de) 2006-04-13
EP1643035A2 (fr) 2006-04-05

Similar Documents

Publication Publication Date Title
EP3406799B1 (fr) Train de machines composé d'une fraiseuse routière et d'une finisseuse de route et procédé de fonctionnement d'une fraiseuse routière et d'une finisseuse de route
EP2037042B1 (fr) Machine de fraisage ou machine destinée à exploiter des gisements
AT500972B1 (de) Verfahren zum unterstopfen von schwellen
EP1643035B1 (fr) Procedée de rénovation de ballast de voie
EP2562309B1 (fr) Finisseuse de route dotée d'un dispositif de mesure
EP1339920B1 (fr) Dispositif de reglage de hauteur au laser pour un engin de chantier
DE112020004371T5 (de) Phased-array-schallwellenfortgeschrittenes geologisches detektionssystem und -verfahren mit einer schildmaschine
EP1470314B1 (fr) Porte avec actionnement automatique, notamment porte relevable, et methode pour son actionnement
EP2535456B1 (fr) Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche
EP0915203B1 (fr) Régaleuse à ballast et méthode pour placer le ballast d'une voie ferrée
EP0415156B1 (fr) Procédé et appareil pour commander une ouvreuse des balles
DE102006062129A1 (de) Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe
WO2017097390A1 (fr) Groupe de bourrage muni d'un capteur d'angle permettant de déterminer la position de l'outil de bourrage
EP0412398B1 (fr) Mesure du volume de matériau excavé à partir du profil de coupe d'une roue excavatrice ou similaire
EP0412400A1 (fr) Dispositif de sécurité pour empêcher la collision d'engins de terrassement
EP1862593B1 (fr) Procédé et appareil pour détecter l'état d'une voie ferrée
DE4243631A1 (de) Verfahren zum Steuern einer Abraumförderbrücke und Abraumförderbrücke
DE102013205765B4 (de) Qualitätssicherungssystem für Schlitzwandfugen
DE4328480C1 (de) Verfahren und Fahrzeug zur Reinigung und Entleerung von Straßenabläufen
EP1643275A1 (fr) Véhicule de terre et procédé pour la prospection de la subsurface de la voie de circulation
WO2003080988A2 (fr) Tete de forage pour le forage horizontal commande
DE102008007705A1 (de) Vorrichtung und Verfahren zur Grenzflächendetektion in Bodenschichten
WO2024046977A1 (fr) Procédé de détermination de l'agencement d'un objet de voie, en particulier d'un composant de structure de voie, dispositif de mesure et système
DE10309144A1 (de) Bohrkopf und Verfahren für das steuerbare Horizontalbohren
DE3114123C2 (de) Einrichtung zur Standortbestimmung von fahrbaren Haldengeräten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060918

17Q First examination report despatched

Effective date: 20061025

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH & PARTNER

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005001088

Country of ref document: DE

Date of ref document: 20070906

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071025

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

BERE Be: lapsed

Owner name: GBM WIEBE GLEISBAUMASCHINEN G.M.B.H.

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

26N No opposition filed

Effective date: 20080428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: RENTSCH & PARTNER;FRAUMUENSTERSTRASSE 9, POSTFACH 2441;8022 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080126

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101025

Year of fee payment: 6

Ref country code: DE

Payment date: 20101108

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101025

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: GBM WIEBE GLEISBAUMASCHINEN GMBH

Free format text: GBM WIEBE GLEISBAUMASCHINEN GMBH#IM FINIGEN 6#28832 ACHIM (DE) -TRANSFER TO- GBM WIEBE GLEISBAUMASCHINEN GMBH#IM FINIGEN 6#28832 ACHIM (DE)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001088

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 368150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111004