EP1643035A2 - Procedée de rénovation de ballast de voie - Google Patents
Procedée de rénovation de ballast de voie Download PDFInfo
- Publication number
- EP1643035A2 EP1643035A2 EP05021587A EP05021587A EP1643035A2 EP 1643035 A2 EP1643035 A2 EP 1643035A2 EP 05021587 A EP05021587 A EP 05021587A EP 05021587 A EP05021587 A EP 05021587A EP 1643035 A2 EP1643035 A2 EP 1643035A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- georadar
- measuring
- improvement machine
- track
- tarmac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01B—PERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
- E01B27/00—Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
- E01B27/06—Renewing or cleaning the ballast in situ, with or without concurrent work on the track
- E01B27/10—Renewing or cleaning the ballast in situ, with or without concurrent work on the track without taking-up track
- E01B27/105—Renewing or cleaning the ballast in situ, with or without concurrent work on the track without taking-up track the track having been lifted
Definitions
- the invention relates to a method for repairing track railways using a tarmac improvement machine and a tarmac improvement machine.
- a gravel excavator chain system is provided, with the help of which the gravel of a ballast layer subtracted below the thresholds. So that the rails do not sag due to the now lack of support, they are held by a special holding device.
- a tarmac excavator In the direction of travel of the tarmac improvement machine behind the ballast excavation chain plant, there is a tarmac excavator, which removes the tarmac layer by means of a tarmac excavation chain.
- the stripped protection layer is, like the gravel, either recycled or disposed of.
- the anti-fouling layer serves to protect the gravel layer located above the anti-fouling layer against the ingress of impurities from the upcoming earth. In particular fine material must be kept away from the ballast layer, so that the power dissipation from the rail or the threshold in the earth body is not deteriorated.
- a geotextile between the surface protection layer and pending earth body is fed by means of a geotextile dispenser.
- a geotextile consists of a plastic, in particular a high-performance plastic, i. a plastic that is particularly mechanically stable and resistant to aging.
- the geotextile does not hinder the passage of water from the surface protection layer into the impending earth body, but prevents the movement of fine grain material from the impending earth body into the surface protection layer.
- the geotextile dispenser In the direction of travel behind the Pfanumsschutz Mrs-introducing device and optionally the geotextile dispenser is a bulkhead entry, which fills the remaining space between the upper edge of the lining protection layer and the rail or sleepers with gravel.
- Such a leveler machine advances at a speed of about 100 m / h during the execution of the remediation work, so that about one kilometer of a rail track can be rehabilitated during an 8-hour shift.
- the object is achieved by a tarmac improvement machine on which at least one georadar measuring head is arranged.
- the superstructure usually includes the track (which includes the sleepers, rails and fasteners) and the trackbed.
- the Gieisbett lies on the upcoming earth body and covers if necessary a layer protection layer and the ballast layer.
- the rails are mounted on a concrete track.
- a georadar measuring head is understood to mean a device for emitting and receiving radar waves, which comprises an evaluation electronics or means for transmitting measured data to an evaluation electronics.
- the georadar head is part of a georadar system that also includes auxiliary equipment such as power source, holder and so on.
- phase of execution of the rehabilitation works is thus the temporal-spatial section of a superstructure rehabilitation, which is characterized by the fact that the overall planning of the superstructure refurbishment has already been completed and actual changes to the superstructure of the railway track are made.
- An advantage of the inventive solution is first that by the measurement of the ground by means of georadar during the phase of execution of the renovation work, ie after the second phase in which the rehabilitation of the
- Superstructure is planned, those points are determined on which the use of a geotextile is displayed.
- a survey of the superstructure by Georadar before the second phase of the implementation of the Oberbausan ist is dispensable. Due to the low feed rate of about 100 m / h, there is sufficient time for an interpretation of the measured georadar data and preparing a feeding of a geotextile, in the resulting, rehabilitated track bed.
- Georadar surveying of the track board since the georadar gauge is located on the tarmac improvement machine, takes place at a position relative to the pjanum improvement machine.
- the time is selected which is available for interpreting the measured data and, if appropriate, for initiating geological situation appropriate building measures.
- the georadar measuring data are used for quality assurance of the building measure. Due to the low feed rate of the tarmac improving a very high spatial resolution of the Georadarflop is possible, which can only be achieved at a high cost when using known measures for quality assurance.
- a method comprising the additional step of: determining a fouling horizon of the ballast layer of the track bed from the Measurement data obtained by measuring the track bed by pattern recognition.
- a pattern identifier is understood to be a method, preferably carried out by means of a computer, in which characteristic parameters are determined from the measured data. For example, threshold analyzes or neural networks are used for this purpose.
- the amplitudes of the reflected georadar waves are evaluated (contrast amplitude analysis). At interfaces, the reflection of georadar waves is particularly strong, thus resulting in a high amplitude, i. E. a high measured field strength of the reflected georadar.
- a height of the amplitude is determined from which the presence of an interface is assumed. If the amplitude of the reflected georadar waves exceeds this threshold, it is assumed that reflection has occurred at an interface. The duration of the reflected georadar wave is used to calculate the depth at which the interface is located.
- Georadar tugen in several places an image, for example in the form of a surface representation of this interface in the superstructure is obtained.
- a pollution horizon for example, the highest lying interface within the ballast bed is selected. Below this fouling horizon, the concentration of impurities is above a preselected value.
- a neural network is used to determine the pollution horizon.
- the neural network is fed the amplitudes of the reflected georadar readings on a variety of georadar measurements.
- the neural network is trained by the fact that a person experienced in the analysis of measurement data obtained by georadar measurement determines the contamination horizon from this and compares this result with the calculation results of the neural network.
- This training neural networks done, for example, the backpropagation algorithm
- an experienced person is used to analyze the measurement data.
- the evaluation of the contamination horizon serves to document the execution of the construction work as specified.
- Georadarmesskopf arranged on the lying in front in the direction of travel of the planum improving machine, it is derived from changes in the pollution horizon of the not yet rehabilitated track bed, whether in the future at the appropriate place with increased pollution is expected: On track sections, a particularly high-lying Contamination horizon, a higher probability is assumed that the gravel layer of the rehabilitated superstructure quickly polluted. At such locations, a geotextile is then introduced.
- a message is issued.
- a message consists, for example, in a sound or light signal which is output to the worker operating the tarmac improvement machine.
- the message is delivered to a controller of the laundry ailment device which controls the installation of the geotextile.
- Such a message has the effect that, optionally after a grace period, the geotextile is automatically installed in the superstructure.
- further messages are sent to other aggregates of the surface improvement machine.
- Another alternative is to issue a message as a text message to a mobile phone or in the form of an automatically generated call from a phone.
- the georadum measuring head is moved perpendicular to the track profile during measurement of the track bed with a movement component.
- a movement component In order to achieve a three-dimensional image of the underground, it is necessary to scan the superstructure two-dimensionally with the georadar measuring head. If the Georadarmesskopf moves with a component of motion perpendicular to the track, so only a single Georadarmesskopf is sufficient to achieve a two-dimensional scanning of the substrate.
- the georadynamic head is moved during the measurement of the track bed so that the position of the polarization plane of the electric field of the georadar waves remains constant relative to the rail and / or relative to the horizon.
- Areas of metallic objects reflect the radar waves almost completely and lead to a particularly strong measurement signal when the reflected radar wave reaches the detector. The strength of this measurement signal depends on the angle at which the field vector of the electric field falls on a surface of the corresponding metallic object.
- Metallic components used in track construction usually have surfaces that run either vertically or parallel to the track.
- the plane of polarization of the electric field of the georadar waves is kept constant relative to the rail and / or relative to the horizon, the same reflection patterns always result for identical metallic components (such as claws or screws). This facilitates the evaluation of the measured data. It is favorable to choose the position of the field vector of the electric field so that it does not impinge at an angle on surfaces of the metallic components which deviates by less than 10 ° from the angle at which the corresponding surface forms a radar wave in the detector of the georadar measuring head reflected.
- the measuring rate and the speed of the movement of the Georadarmesskopfs depending on the feed rate of Planum improvement machine are selected so that the Georadarmessoire obtained in a spatial resolution of less than 100 cm, in particular less than 50 cm, in particular less than 30 cm.
- the number of measuring points represents a compromise between a high spatial resolution and a low data rate.
- the measuring rate is selected in dependence on the feed rate so that the Georadarmessoire obtained have a constant spatial resolution. This is accomplished, for example, by changing the speed of movement of the georadar gauge in proportion to the rate of advance of the tarmac improvement machine.
- the advantage of this is that a graph with equidistant interpolation points can be calculated from the georadar measurement data thus acquired without interpolation.
- the constant spatial resolution initially refers to the distance of the measuring points along a line running parallel to the rails. It is particularly favorable to choose the movement of the georadar measuring head so that the measuring points lie on the points of an equidistant grid. It is favorable to choose the movement of the Georadarmesskopfs so that the upper resolution along the rails under 10 cm and across the rails is less than 30 cm.
- the measurement of the track bed comprises moving, in particular pivoting, a georadar measuring head with a movement component perpendicular to the rail path.
- a pivoting movement is that it is technically very easy to implement.
- the Georadarmesskopf must only be pivoted on the tarmac improvement machine be articulated.
- the tarmac improvement machine has a drive that provides for reciprocating the georadar gauge head.
- the position data of the Georadarmesskopfs are thereby obtained in various ways: One way is to equip the Georadarmesskopf with a GPS receiver. This GPS receiver determines the absolute position of the georadar head. Another possibility is to measure the position of the Georadarmesskopfs relative to the tarmac improvement machine in that, for example, the pivot angle is determined. From the length of the pivot arm and the position of the tarmac improvement machine can thus calculate the exact position of the Georadarmesskopfs. Alternatively, a triangulation sensor is used. The position of the tarmac improvement machine is either itself determined by an absolute position measurement with a GPS receiver or in the classical way by rotation angle measurement on a wheel.
- the successive Georadarwellenimpulse are preferably radiated from each other at a fixed time interval.
- the frequency at which the georadar wave pulses are emitted is the pulse repetition frequency.
- Short georadar wave pulses are generated by placing short electrical pulses generated, for example, by a one-shat circuit on a radar transmitter. The shorter the georadar wave pulses, the higher the spatial resolution in depth.
- the reflected georadar wave pulses are received by an antenna, which may be part of the georadar probe.
- An electronic evaluation circuit is connected to this antenna. This evaluation circuit determines the field strength of the reflected Georadarwellenimpulse at different, preferably temporally equidistant to each other, times after transmission of the respective Georadarwellenimpulses. For this purpose, the time interval of the previous short electrical pulse is determined by the Aurswertescellen. After a predetermined time, the field strength of the reflected Georadarwellenimpulses is then measured. Times equidistant from each other are obtained by the fact that the evaluation circuit measures the field strength at times after generation of the short electrical pulses whose time interval is constant from one another. If the reflected georadar wave pulses are all the same, for example, because georadar head has not moved between two transmitting two successive georadar wave pulses, then the procedure described achieves little-consuming sampling of the reflected georadar wave pulses.
- the georadar wave pulses have a pulse duration of less than 20 ns. especially below 3 ns.
- the short electrical impulses which are applied to the radar transmitter also have a pulse duration of less than 20 ns, in particular less than 3 ns.
- the Georadarmesskopf is operated pulsed at a pulse repetition frequency of 50 kHz to 700 kHz.
- the pulse repetition frequency is the inverse of the time interval between two georadar pulses.
- the georadar measuring head is operated triggered to the position relative to the rail.
- Triggered operation is understood to mean that the georadar probe will pick up a measurement point if it has received a corresponding signal from an external controller or sensor.
- Such a trigger signal is output, for example, when the Georadarmesskopf is at a predetermined position relative to the rails.
- a tarmac improvement machine in which at least one Georadarmesskopf is disposed on a front side
- the tarmac improvement machine on a Georadarmesskopf or GeoradarmesskONE which are arranged to be driven perpendicular to the working direction drivable.
- means for determining the position of the georadar measuring head are formed.
- Such means are, for example, angle sensors or triangulation sensors.
- a tarmac improvement machine is provided with at least one receiving element for the GeoradarmesskÜ or Georadarkopf, at least one sensor for detecting bodies in the vicinity of the receiving element and means for tracking the at least one receiving element, which are formed so that neither receiving element nor Georadarmesskmü the clearance space leave the tarmac improvement machine.
- the clearance gauge is the maximum permissible extent of a rail vehicle in height and width, with which it can safely move within the control clearance.
- the control clearance is the distance that all buildings adjacent to the railroad must comply with.
- the means for tracking the at least one receiving element ensures that neither receiving element, nor Georadarmesskopf can collide with bodies outside the clearance space.
- the sensor for detecting bodies in the vicinity of the receiving element also ensures that bodies that are nevertheless located in the clearance profile of the tilling improvement machine do not collide with the (expensive) georadar measuring head. This measure is used to protect the Georadarmesskopfs but also the people and objects that may be only briefly in the area in which a collision with the Georadarmesskopf or the receiving element is possible.
- a tarmac improvement machine with an associated, track-bound boom, which forms the working direction front part of the tarmac improvement machine, which moves at an adjustable distance in front of the working direction next following part of the tilling machine and on which the Georadarmessekopf is arranged.
- the Georadarmesskopf bearing component of the tarmac improvement machine is mounted on a boom that runs in the direction of travel at a fixed distance from the rest of the tarmac improvement machine.
- the distance between the boom and the next following part of the tarmac improvement machine is made by a rigid connection, such as a steel cable, or other connection.
- Another connection is made, for example, in that a rangefinder mounted on the boom drives a drive of the boom so that the distance between the boom and the next following part of the tilling improving machine remains constant.
- FIG. 1 shows a detail of a tarmac improvement machine 10 running on rails 11 and comprising a ballast excavator 12, a tarmac layer excavator 14, a tarmac layering device 16, and a bulkhead tucker not shown here.
- the ballast excavator 12 removes a ballast layer 20 that is part of a track 22 of a rail track 23.
- the superstructure 22 additionally comprises a layer protection layer 24, which adjoins a pending earth body 26. Between the surface protection layer 24 and the superstructure 22 is located in the direction of travel behind the tarmac layering device 16, a geotextile dispenser 28, with the aid of a Geotexlilbahn 30 is introduced into the superstructure.
- the ballast layer 20 is first picked up and either returned for recycling or disposal. Subsequently, the tarmac layer 24 is taken up and also recycled or disposed of.
- the rails 11 and the thresholds 32 attached to the rails are no longer supported in this state by a gravel eye, but are held by a rail holder 34 of the tarmac improvement machine 10.
- the tarmac improvement machine 10 has an end face 36 in the forward feed direction, which is not shown in FIG.
- a receiving element 38 is pivotally mounted on which in turn a Georadarmesskopf 40 is arranged.
- the receiving element 38 is pivoted by an electric motor 42 so that it moves back and forth, so that the Georadarmesskopf 40 travels a path; which is shown in dashed lines in Figure 2.
- a position sensor 39 continuously measures the pivot angle by which the receiving element 38 is pivoted relative to the end face 36.
- the georadar sensing data collected by the georadar head 40 is passed through a cable 44 to a central controller 46 which processes and stores it in a memory 48.
- the central controller 46 also provides a trigger pulse to the georadizer head 40 when the position sensor 39 sets a value for the swivel angle measures at a pre-set interval. Due to this trigger pulse the georadar measuring head 40 picks up a measuring point.
- the georadar measuring head 40 comprises a control unit which activates a radar transmitter at regular time intervals or after receiving a trigger pulse.
- Figure 3 shows in the upper diagram schematically over the time t applied, short electrical pulses 41a, 41b, 41c, ..., which are delivered to the radar transmitter.
- the time length t1 of these short electrical pulses 41a, 41b, 41c with a predetermined voltage U is approximately 2 ns.
- These pulses are generated by a one-shot circuit within the control unit.
- a one-shot circuit includes, for example, a Scholtky diode.
- the control unit emits such short electrical pulses 41a, 41b, 41c at regular time intervals or after receiving a trigger pulse at a constant time interval of t2.
- the radar transmitter generates corresponding Georadarwellenimpulse and emits these due to these short electrical pulses.
- the time interval t2 is about 2.5 ⁇ s to 10 ⁇ s.
- FIG. 3 schematically shows reflected georadar wave pulses 37a, 37b, 37c picked up by the antenna.
- the digitizing support points are recorded on successive reflected georadar wave pulses; This is the first sampling point t a1 at the radar wave train 37a, the subsequent, second sampling point t 51 at the second radar wave train 37b, and so on. All in all, 1024 sampling points are recorded.
- the sampling time t s ie the time that would pass if all sampling points were recorded at only one radar wave train, lies between 5 ns and 200 ns depending on the application.
- This type of sampling (ie the sampling of the registered reflected georadar wave pulses) does not result in any serious error compared to sampling only a single reflected radar wave train, since the path taken by the georadical probe in the time taken in the sample pit in Example 1024 is so it is small that the reflection properties of the soil have not changed in a good approximation.
- the type of sampling described above ensures that less expensive components can be used for the sampling.
- the georadar measurement data thus obtained by the sampling which represent a georadar measurement point, are transmitted to the central controller 46 and further processed there.
- a fan laser sensor 49 is attached on the web side of the tarmac improvement machine 10, in Figure 2 so on the left side.
- This fan laser sensor 49 scans the working area of the georadar measuring head 40 for obstacles. Once an obstacle is detected, a signal is sent to the central controller 46, whereupon it pivots the receiving element 38 so that there is no collision of the georadar measuring head 40 with the detected obstacle. Alternatively, the pivotal movement is stopped by the central controller 46.
- FIG 4 shows an alternative embodiment of the attachment of Georadarmesskopfs 40.
- a threaded rod 54 is driven by a motor 56 driven.
- the threaded rod 54 passes through a nut 58, to which the Georadarmesskopf 40 is attached.
- the georadar measuring head 40 is moved to the left or to the right.
- the georadar measurement data taken by the georadar probe is forwarded via the cable 44 to the central controller 46, which in turn writes this data into the memory 48.
- the central controller 46 controls the motor 56 so that the georadar gauge head 40 reciprocates along the threaded rod 54.
- the boom 50 is driven by a motor 60.
- a rope 62 is provided which extends between the boom 50 and the next following part of the tarmac improvement machine and connects them together.
- the cable 62 is stretched taut by the motor 60 of the boom 50.
- the recorded georadar and position measurement data are first processed to obtain a three-dimensional graph indicating the depth profile of the ground. This graph is output continuously on a screen not shown here.
- the pollution horizon is calculated from the measured data.
- a pattern recognition program running on the central controller 46 is used. The pattern recognition program relies on a narrow-value analysis as described above. Alternatively, a neural network based pattern recognition program is used.
- a tone signal is output via a loudspeaker 64.
- a message is issued via a non-drawn radio link to the geotextile dispenser 28, so that this incorporates the geotextile 30 in the superstructure.
- the waiting times are chosen to be less than the time that passes between the measurement of a track section and the time at which this track section passes through the geotextile dispenser 28.
- FIG. 5 shows a path 64 which the georadar measuring head 40 travels relative to the ground and on which it receives measuring points 66. It does not necessarily have to be sinusoidal.
- the pivoting or reciprocating movement of Georadarmesskopfs 40 is controlled so and the number of measuring points 66 selected so high that a spatial resolution Y in the direction along the rails of about 20 cm and a spatial resolution X in the direction transverse to the rails of about 5 cm is obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Geophysics And Detection Of Objects (AREA)
- Machines For Laying And Maintaining Railways (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Soil Working Implements (AREA)
- Road Repair (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004048169A DE102004048169A1 (de) | 2004-10-02 | 2004-10-02 | Verfahren zur Oberbausanierung von Schienenwegen unter Einsatz einer Planumsverbesserungsmaschine, Planumsverbesserungsmaschine |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1643035A2 true EP1643035A2 (fr) | 2006-04-05 |
EP1643035A3 EP1643035A3 (fr) | 2006-04-19 |
EP1643035B1 EP1643035B1 (fr) | 2007-07-25 |
Family
ID=35539291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05021587A Not-in-force EP1643035B1 (fr) | 2004-10-02 | 2005-10-04 | Procedée de rénovation de ballast de voie |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1643035B1 (fr) |
AT (1) | ATE368150T1 (fr) |
DE (2) | DE102004048169A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009029969A1 (fr) * | 2007-09-05 | 2009-03-12 | Swietelsky Baugesellschaft M.B.H. | Véhicule ferroviaire pour la rénovation d'infrastructure d'une voie |
CN101590858B (zh) * | 2009-06-30 | 2011-02-02 | 中南大学 | 一种剔除轨枕干扰的铁路路基检测雷达数据处理方法 |
DE202010012355U1 (de) * | 2010-09-08 | 2011-12-14 | Wiebe Holding Gmbh & Co. Kg | Gleiswegsanierungsmaschine mit PSS-Aufbereitung |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202007011501U1 (de) | 2007-08-16 | 2008-12-24 | Wiebe Holding Gmbh & Co. Kg | Gleiswegsanierungsmaschine mit dreifach separiertem Aushub |
DE102008007705A1 (de) * | 2008-02-04 | 2009-09-03 | Gbm Wiebe Gleisbaumaschinen Gmbh | Vorrichtung und Verfahren zur Grenzflächendetektion in Bodenschichten |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1264933A2 (fr) * | 2001-06-06 | 2002-12-11 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. | Machine de construction de voies ferrées pour enlever le ballast |
US20030010248A1 (en) * | 2001-07-10 | 2003-01-16 | Franz Plasser Bahnbaumaschinen- Industriegesellschaft M.B.H. | Track work machine |
US20050011654A1 (en) * | 2003-07-18 | 2005-01-20 | Franz Plasser Bahnbaumaschinen -Industriegesellschaft M.B.H. | Ballast excavating chain |
DE102004026916A1 (de) * | 2003-08-21 | 2005-03-17 | Eichholz Gmbh & Co. Kg | Verfahren zum Durchführen von Baumaßnahmen in einem Gleisbereich und Vorrichtung zum Durchführen dieses Verfahrens |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4340254C2 (de) * | 1993-11-26 | 2001-10-04 | Gmb Gleisbaumaschinen Hermann | Verfahren zur Erfassung des Zustandes des Oberbaues, Unterbaues und Untergrundes von Eisenbahngleisen |
DE4344145C1 (de) * | 1993-12-20 | 1995-08-17 | Deutsche Bahn Ag | Gleisbettungs-Reinigungsmaschine mit elektronischer Meßeinrichtung für eine Auswerte-, Anzeige-, Steuer- und Registriereinrichtung |
DE29521474U1 (de) * | 1994-10-04 | 1997-05-07 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H., Wien | Maschine zur Einbringung eines Geokunststoffes unterhalb eines Gleises |
DE29507117U1 (de) * | 1995-04-27 | 1995-11-09 | Braun, Carlheinz, Dipl.-Geophys., 81737 München | Vorrichtung zur automatisierten Durchführung von Georadar-Messungen im Gleiskern von Eisenbahntrassen |
US5553407A (en) * | 1995-06-19 | 1996-09-10 | Vermeer Manufacturing Company | Excavator data acquisition and control system and method of use |
JP3297983B2 (ja) * | 1996-09-13 | 2002-07-02 | 三井造船株式会社 | 線路下探査装置 |
DE19704220A1 (de) * | 1997-02-05 | 1998-08-06 | Ingbuero Spies | Verfahren und Vorrichtung zum Bestimmen eines Abstandes zwischen Fahrzeug und Hindernis |
AT405425B (de) * | 1997-08-20 | 1999-08-25 | Plasser Bahnbaumasch Franz | Gleisbaumaschine mit einem laser-bezugsystem und verfahren |
DE19829762A1 (de) * | 1998-07-03 | 2000-01-13 | Adc Automotive Dist Control | Verfahren zum Betrieb eines Radarsystems |
CZ291486B6 (cs) * | 1999-04-13 | 2003-03-12 | České Dráhy, Státní Organizace | Způsob zjišťování poruchy v podloží komunikace a zařízení k provádění tohoto způsobu |
-
2004
- 2004-10-02 DE DE102004048169A patent/DE102004048169A1/de not_active Withdrawn
-
2005
- 2005-10-04 AT AT05021587T patent/ATE368150T1/de active
- 2005-10-04 DE DE502005001088T patent/DE502005001088D1/de active Active
- 2005-10-04 EP EP05021587A patent/EP1643035B1/fr not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1264933A2 (fr) * | 2001-06-06 | 2002-12-11 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft m.b.H. | Machine de construction de voies ferrées pour enlever le ballast |
US20030010248A1 (en) * | 2001-07-10 | 2003-01-16 | Franz Plasser Bahnbaumaschinen- Industriegesellschaft M.B.H. | Track work machine |
US20050011654A1 (en) * | 2003-07-18 | 2005-01-20 | Franz Plasser Bahnbaumaschinen -Industriegesellschaft M.B.H. | Ballast excavating chain |
DE102004026916A1 (de) * | 2003-08-21 | 2005-03-17 | Eichholz Gmbh & Co. Kg | Verfahren zum Durchführen von Baumaßnahmen in einem Gleisbereich und Vorrichtung zum Durchführen dieses Verfahrens |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009029969A1 (fr) * | 2007-09-05 | 2009-03-12 | Swietelsky Baugesellschaft M.B.H. | Véhicule ferroviaire pour la rénovation d'infrastructure d'une voie |
AT505679B1 (de) * | 2007-09-05 | 2009-07-15 | Swietelsky Baugesellschaft M B | Schienenfahrzeug zur gleisunterbausanierung |
CN101590858B (zh) * | 2009-06-30 | 2011-02-02 | 中南大学 | 一种剔除轨枕干扰的铁路路基检测雷达数据处理方法 |
DE202010012355U1 (de) * | 2010-09-08 | 2011-12-14 | Wiebe Holding Gmbh & Co. Kg | Gleiswegsanierungsmaschine mit PSS-Aufbereitung |
Also Published As
Publication number | Publication date |
---|---|
ATE368150T1 (de) | 2007-08-15 |
EP1643035A3 (fr) | 2006-04-19 |
DE502005001088D1 (de) | 2007-09-06 |
EP1643035B1 (fr) | 2007-07-25 |
DE102004048169A1 (de) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3741914B1 (fr) | Train de machines comprenant une fraiseuse routière et une finisseuse de route et procédé de fonctionnement d'une fraiseuse routière et d'une finisseuse de route | |
DE112020004371T5 (de) | Phased-array-schallwellenfortgeschrittenes geologisches detektionssystem und -verfahren mit einer schildmaschine | |
EP2037042B1 (fr) | Machine de fraisage ou machine destinée à exploiter des gisements | |
EP1339920B1 (fr) | Dispositif de reglage de hauteur au laser pour un engin de chantier | |
AT500972B1 (de) | Verfahren zum unterstopfen von schwellen | |
EP2562309B1 (fr) | Finisseuse de route dotée d'un dispositif de mesure | |
EP1643035B1 (fr) | Procedée de rénovation de ballast de voie | |
EP2535456B1 (fr) | Finisseuse de route dotée d'un dispositif de mesure de l'épaisseur de couche | |
EP0915203B1 (fr) | Régaleuse à ballast et méthode pour placer le ballast d'une voie ferrée | |
EP0412400B1 (fr) | Dispositif de sécurité pour empêcher la collision d'engins de terrassement | |
DE102006062129A1 (de) | Straßenbaumaschine sowie Verfahren zur Messung der Frästiefe | |
DE9214769U1 (de) | Ultraschallsensor-Regeleinrichtung für einen Straßenfertiger | |
EP0415156A1 (fr) | Procédé et appareil pour commander une ouvreuse des balles | |
EP3647494A1 (fr) | Raboteuse et procédé de commande d'une raboteuse | |
WO2017097390A1 (fr) | Groupe de bourrage muni d'un capteur d'angle permettant de déterminer la position de l'outil de bourrage | |
EP1224644B1 (fr) | Dispositif pour reguler le flux de circulation a un carrefour, notamment pour reguler les feux | |
EP1862593A2 (fr) | Système d'exploration de tracé commandé par GPS et continu doté d'un système sensoriel | |
DE19953006B4 (de) | Vorrichtung zur Steuerung des Verkehrsflusses im Bereich einer Kreuzung, insbesondere zur Ampelsteuerung | |
DE3819818C2 (fr) | ||
EP1643275A1 (fr) | Véhicule de terre et procédé pour la prospection de la subsurface de la voie de circulation | |
DE3913159A1 (de) | Verfahren und vorrichtung zur messung von wellenfoermigen deformationen an wenigstens einer schienenoberseite (schienenlaufflaeche) eines schienenweges | |
DE102004048170B4 (de) | Kanalinspektionsfahrzeug und Verfahren zur Kanalinspektion | |
WO2003080988A2 (fr) | Tete de forage pour le forage horizontal commande | |
DE102013205765A1 (de) | Qualitätssicherungssystem für Schlitzwandfugen | |
WO1995006170A1 (fr) | Procede et vehicule pour le nettoyage et la vidange des avaloirs de chaussees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20060918 |
|
17Q | First examination report despatched |
Effective date: 20061025 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: RENTSCH & PARTNER |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005001088 Country of ref document: DE Date of ref document: 20070906 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071025 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071226 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071125 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071105 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20070725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
BERE | Be: lapsed |
Owner name: GBM WIEBE GLEISBAUMASCHINEN G.M.B.H. Effective date: 20071031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071025 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
26N | No opposition filed |
Effective date: 20080428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071004 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: RENTSCH & PARTNER;FRAUMUENSTERSTRASSE 9, POSTFACH 2441;8022 ZUERICH (CH) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080126 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070725 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20101020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20101025 Year of fee payment: 6 Ref country code: DE Payment date: 20101108 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20101025 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GBM WIEBE GLEISBAUMASCHINEN GMBH Free format text: GBM WIEBE GLEISBAUMASCHINEN GMBH#IM FINIGEN 6#28832 ACHIM (DE) -TRANSFER TO- GBM WIEBE GLEISBAUMASCHINEN GMBH#IM FINIGEN 6#28832 ACHIM (DE) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120501 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005001088 Country of ref document: DE Effective date: 20120501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111004 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 368150 Country of ref document: AT Kind code of ref document: T Effective date: 20111004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111004 |