EP1631722A2 - Fundament für eine windenergieanlage - Google Patents

Fundament für eine windenergieanlage

Info

Publication number
EP1631722A2
EP1631722A2 EP04731827A EP04731827A EP1631722A2 EP 1631722 A2 EP1631722 A2 EP 1631722A2 EP 04731827 A EP04731827 A EP 04731827A EP 04731827 A EP04731827 A EP 04731827A EP 1631722 A2 EP1631722 A2 EP 1631722A2
Authority
EP
European Patent Office
Prior art keywords
foundation
foot
base element
modules
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04731827A
Other languages
English (en)
French (fr)
Inventor
Aloys Wobben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wobben Properties GmbH
Original Assignee
Wobben Properties GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties GmbH filed Critical Wobben Properties GmbH
Publication of EP1631722A2 publication Critical patent/EP1631722A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/22Sockets or holders for poles or posts
    • E04H12/2253Mounting poles or posts to the holder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a foundation for a wind energy installation and a wind energy installation with such a foundation.
  • the foundations for wind turbines have essentially been produced by excavating a construction pit, introducing a cleanliness layer, installing a foundation installation part, performing the required reinforcement work and then filling the construction pit with cement, the cement being transported to the required location using cement trucks and into the construction pit is poured.
  • the foundation installation part is usually designed as a hollow cylinder and is generally prefabricated and transported as a whole to the respective installation location.
  • the invention is based on the idea of producing the elements that are important for the statics of the foundation of the wind power installation in advance.
  • the foundation has a foundation base element 20 and at least two foundation foot modules 10, wherein the foot modules can be fastened to the base element 20 and wherein the base element 20 and the at least two foot modules 10 represent prefabricated elements. Because the foundation does not consist of one floor, but consists of several elements, these elements can be transported separately and assembled on site, whereby the quality achieved by manufacturing in a factory is not impaired. Since the Elements of the foundation have not insignificant dimensions, it is much easier to transport only the individual elements.
  • the foundation base element is designed as a hollow cylinder and the foundation foot modules 10 are aligned radially to the axis of symmetry of the foundation base element.
  • the radial alignment of the foot modules ensures the required statics of the foundation, since the foot modules are attached around the base element as required ; can.
  • the foot modules can be fastened in the cavity of the base element using suitable fastening means.
  • the foot module each has a foot plate and a foot support element, which are each arranged radially to the axis of symmetry of the base element.
  • the foot support element is perpendicular to the footplate while the footplate is arranged substantially perpendicular to the axis of symmetry of the base element in the fastened state. The static forces acting on the wind turbine are better dissipated to the ground by the base plate and the support element.
  • the height of the support element decreases radially outward. This tapering of the support element towards the outside also serves to improve the statics.
  • the width of the base plate increases radially outwards, which also serves to improve the statics.
  • both the support elements and the foot plates have radially aligned through holes.
  • the base element has corresponding through holes, so that the foot modules can be fastened to the base element, for example with the aid of suitable fastening means, by means of these through holes.
  • the foot plates and / or the support elements have further through holes which have a diameter which allows lashing straps to be passed through them during transport in order to securely fasten the foot modules.
  • the base element and the foot modules consist of reinforced concrete.
  • Figure 1 is a perspective view of a foundation according to a first embodiment.
  • FIG. 2a to c show different views of the foundation from FIG. 1;
  • FIG. 5a and b are a top and a side view of foundation feet according to FIG. 4a, which are stacked for transport;
  • FIG. 6 shows a perspective view of a foundation according to a second exemplary embodiment
  • Fig. 7 is a perspective view of an element of the
  • FIG. 8 is a top view of an element of the foundation of FIG. 6.
  • the foundation 1 shows a perspective view of the foundation according to a first exemplary embodiment of the invention.
  • the foundation 1 essentially consists of a hollow cylindrical base element 20 and a multiplicity of foot modules 10, which are aligned evenly distributed over its circumference radially to the longitudinal axis or axis of symmetry of the base element 20.
  • FIG. 2a shows a top view of the foundation 1 from FIG. 1.
  • a plurality of holes 21 are arranged around the circumference of the hollow cylindrical base element 20. These holes are intended to accommodate fasteners by means of which a tower of a wind turbine can be fastened to the foundation 1.
  • the foot modules 10 consist of a foot plate 11 and a support element 12.
  • the various foot modules 10 are each spaced apart by 36 °, so that 10 foot elements can be attached around the base element 20. Of course, both more and fewer foot modules can be arranged around the base element 20 in order to ensure the required structural requirements.
  • the base plates 11 of the base modules 10 are arranged in one plane and perpendicular to the axis of symmetry of the hollow cylindrical base element 20.
  • the support elements 12 are also aligned perpendicular to the base plate 11 and radially to the axis of symmetry of the base element 20, the support element 12 being centered on the base plate 11.
  • the base element 20 has a lower section 22 with a greater thickness than the upper section, on which the holes 21 are provided.
  • Fig. 2c shows a sectional view along the section A-A in Fig. 2b.
  • the thickness of the base plate 11 is essentially constant, while the height of the support element 12 decreases towards the outside.
  • a radially aligned through hole 14 is present in the support element 12.
  • Two through holes 15 are provided in the base plate 11, which are also aligned radially to the axis of symmetry. These through holes 14 and 15 serve to enable the foot modules 10 to be attached to the base element 20, for example with the aid of fastening means.
  • FIG. 4a to e show views of the foot module 10 from FIG. 2a.
  • 4a shows a perspective view of the foot module 10 with the footplate 11 and the support element 12 arranged perpendicularly thereto.
  • the footplate has an inside 11a and an outside 11b.
  • the foot module 10 is attached to the base member 20 with the inside 11a of the foot plate 11.
  • FIG. 4b shows a top view of the foot module 10 from FIG. 4a.
  • the width 11c of the foot plate 11 increases towards the outside.
  • both the inside 11a and the outside 11b of the footplate are curved.
  • the curvature of the inside 11a of the foot plate 11 is adapted to the outside curvature of the base element 20 so that the foot module 10 can be firmly attached to the base element 20.
  • FIG. 4c shows a side view of the foot module 10 from FIG. 4a, this view representing the outside of the foot module 10.
  • this view representing the outside of the foot module 10.
  • the outside 11 b of the foot plate 11 and the outside 12 b of the support element 12 and the two through holes 15 in the foot plate 11 are shown.
  • FIG. 4d shows a side view of the foot module 10 from FIG. 4a.
  • the height 12c of the support element 12 decreases from the inside 12a of the support element 12 to the outside 12b.
  • the through holes 14 in the support element 12 and the through holes 15 in the base plate 11 are also shown.
  • FIG 4e shows the side of the foot module 10 facing the base element 20.
  • the through holes 14 in the support element 12 and the through holes 15 in the foot plate 11 are also shown here.
  • FIGS. 5a and 5b A transport arrangement of a plurality of foot modules 10 is shown in FIGS. 5a and 5b.
  • the various foot modules are stacked on top of one another in such a way that the support elements 12 of two foot modules 10 face each other.
  • 4 foot modules 10 are attached to a pallet 100 in this way.
  • the foot modules 10 are stacked offset from one another.
  • the foot modules 10 can optionally be provided with further through holes. These through holes should be designed in such a way that standard lashing straps can be passed through them so that the foot modules 10 can be securely attached.
  • the provision of such through holes is not a major problem in the manufacture of the foot modules 10, since the holes can be drilled without problems in the factory or corresponding molds can be provided.
  • the statics of the foot modules 10 are not impaired by such through holes.
  • alignment elements can be provided below some of the foot plates 11 or between the foot modules 10 and the base element 20 in order to ensure a precise horizontal alignment of the foundation.
  • the foundation of a wind power plant Due to the modular construction of the foundation of a wind power plant according to the exemplary embodiment of the invention, it is possible to manufacture both the base element 20 and the foot modules 10 in advance in a factory and then to transport them to the installation site.
  • This pre-processing in a factory guarantees a constant quality of the foundations for the wind energy plants.
  • the foundation of a wind turbine can be laid in almost all weather conditions.
  • an excavation pit is first dug and, if appropriate, a cleanliness layer is applied.
  • the base element 20 is then set up and the foot modules 10 are fastened to the base element 20 by means of suitable fastening means. Subsequently, the foundation can be reinforced, after which the construction pit can be filled with concrete.
  • each foot module has a segment section of the base element.
  • the hollow cylindrical base element is divided into a plurality of sections, which are each part of the foot module 10.
  • each foot module 10 has a flange section 60, which in turn is provided with the appropriate holes in order to fasten the corresponding tower segments of a wind power plant to it.
  • FIG. 7 shows a perspective drawing of an individual foot module 10 according to the second exemplary embodiment.
  • the foot module in turn has a foot plate 11 and a support element 12 and a base element section 20a. Holes 15 are provided on the base element 20a, which holes are intended to connect the foot modules to one another. This connection between the foot modules 10 can be made by means of appropriate screw connections or other connections.
  • a flange section 60 for fastening corresponding tower segments is likewise provided on the base element section.
  • FIG. 8 shows a top view of a foot module 10 from FIG. 6 or 7.
  • the width of the foot modules 10 or of the foot plates 11 essentially depends on the number of foot modules 10 provided.
  • a complete circular foundation with an already integrated foundation section for a wind energy installation is obtained.
  • lateral plates can be arranged on the base element sections 20a.
  • 8 shows, among other things, the screws for connecting the respective foot modules 10 and the anchoring of the base element of the foundation section in the foot element (left part of FIG. 8).
  • the foundation according to the second exemplary embodiment can be manufactured in advance, so that the foundation or the foot modules must / must be assembled at the installation site.
  • wind turbines are mentioned in the present application, this means in particular that they are wind turbines that assume a certain size, ie. H. z. B. have a nominal power in the range of about 300 kW to 2 MW, preferably 600 kW and have a hub height (ie tower height) of about 45 to 85 m.
  • the present application is particularly well suited for the construction of an Enercon type E40 or E66 wind turbine with the known tower or hub heights and performance data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

Der Erfindung liegt der Gedanke zugrunde, die für die Statik des Fundaments der Windenergieanlage wichtigen Elemente, nämlich die tragenden und seitlich stabilisierenden Elemente des Fundaments, vorab zu fertigen.

Description

Fundament für eine Windenergieanlage
Die vorliegende Erfindung betrifft ein Fundament für eine Windenergieanlage sowie eine Windenergieanlage mit einem derartigen Fundament.
Bei Windenergieanlagen ist das Fundament sowie dessen Dimensionierung von sehr großer Bedeutung, da derartige Windenergieanlagen sehr schwer sind und sehr großen Belastungen ausgesetzt sind.
Bislang werden die Fundamente für Windenergieanlagen im Wesentlichen durch Ausheben einer Baugrube, Einbringen einer Sauberkeitsschicht, Aufstellen eines Fundamenteinbauteiles, Durchführen der benötigten Bewehrungsarbeiten und einem anschließenden Auffüllen der Baugrube mit Zement hergestellt, wobei der Zement mit Hilfe von Zementlastern zum benötigten Ort transportiert und in die Baugrube gegossen wird. Das Fundamenteinbauteil ist üblicherweise hohlzylindrisch ausgestaltet und wird in der Regel vorgefertigt und als Ganzes zu dem jeweiligen Montageort transportiert.
Als Stand der Technik sei in dieser Sache u. a. verwiesen auf DE 40 37 438 C2, DE 33 36 655 A1 , DE 76 37 601 U, FR 1.015.719, US 4,714,225 A, EP 1 074 663 A1 , WO 94/26986 A1 und WO 00/46452 A1. Das Auffüllen der Baugrube mit dem benötigten Beton erweist sich insbesondere bei widrigen Witterungsbedingungen als nicht unproblematisch, während das Ausheben der Baugrube für das Fundament hingegen bei fast allen Witterungsbedingungen erfolgen kann. Die Qualität des fertigen ausgehärteten Betons hängt in hohem Maße von den Witterungsbedingungen ab.
Es ist somit Aufgabe der Erfindung, ein Fundament für eine Windenergieanlage vorzusehen, dessen Qualität im Wesentlichen unabhängig von den vorherrschenden Witterungsbedingungen bei der Montage gewährleistet wird.
Diese Aufgabe wird durch ein Fundament für eine Windenergieanlage gemäß Anspruch 1 gelöst.
Der Erfindung liegt dabei der Gedanke zugrunde, die für die Statik des Fundaments der Windenergieanlage wichtigen Elemente vorab zu fertigen.
Dies ist insbesondere dahingehend vorteilhaft, da derartige Elemente in einer Fabrik bei genau definierten Temperaturen und Luftfeuchtigkeiten hergestellt werden können, was die Qualität des Endproduktes wesentlich steigert. Ferner kann die benötigte Qualitätskontrolle bereits in der Fabrik durchgeführt werden, so dass sie nicht mehr vor Ort bei den jeweiligen Montageörtlichkeiten durchgeführt werden muss. Des weiteren lassen sich die Elemente des Fundamentes in einer Fabrik effizienter und billiger herstellen, wenn sie in einer Großserie gefertigt werden.
Gemäß einer Ausgestaltung der Erfindung weist das Fundament ein Fundament-Basiselement 20 und zumindest zwei Fundament-Fußmodule 10 auf, wobei die Fußmodule an dem Basiselement 20 befestigt werden können und wobei das Basiselement 20 und die zumindest zwei Fußmodule 10 vorgefertigte Elemente darstellen. Dadurch, dass das Fundament nicht einstöckig, sondern aus mehreren Elementen besteht, können diese Elemente getrennt transportiert und vor Ort montiert werden, wobei die durch die Fertigung in einer Fabrik erreichte Qualität nicht beeinträchtigt wird. Da die Elemente des Fundamentes nicht unerhebliche Dimensionen aufweisen, ist ein Transport lediglich der einzelnen Elemente wesentlich einfacher.
In einer weiteren Ausgestaltung der Erfindung ist das Fundament- Basiselement hohlzylindrisch ausgestaltet und die Fundament-Fußmodule 10 sind radial zur Symmetrieachse des Fundament-Basiselements ausgerichtet. Die radiale Ausrichtung der Fußmodule gewährleistet die benötigte Statik des Fundaments, da die Fußmodule dem Bedarf entsprechend um das Basiselement herum angebracht werden ; können. Ferner können die Fußmodule durch geeignete Befestigungsmittel im Hohlraum des Basiselementes befestigt werden.
In einer besonders bevorzugten Ausgestaltung der Erfindung weist das Fußmodul jeweils eine Fußplatte und ein Fuß-Stützelement auf, welche jeweils radial zur Symmetrieachse des Basiselements angeordnet sind. Das Fuß-Stützelement steht dabei senkrecht zur Fußplatte während die Fußplatte im befestigten Zustand im Wesentlichen senkrecht zur Symmetrieachse des Basiselementes angeordnet ist. Durch die Fußplatte und das Stützelement werden die auf die Windenergieanlage wirkenden statischen Kräfte besser auf den Untergrund abgeleitet.
In einer weiteren Ausgestaltung der Erfindung verkleinert sich die Höhe des Stützelementes radial nach außen hin. Diese Verjüngung des Stützelementes nach außen hin dient ebenfalls einer verbesserten Statik.
In einer weiteren Ausgestaltung der Erfindung wird die Breite der Fußplatte radial nach außen hin größer, was ebenfalls einer verbesserten Statik dient.
In einer weiteren Ausgestaltung der Erfindung weisen sowohl die Stützelemente als auch die Fußplatten radial ausgerichtete Durchgangslöcher auf. Das Basiselement weist entsprechende Durchgangslöcher auf, so dass mittels dieser Durchgangslöcher die Fußmodule an dem Basiselement beispielsweise mit Hilfe von geeigneten Befestigungsmitteln befestigt werden können. In einer weiteren Ausgestaltung der Erfindung weisen die Fußplatten und/oder die Stützelemente weitere Durchgangslöcher auf, welche einen Durchmesser aufweisen, der es erlaubt, Zurrgurte während des Transportes durch sie hindurchzuführen, um die Fußmodule sicher zu befestigen.
In einer besonders bevorzugten Ausgestaltung der Erfindung bestehen das Basiselement und die Fußmodule aus Stahlbeton.
Die Erfindung wird nachfolgend anhand der Zeichnung näher beschrieben, wobei die Figuren zeigen:
Fig. 1 eine perspektivische Ansicht eines Fundamentes gemäß einem ersten Ausführungsbeispiel;
Fig. 2a bis c verschiedene Ansichten des Fundamentes aus Fig. 1 ;
Fig. 4a bis e verschiedene Ansichten eines Fundamentfußes;
Fig. 5a und b eine Drauf- und eine Seitenansicht von Fundamentfüßen gemäß Fig. 4a, welche zum Transport gestapelt sind; und
Fig. 6 eine perspektivische Ansicht eines Fundamentes gemäß einem zweiten Ausführungsbeispiel;
Fig. 7 eine perspektivische Ansicht eines Elementes des
Fundamentes von Figur 6; und
Fig. 8 eine Draufsicht auf ein Element des Fundamentes von Figur 6.
In Fig. 1 ist eine perspektivische Ansicht des Fundamentes gemäß einem ersten Ausführungsbeispiel der Erfindung gezeigt. Das Fundament 1 besteht dabei im Wesentlichen aus einem hohlzylindrischen Basiselement 20 sowie einer Vielzahl von Fußmodulen 10, welche radial zur Längsachse bzw. Symmetrieachse des Basiselementes 20 gleichmäßig auf seinen Umfang verteilt ausgerichtet sind. Fig. 2a zeigt eine Draufsicht auf das Fundament 1 aus Fig. 1. Um den Umfang des hohlzylindrischen Basiselementes 20 herum sind eine Vielzahl von Löchern 21 angeordnet. Diese Löcher sollen dazu dienen, Befestigungselemente aufzunehmen, mittels derer ein Turm einer Windenergieanlage auf dem Fundament 1 befestigt werden kann. Die Fußmodule 10 bestehen aus einer Fußplatte 11 und einem Stützelement 12. Die verschiedenen Fußmodule 10 sind jeweils um 36° voneinander beabstandet, so dass 10 Fußelemente um das Basiselement 20 herum befestigt werden können. Selbstredend können sowohl mehr als auch weniger Fußmodule um das Basiselement 20 herum angeordnet werden, um die erforderlichen statischen Erfordernisse zu gewährleisten.
Fig. 2b zeigt eine Seitenansicht des Fundamentes aus Fig. 1. Die Fußplatten 11 der Fußmodule 10 sind dabei in einer Ebene und senkrecht zur Symmetrieachse des hohlzylindrischen Basiselementes 20 angeordnet. Die Stützelemente 12 sind ferner senkrecht zur Fußplatte 11 sowie radial zur Symmetrieachse des Basiselementes 20 ausgerichtet, wobei das Stützelement 12 zentriert auf der Fußplatte 11 angeordnet ist. Das Basiselement 20 weist einen unteren Abschnitt 22 mit einer größeren Dicke als der obere Abschnitt auf, auf welchem die Löcher 21 vorgesehen sind.
Fig. 2c zeigt eine Schnittansicht entlang des Schnittes A-A in Fig. 2b. Die Dicke der Fußplatte 11 ist dabei im Wesentlichen konstant, während die Höhe des Stützelementes 12 nach außen hin abnimmt. In dem Stützelement 12 ist jeweils ein radial ausgerichtetes Durchgangsloch 14 vorhanden. In der Fußplatte 11 sind zwei Durchgangslöcher 15 vorgesehen, welche ebenfalls radial zur Symmetrieachse ausgerichtet sind. Diese Durchgangslöcher 14 und 15 dienen dabei dazu, dass die Fußmodule 10 an dem Basiselement 20 beispielsweise mit Hilfe von Befestigungsmitteln angebracht werden können.
Fig. 4a bis e zeigen Ansichten des Fußmodules 10 aus Fig. 2a. Fig. 4a zeigt dabei eine perspektivische Ansicht des Fußmodules 10 mit der Fußplatte 1 1 und des senkrecht dazu angeordneten Stützelementes 12. Die Fußplatte weist dabei eine Innenseite 11a und eine Außenseite 1 1 b auf. Das Fußmodul 10 wird mit der Innenseite 11a der Fußplatte 11 an dem Basiselement 20 angebracht.
Fig. 4b zeigt eine Draufsicht auf das Fußmodul 10 aus Fig. 4a. Die Breite 11c der Fußplatte 11 nimmt nach außen hin zu. Ferner sind sowohl die Innenseite 11a als auch die Außenseite 1 1 b der Fußplatte gekrümmt ausgestaltet. Dabei ist die Krümmung der Innenseite 11a der Fußplatte 11 an die Außenkrümmung des Basiselementes 20 angepasst, damit das Fußmodul 10 schlüssig an dem Basiselement 20 befestigt werden kann.
Fig. 4c zeigt eine Seitenansicht des Fußmodules 10 von Fig. 4a, wobei diese Ansicht die Außenseite des Fußmodules 10 darstellt. Insbesondere sind dabei die Außenseite 11 b der Fußplatte 11 sowie die Außenseite 12b des Stützelementes 12 und die beiden Durchgangslöcher 15 in der Fußplatte 11 gezeigt.
Fig. 4d zeigt eine Seitenansicht des Fußmodules 10 aus Fig. 4a. Die Höhe 12c des Stützelementes 12 nimmt dabei von der Innenseite 12a des Stützelementes 12 zu der Außenseite 12b hin ab. Ferner sind die Durchgangslöcher 14 in dem Stützelement 12 und die Durchgangslöcher 15 in der Fußplatte 11 gezeigt.
Fig. 4e zeigt die dem Basiselement 20 zugewandte Seite des Fußmodules 10. Auch hier sind die Durchgangslöcher 14 in dem Stützelement 12 sowie die Durchgangslöcher 15 in der Fußplatte 11 gezeigt.
Aufgrund der Größe der Fußmodule 10, welche über 5m betragen können, stellt der Transport derartiger Fußmodule ein weiteres zu lösendes Problem dar. In Fig. 5a und 5b wird eine Transportanordnung einer Vielzahl von Fußmodulen 10 gezeigt. Dabei werden die verschiedenen Fußmodule aufeinander gestapelt und zwar derart dass die Stützelemente 12 von zwei Fußmodulen 10 sich gegenüberstehen. Beispielsweise werden so 4 Fußmodule 10 auf einer Palette 100 befestigt. Aufgrund der zentrierten Anordnung der Stützelemente 12 werden die Fußmodule 10 jeweils versetzt zueinander aufgestapelt. Um den Transport derartiger Fußmodule sicher zu gestalten, können die Fußmodule 10 optional mit weiteren Durchgangslöchern vorgesehen werden. Diese Durchgangslöcher sollten dabei derart ausgestaltet sein, dass handelsübliche Zurrgurte durch sie hindurchgeführt werden können, damit die Fußmodule 10 sicher befestigt werden können. Das Vorsehen derartiger Durchgangslöcher stellt bei der Herstellung der Fußmodule 10 kein größeres Problem dar, da die Löcher problemlos in der Fabrik gebohrt oder entsprechende Gussformen vorgesehen werden können. Die Statik der Fußmodule 10 wird durch derartige Durchgangslöcher nicht beeinträchtigt.
Optional können Ausrichtelemente unterhalb einiger der Fußplatten 11 oder zwischen den Fußmodulen 10 und dem Basiselement 20 vorgesehen werden, um eine genaue horizontale Ausrichtung des Fundaments zu gewährleisten.
Der Transport der Basiselemente 20 des Fundamentes 1 einer Windenergieanlage ist bereits hinlänglich bekannt und ist nicht Gegenstand der vorliegenden Anmeldung.
Durch die modulare Bauweise des Fundamentes einer Windenergieanlage gemäß dem Ausführungsbeispiel der Erfindung ist es möglich, sowohl das Basiselement 20 als auch die Fußmodule 10 vorab in einer Fabrik zu fertigen und dann an den Montageort zu transportieren. Diese Vorabfertigung in einer Fabrik gewährleistet eine gleichbleibende Qualität der Fundamente für die Windenergieanlagen. Ferner kann das Fundament einer Windenergieanlage bei fast allen Witterungsbedingungen gelegt werden. Dazu wird, wie aus dem Stand der Technik, bekannt zunächst eine Baugrube gegraben und gegebenenfalls eine Sauberkeitsschicht aufgebracht. Anschließend wird das Basiselement 20 aufgestellt und die Fußmodule 10 mittels geeigneter Befestigungsmittel an dem Basiselement 20 befestigt. Nachfolgend kann eine Bewehrung des Fundaments erfolgen, wobei anschließend die Baugrube mit Beton aufgefüllt werden kann. Hierbei ist die Qualität dieses Betons sekundär, da die statisch wichtigen Elemente des Fundamentes, nämlich das Basiselement und die Fußmodule, vorab gefertigt worden sind. Fig. 6 zeigt eine perspektivische Ansicht eines vollständigen Fundamentes gemäß einem zweiten Ausführungsbeispiel. Im Gegensatz zum Fundament gemäß dem ersten Ausführungsbeispiel weist das Fundament gemäß dem zweiten Ausführungsbeispiel kein hohlzylindrisches Basiselement auf, um das herum eine Vielzahl von Fußmodulen angeordnet sind. Vielmehr weist jedes Fußmodul einen Segmentabschnitt des Basiselementes auf. Mit anderen Worten, das hohlzylindrische Basiselement wird in eine Vielzahl von Abschnitten aufgeteilt, welche jeweils Bestandteil des Fußmodules 10 sind. Ferner weist jedes Fußmodul 10 einen Flanschabschnitt 60 auf, welcher wiederum mit den passenden Löchern versehen ist, um die entsprechenden Turmsegmente einer Windenergieanlage daran zu befestigen.
Fig. 7 zeigt eine perspektivische Zeichnung eines einzelnen Fußmodules 10 gemäß dem zweiten Ausführungsbeispiel. Das Fußmodul weist wiederum eine Fußplatte 11 und ein Stützelement 12 sowie ein Basiselementabschnitt 20a auf. Am Basiselement 20a sind Löcher 15 vorgesehen, welche dazu dienen sollen, die Fußmodule miteinander zu verbinden. Diese Verbindung zwischen den Fußmodulen 10 kann mittels entsprechender Schraubverbindungen oder auch anderer Verbindungen erfolgen. Am Basiselementabschnitt ist ebenfalls ein Flanschabschnitt 60 zur Befestigung von entsprechenden Turmsegmenten vorgesehen.
Fig. 8 zeigt eine Draufsicht eines Fußmodules 10 von Fig. 6 oder 7. Die Breite der Fußmodule 10 bzw. der Fußplatten 11 hängt dabei im Wesentlichen von der Anzahl der vorgesehenen Fußmodule 10 ab. Durch eine Montage der vorgesehenen Anzahl von Fußmodulen ergibt sich somit ein vollständiges Kreisfundament mit bereits integrierter Fundamentsektion für eine Windenergieanlage. Zur Verbesserung der Verbindungen zwischen den verschiedenen Fußmodulen 10 können laterale Platten an den Basiselementabschnitten 20a angeordnet sein. In Fig. 8 sind u. a. die Schrauben zum Verbinden der jeweiligen Fußmodule 10 sowie die Verankerung des Basiselementes der Fundamentsektion in dem Fußelement (linker Teil der Fig. 8) dargestellt. Wie bei dem Fundament gemäß dem ersten Ausführungsbeispiel kann das Fundament gemäß dem zweiten Ausführungsbeispiel vorab gefertigt werden, so dass das Fundament bzw. die Fußmodule am Montageort zusammengefügt werden muss/müssen.
Da üblicherweise ein Lastkran zur Montage der Windenergieanlage bereits vor Ort ist, kann dieser dazu verwendet werden, um die Elemente des Fertigfundamentes in die Baugrube zu heben.
Obwohl das erfindungsgemäße Fertigfundament hier für den Einsatz an Land beschrieben worden ist, kann es natürlich ebenfalls bei Fundamenten für Offshore-Windenergieanlagen eingesetzt werden.
Soweit in der vorliegenden Anmeldung Windenergieanlagen erwähnt sind, so ist hiermit insbesondere gemeint, dass es sich um Windenergieanlagen handelt, die eine bestimmte Größenordnung annehmen, d. h. z. B. eine Nennleistung im Bereich von etwa 300 kW bis 2 MW , bevorzugt 600 kW aufweisen sowie dabei eine Nabenhöhe (also Turmhöhe) von etwa 45 bis 85 m aufweisen. Die vorliegende Anmeldung ist besonders gut geeignet für den Bau einer Windenergieanlage der Firma Enercon vom Typ E40 oder E66 mit den bekannten Turm- bzw. Nabenhöhen und Leistungsdaten.

Claims

Ansprüche
1. Fundament (1 ) für eine Windenergieanlage, wobei die wesentlichen, tragenden und seitlich stabilisierenden Elemente (10,
20) des Fundamentes (1 ) vorgefertigt sind.
2. Fundament nach Anspruch 1 , mit
- einem Fundament-Basiselement (20) und - zumindest zwei Fundament-Fußmodulen (10), wobei die Fundament-Fußmodule (10) an dem Fundament- Basiselement (20) befestbar ausgestaltet sind, und wobei das Fundament-Basiselement (20) und die zumindest zwei Fundament-Fußmodule (10) vorgefertigte Elemente darstellen.
3. Fundament nach Anspruch 1 , mit
- zumindest zwei Fundament-Fußmodulen (10), wobei die Fundament-Fußmodule (10) miteinander befestigbar ausgestaltet sind und vorgefertigte Elemente darstellen.
4. Fundament nach Anspruch 1 oder 2, wobei das Fundament-Basiselement (20) hohl-zylinderförmig ausgestaltet ist und die Fundament-Fußmodule (10) radial zur Symmetrieachse des Fundament-Basiselementes (20) ausgerichtet sind.
5. Fundament nach Anspruch 4, wobei die Fundament-Fußmodule (10) jeweils eine Fußplatte (11 ) und ein Fuß- Stützelement (12) aufweisen, welche jeweils radial zur Symmetrieachse des Fundament-Basiselementes (20) angeordnet sind, wobei das Fuß-Stützelement (12) senkrecht zur Fußplatte (11 ) und die Fußplatten (11 ) im befestigten Zustand im Wesentlichen senkrecht zur Symmetrieachse des Fundament-Basiselementes (10) angeordnet sind.
6. Fundament nach Anspruch 5, wobei sich die Höhe (12a) der Fuß-Stützelemente (12) radial nach außen hin verkleinert.
7. Fundament nach Anspruch 5 oder 6, wobei sich die Breite (11c) der Fußplatte (11 ) radial nach außen hin vergrößert.
8. Fundament nach Anspruch 5, 6, oder 7, wobei die Fußmodule (10) radial ausgerichtete Durchgangslöcher (14, 15) zur Aufnahme von Befestigungsmitteln aufweisen, und wobei das Fuß-Basiselement (10) auf die Durchgangslöcher (14, 15) der
Fußmodule (10) abgestimmte Durchgangslöcher aufweist.
9. Fundament nach einem der vorherigen Ansprüche, wobei die Fußplatten (11 ) und/oder die Fuß-Stützelemente (12) weitere Durchgangslöcher aufweisen, welche dazu geeignet sind, während eines Transportes Zurrgurte aufzunehmen.
10. Fundament nach einem der vorherigen Ansprüche, wobei das Fundament-Basiselement (20) und die zumindest zwei Fundament- Fußmoduie (10) aus Stahlbeton vorab gefertigt werden.
11. Fundament nach Anspruch 3, wobei das Fundament-Fußmodul (10) ein Basiselementabschnitt (20a) aufweist, welches an einem Ende (11a) der Fußplatte (11 ) senkrecht dazu angeordnet ist.
12. Windenergieanlage mit einem Fundament nach einem der Ansprüche 1 bis 9.
EP04731827A 2003-05-13 2004-05-08 Fundament für eine windenergieanlage Withdrawn EP1631722A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321647A DE10321647A1 (de) 2003-05-13 2003-05-13 Fundament für eine Windenergieanlage
PCT/EP2004/004939 WO2004101898A2 (de) 2003-05-13 2004-05-08 Fundament für eine windenergieanlage

Publications (1)

Publication Number Publication Date
EP1631722A2 true EP1631722A2 (de) 2006-03-08

Family

ID=33394573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04731827A Withdrawn EP1631722A2 (de) 2003-05-13 2004-05-08 Fundament für eine windenergieanlage

Country Status (11)

Country Link
US (1) US20070181767A1 (de)
EP (1) EP1631722A2 (de)
JP (1) JP4146487B2 (de)
KR (1) KR100785358B1 (de)
CN (1) CN100513706C (de)
AR (1) AR044316A1 (de)
AU (1) AU2004238973B2 (de)
BR (1) BRPI0410248B1 (de)
CA (1) CA2524931C (de)
DE (1) DE10321647A1 (de)
WO (1) WO2004101898A2 (de)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044989B3 (de) * 2005-09-21 2006-12-14 Nordex Energy Gmbh Verfahren zur Gründung eines Fundamentkörpers für eine Windenenergieanlage
US20110061321A1 (en) * 2006-09-21 2011-03-17 Ahmed Phuly Fatigue reistant foundation system
WO2010138978A2 (en) * 2009-05-05 2010-12-02 Ahmed Phuly Engineering & Consulting, Inc. Fatigue resistant foundation
US9347197B2 (en) * 2006-09-21 2016-05-24 Ahmed Phuly Foundation with slab, pedestal and ribs for columns and towers
US9096985B1 (en) * 2006-09-21 2015-08-04 Ahmed Phuly Foundation with slab, pedestal and ribs for columns and towers
WO2008036934A2 (en) * 2006-09-21 2008-03-27 Ahmed Phuly Partially prefabricated modular foundation system
EP1988219A1 (de) * 2007-05-04 2008-11-05 Anatoliusz Z. Jaroszewicz Monopile-Gründung
DE102007060379C5 (de) * 2007-12-12 2018-11-15 Senvion Gmbh Verankerung eines Turms einer Windenergieanlage
ES2347742A1 (es) 2008-03-18 2010-11-03 GAMESA INNOVATION & TECHNOLOGY S.L. Cimentacion de aerogenerador.
US20100024311A1 (en) * 2008-07-30 2010-02-04 Dustin Jon Wambeke Wind turbine assembly with tower mount
DK2182201T3 (en) 2008-11-03 2016-03-21 Siemens Ag Foundation, especially for a windmill, and windmill
CN101532295B (zh) * 2009-04-17 2011-02-02 从卫民 一种风力发电装置的基础
US8196368B2 (en) * 2009-06-18 2012-06-12 Majid Sarraf Ductile seismic shear key
US20110027100A1 (en) * 2009-07-30 2011-02-03 Daniel Francis Cummane Mobile wind power station
IT1400073B1 (it) * 2009-09-11 2013-05-17 Stefano Knisel Fondazione migliorata per torre eolica
IT1401410B1 (it) * 2010-08-04 2013-07-26 Terom Wind Energy S R L Fondazione modulare, prefabbricata e componibile, per la rapida installazione di strutture a torre particolarmente per elettrogeneratori eolici o per altri impieghi.
DE102010047773B4 (de) * 2010-10-08 2012-08-09 Timber Tower Gmbh Fundament für eine Windkraftanlage
ES2361358A1 (es) * 2010-12-21 2011-06-16 Prephor, S.A. Torre para generador eólico.
NO20110235A1 (no) * 2011-02-11 2011-07-04 Modi Vivendi As Metoder og systemer for optimalisert vindturbin park - konfigurering med spesiell fokus pa modulaere (offshore) vindturbin fundamenter.
US20120228442A1 (en) * 2011-02-25 2012-09-13 American Resource & Energy, Inc. Portable modular monopole tower foundation
GB201107857D0 (en) * 2011-05-11 2011-06-22 Anwyll Joseph Support structure for a wind turbine
EP2525021B8 (de) 2011-05-16 2018-11-28 GE Renewable Technologies Wind B.V. Stützstruktur für Windturbinenturm
JP5860662B2 (ja) * 2011-10-17 2016-02-16 中国電力株式会社 鉄塔基礎用の構成部材及び鉄塔基礎、並びに鉄塔基礎の施工方法
BR112014011848B1 (pt) * 2011-11-18 2021-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Alicerce para um mastro de antena e método de construir um alicerce
FR2990449A1 (fr) * 2012-05-10 2013-11-15 Dujardin Eric Fondation par massif longitudinal pour pylone de support de charge
PT2886723T (pt) 2012-06-06 2017-06-08 Gestamp Hybrid Towers S L Fundação nervurada para superestruturas e método para produção da fundação
ES2406390B1 (es) * 2013-01-25 2014-04-07 Gestamp Hybrid Towers, S.L. Perfeccionamientos en cimentación nervada de superestructuras y procedimiento de realización de la cimentación
EP2981654B1 (de) * 2013-03-29 2020-07-01 Tindall Corporation Turmanordnung für eine turmstruktur
WO2014182870A1 (en) 2013-05-10 2014-11-13 Michael Clifton Modular monopole tower foundation
CN103215967B (zh) * 2013-05-15 2016-03-23 北京中水新能工程技术有限公司 预应力倒肋板以及预应力倒肋板的制作方法
DE102013216343A1 (de) * 2013-08-19 2015-02-19 Wobben Properties Gmbh Windenergieanlagen-Fundament und Windenergieanlage
USD736959S1 (en) * 2013-10-07 2015-08-18 The Glosten Associates, Inc. Tension leg platform
KR200476725Y1 (ko) * 2013-10-24 2015-03-25 대우조선해양 주식회사 풍력설비 타워용 지지 고정장치
WO2015061862A1 (pt) * 2013-10-29 2015-05-07 Paulo Emmanuel De Abreu Fundação híbrida para torres
US8919051B1 (en) * 2013-12-02 2014-12-30 Abel Echemendia Tower with exterior cable support and a modular base
US9869300B2 (en) * 2014-01-16 2018-01-16 Pacadar S.A.U. Foundation for wind turbine tower and pre-assembly method of wind turbine tower
ES2548297B9 (es) * 2014-02-18 2021-01-15 Inneo Torres Sl Zapata prefabricada para torres eólicas
US9617704B2 (en) 2014-05-27 2017-04-11 One Energy Enterprises Llc Reinforcement assemblies, fixtures, and methods
ES2524840B1 (es) * 2014-06-06 2015-09-08 Esteyco S.A.P. Sistema de cimentación para torres y procedimiento de instalación del sistema de cimentación para torres
US10053115B2 (en) * 2014-10-01 2018-08-21 Zipholdings, Llc Integrated bollard, anchor, and tower (IBAT) apparatus and method
JP6459372B2 (ja) * 2014-10-14 2019-01-30 新日鐵住金株式会社 既設杭基礎構造に用いる制震構造、及び既設杭基礎構造の補強方法
TWM509010U (zh) * 2015-03-11 2015-09-21 zhong-yan Zheng 可長效保溫的鍋具
US9938685B2 (en) 2015-07-15 2018-04-10 Rute Foundation Systems, Inc. Beam and pile anchor foundation for towers
WO2017011681A1 (en) * 2015-07-15 2017-01-19 Rute Foundation Systems, Inc. Beam and pile anchor foundation for towers
US9518402B1 (en) * 2015-09-04 2016-12-13 Kundel Industries, Inc. Anchoring system
CN105415400B (zh) * 2016-01-21 2017-10-03 昆山铁生机械有限公司 机器人底座
ES2740803T3 (es) * 2016-02-02 2020-02-06 Dywidag Sist Constructivos S A Sistema de conexión de torre eólica
AT517958B1 (de) 2016-02-18 2017-06-15 Holcim Technology Ltd Fundament für ein Windrad
AT517959B1 (de) * 2016-02-18 2017-06-15 Holcim Technology Ltd Fundament für ein Windrad
US9945145B2 (en) * 2016-02-22 2018-04-17 Trinity Meyer Utility Structures Llc Embedded poles for utility poles and structures
AT519190A1 (de) * 2016-09-26 2018-04-15 Holcim Technology Ltd Fundament für eine Windmühle
AT519189B1 (de) * 2016-09-26 2020-04-15 Holcim Technology Ltd Fundament für eine Windmühle
ES2673105B1 (es) 2016-12-19 2019-03-26 Siemens Gamesa Renewable Energy Innovation & Technology SL Método de construcción de la cimentación de una torre
SE541785C2 (en) 2017-05-16 2019-12-17 Powertower Ab Foundation for supporting a wind turbine, a method for mounting the foundation, and a wind power installation
JP6436256B1 (ja) * 2017-07-04 2018-12-12 株式会社タケウチ建設 建築物の基礎構造、及びその施工方法
AU2018356013B2 (en) 2017-10-25 2024-08-01 Rute Foundation Systems, Inc. Tower foundation with concrete box girder beams
DE102018112857A1 (de) 2017-12-13 2019-06-13 Universelle-Fertigteil-Fundamente GmbH Fundament für eine Windkraftanlage
DE102018106998A1 (de) 2018-03-23 2019-09-26 Wobben Properties Gmbh Halbfertigteil für ein Fundament eines Turmbauwerks, Halbfertigteil-Fundamentsegment, Fundament, Verfahren zum Herstellen eines Halbfertigteils sowie Verfahren zum Herstellen eines Fundaments
EP3781747B1 (de) 2018-04-16 2024-08-14 Smart & Green Mukran Concrete GmbH Verfahren zur herstellung eines fundaments für eine windkraftanlage
AT521432B1 (de) 2018-07-13 2020-07-15 Holcim Technology Ltd Fundament für ein Windkraftwerk
AT521433B1 (de) 2018-07-13 2021-12-15 Holcim Technology Ltd Fundament für ein Windkraftwerk
CN108980532B (zh) * 2018-08-01 2024-05-10 中广核研究院有限公司 反应堆支承基础装置
JP6905495B2 (ja) * 2018-09-03 2021-07-21 東電設計株式会社 杭基礎及び杭基礎の施工方法
EP3861174A4 (de) 2018-10-04 2022-05-18 Tetra Tech, Inc. Windturbinenfundament und verfahren zum bau eines windturbinenfundaments
CN210621744U (zh) * 2019-01-18 2020-05-26 深圳国金电力新能设计院有限公司 塔筒基础
US10738436B1 (en) * 2019-02-15 2020-08-11 Montana Systems Inc. Tubular foundation for onshore wind turbine generators
AT522250A1 (de) * 2019-02-28 2020-09-15 Holcim Technology Ltd Fundament für eine Windkraftanlage
FR3093741B1 (fr) * 2019-03-13 2021-04-30 Cte Wind Civil Eng Procédé de terrassement d’une fondation pour éolienne terrestre
DE102019126558A1 (de) * 2019-10-02 2021-04-08 Anker Foundations GmbH Fundament für eine Windkraftanlage
EP3845712A1 (de) * 2019-12-31 2021-07-07 Nordex Energy Spain, S.A.U. Vorgefertigte fundamentstruktur für eine windturbine, windturbine und montageverfahren einer windturbine
CA3194312A1 (en) 2020-09-29 2022-04-07 Gregor Prass Foundation for a wind turbine
DE102020125441A1 (de) 2020-09-29 2022-03-31 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE102020125918A1 (de) 2020-10-04 2022-04-07 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE202020105643U1 (de) 2020-09-29 2022-01-04 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE202020106971U1 (de) 2020-10-04 2022-01-07 Anker Foundations GmbH Fundament für eine Windkraftanlage
DE102021125328A1 (de) 2020-09-29 2022-03-31 Anker Foundations GmbH Ankerkorb für ein Fundament für eine Windkraftanlage
US11613904B2 (en) 2020-11-18 2023-03-28 General Electric Company Pre-fabricated component for an additively manufactured wind turbine tower structure
US11939762B2 (en) 2021-04-27 2024-03-26 Ge Infrastructure Technology Llc System and method for manufacturing a tower structure
DE102021122183A1 (de) 2021-08-26 2023-03-02 Smart & Green Mukran Concrete Gmbh Fundament für einen Turm für eine Windkraftanlage
US11697222B2 (en) 2021-11-01 2023-07-11 General Electric Company Additively manufactured structure with reinforced access opening

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043956A1 (en) * 1998-02-27 1999-09-02 Bonus Energy A/S Method for installation of wind turbines at sea, fundation for wind turbines and use of such foundation
WO2000046452A1 (en) * 1999-02-05 2000-08-10 Northern Technologies, Inc. Support structure for elevating and supporting monopoles and associated equipment
JP2001020849A (ja) * 1999-07-09 2001-01-23 Hitachi Zosen Corp 水上風力発電装置
JP2002129585A (ja) * 2000-10-23 2002-05-09 Hitachi Zosen Corp 洋上風力発電装置の基礎構造
DK174190B1 (da) * 2000-04-12 2002-09-09 Spaencom As Fundament til vindmølle samt fremgangsmåde til montering heraf

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1805311A (en) * 1929-07-26 1931-05-12 Harold O Hill Footing for towers or the like
US2446949A (en) * 1945-08-04 1948-08-10 Richard J Neutra Foundation device for load supporting columns
FR1015719A (fr) * 1950-03-25 1952-10-20 Socle pour poteaux
DE7637601U1 (de) * 1976-12-01 1977-03-31 Stewing, Albert, 4270 Dorsten Vorgefertigtes koecherfundament
DE3336655C2 (de) * 1983-10-08 1995-07-27 Karl Munte Betonwerke Gmbh Gießform und Verfahren zur Herstellung eines Köcherfundament
US4714225A (en) * 1985-07-02 1987-12-22 Skinner Jerald P Foundation system for ground-mounted masts
DE4037438C2 (de) * 1990-11-24 1996-01-18 Bremer Gmbh Transportables Stahlbetonfundament für eine Stütze
DE4313688A1 (de) * 1993-04-27 1994-11-03 Taurus Daten & Mestechnik Gmbh Verfahren zum Bestimmen der siebäquivalenten Partikelgrößenverteilung eines Partikelgemisches
US5499885A (en) * 1993-05-06 1996-03-19 Chapman; William A. Apparatus for joining structural components
EP1074663A1 (de) * 1999-08-06 2001-02-07 Carl Bro as Fundament für Gebäude, insbesondere Fundament für einen Turm, Windenergieanlage oder dergleichen
US6324800B1 (en) * 1999-12-06 2001-12-04 Portable Pipe Hangers, Inc. Support base
US6669163B2 (en) * 2000-01-20 2003-12-30 Universal Support Systems Llc Support apparatus and grounded equipment frame
WO2002027105A1 (en) * 2000-09-27 2002-04-04 Allan P Henderson Perimeter weighted foundation for wind turbines and the like
US6427965B1 (en) * 2000-11-28 2002-08-06 Mccracken Ronald G. Shock and vibration damping pad and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043956A1 (en) * 1998-02-27 1999-09-02 Bonus Energy A/S Method for installation of wind turbines at sea, fundation for wind turbines and use of such foundation
WO2000046452A1 (en) * 1999-02-05 2000-08-10 Northern Technologies, Inc. Support structure for elevating and supporting monopoles and associated equipment
JP2001020849A (ja) * 1999-07-09 2001-01-23 Hitachi Zosen Corp 水上風力発電装置
DK174190B1 (da) * 2000-04-12 2002-09-09 Spaencom As Fundament til vindmølle samt fremgangsmåde til montering heraf
JP2002129585A (ja) * 2000-10-23 2002-05-09 Hitachi Zosen Corp 洋上風力発電装置の基礎構造

Also Published As

Publication number Publication date
CN100513706C (zh) 2009-07-15
DE10321647A1 (de) 2004-12-02
AU2004238973A1 (en) 2004-11-25
CN1784528A (zh) 2006-06-07
WO2004101898A2 (de) 2004-11-25
US20070181767A1 (en) 2007-08-09
BRPI0410248B1 (pt) 2015-12-08
CA2524931C (en) 2010-08-10
AR044316A1 (es) 2005-09-07
CA2524931A1 (en) 2004-11-25
BRPI0410248A (pt) 2006-05-16
JP2006526095A (ja) 2006-11-16
WO2004101898A3 (de) 2005-01-06
JP4146487B2 (ja) 2008-09-10
KR100785358B1 (ko) 2007-12-18
AU2004238973B2 (en) 2008-10-30
KR20060016782A (ko) 2006-02-22

Similar Documents

Publication Publication Date Title
EP1631722A2 (de) Fundament für eine windenergieanlage
AT521433B1 (de) Fundament für ein Windkraftwerk
AT521432B1 (de) Fundament für ein Windkraftwerk
EP0960986A2 (de) Verfahren und Vorrichtung zum Herstellen von hohen, hohlen, turmartigen Bauwerken von zweihundert Metern Höhe und mehr, insbesondere von Türmen für Windkraftanlagen
AT519190A1 (de) Fundament für eine Windmühle
DE102008055607A1 (de) Verfahren zum Errichten eines segmentierten Turms aus Spannbeton für Windkraftanlagen und Turm für Windkraftanlagen
EP4148186A1 (de) Fundament für eine windkraftanlage
DE102019109503A1 (de) Fundament für eine Windkraftanlage
EP3208405B1 (de) Vorrichtung und verfahren zur errichtung von turmartigen bauwerken aus fertigteilelementen
EP3183401B1 (de) Betonkonstruktion in modulbauweise
DE29809541U1 (de) Vorrichtung zum Herstellen von hohen, hohlen, turmartigen Bauwerken von zweihundert Metern Höhe und mehr, insbesondere von Türmen für Windkraftanlagen
DE102016102213A1 (de) Verfahren zum Errichten eines Windkraftturms einer Windkraftanlage mittels eines Krans, Windkraftturm sowie Stahlsegment für einen Windkraftturm einer Windkraftanlage
EP3495589A1 (de) Turm einer windenergieanlage, verfahren zum errichten eines turms einer windenergieanlage, windenergieanlage
EP4222319A1 (de) Fundament für eine windkraftanlage
EP3467236A1 (de) Turm, insbesondere für eine windenergieanlage
WO2013131542A1 (de) Fundament für einen turm einer windkraftanlage
DE102013002472A1 (de) "Schwerkraftfundament für ein Offshore-Bauwerk"
DE202021105272U1 (de) Ankerkorb für ein Fundament für eine Windkraftanlage
WO2022106368A1 (de) Fundament für einen turm für eine windkraftanlage
DE202020105643U1 (de) Fundament für eine Windkraftanlage
DE102021122183A1 (de) Fundament für einen Turm für eine Windkraftanlage
DE202020106971U1 (de) Fundament für eine Windkraftanlage
DE102020125918A1 (de) Fundament für eine Windkraftanlage
WO2019179914A1 (de) Halbfertigteil für ein fundament eines turmbauwerks, halbfertigteil-fundamentsegment, fundament, verfahren zum herstellen eines halbfertigteils sowie verfahren zum herstellen eines fundaments
EP3704333A1 (de) Verfahren zum errichten eines turms mit einer mehrteiligen turmsektion und teilsektion einer mehrteiligen turmsektion eines turms

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080130

DAX Request for extension of the european patent (deleted)
RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20051213

Extension state: LT

Payment date: 20051213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN PROPERTIES GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN PROPERTIES GMBH

18D Application deemed to be withdrawn

Effective date: 20150804

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN, ALOYS