EP1628916B1 - Pyrogen hergestelltes, oberflächenmodifiziertes aluminiumoxid - Google Patents

Pyrogen hergestelltes, oberflächenmodifiziertes aluminiumoxid Download PDF

Info

Publication number
EP1628916B1
EP1628916B1 EP20040734668 EP04734668A EP1628916B1 EP 1628916 B1 EP1628916 B1 EP 1628916B1 EP 20040734668 EP20040734668 EP 20040734668 EP 04734668 A EP04734668 A EP 04734668A EP 1628916 B1 EP1628916 B1 EP 1628916B1
Authority
EP
European Patent Office
Prior art keywords
aluminum oxide
pyrogenically prepared
polyimide
octyltrimethoxysilane
octyltriethoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20040734668
Other languages
English (en)
French (fr)
Other versions
EP1628916A2 (de
Inventor
Jürgen Meyer
Manfred Ettlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to PL04734668T priority Critical patent/PL1628916T3/pl
Publication of EP1628916A2 publication Critical patent/EP1628916A2/de
Application granted granted Critical
Publication of EP1628916B1 publication Critical patent/EP1628916B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to a pyrogenically prepared, surface modified aluminum oxide and a process for the preparation thereof as well as the use thereof.
  • Ceramic oxide particles particularly silica, alumina, titania, and zirconia are known to have corona resistance properties.
  • Sub-micron alumina is often used commercially in such (corona resistance) applications.
  • Pyrogenically prepared aluminum oxides are characterized by extremely fine particle size, high specific surface area (BET), very high purity, spherical particle shape, and the absence of pores. On account of these properties, pyrogenically prepared aluminum oxides are finding increasing interest as supports for catalysts ( Dr. Koth et al., Chem. Ing. Techn. 52, 628 (1980 ).
  • the modification is carried out by spraying aluminum oxide with 0.5 to 40 parts by weight of a silane mixture per 100 parts by weight of aluminum oxide, the silane mixture consisting of 1 to 99 parts by weight of a silane of Formula A and 99 to 1 parts by weight of a silane of Formula B, and the surface modified aluminum oxide having a surface area of 50 to 150 m 2 /g, a tamped density of 50 to 90 g/L, a drying loss of less than 5%, a loss on ignition of 0.5 to 15 %, a C content of 0.5 to 12 % and a pH value of 4 to 8.
  • the object of the present invention is a pyrogenically prepared, surface modified aluminum oxide, which is characterized by: Surface area [m 2 /g] 50 to 150 Tamped density [g/L] 25 to 130 Drying loss [%] less than 5 Loss on ignition [%] 0.1 to 15 C content [%] 0.1 to 15 pH value 3 to 9
  • silanes are employed, either individually or in a mixture: dimethyldichlorosilane, octyltrimethoxysilane, oxtyltriethoxysilane, hexamethyldisilazane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, dimethylpolysiloxane, glycidyloxypropyltrimethoxysilane, glycidyloxypropyltriethoxysilane, nanofluorohexyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane.
  • octyltrimethoxysilane and octyltriethoxysilane can be employed.
  • a further object of the invention is a process for the preparation of the pyrogenically prepared, surface modified aluminum oxide, which is characterized in that the pyrogenically prepared aluminum oxide is sprayed with the surface modifying agent at room temperature and the mixture is subsequently treated thermally at a temperature of 50 to 400 °C over a period of 1 to 6 h.
  • An alternative method for surface modification of the pyrogenically prepared aluminum oxide can be carried out by treating the pyrogenic aluminum oxide with the surface modifying agent in vapor form and subsequently treating the mixture thermally at a temperature of 50 to 800 °C over a period of 0.5 to 6 h.
  • the thermal treatment can be conducted under protective gas, such as, for example, nitrogen.
  • protective gas such as, for example, nitrogen.
  • the surface treatment can be carried out in heatable mixers and dryers with spraying devices, either continuously or batchwise. Suitable devices can be, for example, plowshare mixers or plate, cyclone, or fluidized bed dryers.
  • a high surface area, pyrogenically prepared aluminum oxide that has a specific BET surface area of more than 115 m 2 /g.
  • This pyrogenically prepared aluminum oxide can be prepared in accordance with the flame oxidation method or, preferably, by flame hydrolysis, whereby, as starting material, a vaporized aluminum compound, preferably the chloride, is used.
  • a vaporized aluminum compound preferably the chloride
  • the pyrogenically prepared, surface modified aluminum oxide in accordance with the invention can be employed as additives in high temperature polymers.
  • the surface modified alumina according to this invention can be used in high temperature polymeric materials useful for wire wrap type applications, including polymeric materials comprising at least 50 weight percent high temperature polymers, such as, polyimide, polyetherketone, polyethersulfone polyphthalamide and/or combinations or derivatives.
  • the high temperature polymeric materials comprise corona resistant composite filler, which is the alumina according to the invention, in an amount within a range between (and including) any two of the following weight percentages: 2 and 50 weight percent.
  • the organic component is selected according to the particular solvent system selected for dispersing the composite filler into the high temperature polymeric material (or precursor thereto).
  • the high temperature polymeric material (or precursor thereto) is solvated to a sufficiently low viscosity to allow the composite filler (also suspendable in the solvent system concurrently or in a subsequent step or steps) to be dispersed within the polymer or polymer precursor without undue agglomeration, interfacial voids or other problems that have often been associated with inorganic particle composite fillers dispersed in high temperature polymeric materials.
  • the resulting filled polymeric material has been found to have extraordinary corona resistance, without unduly harming (and in some instances actually improving) mechanical properties.
  • the corona resistant high temperature polymeric materials can be suitable for wire insulation in high voltage applications.
  • wire insulated with the corona resistant compositions can be used in combination with (or as an integral part of) rotors, stators or the like found in large industrial dynamo-electric machinery or the like.
  • compositions comprise: i.a. high temperature polymeric matrix and ii. a composite, corona resistant composite filler.
  • Useful high temperature polymeric matrices of the present invention include as a dominant component a polymer having one or more of the following moieties: amide, imide, ether, sulfone, epoxy, carbonate, ester.
  • Preferred high temperature polymeric matrix polymers include:
  • the polymeric matrix can be a thermoset polyimide, such as a KAPTON® brand polyimide available from E.I. du Pont de Nemours and Company of Wilmington, DE, USA.
  • a thermoset polyimide such as a KAPTON® brand polyimide available from E.I. du Pont de Nemours and Company of Wilmington, DE, USA.
  • the term 'thermoplastic' polyimide is intended to mean a polyimide composition where the glass transition temperature of the material is less than 375, 350, 325 or 300°C.
  • 'thermoset' polyimides are intended to include polyimide compositions where the glass transition temperature is equal to or greater than the above defined (upper limit) glass transition of a thermoplastic polyimide, or otherwise where the polyimide does not have a measurable glass transition temperature.
  • the polymeric binder is a polyimide synthesized by first forming a polyimide precursor (a polyamic acid solution) created by reacting (in a solvent system) one or more dianhydride monomers with one or more diamine monomers. So long as the corona resistant composite filler is sufficiently dispersible in the polyamic acid solution, the composite filler can be dispersed prior to, during, or after the polyamic acid solution is created, at least until polymerization, imidization, solvent removal or other subsequent processing increases viscosity beyond what is needed to disperse the composite filler within the material.
  • the precursor (polyamic acid) is converted into a high temperature polyimide material having a solids content of greater than 99.5 weight percent, and at some point in this process, the viscosity is increased beyond what is necessary to intermix the composite filler into the polyimide or polyimide precursor. Depending upon the particular embodiment chosen, the viscosity could possibly be lowered again by solvating the material, perhaps sufficient to allow dispersion of the composite filler into the material.
  • a volatile aluminum compound is sprayed through a nozzle into a detonating gas made up of hydrogen and air.
  • a detonating gas made up of hydrogen and air.
  • aluminum trichloride is used. This substance undergoes hydrolysis, under the influence of the water formed during the detonating gas reaction, to give aluminum oxide and hydrochloric acid.
  • the aluminum oxide After leaving the flame, the aluminum oxide enters a so-called coagulation zone, in which the aluminum oxide primary particles and primary aggregate agglomerate.
  • the product which is present in this stage as a kind of aerosol, is separated in cyclones from the gaseous accompanying substances and afterwards treated with moist hot air.
  • the particle size of the aluminum oxides can be varied by means of the reaction conditions, such as, for example, flame temperature, hydrogen or oxygen proportion, aluminum trichloride quantity, residence time in the flame, or length of the coagulation zone.
  • AlCl 3 aluminum trichloride
  • the finely divided, high surface area, pyrogenically prepared aluminum oxide is separated after the flame reaction from the simultaneously formed hydrochloric acid gases in a filter or cyclone; subsequently, traces of HCl that still adhere are removed by treatment with moistened air at elevated temperature.
  • the high surface area, pyrogenically prepared aluminum oxide I that forms has the physical-chemical characteristic data shown in Table I.
  • Table 1 for comparison, the data of commercially available, pyrogenic aluminum oxide of the company Degussa AG / Frankfurt is included. (Trade name Aluminiumoxid C [Aluminum Oxide C]) Table 1 Unit High surface area aluminum oxide Aluminum oxide C BET specific surface area m 2 /g 121 100 pH 4% aqueous dispersion 4.9 4.5 Drying loss Weight % 3.3 3.0 Bulk density g/L 55 48 Tamped density g/L 63 57
  • the BET surface area is determined in accordance with DIN 66 131 with nitrogen.
  • the tamped density (formerly the tamped volume) is equal to the quotient of the mass and the volume of a powder after tamping in the tamping volumeter under predetermined conditions.
  • the tamped density is given in g/cm 3 . Because of the very low tamped density of the oxides, however, the value is given in g/L by us. Furthermore, the drying and sieving as well as the repetition of the tamping operation is dispensed with.
  • volumetric cylinder of the tamping volumeter 200 ⁇ 10 mL of oxide is filled into the volumetric cylinder of the tamping volumeter in such a way that no pores remain and the surface is level.
  • the mass of the filled sample is determined precisely to 0.01 g.
  • the volumetric cylinder with the sample is placed in the volumetric cylinder holder of the tamping volumeter and tamped 1250 times. The volume of the tamped oxide is read off 1 time exactly.
  • the pH value is determined in 4 % aqueous dispersion for hydrophobic oxides in Water : methanol 1:1.
  • the determination is conducted in adaptation of DIN/ISO 787/IX: Calibration: Prior to the pH value determination, the measuring apparatus is calibrated with the buffer solutions. If several measurements are carried out in succession, a single calibration suffices.
  • hydrophilic oxide 4 g is stirred into a paste in a 250 mL glass beaker with 96 g (96 mL) of water by use of a dispenser and stirred for five minutes with a magnetic stirrer while the pH electrode is immersed (rpm approx. 1000 min -1) .
  • a weighed quantity of 1 g is used for the drying loss determination.
  • the cover is put in place prior to cooling. A second drying is not conducted.
  • 0.3 - 1 g of the undried substance is weighed to precisely 0.1 mg into a porcelain crucible with a crucible cover, which have been heated red hot beforehand, and heated red hot for 2 hours at 1000°C in a muffle furnace.
  • % Loss on ignition m 0 x 100 - TV 100 - m 1 m 0 x 100 - TV 100 x 100
  • the pyrogenically prepared aluminum oxides are placed in a mixer for surface modification and sprayed first with water and afterwards with the surface modifying agent. After the spraying has ended, mixing can be continued for an additional 15 to 30 min and tamping is subsequently carried out for 1 to 4 h.
  • the water employed can be acidified with an acid - for example, hydrochloric acid - to give a pH value of 7 to 1.
  • the surface modifying agent employed can be dissolve in a solvent, such as, for example, ethanol.
  • Table 3 Preparation of the surface modified, pyrogenically prepared aluminum oxides
  • Silane coated fumed alumina oxide particles according to example 12 were dispersed in a polyimide film.
  • a 19 solids weight (%) percent solution of a polyamic acid derived from pyromellitic acid (PMDA) and 4,4'-oxydianiline (4,4'-ODA) was prepared.
  • the viscosity of the polyamic acid was about 1,000 poise at approximately 98% stoichiometry.
  • the polyamic acid was then degassed and allowed to equilibrate for 24 hours.
  • Silane coated fumed alumina oxide according to example 12 made using a vapor coating process, was added to DMAc to form a 10% by weight slurry.
  • the slurry was sheared using a low shearing force for approximately 5 minutes to disperse the particles.
  • the silane surface coated alumina slurry was then added to the degassed polyamic a cid solution until a 15% by weight concentration of alumina to polymer was achieved.
  • the viscosity of the mixture was adjusted by adding more dianhydride so that the viscosity was about 1000 poise.
  • the polyamic acid and alumina mixtures were poured onto a glass plate and dried in a hot oven where the temperature was ramped from 60°C to 150°C over 15 minutes.
  • a 70 weight % solids semi-cured green film was produced.
  • the semi-cured film was then cured for 3 minutes in a 300°C oven to obtain a ⁇ 1 mil thick polyimide film having about 99.5% solids.
  • the sample was then tested on a Hypotronics ramping voltage dielectric tester. The average of 20 dielectric tests is listed as EXAMPLE 1 in the Table 5 below.
  • Polyimide films were produced starting with a 19 solids weight (%) percent solution of a polyamic acid derived from pyromellitic acid (PMDA) and 4,4'-oxydianiline (4,4'-ODA).
  • the viscosity of the polyamic acid was about 1,000 poise at approximately 98% stoichiometry.
  • the polyamic acid was then degassed and allowed to equilibrate for 24 hours.
  • the polyamic acid was poured onto a glass plate and dried in a temperature ramped oven from 60°C to 150°C over 15 minutes to obtain a 70 weight % solids semi-cured green film.
  • the semi-cured film was then cured for 3 minutes in a 300°C oven to obtain a ⁇ 1 mil thick polyimide film having about 99.5% solids.
  • the sample was then tested on a Hypotronics ramping voltage dielectric tester. The average of 20 dielectric tests is listed as COMPARATIVE EXAMPLE 1 in Table 5 below.
  • a polyimide film was produced using a commercial scale manufacturing line.
  • the polyimide was made using a 19 percent by weight solution of polyamic acid derived from PMDA and 4,4'-ODA.
  • the viscosity of the polyamic acid was about 1,500 poise and the stoichiometry of the polymer was about 98%.
  • a 10% by weight slurry of low sheared, silane coated fumed alumina oxide was added to the polyamic acid. The mixture was sheared to substantial homogeneity and additional dianhydride was added to increase the viscosity of the mixture to about 1500 poise.
  • the polyamic acid, silane coated fumed alumina oxide mixture was cast onto a belt and thermally cured to about 70% solids by weight.
  • the wet film was cured in a tenter oven at 400°C to about 99.5% solids by weight.
  • the polyamic acid was converted to a polyimide.
  • the polyimide film was tested on the Hypotronics ramping voltage dielectric tester. The average dielectric strength of about 100 tests is listed in Table 2 bellow. The mechanical properties of the film are shown in Table 3 below.
  • a polyimide film was produced using a commercial scale manufacturing line.
  • the polyimide was made using a 19 percent by weight solution of polyamic acid derived from PMDA and 4,4'-ODA.
  • the viscosity of the polyamic acid was about 1,500 poise and the stoichiometry of the polymer was about 98%.
  • the polyamic acid was cast onto a belt and thermally cured to about 70% solids by weight.
  • the wet film was cured in a tenter oven at 400°C to about 99.5% solids by weight where the polyamic acid was converted to a polyimide.
  • the polyimide film was tested on the Hypotronics ramping voltage dielectric tester. The average dielectric strength of about 100 tests is listed in Table 6 below. The mechanical properties of the film are shown in Table 7 below.
  • a polyimide film was produced using a commercial scale manufacturing line.
  • the polyimide was made using a 19% by weight solution of polyamic acid derived from PMDA and 4,4'-ODA.
  • the viscosity of the polyamic acid was about 1,500 poise and the stoichiometry of the polymer was about 98%.
  • a 10% by weight slurry of highly sheared, non-surface treated fumed alumina oxide was added to the polyamic acid at the same quantities and concentration as EXAMPLE 2.
  • the mixture was sheared to substantial homogeneity and additional dianhydride was added to increase the viscosity of the mixture to about 1500 poise.
  • the polyamic acid, non-surface treated fumed alumina oxide mixture was cast onto a belt and thermally cured to about 70% solids by weight.
  • the wet film was cured in a tenter oven at 400°C to about 99.5% solids by weight.
  • the polyamic acid was converted to a polyimide.
  • the polyimide film was tested on the Hypotronics ramping voltage dielectric tester. The average dielectric strength of about 100 tests is listed in Table 2 below. The mechanical properties of the film are shown in Table 3 below.

Claims (6)

  1. Pyrogen hergestelltes, oberflächenmodifiziertes Aluminiumoxid mit den folgenden physikalisch-chemischen Eigenschaften: Oberfläche [m2/g] 50 bis 150 Stampfdichte [g/l] 25 bis 130 Trocknungsverlust [%] weniger als 5 Glühverlust [%] 0,1 bis 15 C-Gehalt [%] 0,1 bis 15 pH-Wert 3 bis 9,
    dadurch gekennzeichnet, dass es mit einem Oberflächenmodifizierungsmittel behandelt wurde, das aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Dimethyldichlorsilan, Octyltrimethoxysilan, Octyltriethoxysilan, Hexamethyldisilazan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, Hexadecyltrimethoxysilan, Hexadecyltriethoxysilan, Dimethylpolysiloxan, Glycidyloxypropyltrimethoxysilan, Glycidyloxypropyltriethoxysilan, Nanofluorhexyltrimethoxysilan, Tridecafluoroctyltrimethoxysilan, Tridecafluoroctyltriethoxysilan.
  2. Pyrogen hergestelltes, oberflächenmodifiziertes Aluminiumoxid nach Anspruch 1, dadurch gekennzeichnet, dass es mit einem Oberflächenmodifizierungsmittel behandelt wurde, das aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Octyltrimethoxysilan und Octyltriethoxysilan.
  3. Polymerzusammensetzung, die ein duroplastisches oder thermoplastisches Polymer und das pyrogen hergestellte, oberflächenmodifizierte Aluminiumoxid nach Anspruch 1 oder 2 umfasst.
  4. Formteil, das aus der Polymerzusammensetzung nach Anspruch 3 gefertigt ist.
  5. Verfahren zur Herstellung des wie in Anspruch 1 oder 2 definierten pyrogen hergestellten, oberflächenmodifizierten Aluminiumoxids, wobei das Verfahren das Besprühen des pyrogen hergestellten Aluminiumoxids mit einem Oberflächenmodifizierungsmittel, das aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Dimethyldichlorsilan, Octyltrimethoxysilan, Octyltriethoxysilan, Hexamethyldisilazan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, Hexadecyltrimethoxysilan, Hexadecyltriethoxysilan, Dimethylpolysiloxan, Glycidyloxypropyltrimethoxysilan, Glycidyloxypropyltriethoxysilan, Nanofluorhexyltrimethoxysilan, Tridecafluoroctyltrimethoxysilan, Tridecafluoroctyltriethoxysilan,
    vorzugsweise aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Octyltrimethoxysilan und Octyltriethoxysilan,
    bei Raumtemperatur umfasst, und das Gemisch anschließend bei einer Temperatur von 50 bis 400 °C für einen Zeitraum von 1 bis 6 h wärmebehandelt wird.
  6. Verfahren zur Herstellung des wie in Anspruch 1 oder 2 definierten pyrogen hergestellten, oberflächenmodifizierten Aluminiumoxids, wobei das Verfahren das Besprühen des pyrogen hergestellten Aluminiumoxids mit einem Oberflächenmodifizierungsmittel, das aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Dimethyldichlorsilan, Octyltrimethoxysilan, Octyltriethoxysilan, Hexamethyldisilazan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, Hexadecyltrimethoxysilan, Hexadecyltriethoxysilan, Dimethylpolysiloxan, Glycidyloxypropyltrimethoxysilan, Glycidyloxypropyltriethoxysilan, Nanofluorhexyltrimethoxysilan, Tridecafluoroctyltrimethoxysilan, Tridecafluoroctyltriethoxysilan,
    vorzugsweise aus der Gruppe bestehend aus folgenden ausgewählt ist:
    Octyltrimethoxysilan und Octyltriethoxysilan,
    in Dampfform umfasst, und das Gemisch anschließend bei einer Temperatur von 50 bis 800 °C für einen Zeitraum von 0,5 bis 6 h wärmebehandelt wird.
EP20040734668 2003-06-04 2004-05-25 Pyrogen hergestelltes, oberflächenmodifiziertes aluminiumoxid Active EP1628916B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04734668T PL1628916T3 (pl) 2003-06-04 2004-05-25 Wytwarzany pirogenicznie telenek glinu o modyfikowanej powierzchni

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/455,504 US7442727B2 (en) 2003-06-04 2003-06-04 Pyrogenically prepared, surface modified aluminum oxide
PCT/EP2004/005583 WO2004108595A2 (en) 2003-06-04 2004-05-25 Pyrogenically prepared, surface modified aluminum oxide

Publications (2)

Publication Number Publication Date
EP1628916A2 EP1628916A2 (de) 2006-03-01
EP1628916B1 true EP1628916B1 (de) 2015-04-29

Family

ID=33489965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040734668 Active EP1628916B1 (de) 2003-06-04 2004-05-25 Pyrogen hergestelltes, oberflächenmodifiziertes aluminiumoxid

Country Status (7)

Country Link
US (1) US7442727B2 (de)
EP (1) EP1628916B1 (de)
JP (1) JP4338731B2 (de)
KR (2) KR101258107B1 (de)
CN (1) CN1798702B (de)
PL (1) PL1628916T3 (de)
WO (1) WO2004108595A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670589A1 (de) 2018-12-20 2020-06-24 LANXESS Deutschland GmbH Polyamidzusammensetzungen
WO2020126984A1 (de) 2018-12-20 2020-06-25 Lanxess Deutschland Gmbh Polyesterzusammensetzungen
WO2020225018A1 (en) 2019-05-07 2020-11-12 Evonik Operations Gmbh Lithium-ion battery separator coated with surface treated alumina

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015260B2 (en) * 2003-06-04 2006-03-21 E.I. Du Pont De Nemours And Company High temperature polymeric materials containing corona resistant composite filler, and methods relating thereto
JP4565329B2 (ja) * 2004-12-08 2010-10-20 Dic株式会社 有機無機複合体及びその製造方法
EP1700825A1 (de) * 2004-12-23 2006-09-13 Degussa AG Oberflächenmodifizierte, strukturmodifizierte Titandioxide
JP4584014B2 (ja) * 2005-04-25 2010-11-17 日立マグネットワイヤ株式会社 耐部分放電性絶縁塗料、絶縁電線、及びそれらの製造方法
JP4542463B2 (ja) * 2005-04-25 2010-09-15 日立マグネットワイヤ株式会社 耐部分放電性絶縁塗料、絶縁電線、及びそれらの製造方法
US20070090052A1 (en) * 2005-10-20 2007-04-26 Broske Alan D Chromatographic stationary phase
DE102006033236A1 (de) 2006-07-18 2008-01-24 Wacker Chemie Ag Zusammensetzung auf der Basis von Organosiliciumverbindungen
WO2008027561A2 (en) * 2006-09-01 2008-03-06 Cabot Corporation Surface-treated metal oxide particles
CN101835830B (zh) * 2007-08-31 2013-02-20 卡伯特公司 热界面材料
DE102008054717A1 (de) * 2008-12-16 2010-06-17 Evonik Degussa Gmbh Optimierte Anbindung eines Vakuumpackers an Silos zur Abfüllung von hochdispersen Stoffen in einen Behälter
US8256884B2 (en) * 2009-04-01 2012-09-04 E I Du Pont De Nemours And Company Ink jet ink and ink set
KR101064816B1 (ko) * 2009-04-03 2011-09-14 주식회사 두산 폴리아믹산 용액, 폴리이미드 수지 및 이를 이용한 연성 금속박 적층판
US9631054B2 (en) 2010-07-23 2017-04-25 E I Du Pont De Nemours And Company Matte finish polyimide films and methods relating thereto
US11203192B2 (en) 2009-08-03 2021-12-21 E I Du Pont De Nemours And Company Matte finish polyimide films and methods relating thereto
US8574720B2 (en) 2009-08-03 2013-11-05 E.I. Du Pont De Nemours & Company Matte finish polyimide films and methods relating thereto
US8541107B2 (en) * 2009-08-13 2013-09-24 E. I. Du Pont De Nemours And Company Pigmented polyimide films and methods relating thereto
US9926415B2 (en) 2010-08-05 2018-03-27 E I Du Pont De Nemours And Company Matte finish polyimide films and methods relating thereto
JP5663160B2 (ja) * 2009-09-28 2015-02-04 東京応化工業株式会社 表面処理剤及び表面処理方法
US20120080970A1 (en) * 2010-02-22 2012-04-05 General Electric Company High voltage and high temperature winding insulation for esp motor
US8784993B2 (en) * 2010-12-15 2014-07-22 General Electric Company High temperature high frequency magnet wire and method of making
EP2596052A1 (de) * 2010-07-23 2013-05-29 E.I. Du Pont De Nemours And Company Polyimidfolien mit matter oberfläche und verfahren im zusammenhang damit
KR101475852B1 (ko) 2010-11-02 2014-12-23 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 절연된 관통 실리콘 비아를 가지는 반도체 구조
US20130209769A1 (en) * 2012-02-09 2013-08-15 E I Du Pont De Nemours And Company Corona resistant structures and methods relating thereto
US8641475B1 (en) * 2012-09-18 2014-02-04 Cheng Hung-Ming Bra cup with an air bag
HUE059556T2 (hu) 2016-05-16 2022-11-28 Martinswerk Gmbh Timföld termékek és alkalmazásaik olyan polimer kompoziciókban, amelyek nagy hõvezetési tényezõvel rendelkeznek
KR20240007925A (ko) 2021-05-14 2024-01-17 에보니크 오퍼레이션즈 게엠베하 감소된 수분 함량을 갖는 흄드 알루미나 분말
CN113755035B (zh) * 2021-09-28 2022-07-26 亚士创能科技(上海)股份有限公司 环氧基硅烷改性纳米氧化铝和聚合物水泥基防水涂料
WO2023232574A1 (en) * 2022-06-03 2023-12-07 Evonik Operations Gmbh Anode active material particles encapsulated in pyrogenic, nanostructured metal oxides and methods of making and using the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2511913A (en) 1950-06-20 Compositions of resinous epoxides
NL52346C (de) 1938-08-23
US2324463A (en) * 1942-03-06 1943-07-20 Vernon E Brady Tire chain applicator and fastening device
BE456650A (de) 1943-06-16
US2494295A (en) 1946-09-13 1950-01-10 Devoe & Raynolds Co Compositions of resinous epoxides and aromatic sulfonamide-aldehyde condensates
NL73196C (de) 1948-02-28
US3720617A (en) * 1970-05-20 1973-03-13 Xerox Corp An electrostatic developer containing modified silicon dioxide particles
US3812214A (en) 1971-10-28 1974-05-21 Gen Electric Hardenable composition consisting of an epoxy resin and a metal acetylacetonate
US3776978A (en) 1972-01-07 1973-12-04 M Markovitz Epoxy resins containing phenolic accel-erators and organic titanates
US4308312A (en) 1979-07-24 1981-12-29 General Electric Company Dielectric films with increased voltage endurance
US4760296A (en) 1979-07-30 1988-07-26 General Electric Company Corona-resistant insulation, electrical conductors covered therewith and dynamoelectric machines and transformers incorporating components of such insulated conductors
US5166308A (en) 1990-04-30 1992-11-24 E. I. Du Pont De Nemours And Company Copolyimide film with improved properties
EP0474054B1 (de) 1990-08-27 1995-12-06 E.I. Du Pont De Nemours And Company Flexible Polyimid-Mehrschichtlaminate und ihre Herstellung
DE69127352T2 (de) * 1991-02-15 1997-12-18 Mitsubishi Materials Corp Hydrophobes Aluminiumoxid und dieses enthaltendes Entwicklerpulver für die Elektrophotographie
DE4202694C1 (en) * 1992-01-31 1993-07-01 Degussa Ag, 6000 Frankfurt, De Silane surface-modified pyrogenic alumina, for use in toner - to increase charge stability, produced by spraying with silane mixt. free from solvent
JP3102822B2 (ja) * 1992-05-29 2000-10-23 日本ジーイープラスチックス株式会社 レーザーマーキング用樹脂組成物
DE19500674A1 (de) * 1995-01-12 1996-07-18 Degussa Oberflächenmodifizierte pyrogen hergestellte Mischoxide, Verfahren zu ihrer Herstellung und Verwendung
DE19943291A1 (de) * 1999-09-10 2001-03-15 Degussa Pyrogen hergestelltes Aluminiumoxid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670589A1 (de) 2018-12-20 2020-06-24 LANXESS Deutschland GmbH Polyamidzusammensetzungen
WO2020126984A1 (de) 2018-12-20 2020-06-25 Lanxess Deutschland Gmbh Polyesterzusammensetzungen
WO2020225018A1 (en) 2019-05-07 2020-11-12 Evonik Operations Gmbh Lithium-ion battery separator coated with surface treated alumina

Also Published As

Publication number Publication date
US20040249019A1 (en) 2004-12-09
JP2006526559A (ja) 2006-11-24
EP1628916A2 (de) 2006-03-01
CN1798702B (zh) 2011-12-07
KR101258107B1 (ko) 2013-04-30
KR101118483B1 (ko) 2012-03-21
WO2004108595A3 (en) 2005-04-14
KR20060020658A (ko) 2006-03-06
KR20110136884A (ko) 2011-12-21
CN1798702A (zh) 2006-07-05
US7442727B2 (en) 2008-10-28
PL1628916T3 (pl) 2015-09-30
WO2004108595A2 (en) 2004-12-16
JP4338731B2 (ja) 2009-10-07

Similar Documents

Publication Publication Date Title
EP1628916B1 (de) Pyrogen hergestelltes, oberflächenmodifiziertes aluminiumoxid
US6743269B2 (en) Granules based on pyrogenically produced aluminium oxide, process for the production thereof and use thereof
US6613300B2 (en) Doped, pyrogenically prepared oxides
US7713626B2 (en) Silanised silicas
JP3469141B2 (ja) エーロゾルを用いて酸化アルミニウムをドーピングした熱分解法二酸化珪素、その製法、その使用およびその配合物
KR102020066B1 (ko) 내부분방전성 및 부분방전 개시전압 특성이 우수한 절연 전선
US7972431B2 (en) Surface-modified silicas
KR101190923B1 (ko) 금속 산화물상의 유기작용성 실리콘 수지층
CN111868159B (zh) 一种球形二氧化硅粉体填料的制备方法、由此得到的粉体填料及其应用
EP1266864A1 (de) Granulate auf Basis von mittels Aerosol mit Aluminiumoxid dotiertem, pyrogen hergestelltem Siliziumdioxid, Verfahren zu ihrer Herstellung und ihre Verwendung
Zawrah et al. Facile and economic synthesis of silica nanoparticles
US20070173587A1 (en) Silicone rubber
Tang et al. Polyimide‐silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface‐modified silica
KR100954642B1 (ko) 알칼리 금속 옥사이드를 포함하는 혼합 옥사이드 분말, 및상기 분말을 포함하는 실리콘 고무
EP1845136B1 (de) Rheologiesteuerung stark basischer Flüssigkeiten
JPH0116794B2 (de)
WO2007020855A1 (ja) 球状化無機物粉末の製造方法
JP6564551B1 (ja) 表面改質チタン酸バリウム粒子材料、チタン酸バリウム含有樹脂組成物、及びチタン酸バリウム分散液
Tang et al. Preparation and properties of polyimide/silica hybrid nanocomposites
Al Arbash et al. Microstructure and thermomechanical properties of polyimide-silica nanocomposites
Watson et al. Space durable polyimide/carbon nanotube composite films for electrostatic charge mitigation
WO2024024432A1 (ja) 複合銅ナノ粒子及び複合銅ナノ粒子の製造方法
RU2673292C1 (ru) Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью
WO2023232587A1 (en) Pyrogenically prepared surface modified magnesium oxide
JPH02296717A (ja) 改善された処理特性を有する酸化アルミニウム粉末、その製造法及びその使用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051102

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEGUSSA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

17Q First examination report despatched

Effective date: 20071108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004047096

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C01F0007020000

Ipc: C09C0001400000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C09C 1/40 20060101AFI20150120BHEP

Ipc: C01F 7/02 20060101ALI20150120BHEP

INTG Intention to grant announced

Effective date: 20150213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 724435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004047096

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 724435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150730

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004047096

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040525

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150525

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004047096

Country of ref document: DE

Representative=s name: STOLMAR & PARTNER PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004047096

Country of ref document: DE

Owner name: EVONIK OPERATIONS GMBH, DE

Free format text: FORMER OWNER: EVONIK DEGUSSA GMBH, 45128 ESSEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 20

Ref country code: FR

Payment date: 20230525

Year of fee payment: 20

Ref country code: DE

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230522

Year of fee payment: 20

Ref country code: PL

Payment date: 20230512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 20