RU2673292C1 - Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью - Google Patents

Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью Download PDF

Info

Publication number
RU2673292C1
RU2673292C1 RU2017127657A RU2017127657A RU2673292C1 RU 2673292 C1 RU2673292 C1 RU 2673292C1 RU 2017127657 A RU2017127657 A RU 2017127657A RU 2017127657 A RU2017127657 A RU 2017127657A RU 2673292 C1 RU2673292 C1 RU 2673292C1
Authority
RU
Russia
Prior art keywords
silicon carbide
hours
minutes
inert gas
khz
Prior art date
Application number
RU2017127657A
Other languages
English (en)
Inventor
Антон Сергеевич Егоров
Алена Игоревна Возняк
Виталий Сергеевич Иванов
Original Assignee
Общество с ограниченной ответственностью "ПолиКомпозиты"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ПолиКомпозиты" filed Critical Общество с ограниченной ответственностью "ПолиКомпозиты"
Priority to RU2017127657A priority Critical patent/RU2673292C1/ru
Application granted granted Critical
Publication of RU2673292C1 publication Critical patent/RU2673292C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Изобретение относится к области получения композиционных материалов с применением нанотехнологии. Описан способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью, осуществляемый реакцией конденсации диангидридов ароматических поликарбоновых кислот и 4,4'-оксидианилина в токе инертного газа в среде полярного органического растворителя (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) в присутствии модифицированного наноструктурированного карбида кремния, полученного из немодифицированного наноструктурированного карбида кремния, предварительно окисленного на воздухе при температуре от 700 до 1200°С в течение 5-20 минут и охлажденного до комнатной температуры в вакууме или токе инертного газа, суспендированного в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в течение 20-40 минут, который в виде суспензии, содержащей 20-40 мас.% карбида кремния от веса получаемого композита при 80-100°С, перемешивается с 3-аминопропилтриэтоксисиланом, вводимым в количестве, соответствующем весовому соотношению силана к карбиду кремния, равному 1:(5-10), в течение 40-60 минут, после чего суспендированный модифицированный карбид кремния отфильтровывают и перемешивается с 4,4'-оксидианилином в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в токе инертного газа в течение 20-40 минут, охлаждается до 5-10°С, к образовавшейся реакционной массе порционно при перемешивании добавляется эквимолярное по отношению к 4,4'-оксидианилину количество диангидрида ароматической поликарбоновой кислоты, и образовавшаяся реакционная масса подвергается воздействию ультразвука с частотой 20 кГц в течение 15-25 минут, затем перемешивается при 20-25°С в течение 5-9 часов, затем образовавшееся полимерное соединение помещается в термостойкую емкость и сушится при ступенчатом нагреве по следующей схеме: от 50 до 65°С в течение 2-3 часов, от 90 до 115°С в течение 3-4 часов, от 150 до 250°С в течение 2-3 часов, от 280 до 300°С в течение 0,5-1 часов, с последующим вакуумным охлаждением или охлаждением в токе инертного газа. Технический результат: предложен способ получения композитного материала с высокой температурой разложения. 2 з.п. ф-лы, 2 пр.

Description

Предлагаемое изобретение относится к области получения композиционных материалов с применением нанотехнологии, а именно касается технологии получения композитов на основе полиимидной матрицы, наполненной наноструктурированным карбида кремния с модифицированной поверхностью, которые могут быть применены в различных областях техники, в частности при изготовлении конструкционных материалов, используемых в авиационной и космической отрасли, в ракетостроении, электротехнике, в кабельной промышленности и микроэлектронике.
В виду повышенной термостойкости материалов на основе полиимидов и карбида кремния [Polyimides composites based on asymmetric dianhydrides / International sample symposium, may, 18-21, Baltimore, MD92009] они применяются, в частности, в кабельной промышленности при изготовлении электроизоляционных лаков и эмалей, наносимых в виде покрытий на различные изделия и провода, которые используются в разных областях техники.
Рассматриваемые композиционные материалы относятся к так называемым гибридным материалам, которые содержат органическое связующее - полиимидную матрицу и наполнитель (армирующий агент) -наноразмерный карбид кремния с модифицированной поверхностью. Известно, что карбид кремния в качестве наполнителя широко используется в составах различных термостойких композиционных материалов, например, выполненных из стекла [Жабреев В.А. и др. Институт химии силикатов. Труды 18 Совещания по термоустойчивым покрытиям, Изд. Тульского государственного педагогического университета, 2001, с. 85-89].
В качестве матрицы в композиционных материалах может применяться широкий круг органических соединений: различные смолы, например, метилвинилсилоксановая смола, кремнийорганические смолы, эпоксидные смолы [RU 2039070, C09D 5/18, 1996; RU 2217456, C09D 5/18, 2002], полиамидоимидиновые производные, содержащие неорганические наполнители, такие как диоксид кремния, сульфид молибдена, графит [WO 2004011793, С04B 28/06, 2004], полиимиды, содержащие наноструктурированный карбид кремния [CN 102850563 А, С04B 28/06, 2012, RU 2620122, С04B 28/06, 2017].
Известен полиимидный композиционный материал на основе наноструктурированного карбида кремния с полиимидной матрицей, полученной конденсацией различных ароматических диаминов (1,4-диаминобензол, 4,4'-оксидианилин, 1,4-диамино-2,5-диметилбензол, 4,4'-сульфодианилин, [4-{3-[4-амино-2-(трифторметил)фенокси]фенокси}-3-(трифторметил)фенил]амин, 1,4-диамино-2-метилбензол, 1,3-диаминобензол, 4,4'-диамино-2,2',3,3',5,5',6,6'-октафторбифенил, 1,4-диамино-2-фторбензол, тетрафтор-мета-фенилендиамин, 1,4-диамино-2-(трифторметил)бензол, тетрафтор-пара-фенилендиамин, 1,5-диаминонафталин, [4-{4-[4-амино-3-(трифторметил)фенокси]фенокси}-2-(трифторметил)фенил]амин, [4-{4-[4-амино-2-(трифторметил)фенокси]фенокси}-3-(трифторметил)фенил]амин, [4-{4-[4-амино-2-(трифторметил)фенокси]-2,3,5,6-тетрафторфенокси}-3-(трифторметил)фенил]амин) и диангидридов ароматических поликарбоновых кислот (3-фенилбензол-1,2,4,5-тетракарбоновой, 1,4-дифторпиромеллитовой, 1-трифторметил-2,3,5,6-бензолтетракарбоновой, 1,4-бис(трифторметил)-2,3,5,6-бензолтетракарбоновой, пиромеллитовой, 3,3'4,4'-бензофенонтетракарбоновой, перилен-3,4,9,10-тетракарбоновой, нафталин-1,4,5,8-тетракарбоновой, 4,4'-(гексафторизопропилиден)дифталевой, дифенил-2,2',3,3'-тетракарбоновой, дифенил-3,3',4,4'-тетракарбоновой, нафталин-2,3,6,7-тетракарбоновой, дифенилоксид-3,3',4,4'-тетракарбоновой кислот). [RU 2620122, С04B 28/06, 2017]. Данный способ по своей технической сущности наиболее близок к заявляемому изобретению и поэтому выбран в качестве его прототипа. Цитированный патент защищает способ получения полиимидной композитной пленки, армированной наноструктурированным карбидом кремния с модифицированной и немодифицированной поверхностью, вводимого в состав в количестве, составляющем 0,2-10 мас. % от веса получаемого композита. Карбид кремния вводится в виде его суспензии в сухом полярном органическом растворителе, при этом суспендирование армирующего агента - наноструктурированного карбида кремния (модифицированного и не модифицированного) и реакция конденсации диангидридов ароматических поликарбоновых кислот и ароматических диаминов проводятся в одноименном сухом органическом растворителе, выбранном из группы: N-метилпирролидон, NN-диметилформамид, NN-диметилацетамид, Модифицированный карбид кремния предварительно получают обработкой суспензии не модифицированного наноструктурированного карбида кремния при 100-150°C хлорсиланом (триметилхлорсиланом, диметилфенилхлорсиланом, трифенилхлорсиланом), вводимом в количестве, соответствующем весовому соотношению модификатора по отношению к карбиду кремния, равному 1:(0,5-5). Суспензию модифицированного или не модифицированного карбида кремния перемешивают с помощью ультразвука в токе инертного газа с диамином, после чего охлаждают до 1-15°C и к образовавшейся реакционной массе добавляют при перемешивании эквимолярное по отношению к диамину количество диангидрида. Реакционную массу подвергают ультразвуковому перемешиванию при температуре на уровне 30-40°C, затем ее перемешивают при 20-25°C в течение 3-8 часов, повторно подвергают ультразвуковому перемешиванию. Ультразвуковое перемешивание на всех, включающих его стадиях процесса, проводится под воздействием ультразвука с частотой 20 кГц в течение 15-30 минут, полученную дисперсию наносят на подложку, помещают в сушку при 70°C-90°C и сушат нанесенное пленочное покрытие при ступенчатом нагреве по следующей схеме: от 70°C до 90°C в течение 3-8 часов, от 120°C до 180°C в течение 0,5-2 часов, от 190°C до 230°C в течение 0,5-2 часов, от 240°C до 280°C в течение 0,5-2 часов, от 290°C до 300°C в течение 0,5-2 часов, от 340°C до 400°C в течение 0,1-1 час, с последующим вакуумным охлаждением или охлаждением в токе инертного газа. Получая тем самым конечный продукт - полиимидную композитную пленку, армированную модифицированными или не модифицированными наночастицами карбида кремния. К недостаткам известного вышеописанного способа можно отнести: длительность проведения всего процесса, а также невозможность получения композиционных материалов с большим содержанием карбида кремния без расслаивания конечного композита. Эти недостатки делают процесс мало технологичным и узконаправленным по содержанию наполнителя, т.к. направлено на получение композитного материала только содержанием наполнителя до 10% по массе включительно.
С целью создания большого спектра композитных материалов из полиимида и наноструктурированного карбида кремния, включающие как ранее известные, так и новые материалы, а также для удешевления и введения большего количества наполнителя в исходную матрицу предлагается новый способ получения нанокомпозитов с модифицированным наноструктурированным карбидом кремния на основе полиимидной матрицы.
Предлагается способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью, осуществляемый реакцией конденсации диангидридов ароматических поликарбоновых кислот (выбранных из группы пиромеллитовой и 3,3'4,4'-бензофенонтетракарбоновой кислот) и 4,4'-оксидианилина в токе инертного газа в среде полярного органического растворителя (выбранного из группы: N-метилпирролидон, NN-диметилацетамид) в присутствии модифицированного наноструктурированного карбида кремния, полученного из немодифицированного наноструктурированного карбида кремния предварительно окисленного на воздухе при температуре от 700°C до 1200°C в течении 5-20 минут и охлажденного до комнатной температуры в вакууме или токе инертного газа, диспергированного в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в течение 20 - 40 минут, который в виде суспензии, содержащей 20-40 масс. % карбида кремния от веса получаемого композита при 80-100°C перемешивается с 3-аминопропилтриэтоксисиланом, вводимым в количестве, соответствующем весовому соотношению силана к карбиду кремния, равному 1:(5-10), в течение 40-60 минут, после чего суспендированный модифицированный карбид кремния отфильтровывается и перемешивается с 4,4'-оксидианилином в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в токе инертного газа в течение 20 - 40 минут, охлаждается до 5-10°C, к образовавшейся реакционной массе порционно при перемешивании добавляется эквимолярное по отношению к 4,4'-оксидианилину количество диангидрида ароматической поликарбоновой кислоты и образовавшаяся реакционная масса подвергается воздействию ультразвука в течение 15-25 минут, затем перемешивается при 20-25°C в течение 5-9 часов, затем образовавшееся полимерное соединение помещается в термостойкую емкость, и сушится при ступенчатом нагреве по следующей схеме: от 50°C до 65°C в течение 2-3 часов, от 90°C-до 115°C в течение 3-4 часов, от 150°C до 250°C в течение 2-3 часов, от 280°C до 300°C в течение 0,5-1 часов, с последующим вакуумным охлаждением или охлаждением в токе инертного газа.
В основе предлагаемого способа лежит реакция конденсации диангидрида с диамином в присутствии наноструктурированного карбида кремния с модифицированной поверхностью:
Figure 00000001
Существенным отличием от прототипа, который рассмотрен для получения композитов на основе различных полиимидных матриц с содержанием наноструктурированного карбида кремния до 10% от массы конечного материала, предлагаемый способ применяется для получения композитов с содержанием наноструктурированного карбида кремния до 40% от массы конечного композита. Это обеспечивается за счет предварительного окисления поверхности карбида кремния на воздухе при температурах от 700°C до 1200°C в течении 5-20 минут и охлаждения до комнатной температуры в вакууме или токе инертного газа, увеличение степени окисления поверхности карбида кремния увеличивает площадь модификации поверхности карбида кремния, что в свою очередь позволяет получать композиционных материалы с большим содержанием наполнителя, к тому же в роли модифицирующего агента используется коммерчески доступный 3-аминопропилтриэтоксисилан, что позволяет связать неорганический наполнитель с органической полимерной матрицей при помощи прочной ковалентной C-N связи, за счет свободной аминогруппы в модификаторе.
Структурные формулы используемых диангидридов ароматических поликарбоновых кислот
Figure 00000002
Экспериментальные исследования показали, что наибольшего эффекта удается достигнуть при ультразвуковом воздействии в течение 20-40 минут с использованием ультразвукового диспергатора с частотой 20 кГц, но только до момента прибавления диангидрида поликарбоновой кислоты, иначе происходит частичное разрушение получаемого композита.
Существенное влияние на процесс оказывают температурные и временные режимы на каждой стадии процесса. Существенным признаком процесса является проведение стадии сушки на конечном этапе, когда происходит превращение препрега композита в конечный нанокомпозит, осуществляемое при специально подобранном температурном режиме: от 50°C до 65°C в течение 2-3 часов, от 90°C-до 115°C в течение 3-4 часов, от 150°C до 250°C в течение 2-3 часов, от 280°C до 300°C в течение 0,5-1 часов, с последующим вакуумным охлаждением или охлаждением в токе инертного газа.
Новый способ получения нанокомпозитов на основе наноструктурированного карбида кремния с модифицированной поверхностью и полиимидной матрицы позволяет получить композиты с большим содержанием наполнителя по сравнению с известным способом-прототипом.
Дополнительные исследования показали, что получаемые новым способом композиты имеют температуру начала разложения более 550°C на воздухе. Благодаря таким свойствам, получаемые композиты могут применяться в состав деталей авиационных и ракетных двигателей при изготовлении уплотнений, вкладышей, подшипников.
Ниже изобретение иллюстрируется следующими примерами.
Пример 1.
В муфельную печь, разогретую до температуры 700°C, помещают 19,2 г (0,48 моль) немодифицированного наноструктурированного карбида кремния (SiC) (предварительно полученного измельчением агрегатов карбида кремния до частиц размером не более 0,1 мм) и выдерживают в течение 20 минут, после чего в четырехгорлую колбу объемом 2000 мл, снабженную ультразвуковым диспергатором с частотой 20 кГц., обратным холодильником, трубкой для ввода инертного газа и термометром, загружают полученный окисленный порошок наноструктурированного SiC в 400 мл сухого N-метил-2-пирролидона, 530,4 г (2,4 моль) 3-аминопропилтриэтоксисилана и диспергируют при помощи ультразвука с частотой 20 кГц в течение 20 минут, после чего извлекают волновод ультразвукового диспергатора и перемешивают, полученную суспензию при помощи механической мешалки в течение 60 минут при температуре 80°C, затем модифицированный SiC отфильтровывают. В четырехгорлую колбу объемом 1000 мл, снабженную ультразвуковым диспергатором с частотой 20 кГц., обратным холодильником, трубкой для ввода инертного газа и термометром, загружают полученный модифицированный порошок наноструктурированного SiC в 400 мл сухого N-метил-2-пирролидона, 40 г (0,20 моль) 4,4'-диаминодифенилоксида и перемешивают при помощи ультразвука с частотой 20 кГц в течение 20 минут. Все операции проводят в токе инертного газа. Затем реакционную массу охлаждают до 5°C с помощью водяной бани со льдом и порциями, при механическом перемешивании, добавляют 44,00 г (0,20 моль) пиромеллитового диангидрида. Реакционную массу подвергают ультразвуковой обработке в течение 15 минут, при этом ее охлаждают на водяной бане со льдом, чтобы не дать разогреться реакционной смеси выше 30°C. Затем перемешивают механической мешалкой при температуре 20-25°C в течение 5 часов. На завершающем этапе реакционную массу, имеющую комнатную температуру, помещают в термостойкую емкость, и сушат в программируемом вакуумном сушильном шкафу при ступенчатом нагреве по следующей схеме: 50°C - выдержка 3 часа, 90°C - выдержка 4 часа, 150°C - выдержка 3 часа, 280°C - выдержка 1 час, с последующим вакуумным охлаждением или охлаждением в токе инертного газа в течение 2-х часов.
Получают поли-оксидифенилен-пиромеллитимид, наполненный модифицированными наночастицами карбида кремния (или поли-(4,4'-оксидифенилен)пиромеллитимид наполненный модифицированными наночастицами карбида кремния).
Содержание карбида кремния 20%.
Характеристические полосы ИК-спектров: 1775 см-1 (С=O νas), 1713 см-1 (С=O νs), 1495 см-1 (С=С (Ar) ν), 1366 см-1 (C-N ν), 1228 см-1 (С-О-С νas), 721 см-11 (С=O δ).
Данные термогравиметрического анализа в инертной атмосфере: Td5%=587°C, Td10%=600°C
Пример 2.
В муфельную печь, разогретую до температуры 1200°C, помещают 19,89 г (0,50 моль) немодифицированного наноструктурированного карбида кремния (SiC) (предварительно полученного измельчением агрегатов карбида кремния до частиц размером не более 0,1 мм) и выдерживают в течение 5 минут, после чего в четырехгорлую колбу объемом 2000 мл, снабженную ультразвуковым диспергатором с частотой 20 кГц., обратным холодильником, трубкой для ввода инертного газа и термометром, загружают полученный окисленный порошок наноструктурированного SiC в 400 мл сухого NN-диметилацетамида, 1105,0 г (5 моль) 3-аминопропилтриэтоксисилана и перемешивают при помощи ультразвука с частотой 20 кГц в течение 40 минут, после чего извлекают ультразвуковую мешалку и перемешивают, полученную суспензию при помощи механической мешалки в течение 40 минут при температуре 100°C, затем модифицированный SiC отфильтровывают. В четырехгорлую колбу объемом 1000 мл, снабженную ультразвуковым диспергатором, обратным холодильником, трубкой для ввода инертного газа и термометром, загружают полученный модифицированный порошок наноструктурированного SiC в 400 мл сухого NN-диметилацетамида, 12 г 4,4'-диаминодифенилоксида (0,06 моль) и перемешивают при помощи ультразвука в течение 40 минут с использованием ультразвукового диспергатора с частотой 20 кГц. Все операции проводят в токе инертного газа. Затем реакционную массу охлаждают до 10°C с помощью водяной бани со льдом и порциями, при механическом перемешивании, добавляют 20,00 г (0,06 моль) диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты. Реакционную массу подвергают ультразвуковой обработке в течение 25 минут, при этом ее охлаждают на водяной бане со льдом, чтобы не дать разогреться реакционной смеси выше 30°C. Затем перемешивают механической мешалкой при температуре 20-25°C в течение 9 часов. На завершающем этапе реакционную массу, имеющую комнатную температуру, помещают в термостойкую емкость, и сушат вакуумный сушильный шкаф с программируемым режимом нагрева при ступенчатом нагреве по следующей схеме: 65°C - выдержка 2 часа, 115°C - выдержка 3 часа, 250°C - выдержка 2 часа, 300°C - выдержка 0,5 часа, с последующим вакуумным охлаждением или охлаждением в токе инертного газа в течение 2-х часов.
Получают поли-оксидифенилен-бензофенонимид, наполненный модифицированными наночастицами карбида кремния (или поли-(4,4'-оксидифенилен)бензофенонимид наполненный модифицированными наночастицами карбида кремния).
Содержание карбида кремния 40%.
Характеристические полосы ИК-спектров: 1775 см-1 (С=O νas), 1713 см-1 (С=O νs), 1495 см-1 (С=C (Ar) ν), 1366 см-1 (C-N ν), 1228 см-1 (С-О-С νas), 721 см-1 (С=O δ).
Данные термогравиметрического анализа в инертной атмосфере: Td5%=570oC, Td10%=589°C
Аналогично при этих же условиях получают композиты на основе полиимидной матрицы с различным содержанием наноразмерного карбида кремния с модифицированной поверхностью от 20 до 40% от массы конечного композиционного материала.

Claims (2)

1. Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью, осуществляемый реакцией конденсации диангидридов ароматических поликарбоновых кислот и 4,4'-оксидианилина в токе инертного газа в среде полярного органического растворителя (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) в присутствии модифицированного наноструктурированного карбида кремния, полученного из немодифицированного наноструктурированного карбида кремния, предварительно окисленного на воздухе при температуре от 700 до 1200°С в течение 5-20 минут и охлажденного до комнатной температуры в вакууме или токе инертного газа, суспендированного в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в течение 20-40 минут, который в виде суспензии, содержащей 20-40 мас.% карбида кремния от веса получаемого композита при 80-100°С, перемешивается с 3-аминопропилтриэтоксисиланом, вводимым в количестве, соответствующем весовому соотношению силана к карбиду кремния, равному 1:(5-10), в течение 40-60 минут, после чего суспендированный модифицированный карбид кремния отфильтровывают и перемешивается с 4,4'-оксидианилином в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в токе инертного газа в течение 20-40 минут, охлаждается до 5-10°С, к образовавшейся реакционной массе порционно при перемешивании добавляется эквимолярное по отношению к 4,4'-оксидианилину количество диангидрида ароматической поликарбоновой кислоты, и образовавшаяся реакционная масса подвергается воздействию ультразвука с частотой 20 кГц в течение 15-25 минут, затем перемешивается при 20-25°С в течение 5-9 часов, затем образовавшееся полимерное соединение помещается в термостойкую емкость и сушится при ступенчатом нагреве по следующей схеме: от 50°С до 65°С в течение 2-3 часов, от 90 до 115°С в течение 3-4 часов, от 150 до 250°С в течение 2-3 часов, от 280 до 300°С в течение 0,5-1 часов, с последующим вакуумным охлаждением или охлаждением в токе инертного газа.
2. Способ по п. 1, отличающийся тем, что в качестве исходных соединений используются диангидриды следующих ароматических поликарбоновых кислот: пиромеллитовой и 3,3'4,4'-бензофенонтетракарбоновой.
RU2017127657A 2017-08-02 2017-08-02 Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью RU2673292C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017127657A RU2673292C1 (ru) 2017-08-02 2017-08-02 Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017127657A RU2673292C1 (ru) 2017-08-02 2017-08-02 Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью

Publications (1)

Publication Number Publication Date
RU2673292C1 true RU2673292C1 (ru) 2018-11-23

Family

ID=64556593

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017127657A RU2673292C1 (ru) 2017-08-02 2017-08-02 Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью

Country Status (1)

Country Link
RU (1) RU2673292C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083583A1 (en) * 2014-09-23 2016-03-24 The Boeing Company Polymer nanoparticle additions for resin modification
EP3002310A1 (en) * 2014-10-02 2016-04-06 Samsung Electronics Co., Ltd. Composition for preparing polyimide-inorganic particle composite, polyimide-inorganic particle composite, article, and optical device
RU2620122C2 (ru) * 2015-09-22 2017-05-23 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Способ получения полиимидного композитного пленочного покрытия, армированного наноструктурированным карбидом кремния (варианты)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083583A1 (en) * 2014-09-23 2016-03-24 The Boeing Company Polymer nanoparticle additions for resin modification
EP3002310A1 (en) * 2014-10-02 2016-04-06 Samsung Electronics Co., Ltd. Composition for preparing polyimide-inorganic particle composite, polyimide-inorganic particle composite, article, and optical device
RU2620122C2 (ru) * 2015-09-22 2017-05-23 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Способ получения полиимидного композитного пленочного покрытия, армированного наноструктурированным карбидом кремния (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 20160083583 A124.03.2016. *

Similar Documents

Publication Publication Date Title
US7442727B2 (en) Pyrogenically prepared, surface modified aluminum oxide
JP6568121B2 (ja) 表面改質複合シリカ粒子及びこれを含むポリイミドフィルム
JP5035830B2 (ja) 多分岐ポリイミド系ハイブリッド材料
Ghezelbash et al. Surface modified Al 2 O 3 in fluorinated polyimide/Al 2 O 3 nanocomposites: synthesis and characterization
WO2010050491A1 (ja) ポリイミド前駆体溶液組成物
Liu et al. Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol–gel and blending process
JPH06212075A (ja) 顔料入りポリイミド成型物品の製造方法
RU2620122C2 (ru) Способ получения полиимидного композитного пленочного покрытия, армированного наноструктурированным карбидом кремния (варианты)
DE2426991A1 (de) Vernetzte siloxangruppenhaltige polymere
DE2426885A1 (de) Siliciummodifizierte praepolymere
DE2426910A1 (de) Vernetzte siloxangruppenhaltige polymere
TWI736867B (zh) 聚醯亞胺清漆及其製備方法、聚醯亞胺塗層製品及其製備方法、電線以及電子裝置
JP7242157B2 (ja) ポリイミド前駆体組成物、およびそれを用いた絶縁被覆層の製造方法
CN1653147A (zh) 聚酰亚胺涂覆的聚合物粒子
RU2673292C1 (ru) Способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью
RU2644906C2 (ru) Способ получения полиимидного композитного волокна на углеродной основе, армированного наноструктурированным карбидом кремния
JP2012172001A (ja) 多分岐ポリイミド系ハイブリッド材料
CN116179075B (zh) 一种poss改性聚酰亚胺绝缘漆、制备方法及应用
JPH0578573A (ja) ポリイミド組成物の製造方法
Padhma Priya et al. Phthalide cardo chain extended siloxane core skeletal modified polyimide/multi-walled carbon nanotube nanocomposites
JP2853253B2 (ja) ポリイミド組成物の製造方法
CN117343637A (zh) 一种聚酰亚胺清漆及其制备方法和应用
Hsueh et al. Preparation and properties of APPSSQ‐like/polyimide hybrid composites
JP2862173B2 (ja) ポリイミド粉末組成物の製造方法
KR20230059390A (ko) 폴리아믹산 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190803