EP1614448B2 - Trainingsgerät - Google Patents

Trainingsgerät Download PDF

Info

Publication number
EP1614448B2
EP1614448B2 EP05013561A EP05013561A EP1614448B2 EP 1614448 B2 EP1614448 B2 EP 1614448B2 EP 05013561 A EP05013561 A EP 05013561A EP 05013561 A EP05013561 A EP 05013561A EP 1614448 B2 EP1614448 B2 EP 1614448B2
Authority
EP
European Patent Office
Prior art keywords
torque
motor
exercise unit
setpoint
frequency converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05013561A
Other languages
English (en)
French (fr)
Other versions
EP1614448B1 (de
EP1614448A3 (de
EP1614448A2 (de
Inventor
Miehlich Dieter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milon Industries GmbH
Original Assignee
Milon Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35134802&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1614448(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Milon Industries GmbH filed Critical Milon Industries GmbH
Priority to PL05013561T priority Critical patent/PL1614448T3/pl
Publication of EP1614448A2 publication Critical patent/EP1614448A2/de
Publication of EP1614448A3 publication Critical patent/EP1614448A3/de
Application granted granted Critical
Publication of EP1614448B1 publication Critical patent/EP1614448B1/de
Publication of EP1614448B2 publication Critical patent/EP1614448B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0058Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0058Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors
    • A63B21/0059Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using motors using a frequency controlled AC motor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0075Means for generating exercise programs or schemes, e.g. computerized virtual trainer, e.g. using expert databases
    • A63B2024/0078Exercise efforts programmed as a function of time
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/10Positions
    • A63B2220/16Angular positions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions

Definitions

  • the invention relates to a training device according to the preamble of claim 1.
  • a training device is from the EP 0 853 961 B1 known.
  • a frequency converter of a computing device set values for the current intensity and for the frequency of the current of a three-phase motor provided for torque generation.
  • the computing device is supplied with the output of a position sensor, which detects the position of acting as a training organ crank, which is driven by the engine detected. From the position value, the computing device uses stored tables in which all relevant machine-specific characteristic data are stored to determine the values of the current strength and the frequency of the motor current required for a desired course of the torque over the position.
  • a training device with a three-phase motor for torque generation is known in which both the speed of the motor with a frequency-analog rotation rate sensor, as well as the output torque is measured with a force sensor.
  • the measured speed is used to control the frequency and the measured torque to control the magnitude of the motor current.
  • the concept of this training device thus includes two sensors and two coupled control loops and is relatively expensive to implement.
  • the force measurement via a sensor has potential problems in the form of temperature influence, long-term drift and disturbances due to vibration or shock.
  • the present invention seeks to provide a training device of the type mentioned, which complies with a predetermined torque with high accuracy, at the same time limits the range of motion by precisely adjustable stops, and is characterized by simple and reliable structure.
  • the exercise device is characterized in that the rotational control of the motor is detected by means of a rotation angle sensor for measuring torque, the measuring signal is supplied to both the frequency converter, as well as the control device.
  • the frequency converter is given a setpoint value for the torque to be delivered by the motor into which the measurement signal of the rotation angle sensor is received.
  • the frequency converter adjusts the frequency and the strength of the motor current according to the principle of field-oriented regulation. Although the latter is known per se as a concept for controlling an asynchronous motor, but not in connection with exercise equipment of the kind of interest here.
  • a significant advantage of the invention over the prior art mentioned in the introduction is that it allows more accurate control of the torque output by the engine. In particular, this is helped by the fact that in the normal operating range of an asynchronous machine, i. is operated at a relatively low slip, where only slight specimen scattering of the torque characteristic is expected. In contrast, the operating range according to said prior art, i. at relatively large slippage, affected by significantly larger specimen spreads. Another advantageous effect of the other operating range is the reduction of the power loss of the engine and thus an energy saving. The lower power loss also makes cooling by forced convection unnecessary, so that the outgoing noise from a fan is avoided. Finally, the direct detection of the angle of rotation of the motor instead of its mathematical determination of a measured angle of rotation of the training body and the dynamics of the control loop sustainably improved.
  • the controller controls the position of the exerciser to a set point so that the user must apply force to deflect the exerciser from a rest position
  • the frequency converter controls the motor torque to the setpoint set by the controller, thereby reducing the speed of the motor Size of force to be applied by the user to move the exerciser is determined.
  • the control device comprises two control circuits in cascade structure, namely an outer for regulating the position and an inner for controlling the speed of the exercise organ.
  • an evaluation device is needed, which determines both the position and the rotational speed of the training organ from the measurement signal of the rotational angle sensor and provides as actual variables for the two control circuits.
  • a further limiter is provided which limits the rate of change of the target speed of the exercise organ to a maximum value in order to avoid a jerky movement behavior thereof.
  • a corresponding transmission element is to be provided in the speed control loop, which realizes these functions.
  • Components of these functions can be sudden changes in torque at certain positions, which can simulate mechanical stops. If such position-dependent torque changes are not designed as sudden, but as running continuously, mechanical stops with springing can be simulated by linearly increasing the torque to be overcome by the user after overcoming a fixed end position, for example with increasing further deflection. Furthermore, a stop damping can be simulated, namely by a continuous increase in the after overcoming a predetermined end position to be overcome torque with increasing speed.
  • the force exerted by the exerciser on the exercising person depends not only on engine torque and gear reduction but also on a variety of mechanical and / or thermal operating parameters such as gear friction, the temperature of the engine and transmission, and the weight of the exerciser Precisely complying with a force effective on the exerciser for the exercising person requires correcting the desired torque of the motor in response to said mechanical and / or thermal operating parameters of the device.
  • a computing device is required in the speed control loop, which also performs said correction in addition to the conversion of the target torque of the training body in a desired torque of the motor, including their determined by the evaluation device from the measured signal of the rotation angle sensor movement quantities of the training body, such as the actual position and / or the actual speed must be supplied as further input variables.
  • the contribution of the self-weight of the exercise organ to the force depends on the position of the exercise organ.
  • said operating parameters are also fixed variables, such as the lever length of the exercise organ.
  • the computing device can determine the inertial component of the force exerted by the exerciser on the exercising person from the angular acceleration of the training body as a further mechanical operating parameter and take into account.
  • the temperature is one of the essential operating parameters of a training device according to the invention, since both the electrical parameters of the engine, as well as the friction and inertia of the transmission depend on the temperature.
  • the target torque of the engine can be temperature-dependent corrected, including the engine and / or the transmission must be assigned at least one temperature sensor for detecting the current temperature.
  • the temperature-dependent correction can be done either together with the mechanical correction in the computing device or in a separate compensation device, which may already be integrated into the frequency converter.
  • a training device includes an exercise member 1, for example in the form of a crank, and a three-phase motor 2, which are interconnected by a reduction gear 3.
  • the motor 2 is driven by a frequency converter 4, which supplies the frequency and the power of the motor 2 Current sets to set a desired torque M M of the motor 2.
  • the frequency converter 4, the target torque M M of the motor 2 is set by a control device 5.
  • the actual size of the motor 2 by means of a rotation angle sensor 6 whose rotation angle ⁇ M detected and both the frequency converter 4, and the control device 5 is supplied.
  • the specification of the setpoint value M s of the torque with which the crank 1 is to be driven is effected by an operating unit 7, which has a keypad 8 and a display unit 9.
  • a magnetic or chip card reader 10 for data input and / or a bus interface 11 for networking with a central computer, not shown, which controls a plurality of training devices may be provided on the operating unit 7.
  • the temperature signal T is the frequency converter 4 and / or the control device 5 is supplied to take into account the influence of the temperature in the control and thus to compensate.
  • the actual value detection for forming a control loop according to the invention is based on the rotational angle ⁇ M of the motor 2 and not on that of the crank 1.
  • Another in the schematic representation of Fig. 1 not recognizable, but crucial difference is the realization of a field-oriented control of the asynchronous motor 2 by the frequency converter. 4
  • Field-based control is an algorithm for controlling an asynchronous motor that operates in a frequency converter and is based on a coordinate system rotating with the rotor of the motor.
  • space pointer transformation By means of the so-called space pointer transformation, a complex current space vector is obtained in this rotating coordinate system, which can be decomposed into a component parallel to the magnetic flux and a component perpendicular to the magnetic flux.
  • the current components to be regulated are equal quantities, which are held by digital controllers on the respective setpoints.
  • the perpendicular to the magnetic flux component of the motor current is proportional to the torque, which is given to the inverter as the setpoint.
  • the motor can operate both motorically and regeneratively, whereby the energy not consumed by losses is converted into heat via braking resistors.
  • FIG. 2 shows the basic course of the torque characteristic of an asynchronous motor, ie the course of the torque as a function of the speed n, or the slip s.
  • This characteristic curve is known per se and reproduced in a number of works dealing with the control of electric motors, such as in the two previously mentioned textbooks, in a similar form.
  • the operating behavior of an asynchronous motor is subdivided into a brake area, an engine area and a generator area, the standstill marking the boundary between the brake area and the engine area and the idling case marking the boundary between the engine area and the generator area.
  • the actual torque characteristic is the smooth curve. Also plotted are the straight line passing through the two nominal points and two approximate cams valid only at a greater distance from the two tilting points.
  • Fig. 2 The two areas are characterized in which an asynchronous motor is operated as the drive element of a training device on the one hand in field-oriented control in the context of the present invention and on the other hand according to the above-mentioned prior art with a control of the voltage and the frequency of an inverter. While the operating range according to the invention lies between the two tipping points of the motor and generator areas around the idling point, the operating range according to the prior art extends around the standstill, namely from the tipping point of the motor area far into the braking area.
  • the operating range according to the invention corresponds to the normal operation of an asynchronous motor
  • the area provided according to the prior art mentioned at the beginning represents as it were a continuous operation in the starting region and thus an alienation of an asynchronous motor, that is to say abnormal.
  • the characteristic curve is poorly reproducible in its relevant area, as engine manufacturers guarantee compliance with the characteristics only for the normal operating range in the vicinity of the nominal point.
  • the characteristic curve In order to make an accurate torque adjustment in said abnormal operating range, the characteristic curve must therefore be measured on each individual copy, which is associated with a high cost, or it must be higher due to the Exemplarstreuungen the curve Tolerances of the accuracy of the set torque can be accepted. This problem is eliminated in the normal operating range, which is observed in the field-oriented control, since the characteristics are exactly right there.
  • the power loss of an asynchronous motor is also known to be in the normal operating range, i. at low slip, much lower than at large slip. Due to the transition to the normal operating range due to the application of the field-oriented control thus results in a lower heat generation, so that the use of a fan is unnecessary.
  • a typical torque curve of a training device according to the invention as a function of the position of a provided as an exercise organ crank 1 shows Fig. 3 ,
  • the torque is constant between the positions ⁇ min and ⁇ max at the value M 0 .
  • This constant torque M 0 corresponds to a certain force which the exercising person must exert on the crank 1 in order to be able to move it against the action of the motor 2 in one of the two possible directions of rotation.
  • the setpoint for the position control of the crank 1 is the position ⁇ min , ie when the crank 1 is relieved by the exercising person, the position ⁇ min is approached and maintained. To move the crank 1 from there in the direction of the position ⁇ max , the exercising person must overcome the torque M 0 .
  • the amount of the maximum torque M max does not necessarily correspond to the maximum torque that the engine 2 can ever deliver to the crank 1 via the transmission 3, but is limited to a lower value in order to prevent a risk of injury. But he is so high that the achievement of one of the two end positions ⁇ min or ⁇ max is perceived by the exercising person in each case as a mechanical stop.
  • a control device 5 is provided, whose internal operation is described below with reference to the block diagram of Fig. 4 is explained.
  • the right-hand components namely consisting of the crank 1 and the transmission 3 machine, the motor 2, the frequency converter 4 and the rotation angle sensor 6 and the temperature sensor 12 correspond to those already based Fig. 1 mentioned components of the training device and therefore need no further explanation.
  • the control device 5 contains, as Fig. 4 reveals two control circuits in cascade structure, namely an inner loop for the speed ⁇ and an outer loop for the position ⁇ .
  • the position in the form of a rotation angle ⁇ and the rotational speed ⁇ thus relate to the movement of the crank 1.
  • an evaluation device 13 is provided, in whose calculations in particular the reduction of the transmission 3 received.
  • the difference between a desired position ⁇ s and the actual position ⁇ I is fed to a first controller 14, which is preferably a proportional controller.
  • the setpoint position ⁇ s corresponds to the lower end position ⁇ min in Fig. 3
  • the output variable of the controller 14 is a speed that is initially limited by a limiter 15 to a maximum value ⁇ max . This avoids that the crank 1 can reach the given by the engine 2 and the transmission 3 maximum speed, since in such extremely rapid movements of the crank 1, for example in the case of sudden relief by slipping of the exercising person from the crank 1, a high Danger of injury would be given.
  • a second limiter 16 also limits the angular acceleration to a maximum value ⁇ max , to avoid excessive jerk when starting the crank 1, which, although less dangerous, but would be detrimental to the comfort of training.
  • the two limiters 15 and 16 are basically optional but very useful from the point of view of safety and comfort.
  • a target speed ⁇ S from which the calculated in the evaluation device 13 actual speed ⁇ I is subtracted.
  • a target speed ⁇ S from which the calculated in the evaluation device 13 actual speed ⁇ I is subtracted.
  • This is supplied to a preferably designed as a proportional / integral controller speed controller 17, which supplies a torque as an output variable.
  • This is varied in a characteristic unit 18 as a function of the actual position ⁇ I in accordance with a predetermined function, for which purpose the characteristic unit 18 is supplied with the actual position ⁇ I as a further input variable.
  • a preferred function with three constant sections and two equally high steps between these sections was previously described Fig. 3 explained.
  • the output variable of the characteristic unit 18 is the setpoint torque M s for the crank 1.
  • the setpoint torque M s for the crank 1 supplied by the characteristic unit 18 must be converted into said setpoint torque M M for the motor 2 in a computing device 19. Initially, the reduction of the transmission 3 enters into this conversion.
  • the computing device 19 has a memory in which tables are stored which describe the influence of further mechanical system parameters on the relationship between the two setpoint torques M S and M M. These include, for example, the weight of the crank, the friction losses of the transmission, moments of inertia of the transmission and the crank, the viscosity of the transmission oil and its temperature dependence.
  • the parameters which are included in the relationship between the two torques M s and M M are partly constant, but in some cases also dependent on motion variables and / or on the temperature. Therefore, the arithmetic unit 19 of the evaluation device 13 at least the actual position ⁇ I and the actual speed ⁇ I of the crank 1, optionally also additionally the actual angular acceleration ⁇ I supplied, which is needed to take into account inertial effects. Furthermore, the measurement signal T of the temperature sensor 12 is also supplied to compensate for temperature influences.
  • the computing device 19 In the course of the conversion of the setpoint torque M S of the crank 1 into a corresponding payload torque M M of the motor 2, the computing device 19 also carries out corrections which include additional mechanical and thermal influences which, apart from the gear reduction, are still converted into the conversion of the torque of the motor 2 into that enter the crank 1, compensate.
  • the compensation of their influence between the computing device 19 and a separate compensation device 20 or the frequency converter 4 may be divided, preferably in that the compensation of the temperature dependence of the motor 2 alone is already integrated in the frequency converter 4, or is perceived by a separate compensation device 20, since this temperature dependence is a motor-specific property.
  • the presence of the compensation device 20 is therefore optional and depends on whether the used frequency converter 4 already provides an internal compensation of the motor temperature or not.
  • the computing device 19 fulfills a temperature compensation, this is preferably limited to the temperature dependence of the motor 2 downstream mechanical components, in particular the transmission 3, in which, for example, the viscosity of the oil and thus the friction and the inertia depend on the temperature.
  • the length of the lever arm of the crank 1 can be made to adapt to the body dimensions of the person exercising variable.
  • the force exerted by the crank 1 in the tangential direction which is the decisive criterion for the physiotherapeutic effect of training, depends on the lever length, so that the torque must be corrected accordingly to set a specific force with variable lever length.
  • the body size can be communicated to the training device via the magnetic or chip card reader 10, whereupon the lever length is suitably adjusted via a servo motor and a specific one is selected by the computing device 19 from the data sets stored in its memory to take into account the set lever length.
  • the corrected from the torque M S of the crank 1 and corrected target torque M M of the motor 2 is supplied to the frequency converter 4 as an input variable.
  • the measurement signal of the rotary encoder 6 on the shaft of the motor 2 which is fed directly to him.
  • the control loop formed by the frequency converter 4 based on the measurement of an immediate state variable of the engine, namely the motor rotation angle ⁇ M , reacts this innermost control loop very quickly. This is a great advantage for the dynamic properties and the stability of the entire control.
  • Frequency converters for three-phase motors, which operate on the principle of field-oriented control are available in today's market for drive electronics. The application in a training device, however, is an innovation that is proposed here for the first time.
  • the exerciser against which the user of the exerciser exerts a force during exercise is a crank.
  • the exerciser may also take a variety of other forms, such as e.g. that of a stirrup, a handle, or one or two pedals.
  • the present invention is not limited to a crank, but it includes all conceivable variants of an exercise organ, which is suitable to be acted upon by a person with muscle power.
  • This includes, inter alia, training bodies that do not rotate, but perform a translational motion, which is then mechanically translated into rotation of a motor shaft.
  • the terms used here of the rotation angle, the rotational speed and the torque correspond to a translational displacement or a translational speed or a force.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Tools (AREA)
  • Control Of Electric Motors In General (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Massaging Devices (AREA)
  • Confectionery (AREA)

Description

  • Die Erfindung betrifft ein Trainingsgerät nach dem Oberbegriff des Patentanspruchs 1. Ein solches Trainingsgerät ist aus der EP 0 853 961 B1 bekannt. Bei diesem Trainingsgerät werden einem Frequenzumrichter von einer Recheneinrichtung Sollwerte für die Stromstärke und für die Frequenz des Stromes eines zur Drehmomenterzeugung vorgesehenen Drehstrommotors vorgegeben. Der Recheneinrichtung wird das Ausgangssignal eines Positionssensors zugeführt, welcher die Stellung einer als Übungsorgan fungierenden Kurbel, die von dem Motor angetrieben wird, erfaßt. Aus dem Positionswert ermittelt die Recheneinrichtung anhand gespeicherter Tabellen, in denen alle relevanten maschinenspezifischen Kenndaten abgelegt sind, die für einen gewünschten Verlauf des Drehmoments über der Position benötigten Werte der Stromstärke und der Frequenz des Motorstromes.
  • Dieses bekannte Trainingsgerät funktioniert zwar durchaus zufriedenstellend, ist aber im Hinblick auf bestimmte funktionale Anforderungen noch verbesserungsfähig. So sind insbesondere für die Anwendung derartiger Trainingsgeräte zu medizinischen Rehabilitationsmaßnahmen sowohl eine hohe Genauigkeit bei der Einhaltung eines gewünschten Drehmoments, als auch präzise einstellbare Endanschläge für den Bewegungsbereich des Übungsorgans gefordert. Letzteres ist beispielsweise dann von Bedeutung, wenn der maximale Auslenkungswinkel eines Körpergelenks nach einem chirurgischen Eingriff durch gymnastische Übungen in definierten Schritten wieder auf den normalen Wert gebracht werden soll.
  • Aus der FR 2 709 067 A1 ist ein Trainingsgerät mit einem Drehstrommotor zur Drehmomenterzeugung bekannt, bei dem sowohl die Drehzahl des Motors mit einem frequenzanalogen Drehratensensor, als auch das abgegebene Drehmoment mit einem Kraftsensor gemessen wird. Die gemessene Drehzahl wird zur Regelung der Frequenz und das gemessene Drehmoment zur Regelung der Stärke des Motorstromes verwendet. Das Konzept dieses Trainingsgerätes beinhaltet also zwei Sensoren und zwei miteinander gekoppelte Regelschleifen und ist relativ aufwendig in der Realisierung. Ferner birgt die Kraftmessung über einen Sensor potentielle Probleme in Form von Temperatureinfluß, Langzeitdrift und Störungen durch Vibration oder Stöße.
  • In Anbetracht dieses Standes der Technik liegt der Erfindung die Aufgabe zugrunde, ein Trainingsgerät der eingangs erwähnten Art zu schaffen, das ein vorgegebenes Drehmoment mit hoher Genauigkeit einhält, gleichzeitig den Bewegungsbereich durch präzise einstellbare Endanschläge begrenzt, und sich durch einfachen und zuverlässigen Aufbau auszeichnet.
  • Diese Aufgabe wird erfindungsgemäß durch ein Trainingsgerät mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Das erfindungsgemäße Trainingsgerät zeichnet sich dadurch aus, daß zur Drehmomentregelung als Meßgröße der Drehwinkel des Motors mittels eines Drehwinkelsensors erfaßt wird, dessen Meßsignal sowohl dem Frequenzumrichter, als auch der Regeleinrichtung zugeführt wird. Durch die Regeleinrichtung wird dem Frequenzumrichter ein Sollwert für das von dem Motor abzugebende Drehmoment vorgegeben, in den das Meßsignal des Drehwinkelsensors eingeht. Der Frequenzumrichter stellt die Frequenz und die Stärke des Motorstromes nach dem Prinzip der feldorientierten Regelung ein. Letztere ist zwar an sich als Konzept zur Regelung eines Asynchronmotors bekannt, jedoch nicht im Zusammenhang mit Trainingsgeräten der hier interessierenden Art.
  • Ein wesentlicher Vorteil der Erfindung gegenüber dem eingangs erwähnten Stand der Technik besteht darin, daß sie eine genauere Regelung des von dem Motor abgegebenen Drehmoments erlaubt. Hierzu trägt insbesondere bei, daß der Motor im normalen Betriebsbereich einer Asynchronmaschine, d.h. bei relativ geringem Schlupf betrieben wird, wo mit nur geringen Exemplarstreuungen der Momentenkennlinie zu rechnen ist. Demgegenüber ist der Betriebsbereich nach besagtem Stand der Technik, d.h. bei relativ großem Schlupf, von deutlich größeren Exemplarstreuungen betroffen. Eine weitere vorteilhafte Wirkung des anderen Betriebsbereiches ist die Verringerung der Verlustleistung des Motors und somit eine Energieersparnis. Die geringere Verlustleistung macht auch eine Kühlung durch Zwangskonvektion entbehrlich, so daß die von einem Lüfter ausgehende Geräuschentwicklung vermieden wird. Schließlich wird durch die direkte Erfassung des Drehwinkels des Motors anstelle seiner rechnerischen Ermittlung aus einem gemessenen Drehwinkel des Übungsorgans auch die Dynamik des Regelkreises nachhaltig verbessert.
  • In einer vorteilhaften Betriebsart regelt die Regeleinrichtung die Position des Übungsorgans auf einen Sollwert, so daß der Benutzer zur Auslenkung des Übungsorgans aus einer Ruheposition eine Kraft aufwenden muß, und der Frequenzumrichter regelt seinerseits das Drehmoment des Motors auf den durch die Regeleinrichtung vorgegebenen Sollwert, wodurch die Größe der von dem Benutzer zur Bewegung des Übungsorgans aufzubringenden Kraft festgelegt wird.
  • Um einen vorbestimmten Verlauf des Drehmoments in Abhängigkeit vom Drehwinkel vorgeben zu können, umfaßt die Regeleinrichtung zwei Regelkreise in Kaskadenstruktur, nämlich einen äußeren zur Regelung der Position und einen inneren zur Regelung der Drehzahl des Übungsorgans. Hierzu wird eine Auswertungseinrichtung benötigt, die aus dem Meßsignal des Drehwinkelsensors sowohl die Position, als auch die Drehzahl des Übungsorgans ermittelt und als Istgrößen für die beiden Regelkreise bereitstellt.
  • Aus Sicherheitsgründen ist es äußerst ratsam, in dem Positionsregelkreis einen Begrenzer vorzusehen, der die Solldrehzahl des Übungsorgans auf einen Maximalwert begrenzt, damit der Motor das Übungsorgan nicht mit der systembedingten Höchstdrehzahl in seine vorgegebene Sollposition zurückschnellen läßt, wenn die trainierende Person es losläßt oder von ihm abrutscht.
  • Im Interesse der Ergonomie ist es darüber hinaus auch empfehlenswert, wenn in dem Positionsregelkreis ein weiterer Begrenzer vorgesehen ist, der die Änderungsrate der Solldrehzahl des Übungsorgans auf einen Maximalwert begrenzt, um ein ruckartiges Bewegungsverhalten desselben zu vermeiden.
  • Um einen bestimmten Drehmomentverlauf in Abhängigkeit von der Position des Übungsorgans und/oder von dessen Drehzahl nach einer bestimmten Funktion vorzugeben, ist in dem Drehzahlregelkreis ein entsprechendes Übertragungsglied vorzusehen, welches diese Funktionen realisiert. Bestandteile dieser Funktionen können sprunghafte Änderungen des Drehmoments bei bestimmten Positionen sein, wodurch mechanische Anschläge simuliert werden können. Werden solche positionsabhängigen Drehmomentänderungen nicht als sprunghaft, sondern als kontinuierlich verlaufend ausgelegt, so lassen sich dadurch mechanische Anschläge mit Federung nachbilden, indem das von dem Benutzer zu überwindende Drehmoment nach dem Überfahren einer festgelegten Endposition beispielsweise mit zunehmender weiterer Auslenkung linear ansteigt. Ferner kann auch eine Anschlagdämpfung simuliert werden, nämlich durch eine kontinuierliche Erhöhung des nach dem Überfahren einer festgelegten Endposition zu überwindenden Drehmoments mit zunehmender Drehzahl.
  • Aus Sicherheitsgründen ist es hierbei sinnvoll, das Solldrehmoment des Übungsorgans betragsmäßig auf einen Maximalwert zu begrenzen. Hierdurch läßt sich einer möglichen Überanstrengung der trainierenden Person und der Gefahr von Verletzungen bei unsachgemäßer Benutzung des Trainingsgerätes, insbesondere durch eine falsche Körperhaltung oder durch eine Verwendung unzulässiger Hilfsmittel, entgegenwirken.
  • Da die von dem Übungsorgan auf die trainierende Person ausgeübte Kraft nicht nur von dem Motordrehmoment und der Getriebeuntersetzung abhängt, sondern zusätzlich von einer Vielzahl mechanischer und/oder thermischer Betriebsparameter wie beispielsweise der Getriebereibung, der Temperatur des Motors und des Getriebes, und dem Gewicht des Übungsorgans, erfordert die genaue Einhaltung einer am Übungsorgan für die trainierende Person wirksamen Kraft eine Korrektur des Solldrehmoments des Motors in Abhängigkeit von besagten mechanischen und/oder thermischen Betriebsparametern des Gerätes. Hierzu wird in dem Drehzahlregelkreis eine Recheneinrichtung benötigt, die außer der Umrechnung des Solldrehmoment des Übungsorgans in ein Solldrehmoment des Motors auch besagte Korrektur ausführt, wozu ihr von der Auswertungseinrichtung aus dem Meßsignal des Drehwinkelsensors ermittelte Bewegungsgrößen des Übungsorgans, wie die Istposition und/oder die Istdrehzahl als weitere Eingangsgrößen zugeführt werden müssen. So hängt beispielsweise der Beitrag des Eigengewichtes des Übungsorgans zur Kraft von der Position des Übungsorgans ab. Teilweise handelt es sich bei besagten Betriebsparametern aber auch um feste Größen wie beispielsweise die Hebellänge des Übungsorgans.
  • Aus dem Ausgangssignal des Drehwinkelsensors kann von der Auswertungseinrichtung nach der Umrechnung in die Drehzahl des Übungsorgans durch nochmalige zeitliche Differentiation auch die Winkelbeschleunigung des Übungsorgans gewonnen werden. Diese ist von Interesse, wenn in die zuvor erwähnte Korrektur auch Trägheitseffekte einbezogen werden sollen. So kann die Recheneinrichtung aus der Winkelbeschleunigung des Übungsorgans als weiteren mechanischen Betriebsparameter die Trägheitskomponente der von dem Übungsorgan auf die trainierende Person ausgeübten Kraft ermitteln und berücksichtigen.
  • Schließlich zählt auch die Temperatur zu den wesentlichen Betriebsparametern eines erfindungsgemäßen Trainingsgeräts, da sowohl die elektrischen Parameter des Motors, als auch Reibung und Trägheit des Getriebes von der Temperatur abhängen. Um Temperatureffekte zu kompensieren, kann das Solldrehmoment des Motors temperaturabhängig korrigiert werden, wozu dem Motor und/oder dem Getriebe mindestens ein Temperatursensor zur Erfassung der aktuellen Temperatur zugeordnet sein muß. Die temperaturabhängige Korrektur kann entweder gemeinsam mit der mechanischen Korrektur in der Recheneinrichtung oder in einer separaten Kompensationseinrichtung erfolgen, wobei diese auch bereits in den Frequenzumrichter integriert sein kann.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnungen beschrieben. In diesen zeigt
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen Trainingsgerätes,
    Fig. 2
    die Momentenkennlinie eines Drehstrommotors,
    Fig. 3
    einen Drehmomentverlauf eines erfindungsgemäßen Trainingsgerätes als Funktion der Position, und
    Fig. 4
    ein elektrisches Blockschaltbild eines erfindungsgemäßen Trainingsgerätes.
  • Gemäß Fig. 1 zählen zu den Hauptkomponenten eines erfindungsgemäßen Trainingsgerätes ein Übungsorgan 1, beispielsweise in Form einer Kurbel, und ein Drehstrommotor 2, die durch ein Untersetzungsgetriebe 3 miteinander verbunden sind. Der Motor 2 wird durch einen Frequenzumrichter 4 angesteuert, der die Frequenz und die Stärke des dem Motor 2 zugeführten Stromes vorgibt, um ein gewünschtes Drehmoment MM des Motors 2 einzustellen. Dem Frequenzumrichter 4 wird das Solldrehmoment MM des Motors 2 durch eine Regeleinrichtung 5 vorgegeben. Zum Zweck der Regelung wird als Istgröße des Motors 2 mittels eines Drehwinkelsensors 6 dessen Drehwinkel ϕM erfaßt und sowohl dem Frequenzumrichter 4, als auch der Regeleinrichtung 5 zugeführt.
  • Die Vorgabe des Sollwertes Ms des Drehmomentes, mit dem die Kurbel 1 anzutreiben ist, erfolgt durch eine Bedieneinheit 7, die ein Tastenfeld 8 und eine Anzeigeeinheit 9 aufweist. Optional können an der Bedieneinheit 7 auch ein Magnet- oder Chipkartenleser 10 zur Dateneingabe und/oder eine Busschnittstelle 11 zur Vernetzung mit einem nicht dargestellten Zentralrechner, der mehrere Trainingsgeräte steuert, vorgesehen sein.
  • An dem Motor 2 und/oder an dem Getriebe 3 ist noch ein Temperatursensor 12 angebracht, dessen Temperatursignal T dem Frequenzumrichter 4 und/oder der Regeleinrichtung 5 zugeführt wird, um den Einfluß der Temperatur bei der Regelung zu berücksichtigen und damit zu kompensieren.
  • Im Unterschied zum Stand der Technik setzt die Istwerterfassung zur Bildung eines Regelkreises erfindungsgemäß am Drehwinkel ϕM des Motors 2 und nicht an demjenigen der Kurbel 1 an. Ein weiterer in der schematischen Darstellung von Fig. 1 nicht erkennbarer, aber entscheidender Unterschied ist die Realisierung einer feldorientierten Regelung des Asynchronmotors 2 durch den Frequenzumrichter 4.
  • Bei der feldorientierten Regelung handelt es sich um einen Algorithmus zur Regelung eines Asynchronmotors, der in einem Frequenzumrichter abläuft und auf einem sich mit dem Rotor des Motors drehenden Koordinatensystem basiert. Durch die sogenannte Raumzeigertransformation erhält man in diesem rotierenden Koordinatensystem einen komplexen Stromraumzeiger, der sich in eine Komponente parallel zum magnetischen Fluß und eine Komponente senkrecht zum magnetischen Fluß zerlegen läßt. Im stationären Zustand sind die zu regelnden Stromkomponenten Gleichgrößen, die durch digitale Regler auf den jeweiligen Sollwerten gehalten werden. Es erfolgt eine Rücktransformation in ein Dreiphasensystem, mit dem die Pulsbreitenmodulatoren des Frequenzumrichters angesteuert werden können. Die senkrecht zum magnetischen Fluß gerichtete Komponente des Motorstromes ist proportional zum Drehmoment, welches dem Umrichter als Sollwert vorgegeben wird. Der Motor kann je nach Bewegungsrichtung sowohl motorisch, als auch generatorisch arbeiten, wobei die nicht durch Verluste aufgezehrte Energie über Bremswiderstände in Wärme umgesetzt wird.
  • Das Prinzip der feldorientierten Regelung von Asynchronmotoren ist in Fachkreisen an sich bekannt, beispielsweise aus D. Schröder, "Elektrische Antriebe 2", Springer Verlag, 1995, Kap. 15.5 oder aus J. Vogel, "Elektrische Antriebstechnik", 5. Auflage, Hüthig-Verlag, 1991, Kap. 5.2.3.3.. Es braucht daher hier nicht eingehend erläutert zu werden und ist als solches auch nicht Gegenstand der vorliegenden Erfindung. Jedoch wurde es beim Einsatz von Asynchronmotoren in Trainingsgeräten bisher noch nicht angewendet, obwohl es gerade in dieser Anwendung entscheidende Vorteile bietet.
  • Dies wird anhand Fig. 2 deutlich, welche den grundsätzlichen Verlauf der Momentenkennlinie eines Asynchronmotors, d.h. den Verlauf des Drehmoments als Funktion der Drehzahl n, bzw. des Schlupfes s zeigt. Dieser Kennlinienverlauf ist an sich bekannt und in etlichen Werken, die sich mit der Regelung von Elektromotoren befassen, wie beispielsweise in den beiden zuvor genannten Lehrbüchern, in ähnlicher Form wiedergegeben.
  • Demnach untergliedert sich das Betriebsverhalten eines Asynchronmotors in einen Bremsbereich, einen Motorbereich und einen Generatorbereich, wobei der Stillstand die Grenze zwischen dem Bremsbereich und dem Motorbereich markiert und der Leerlauffall die Grenze zwischen dem Motorbereich und dem Generatorbereich markiert. Die eigentliche Momentenkennlinie ist die glatt verlaufende Kurve. Zusätzlich eingezeichnet sind die durch die beiden Nennpunkte verlaufende Gerade und zwei nur in größerer Entfernung von den beiden Kippunkten gültige Näherungskurven.
  • In Fig. 2 sind die beiden Bereiche gekennzeichnet, in denen ein Asynchronmotor als Antriebselement eines Trainingsgeräts einerseits bei feldorientierter Regelung im Sinne der vorliegenden Erfindung und andererseits nach dem eingangs genannten Stand der Technik mit einer Steuerung der Spannung und der Frequenz eines Umrichters betrieben wird. Während der erfindungsgemäße Betriebsbereich zwischen den beiden Kippunkten des motorischen und des generatorischen Bereichs um den Leerlaufpunkt herum liegt, erstreckt sich der Betriebsbereich nach dem Stand der Technik um den Stillstand herum, und zwar vom Kippunkt des motorischen Bereichs aus bis weit in den Bremsbereich hinein.
  • Es wird deutlich, daß der erfindungsgemäße Betriebsbereich dem normalen Betrieb eines Asynchronmotors entspricht, während der nach dem eingangs erwähnten Stand der Technik vorgesehene Bereich gewissermaßen einen Dauerbetrieb im Anlaufbereich und damit eine Zweckentfremdung eines Asynchronmotors darstellt, also anormal ist. Daraus ergibt sich beim Stand der Technik das Problem, daß der Kennlinienverlauf in seinem maßgeblichen Bereich schlecht reproduzierbar ist, da Motorhersteller die Einhaltung der Kenndaten nur für den normalen Betriebsbereich in der Umgebung des Nennpunktes garantieren. Um in besagtem anormalen Betriebsbereich eine genaue Drehmomenteinstellung vornehmen zu können, muß der Kennlinienverlauf daher an jedem einzelnen Exemplar vermessen werden, was mit einem hohen Aufwand verbunden ist, oder es müssen aufgrund der Exemplarstreuungen der Kennlinie höhere Toleranzen der Genauigkeit des eingestellten Drehmoments in Kauf genommen werden. Dieses Problem entfällt im normalen Betriebsbereich, der bei der feldorientierten Regelung eingehalten wird, da dort die Kenndaten genau stimmen.
  • Die Verlustleistung eines Asynchronmotors ist darüber hinaus bekanntermaßen im normalen Betriebsbereich, d.h. bei kleinem Schlupf, wesentlich geringer als bei großem Schlupf. Durch den Übergang in den normalen Betriebsbereich aufgrund der Anwendung der feldorientierten Regelung ergibt sich also eine geringere Wärmeentwicklung, so daß sich der Einsatz eines Lüfters erübrigt.
  • Einen typischen Drehmomentverlauf eines erfindungsgemäßen Trainingsgeräts in Abhängigkeit von der Position einer als Übungsorgan vorgesehenen Kurbel 1 zeigt Fig. 3. Das Drehmoment liegt zwischen den Positionen ϕmin und ϕmax konstant auf dem Wert M0. Dieses konstante Drehmoment M0 entspricht einer bestimmten Kraft, welche die trainierende Person auf die Kurbel 1 ausüben muß, um sie entgegen der Wirkung des Motors 2 in einer der beiden möglichen Drehrichtungen bewegen zu können. Der Sollwert für die Positionsregelung der Kurbel 1 ist die Position ϕmin, d.h. bei Entlastung der Kurbel 1 durch die trainierende Person wird die Position ϕmin angefahren und beibehalten. Um die Kurbel 1 von dort aus in Richtung der Position ϕmax zu bewegen, muß die trainierende Person das Drehmoment M0 überwinden.
  • Bei der Position ϕmax springt das Drehmoment nahezu abrupt auf einen wesentlich höheren Wert Mmax, wodurch ein oberer mechanischer Anschlag mit Hilfe des Motors 2 und seiner Regelung simuliert wird. Ebenso springt das Drehmoment bei der Position ϕmin im Fall einer Beaufschlagung der Kurbel 1 mit einem Drehmoment in entgegengesetzter Richtung durch die trainierende Person nahezu abrupt auf den negativen Wert -Mmax, wodurch ein unterer mechanischer Anschlag simuliert wird. Der für die trainierende Person zur Verfügung stehende Bewegungsbereich der Kurbel liegt demnach zwischen den Positionswerten ϕmin und ϕmax·
  • Zwar ist in Fig. 3 angenommen, daß das Drehmoment zwischen den beiden Endpositionen ϕmin und ϕmax konstant M0 betragen soll, doch wäre es ohne weiteres auch möglich, hier einen positionsabhängigen Drehmomentverlauf vorzugeben, beispielsweise in Form eines linearen Anstiegs des Drehmoments mit der Position ϕ.
  • Ebenso ist es möglich, anstelle nahezu abrupter Sprünge des Drehmoments an den beiden Endpositionen ϕmin und ϕmax jeweils eine kontinuierliche Änderung mit einer vorgegebenen Rate bis zum jeweiligen Endwert -Mmax bzw. Mmax vorzusehen, wodurch Endanschläge mit Federung nachgebildet werden. Dabei kann die Änderungsrate auch positionsabhängig sein, was einer nichtlinearen Federcharakteristik entspricht.
  • Darüber hinaus kann an den beiden Endpositionen ϕmin und ϕmax im Übergangsbereich vom Trainingsdrehmoment M0 zum jeweiligen Endwert -Mmax bzw. Mmax auch eine Abhängigkeit des Drehmoments von der Drehzahl ωI und damit von der Geschwindigkeit der Kurbel 1 vorgesehen sein. Dies entspricht der Wirkung eines mechanischen Dämpfers. Mit der Erfindung kann somit die Ausstattung von Endanschlägen eines Übungsorgans mit einem Feder-Dämpfer-System motorisch nachgebildet werden, wobei die Härte der Feder- bzw. Dämpfungscharakteristik über die Bedieneinheit 7, den Kartenleser 10 oder die Busschnittstelle 11 einstellbar ist.
  • Der Betrag des maximalen Drehmoments Mmax entspricht nicht unbedingt dem maximalen Drehmoment, das der Motor 2 über das Getriebe 3 überhaupt an die Kurbel 1 abgeben kann, sondern ist auf einen niedrigeren Wert begrenzt, um einer Verletzungsgefahr vorzubeugen. Er ist aber so hoch gewählt, daß das Erreichen einer der beiden Endpositionen ϕmin oder ϕmax von der trainierenden Person jeweils als mechanischer Anschlag empfunden wird.
  • Um den in Fig. 3 gezeigten Drehmomentverlauf über der Position ϕ zu realisieren, ist eine Regeleinrichtung 5 vorgesehen, deren interne Funktionsweise nachfolgend anhand des Blockschaltbildes von Fig. 4 erläutert wird. Die in Fig. 4 rechts eingezeichneten Komponenten, nämlich die aus der Kurbel 1 und dem Getriebe 3 bestehende Maschine, der Motor 2, der Frequenzumrichter 4 sowie der Drehwinkelsensor 6 und der Temperatursensor 12 entsprechen den bereits anhand Fig. 1 erwähnten Komponenten des Trainingsgeräts und bedürfen daher keiner weiteren Erläuterung.
  • Die Regeleinrichtung 5 enthält, wie Fig. 4 erkennen läßt, zwei Regelkreise in Kaskadenstruktur, nämlich einen inneren Regelkreis für die Drehzahl ω und einen äußeren Regelkreis für die Position ϕ. Dabei arbeiten diese Regelkreise im Bezugssystem des Übungsorgans, d.h. der Kurbel 1. Die Position in Form eines Drehwinkels ϕ und die Drehzahl ω beziehen sich also auf die Bewegung der Kurbel 1. Um aus dem von dem Sensor 6 gelieferten Signal, welches den Drehwinkel ϕ M des Motors 2 anzeigt, die Istposition ϕI und die Istdrehzahl ωI der Kurbel 1 zu errechnen, ist eine Auswertungseinrichtung 13 vorgesehen, in deren Berechnungen insbesondere die Untersetzung des Getriebes 3 eingeht.
  • Die Differenz aus einer Sollposition ϕs und der Istposition ϕI wird einem ersten Regler 14 zugeführt, bei dem es sich vorzugsweise um einen Proportional-Regler handelt. Dabei entspricht die Sollposition ϕs der unteren Endposition ϕmin in Fig. 3 Die Ausgangsgröße des Reglers 14 ist eine Drehzahl, die zunächst durch einen Begrenzer 15 auf einen Maximalwert ωmax begrenzt wird. Hierdurch wird vermieden, daß die Kurbel 1 die durch den Motor 2 und das Getriebe 3 gegebene Maximalgeschwindigkeit erreichen kann, da bei solch extrem raschen Bewegungen der Kurbel 1, beispielsweise im Fall einer plötzlichen Entlastung durch Abrutschen der trainierenden Person von der Kurbel 1, eine hohe Verletzungsgefahr gegeben wäre. Ein zweiter Begrenzer 16 begrenzt auch noch die Winkelbeschleunigung auf einen Maximalwert αmax, um einen übermäßigen Ruck beim Anfahren der Kurbel 1 zu vermeiden, was zwar weniger gefährlich, aber dem Trainingskomfort abträglich wäre. Die beiden Begrenzer 15 und 16 sind grundsätzlich optional, aber unter den Gesichtspunkten der Sicherheit und des Komforts sehr nützlich.
  • Am Ausgang des zweiten Begrenzers 16 liegt als Signal eine Solldrehzahl ωS vor, von der die in der Auswertungseinrichtung 13 berechnete Istdrehzahl ωI subtrahiert wird. Diese wird einem vorzugsweise als Proportional/Integral-Regler ausgebildeten Drehzahlregler 17 zugeführt, der als Ausgangsgröße ein Drehmoment liefert. Dieses wird in einer Kennlinieneinheit 18 in Abhängigkeit von der Istposition ϕI entsprechend einer vorgegebenen Funktion variiert, wozu der Kennlinieneinheit 18 die Istposition ϕI als weitere Eingangsgröße zugeführt wird. Eine hierfür bevorzugte Funktion mit drei konstanten Abschnitten und zwei gleich hohen Stufen zwischen diesen Abschnitten wurde zuvor anhand Fig. 3 erläutert.
  • Grundsätzlich könnte durch die Kennlinieneinheit 18 aber auch ein anderer Verlauf des Drehmoments in Abhängigkeit von der Istposition ϕI als derjenige von Fig. 3 vorgegeben werden. Insbesondere könnten die Änderungen im Bereich der beiden Endpositionen ϕmin und ϕmax im Sinne einer Federung kontinuierlich anstatt sprunghaft verlaufen. Ferner könnte Im Sinne einer Dämpfung auch eine zusätzliche Abhängigkeit von der Istdrehzahl ωI vorgesehen sein. Die Ausgangsgröße der Kennlinieneinheit 18 ist das Solldrehmoment Ms für die Kurbel 1.
  • Da der Frequenzumrichter 4 als Eingangsgröße ein Solldrehmoment MM für den Motor 2 benötigt, muß das von der Kennlinieneinheit 18 gelieferte Solldrehmoment Ms für die Kurbel 1 in einer Recheneinrichtung 19 in besagtes Solldrehmoment MM für den Motor 2 umgerechnet werden. Zunächst geht in diese Umrechnung die Untersetzung des Getriebes 3 ein. Darüber hinaus verfügt die Recheneinrichtung 19 über einen Speicher, in dem Tabellen abgelegt sind, die den Einfluß weiterer mechanischer Systemparameter auf den Zusammenhang zwischen den beiden Solldrehmomenten MS und MM beschreiben. Hierzu gehören beispielsweise das Gewicht der Kurbel, die Reibungsverluste des Getriebes, Trägheitsmomente des Getriebes und der Kurbel, die Viskosität des Getriebeöls und dessen Temperaturabhängigkeit.
  • Die in den Zusammenhang zwischen den beiden Drehmomenten Ms und MM eingehenden Parameter sind teilweise konstant, teilweise aber auch von Bewegungsgrößen und/oder von der Temperatur abhängig. Daher werden der Recheneinrichtung 19 von der Auswertungseinrichtung 13 zumindest die Istposition ϕ I und die Istdrehzahl ωI der Kurbel 1, optional auch zusätzlich die Istwinkelbeschleunigung αI zugeführt, die zur Berücksichtigung von Trägheitseffekten benötigt wird. Des weiteren wird ihr zur Kompensation von Temperatureinflüssen auch das Meßsignal T des Temperatursensors 12 zugeführt.
  • Die Recheneinrichtung 19 führt im Zuge der Umrechnung des Solldrehmoments MS der Kurbel 1 in ein entsprechendes Soldrehmoment MM des Motors 2 zugleich Korrekturen aus, welche zusätzliche mechanische und thermische Einflüsse, die außer der Getriebeuntersetzung noch in die Umwandlung des Drehmoments des Motors 2 in dasjenige der Kurbel 1 eingehen, kompensieren.
  • Was die Temperatur anbelangt, so kann die Kompensation ihres Einflusses zwischen der Recheneinrichtung 19 und einer separaten Kompensationseinrichtung 20 oder dem Frequenzumrichter 4 aufgeteilt sein, und zwar bevorzugt dahingehend, daß die Kompensation der Temperaturabhängigkeit des Motors 2 allein bereits in den Frequenzumrichter 4 integriert ist, oder von einer separaten Kompensationseinrichtung 20 wahrgenommen wird, da diese Temperaturabhängigkeit eine motorspezifische Eigenschaft ist. Das Vorhandensein der Kompensationseinrichtung 20 ist demnach optional und hängt davon ab, ob der verwendete Frequenzumrichter 4 bereits eine interne Kompensation der Motortemperatur vorsieht oder nicht.
  • Soweit die Recheneinrichtung 19 eine Temperaturkompensation erfüllt, beschränkt sich diese bevorzugt auf die Temperaturabhängigkeit der dem Motor 2 nachgeschalteten mechanischen Komponenten, insbesondere auf das Getriebe 3, bei dem beispielsweise die Viskosität des Öls und damit die Reibung und die Trägheit von der Temperatur abhängen.
  • Die bei der Korrektur durch die Recheneinrichtung 19 berücksichtigbaren Parameter sind vielfältiger Art. So ist es beispielsweise denkbar, der Recheneinrichtung 19 einen Betriebsdauerzähler zuzuordnen, einen von der Betriebsdauer abhängigen mechanischen Verschleiß bestimmter Komponenten anhand eines mathematischen Modells vorherzusagen, und das Solldrehmoment MM zur Kompensation der Verschleißerscheinungen im Laufe der Zeit entsprechend zu verändern.
  • Auch ist es möglich, die Länge des Hebelarmes der Kurbel 1 zur Anpassung an die Körpermaße der trainierenden Person variabel zu gestalten. In diesem Fall hängt die von der Kurbel 1 in Tangentialrichtung ausgeübte Kraft, die das maßgebliche Kriterium für die physiotherapeutische Wirkung des Trainings ist, von der Hebellänge ab, so daß zur Einstellung einer bestimmten Kraft bei variabler Hebellänge das Drehmoment entsprechend korrigiert werden muß. Dabei kann die Körpergröße dem Trainingsgerät über den Magnet- oder Chipkartenleser 10 mitgeteilt werden, woraufhin die Hebellänge über einen Servomotor passend eingestellt und von der Recheneinrichtung 19 aus den in ihrem Speicher abgelegten Datensätzen ein bestimmter zur Berücksichtigung der eingestellten Hebellänge ausgewählt wird.
  • Das aus dem Drehmoment MS der Kurbel 1 umgerechnete und korrigierte Solldrehmoment MM des Motors 2 wird dem Frequenzumrichter 4 als Eingangsgröße zugeführt. Dieser regelt den Motor 2 eigenständig nach dem zuvor erläuterten Prinzip der feldorientierten Regelung, bildet also mit dem Motor 2 einen unterlagerten weiteren Regelkreis. Hierzu benötigt er das Meßsignal des Drehwinkelgebers 6 an der Welle des Motors 2, das ihm direkt zugeführt wird. Da der durch den Frequenzumrichter 4 gebildete Regelkreis auf der Messung einer unmittelbaren Zustandsgröße des Motors, nämlich des Motordrehwinkels ϕM basiert, reagiert dieser innerste Regelkreis sehr schnell. Dies ist für die dynamischen Eigenschaften und für die Stabilität der gesamten Regelung von großem Vorteil. Frequenzumrichter für Drehstrommotoren, die nach dem Prinzip der feldorientierten Regelung arbeiten, sind auf dem heutigen Markt für Antriebselektronik verfügbar. Die Anwendung in einem Trainingsgerät ist jedoch eine Neuerung, die hier erstmals vorgeschlagen wird.
  • In dem vorausgehend beschriebenen Ausführungsbeispiel handelt es sich bei dem Übungsorgan, gegen das der Benutzer des Trainingsgeräts während des Trainings eine Kraft ausübt, um eine Kurbel. Wie der Fachmann ohne weiteres erkennt, kann das Übungsorgan aber auch eine Vielzahl anderer Formen haben, wie z.B. die eines Bügels, eines Griffs, oder eines oder zweier Pedale. Die vorliegende Erfindung ist nicht auf eine Kurbel beschränkt, sondern sie umfaßt sämtliche denkbaren Varianten eines Übungsorgans, das sich dazu eignet, von einer Person mit Muskelkraft beaufschlagt zu werden. Dies schließt unter anderem auch Übungsorgane ein, die keine Drehung, sondern eine translatorische Bewegung ausführen, welche dann mechanisch in eine Drehung einer Motorwelle umgesetzt wird. In diesem Fall entsprechen die hier verwendeten Begriffe des Drehwinkels, der Drehzahl und des Drehmoments einer translatorischen Verschiebung bzw. einer translatorischen Geschwindigkeit bzw. einer Kraft. Solche Abwandlungen, die für einen Fachmann offensichtlich sind, sollen vom Schutz der Ansprüche umfaßt sein.

Claims (14)

  1. Trainingsgerät, insbesondere für Krafttraining, mit einer Drehmomenterzeugungseinrichtung, die einen Elektromotor (2) und ein Untersetzungsgetriebe (3) aufweist, und deren Ausgang mit wenigstens einem der Übungsperson dargebotenen Übungsorgan (1) zusammenwirkt, wobei der Elektromotor (2) als Drehstrommotor (2) ausgebildet ist, dem ein Frequenzumrichter (4) zugeordnet ist, mittels dessen die Frequenz und die Stärke des dem Elektromotor (2) zugeführten Drehstroms einstellbar sind, und wobei dem Frequenzumrichter (4) eine Regeleinrichtung (5) vorgeordnet ist, dadurch gekennzeichnet, dass dem Motor (2) ein Drehwinkelsensor (6) zugeordnet ist, dessen Messsignal (ϕM) sowohl dem Frequenzumrichter (4), als auch der Regeleinrichtung (5) zugeführt wird, dass dem Frequenzumrichter (4) durch die Regeleinrichtung (5) ein Sollwert (MM) für das von dem Motor (2) abzugebende Drehmoment vorgegeben wird, in den das Messsignal (ϕM) des Drehwinkelsensors (6) eingeht, und dass der Frequenzumrichter (4) die Frequenz und die Stärke des Motorstromes nach dem Prinzip der feldorientierten Regelung einstellt, und die Regeleinrichtung (5) zwei Regelkreise in Kaskadenstruktur für die Regelung der Position und der Drehzahl des Übungsorgans (1) aufweist, und daß sie eine Auswertungseinrichtung (13) aufweist, die aus dem Meßsignal (ϕM) des Drehwinkelsensors (6) zumindest die Position (ϕI) und die Drehzahl (ωI) des Übungsorgans (1) ermittelt und als Istgrößen für die beiden Regelkreise bereitstellt.
  2. Trainingsgerät nach Anspruch 1, dadurch gekennzeichnet, dass die Regeleinrichtung (5) die Position des Übungsorgans (1) auf einen Sollwert (ϕmin) regelt.
  3. Trainingsgerät nach Anspruch 2, dadurch gekennzeichnet, daß in dem Positionsregelkreis ein erster Begrenzer (15) vorgesehen ist, der die Solldrehzahl (ωS) des Übungsorgans (1) auf einen Maximalwert (ωmax) begrenzt.
  4. Trainingsgerät nach Anspruch 3, dadurch gekennzeichnet, daß in dem Positionsregelkreis ein zweiter Begrenzer (16) vorgesehen ist, der die Änderungsrate der Solldrehzahl (ωS) des Übungsorgans (1) auf einen Maximalwert (αmax) begrenzt.
  5. Trainingsgerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in dem Drehzahlregelkreis ein Übertragungsglied (18) vorgesehen ist, welches das Solldrehmoment (MS) des Übungsorgans (1) nach einer vorgegebenen Funktion in Abhängigkeit von der Position (ϕI) und/oder der Drehzahl (ωI) variiert.
  6. Trainingsgerät nach Anspruch 5, dadurch gekennzeichnet, daß die vorgegebene Funktion eine Erhöhung des Betrages des Solldrehmoments (MS) des Übungsorgans (1) mit einer vorgegebenen Rate bei zunehmender Unter- bzw. Überschreitung mindestens einer vorgegebenen Endposition (ϕmin; ϕmax) des Übungsorgans (1) beinhaltet.
  7. Trainingsgerät nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die vorgegebene Funktion eine Erhöhung des Betrages des Solldrehmoments (Ms) des Übungsorgans (1) mit zunehmender Drehzahl (ωI) bei Unter-bzw. Überschreitung mindestens einer vorgegebenen Endposition (ϕmin; ϕmax) des Übungsorgans (1) beinhaltet.
  8. Trainingsgerät nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die vorgegebene Funktion eine Begrenzung des Betrages der Solldrehmoments (MS) auf einen vorbestimmten Maximalwert (Mmax) beinhaltet.
  9. Trainingsgerät nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß in dem Drehzahlregelkreis eine Recheneinrichtung (19) vorgesehen ist, die das Solldrehmoment (MS) des Übungsorgans (1) in ein Solldrehmoment (MM) des Motors (2) umrechnet und dieses in Abhängigkeit von mechanischen und/oder thermischen Betriebsparametern des Gerätes korrigiert.
  10. Trainingsgerät nach Anspruch 9, dadurch gekennzeichnet, daß der Recheneinrichtung (19) von der Auswertungseinrichtung (13) aus dem Meßsignal (ϕM) des Drehwinkelsensors (6) ermittelte Bewegungsgrößen (ϕI, ωI, αI) des Übungsorgans (1), insbesondere dessen Istposition (ϕI) und/oder dessen Istdrehzahl (ωI), als weitere Eingangsgrößen zugeführt und von der Recheneinrichtung (19) in die Korrektur des Solldrehmoments (MM) des Motors (2) einbezogen werden.
  11. Trainingsgerät nach Anspruch 10, dadurch gekennzeichnet, daß zu den von der Auswertungseinrichtung (13) ermittelten, der Recheneinrichtung (19) zugeführten und von dieser in die Korrektur des Solldrehmoments (MM) des Motors (2) einbezogen Bewegungsgrößen auch die Winkelbeschleunigung (αI) des Übungsorgans (1) gehört.
  12. Trainingsgerät nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß dem Motor (2) und/oder dem Getriebe (3) mindestens ein Temperatursensor (12) zugeordnet ist, dessen Meßsignal (T) der Recheneinrichtung (19) und/oder einer separaten Kompensationseinrichtung (20) als Eingangsgröße zugeführt und dort zu einer temperaturabhängigen Korrektur des Solldrehmoments (MM) des Motors (2) verwendet wird.
  13. Trainingsgerät nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß eine von der Recheneinrichtung (19) separate Kompensationseinrichtung zur Korrektur des Temperatureinflusses auf den Motor (2) vorgesehen ist, die in den Frequenzumrichter (4) integriert ist.
  14. Trainingsgerät nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß das Übungsorgan translatorisch bewegbar ist, und daß Mittel zur mechanischen Umsetzung der translatorischen Bewegung in eine Drehbewegung der Welle des Elektromotors vorgesehen sind, so daß auf der Seite des Übungsorgans die Bewegungsgrößen anstelle eines Drehwinkels, einer Drehzahl und eines Drehmoments ein Weg, bzw. eine Geschwindigkeit bzw. eine Kraft sind.
EP05013561A 2004-07-08 2005-06-23 Trainingsgerät Active EP1614448B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05013561T PL1614448T3 (pl) 2004-07-08 2005-06-23 Przyrząd treningowy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004033074A DE102004033074A1 (de) 2004-07-08 2004-07-08 Trainingsgerät

Publications (4)

Publication Number Publication Date
EP1614448A2 EP1614448A2 (de) 2006-01-11
EP1614448A3 EP1614448A3 (de) 2006-03-15
EP1614448B1 EP1614448B1 (de) 2008-05-14
EP1614448B2 true EP1614448B2 (de) 2012-07-18

Family

ID=35134802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05013561A Active EP1614448B2 (de) 2004-07-08 2005-06-23 Trainingsgerät

Country Status (6)

Country Link
US (1) US7211985B2 (de)
EP (1) EP1614448B2 (de)
AT (1) ATE395108T1 (de)
DE (2) DE102004033074A1 (de)
ES (1) ES2308340T5 (de)
PL (1) PL1614448T3 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051674A1 (de) 2005-10-28 2007-05-03 Dieter Miehlich Trainingsgerät
KR101490482B1 (ko) * 2008-04-23 2015-02-06 삼성디스플레이 주식회사 액정 표시 장치의 제조 방법
EP2157401A1 (de) 2008-08-18 2010-02-24 Holding Prodim Systems B.V. Gerät und Vorrichtung zur Messung von räumlichen Koordinaten
EP2174694A1 (de) 2008-10-10 2010-04-14 milon industries GmbH System und Verfahren zur Erstellung von Trainingsplänen und zur adaptiven Anpassung von Fitness- und/oder Rehabilitationsgeräten
EP2174692A1 (de) 2008-10-10 2010-04-14 milon industries GmbH Trainingsgerät
EP2186547A1 (de) 2008-11-17 2010-05-19 milon industries GmbH Trainingsgerät mit getrenntem Haupt- und Positionierantrieb
EP2189190A1 (de) 2008-11-19 2010-05-26 milon industries GmbH Trainingsgerät mit Vorrichtung zur Positioniererleichterung
KR100986570B1 (ko) * 2009-08-31 2010-10-07 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
EP2402061B1 (de) * 2010-06-30 2016-03-02 eGym GmbH Trainingsgerät, -anordnung und -verfahren
DE102011082027A1 (de) 2011-02-09 2012-08-09 Robert Bosch Gmbh Trainingsvorrichtung mit einer elektrischen Maschine und Verfahren
CN103860355B (zh) * 2012-12-13 2016-08-03 李春光 双肢镜像运动训练设备
NL2013776B1 (en) * 2014-11-11 2016-10-06 Magnetic Innovations B V Controllable electromagnetic brake system.
FR3043218B1 (fr) * 2015-11-04 2019-12-20 Thales Dispositif de limitation dynamique et procede de limitation dynamique par un tel dispositf
US11745039B2 (en) 2016-07-25 2023-09-05 Tonal Systems, Inc. Assisted racking of digital resistance
US10661112B2 (en) 2016-07-25 2020-05-26 Tonal Systems, Inc. Digital strength training
US10486015B2 (en) 2017-10-02 2019-11-26 Tonal Systems, Inc. Exercise machine enhancements
US10589163B2 (en) 2017-10-02 2020-03-17 Tonal Systems, Inc. Exercise machine safety enhancements
US10335626B2 (en) 2017-10-02 2019-07-02 Tonal Systems, Inc. Exercise machine with pancake motor
US10617903B2 (en) 2017-10-02 2020-04-14 Tonal Systems, Inc. Exercise machine differential
US11285355B1 (en) 2020-06-08 2022-03-29 Tonal Systems, Inc. Exercise machine enhancements
US11998804B2 (en) 2021-04-27 2024-06-04 Tonal Systems, Inc. Repetition phase detection
US11878204B2 (en) 2021-04-27 2024-01-23 Tonal Systems, Inc. First repetition detection
DE102022205529A1 (de) 2022-05-31 2023-11-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Fitness-Trainingsgeräts mit abgespeicherten Datensätzen, sowie ein Fitness-Trainingsgerät zum Ausführen dieses Verfahrens
DE102022205526A1 (de) 2022-05-31 2023-11-30 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Fitness-Trainingsgeräts, insbesondere eines Laufbandes, sowie ein Fitness-Trainingsgerät zum Ausführen dieses Verfahrens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144174A1 (de) 1980-11-10 1982-06-24 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Vorrichtung zum feldorientierten betrieb einer drehfeldmaschine
US5569121A (en) 1993-08-17 1996-10-29 Sellier; Bruno Torque generator device, application thereof to physical exercise apparatus, and variable speed motor drive therefor
DE3532444C2 (de) 1985-09-11 1996-12-05 Josef Schnell Verfahren und Vorrichtung zur Steuerung eines Trainingsgerätes
DE19529764A1 (de) 1995-08-12 1997-02-13 Reck Anton Bewegungstrainingsgerät mit einer Kurbel
DE19618723A1 (de) 1995-12-29 1997-07-03 Tech Gmbh Antriebstechnik Und Kompensierte feldorientierte Regelung
EP0825702A1 (de) 1996-07-25 1998-02-25 LUST ANTRIEBSTECHNIK GmbH Anordnung und Verfahren zum Betreiben einer magnetgelagerten, elektromotorischen Antriebsvorrichtung bei einer Netzstörung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476158A (en) * 1993-03-31 1995-12-19 Otis Elevator Company Rotor time constant adaptation for induction motor in vector controlled elevator drive
US5325155A (en) * 1993-05-06 1994-06-28 Eastman Kodak Company Controlling the speed of an image-bearing member using relative states
US5585709A (en) * 1993-12-22 1996-12-17 Wisconsin Alumni Research Foundation Method and apparatus for transducerless position and velocity estimation in drives for AC machines
US5899411A (en) * 1996-01-22 1999-05-04 Sundstrand Corporation Aircraft electrical system providing emergency power and electric starting of propulsion engines
US5896487A (en) * 1996-03-05 1999-04-20 Masten; Billy Reese Opto-electrically controlled direct current motor speed control circuit
DE19653862A1 (de) * 1996-12-21 1998-06-25 Dieter Miehlich Trainingsgerät
FI112891B (fi) * 1998-09-04 2004-01-30 Kone Corp Menetelmä virtasäädetyn moottorin ohjaamiseksi
DE19927851B4 (de) * 1999-06-18 2008-11-13 Danfoss Drives A/S Verfahren zum Überwachen eines Drehwinkelaufnehmers an einer elektrischen Maschine
DE10036099A1 (de) * 2000-07-25 2002-02-14 Bosch Gmbh Robert Verfahren zur Regelung einer elektrischen Maschine mit Pulswechselrichter
JP3771544B2 (ja) * 2003-03-24 2006-04-26 株式会社日立製作所 永久磁石形同期電動機の制御方法及び装置
DE10333359B3 (de) * 2003-07-23 2005-01-20 Vecoplan Maschinenfabrik Gmbh & Co. Kg Zerkleinerungsvorrichtung für Abfälle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144174A1 (de) 1980-11-10 1982-06-24 Fuji Electric Co., Ltd., Kawasaki, Kanagawa Vorrichtung zum feldorientierten betrieb einer drehfeldmaschine
DE3532444C2 (de) 1985-09-11 1996-12-05 Josef Schnell Verfahren und Vorrichtung zur Steuerung eines Trainingsgerätes
US5569121A (en) 1993-08-17 1996-10-29 Sellier; Bruno Torque generator device, application thereof to physical exercise apparatus, and variable speed motor drive therefor
DE19529764A1 (de) 1995-08-12 1997-02-13 Reck Anton Bewegungstrainingsgerät mit einer Kurbel
DE19618723A1 (de) 1995-12-29 1997-07-03 Tech Gmbh Antriebstechnik Und Kompensierte feldorientierte Regelung
EP0825702A1 (de) 1996-07-25 1998-02-25 LUST ANTRIEBSTECHNIK GmbH Anordnung und Verfahren zum Betreiben einer magnetgelagerten, elektromotorischen Antriebsvorrichtung bei einer Netzstörung

Also Published As

Publication number Publication date
US7211985B2 (en) 2007-05-01
ES2308340T5 (es) 2012-10-26
EP1614448B1 (de) 2008-05-14
DE102004033074A1 (de) 2006-02-02
PL1614448T3 (pl) 2009-01-30
ATE395108T1 (de) 2008-05-15
EP1614448A3 (de) 2006-03-15
US20060006836A1 (en) 2006-01-12
ES2308340T3 (es) 2008-12-01
DE502005004085D1 (de) 2008-06-26
EP1614448A2 (de) 2006-01-11

Similar Documents

Publication Publication Date Title
EP1614448B2 (de) Trainingsgerät
DE102015210528B4 (de) Feedback-Aktuator für eine Lenkeinrichtung
DE60305768T2 (de) Steuerflächensteuerungen für ein Flugzeug sowie dazugehöriges Verfahren
WO2007022755A2 (de) Verfahren und vorrichtung zur steuerung und regelung von kräften an servo-elektrischen pressen
DE102014104896B4 (de) Elektromotor-Steuervorrichtung
EP3221015B1 (de) Trainingsvorrichtung mit 3d-positionserfassung und deren betriebsverfahren
EP3947109B1 (de) Verfahren zur steuerung eines steer-by-wire-lenksystems und steer-by-wire-lenksystem für ein kraftfahrzeug
DE102004023981A1 (de) Vorrichtung zum Bewegungstraining
WO2019025478A1 (de) Verfahren zur regelung des ausgangsdrucks eines hydraulikantriebsystems, verwendung des verfahrens und hydraulikantriebsystem
DE102008021862B4 (de) Lenksystem
EP2522612B1 (de) Verfahren und Vorrichtung zum Steuern einer Aufzugsanlage
DE10042168A1 (de) Verfahren zur Steuerung und Regelung einer motorisch angetriebenen Verstellvorrichtung
DE102021111413B3 (de) Aktuatorsystem sowie Verfahren zur Federsteifigkeitsanpassung in einem Aktuatorsystem
DE2361985A1 (de) Motorantrieb zur verschiebung eines geraeteteils an einem roentgenuntersuchungsgeraet
DE102011015696B4 (de) Verfahren zur Einstellung mindestens eines initialen fahrzeugspezifischen Reibungswertes, Verfahren zur Anpassung mindestens eines fahrzeugspezifischen Reibungswertes und Vorrichtung zur Anpassung mindestens eines fahrzeugspezifischen Reibungswertes
EP2122098B1 (de) Verfahren zur ansteuerung eines stellelements
DE102019004269A1 (de) Kraft-geregelte Seilwinde für Trainingsgeräte
CH711874A2 (de) Medizinische Vorrichtung mit einem medizinisch-optischen Gerät und einer Haltevorrichtung und Verfahren zum Betrieb der medizinischen Vorrichtung.
DE102013217184A1 (de) Betätigungseinrichtung
EP3501093B1 (de) Verfahren zum betreiben eines systems mit mechanisch miteinander gekoppelten antrieben und übergeordnetem rechner und system
DE4413196C2 (de) Verfahren zur Regelung einer umrichtergespeisten Asynchronmaschine im Feldschwächbetrieb
AT526081B1 (de) Drehantrieb für einen Roboterarm
DE3022536C2 (de) Ergometer
DE102023202524B3 (de) Steuergerät, Steer-by-Wire-Lenksystem und Verfahren zur Erzeugung eines Gesamt-Soll-Gegenmomentes
DE102012011510A1 (de) Elektromechanisches Fahrzeuglenksystem und Verfahren zu dessen Betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: A63B 21/005 20060101AFI20051104BHEP

Ipc: H02P 21/00 20060101ALI20060120BHEP

17P Request for examination filed

Effective date: 20060811

17Q First examination report despatched

Effective date: 20061002

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MIHA MASCHINEN-GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIETER MIEHLICH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004085

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MILON INDUSTRIES GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & PARTNER AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MILON INDUSTRIES GMBH

Effective date: 20080702

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2308340

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081014

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20080901

Year of fee payment: 4

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHNELL TRAININGSGERAETE GMBH

Effective date: 20090212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCHNELL TRAININGSGERAETE GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20090630

Year of fee payment: 5

Ref country code: NL

Payment date: 20090630

Year of fee payment: 5

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090630

Year of fee payment: 5

Ref country code: LU

Payment date: 20090612

Year of fee payment: 5

Ref country code: SE

Payment date: 20090618

Year of fee payment: 5

Ref country code: TR

Payment date: 20090602

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20090619

Year of fee payment: 5

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090630

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090814

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090623

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080815

BERE Be: lapsed

Owner name: MILON INDUSTRIES GMBH

Effective date: 20100630

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 4746

Country of ref document: SK

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100623

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SCHNELL TRAININGSGERAETE GMBH

Effective date: 20090212

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20120718

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502005004085

Country of ref document: DE

Effective date: 20120718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100623

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100624

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2308340

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20121026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005004085

Country of ref document: DE

Representative=s name: BOETERS & LIECK, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160622

Year of fee payment: 12

Ref country code: GB

Payment date: 20160628

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160621

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170623

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 19