EP1602637B1 - Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen - Google Patents

Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen Download PDF

Info

Publication number
EP1602637B1
EP1602637B1 EP05291116A EP05291116A EP1602637B1 EP 1602637 B1 EP1602637 B1 EP 1602637B1 EP 05291116 A EP05291116 A EP 05291116A EP 05291116 A EP05291116 A EP 05291116A EP 1602637 B1 EP1602637 B1 EP 1602637B1
Authority
EP
European Patent Office
Prior art keywords
cut
stage
gasoline
process according
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05291116A
Other languages
English (en)
French (fr)
Other versions
EP1602637B8 (de
EP1602637A1 (de
Inventor
Patrick Briot
Arnaud Baudot
Vincent Coupard
Alain Methivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1602637A1 publication Critical patent/EP1602637A1/de
Application granted granted Critical
Publication of EP1602637B1 publication Critical patent/EP1602637B1/de
Publication of EP1602637B8 publication Critical patent/EP1602637B8/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force

Definitions

  • the present invention relates to a method allowing a simple and economical way to modulate the respective productions of gasoline and diesel. More precisely, according to the process that is the subject of the present application, it is possible to convert an initial charge of hydrocarbons comprising from 4 to 15 carbon atoms, and preferably from 4 to 11 carbon atoms, into a gasoline fraction of index octane improved compared to that of the load, and a gas oil fraction with a high cetane number.
  • the object of the present invention is, from a gasoline cut having from 4 to 15 carbon atoms, and preferably from 4 to 11 carbon atoms, to produce a gasoline cut with an improved octane number relative to that of the starting cut, and a diesel fuel cut of cetane number at least equal to 35, and preferably greater than 45.
  • the effluents resulting from the processes of conversion of more or less heavy residues of the atmospheric or vacuum distillation of crude oil such as, for example, the gasoline cuts resulting from the process of fluidized catalytic cracking (FCC)
  • FCC fluidized catalytic cracking
  • One of the objects of the present invention is to separate the linear olefins of the branched olefins from an initial gasoline feedstock resulting from the fluidized catalytic cracking process.
  • Another object of the present invention is to provide a solution allowing increased flexibility in the management of products from the refinery.
  • the use of the present process may advantageously make it possible to modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.
  • the processes for adding isobutane to alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 7 and 9 carbon atoms, and generally characterized by high indices. octane.
  • the oligomerization processes essentially based on the dimerization and trimerization of light olefins generally resulting from the cracking process catalytic, and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates.
  • EP 0734766 provides mainly products having 6 carbon atoms when the olefin used is propylene, and 8 carbon atoms when the olefin is linear butene.
  • the US Patent 5,382,705 proposes to couple the oligomerization and etherification processes previously described in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.
  • the light cut ⁇ resulting from the distillation separation step and comprising the majority of linear paraffins and a portion of the linear olefins, is entirely mixed with the effluent of the membrane separation unit containing the majority of the branched olefins.
  • the oligomerization step is carried out in the presence of a catalyst comprising at least one Group VIB metal of the periodic table.
  • the step of separating linear olefins and paraffins on the one hand, and branched olefins and paraffins on the other, is carried out in a so-called membrane separation unit which uses an MFI geolitic membrane.
  • zeolite-based membranes mention may be made more particularly of membranes based on zeolites of MFI or ZSM-5 type, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba +.
  • the process according to the invention may comprise a step of removing at least a portion of the nitrogenous or basic impurities contained in the initial hydrocarbon feedstock, said purification step being located upstream of the step membrane separation.
  • the initial hydrocarbon feedstock comes from a catalytic cracking process in a fluidized bed. It may be treated separately or mixed with other fillers while respecting the fact that the resulting mixture will have a number of carbon atoms always between 4 and 15 carbon atoms, and preferably between 4 and 11 carbon atoms .
  • An example of a filler that can be blended with the feedstock is the direct distillation petrol cut of the end point crude generally close to 200 ° C.
  • the figure 1 represents a scheme of the process according to the invention comprising an optional charge purification unit A, a membrane separation unit B, an oligomerization unit C, a separation unit by distillation or flash D and a unit D hydrogenation E.
  • the hydrocarbon feedstock is conveyed via line 1 to a purification unit A.
  • This unit A eliminates a large part of the nitrogen compounds and / or basic contained in the load. This removal, although optional, is necessary when the hydrocarbon feedstock comprises a high level of nitrogen and / or basic compounds, as these constitute a poison for the catalysts of the subsequent steps of the present process.
  • Said compounds can be removed by adsorption on an acidic solid.
  • This solid may be selected from the group consisting of silicoaluminates, titanosilicates, mixed oxides titanium alumina, clays, resins.
  • the solid may also be chosen from mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble, of at least one element selected from the group formed by titanium, zirconium, silicon, germanium, lime, tin, tantalum, niobium, on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, titanium silicas, zirconia silicas, resins ion exchange type Amberlyst, or any other solid having any acidity.
  • alumina gamma, delta, eta, alone or as a mixture
  • silica, silica aluminas, titanium silicas, zirconia silicas resins ion exchange type Amberlyst, or any other solid having any acidity.
  • a particular embodiment of the invention may consist in using a mixture of at least two of the previously described catalysts.
  • the pressure of the charge purification unit is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is in the liquid state is preferably chosen.
  • VVH The ratio of the volume flow rate of charge to the volume of catalytic solid
  • the temperature of the purification unit is between 15 ° C and 300 ° C, preferably between 15 ° C and 150 ° C, and very preferably between 15 ° C and 60 ° C.
  • the removal of the nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any other equivalent means known to those skilled in the art.
  • the purified ⁇ -cut feed is conveyed via line 2 to the membrane separation unit B.
  • olefins and linear paraffins forming the ⁇ -section are separated on a membrane from the rest of the gasoline cut and are removed via line 3 to feed an oligomerization unit C.
  • the cup containing no more linear olefins and paraffins is removed from unit B by line 7.
  • This so-called ⁇ -section cup whose olefin content has decreased significantly since it contains only branched olefins, has an improved octane number compared to the initial gasoline cut.
  • the membrane separation step performed on the unit B uses a membrane based on MFI geolines.
  • the MFI zeolite-based membranes finally offer high normal / isoolefin selectivities, close to those observed for normal / iso-paraffins under similar operating conditions.
  • the operating temperature of the membrane will be between 80 ° C and 300 ° C.
  • the linear olefins and paraffins ( ⁇ -section) separated from the petrol fraction in unit B are sent to an oligomerization reactor, represented by unit C, by means of line 3.
  • This unit C contains an acid catalyst.
  • the hydrocarbons present in the mixture of paraffins and linear olefins undergo moderate oligomerization reactions, ie in general dimerizations or trimerizations, the conditions of the reaction being optimized for the production of a majority of hydrocarbons whose carbon number is between 9 and 25, and preferably between 10 and 20.
  • the catalyst used to carry out the oligomerization comprises at least one metal of group VIB of the periodic table, and advantageously an oxide of said metal.
  • Said catalyst may further comprise an oxide support selected from the group consisting of aluminas, titanates, silicas, zirconias, aluminosilicates.
  • the pressure of the unit C is most often such that the charge is in liquid form.
  • This pressure is between 0.3 MPa and 4 MPa.
  • the ratio of the volume flow rate of charge to the volume of catalyst (also called hourly volume velocity or VVH) is between 0.2 liter / liter.hour and 10 liters / liter.hour.
  • reaction temperature should be between 100 ° C and 250 ° C to optimize the quality of the finally obtained products.
  • the heavy cut ⁇ is a section whose initial point corresponds to a diesel cut.
  • This section can be hydrogenated in a conventional hydrogenation unit E in the presence of a catalyst and under operating conditions that are well known to those skilled in the art.
  • the effluent from the unit E constitutes a gas oil with a cetane number greater than 35, and preferably greater than 45.
  • Example 1 is according to the invention and will be better understood by following the diagram of the figure 1 .
  • Example 2 is a comparative example.
  • Examples 1 and 2 have the units A, C, D and E in common. The only difference is that Example 2 does not have the membrane separation unit B.
  • Example 1 (according to the invention):
  • the feedstock is a FCC gasoline boiling point between 40 ° C and 150 ° C.
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the Mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the volume flow rate of the charge to the volume of acid solid (VVH) is 1 liter / liter / hour.
  • the temperature of the reactor is 20 ° C.
  • Table 1 gives the composition of the initial charge and that of the effluent from unit A. The charge rate is 1 kg / h. Table 1: Characteristics of the charge and the effluent of unit A.
  • Charge of unit A Effluent of unit A (cut ⁇ ) Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the effluent from unit A is then sent to a membrane reactor B, the membrane consisting of an ⁇ -alumina support on which is deposited a layer of MFI zeolite with a thickness of between 5 and 15 ⁇ m. .
  • the pressure of the membrane reactor is equal to 1 bar (0.1 MPa) and the temperature to 150 ° C.
  • Table 2 gives the composition of effluents from unit B ( ⁇ -section, ⁇ ). Table 2: characteristics of effluents from unit B. ⁇ cut ⁇ cup Yield (%) (relative to the ⁇ cut) 8.8 91.2 Production (g / h) 88 912 Paraffins (% wt) 45.5 23.1 Naphthenes (% wt) 10.7 Aromatic (% by weight) 38.5 Olefins (% by weight) 54.5 27.7
  • the ⁇ cut resulting from the membrane separation unit B is introduced into an oligomerization reactor C containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the oligomerization unit C is 2 MPa, the ratio of the volume flow rate of charge on the catalyst volume is equal to 1.5 liters / liter.hour.
  • the temperature is set at 170 ° C.
  • the heavy cut ⁇ is sent to a hydrogenation reactor E containing a catalyst comprising an alumina support on which are deposited nickel and molybdenum (marketed by AXENS under the trade name HR 348, registered trademark).
  • the pressure of the unit is 5 MPa.
  • the ratio of the volume flow rate of charge to the volume of catalyst is equal to 2 liters / liter / hour.
  • the ratio of the volume flow rate of hydrogen injected on the volume flow rate of charge is equal to 600 liters / liter.
  • the reactor temperature is 320 ° C.
  • the characteristics of the effluent from step E are shown in Table 4. Table 4: Characteristics of the effluent from unit E Effluent of unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Cetane engine 55
  • the light fraction ⁇ of the 40 ° C-200 ° C distillation range from unit D is mixed with the ⁇ cut obtained from unit B.
  • the properties of the mixture of ⁇ and ⁇ sections are shown in the table. 5 and compared to those of the initial cut ⁇ .
  • Table 5 Comparison of the characteristics of the initial cut ⁇ and the final cut ⁇ + ⁇ ⁇ cut Cups ⁇ + ⁇ Production (g / l) 1000 951.6 Paraffins (% wt) 25.2 26.2 Naphthenes (% wt) 9.6 10 Aromatic (% by weight) 34.9 36.2 Olefins (% by weight) 30.3 26.5 RON octane number 92 96
  • the present method makes it possible to obtain from a gasoline cut from an FCC unit a gasoline cut ( ⁇ + ⁇ cut) having an improved octane number relative to the initial cut (96 against 92) and a Diesel fuel cut, unit E effluent, with high cetane number (55), compatible with marketing to European and US specifications.
  • This example corresponds to the prior art and consists in sending a gasoline cut directly to an oligomerization unit after purification, without prior separation of the linear and branched olefins.
  • the effluents resulting from the oligomerization are separated into a light section and a heavy section, denoted respectively ⁇ 'and ⁇ '.
  • step A is a charge purification step identical to that of example 1 according to the invention.
  • the effluent from step A is sent to the oligomerization step C without going through the membrane separation step B, ie without separating the linear and branched olefins.
  • the catalyst used and the operating conditions of stage C are identical to those of example 1 according to the invention.
  • the heavy cut ⁇ ' is sent to a hydrogenation reactor E containing an alumina catalyst on which nickel and molybdenum are deposited.
  • the pressure of the unit of step E is 5 MPa, the ratio of the feed rate to the volume of catalyst is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature is 320 ° C.
  • the final gasoline fraction ⁇ ' has an octane number lower than that obtained in Example 1 according to the invention, which can make marketing problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Claims (8)

  1. Verfahren zur Umwandlung eines Benzinschnitts, der aus dem katalytischen Wirbelschichtcrackverfahren stammt, der lineare und verzweigte Olefine umfasst, die 4 bis 15 Kohlenstoffatome umfassen, wobei das Verfahren die folgenden Schritte umfasst:
    a) einen Schritt der Trennung mittels Membran der Kohlenwasserstoffbeschickung, der es ermöglicht, einen Schnitt β, der den Großteil der linearen Olefine enthält, die in der Beschickung vorhanden sind, und einen Schnitt γ zu produzieren, der den Großteil der verzweigten Olefine enthält, der ein Benzin mit hoher Oktanzahl, das heißt, größer als diejenige der Beschickung, bildet, wobei der Schritt der Trennung bei einer Temperatur im Bereich zwischen 80 °C und 300 °C und mittels einer Membran auf der Basis des MFI-Zeolithen ausgeführt wird,
    b) einen Schritt der Behandlung mittels Oligomerisation der linearen Olefine, die in den Abflüssen, die aus dem Schritt der Trennung auf Membran (Schnitt β) stammen, enthalten sind, unter den folgenden Bedingungen, Druck im Bereich zwischen 0,3 und 4 MPa, Verhältnis der Durchflussgeschwindigkeit der Beschickung zum Katalysatorvolumen (HSV) im Bereich zwischen 0,2 Liter/Liter.Stunde und 10 Liter/Liter.Stunde, Temperatur im Bereich zwischen 100 °C und 250 °C, wobei der verwendete Katalysator mindestens ein Metall der Gruppe VIB umfasst,
    c) einen Schritt der Trennung mittels Destillation der Abflüsse, die aus dem Schritt der Oligomerisation stammen, in mindestens zwei Schnitte:
    - einen leichten Schnitt δ, der die Kohlenwasserstoffe umfasst, deren Destillationsendpunkt kleiner ist als eine Temperatur im Bereich zwischen 150 °C und 200 °C, wobei der Schnitt δ vollständig mit dem Abfluss aus der Einheit zur Trennung mittels Membran gemischt ist, der den Großteil der verzweigten Olefine enthält (Schnitt γ),
    - einen schweren Schnitt η, der die Kohlenwasserstoffe umfasst, deren Anfangsdestillationspunkt größer ist als eine Temperatur im Bereich zwischen 150 °C und 200 °C,
    d) einen Schritt der Hydrierung des Schnitts η, um ein Gasöl mit einer Cetanzahl von mindestens gleich 35 und bevorzugt größer als 45 zu erhalten.
  2. Verfahren nach Anspruch 1, wobei der Schritt der Oligomerisation in Gegenwart eines Katalysators durchgeführt wird, der mindestens ein Metall der Gruppe VIB des Periodensystems der Elemente und ein Oxid des Metalls umfasst.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei die Einheit zur Trennung mittels Membran eine Membran auf der Basis von Zeolithen vom Typ MFI oder ZSM-5 verwendet, die nativ sind oder einem lonenaustausch mit H+; Na+; K+; Cs+; Ca+; Ba+ unterzogen wurden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Schnitt ö einen Destillationsendpunkt im Bereich zwischen 150 °C und 180 °C aufweist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Benzinschnitt 4 bis 11 Kohlenstoffatome umfasst.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei dem Benzinschnitt, der aus dem katalytischen Krackverfahren stammt, ein Benzinschnitt aus der Gleichstromdestillation des Rohöls mit einen Endpunkt nahe bei 200 °C beigemischt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, das einen Schritt zur Entfernung mindestens eines Teils der stickstoffhaltigen oder basischen Verunreinigungen umfasst, die in dem Benzinschnitt enthalten sind, der aus dem katalytischen Krackverfahren stammt, wobei dieser Schritt der Reinigung stromaufwärts des Schritts zur Trennung mittels Membran liegt.
  8. Verfahren nach Anspruch 7, wobei die Verbindungen durch Adsorption auf einer festen Säure entfernt werden, ausgewählt aus der Gruppe gebildet aus den Aluminiumsilicaten, Titansilicaten, Tonerde-Titan-Mischoxiden, Tonen und Harzen.
EP05291116A 2004-06-04 2005-05-24 Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen Not-in-force EP1602637B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406096A FR2871167B1 (fr) 2004-06-04 2004-06-04 Procede d'amelioration de coupes essences et de transformation en gazoles
FR0406096 2004-06-04

Publications (3)

Publication Number Publication Date
EP1602637A1 EP1602637A1 (de) 2005-12-07
EP1602637B1 true EP1602637B1 (de) 2008-11-19
EP1602637B8 EP1602637B8 (de) 2009-06-03

Family

ID=34945969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291116A Not-in-force EP1602637B8 (de) 2004-06-04 2005-05-24 Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen

Country Status (6)

Country Link
US (1) US7847141B2 (de)
EP (1) EP1602637B8 (de)
JP (1) JP2005344118A (de)
CN (1) CN1724617A (de)
DE (1) DE602005011070D1 (de)
FR (1) FR2871167B1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871168B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole
AU2006223412A1 (en) * 2005-03-11 2006-09-21 Uop Llc High flux, microporous, sieving membranes and separators containing such membranes and processes using such membranes
US7846322B2 (en) * 2005-03-11 2010-12-07 Uop Llc Integrated refinery with enhanced olefin and reformate production
AU2006306471B2 (en) * 2005-10-24 2010-11-25 Shell Internationale Research Maatschapij B.V. Cogeneration systems and processes for treating hydrocarbon containing formations
US7638676B2 (en) * 2007-09-07 2009-12-29 Uop Llc Processes for the isomerization of feedstocks comprising paraffins of 5 to 7 carbon atoms
US7638674B2 (en) * 2007-09-07 2009-12-29 Uop Llc Processes for the isomerization of paraffins of 5 and 6 carbon atoms with methylcyclopentane recovery
US7812207B2 (en) * 2007-09-07 2010-10-12 Uop Llc Membrane separation processes and systems for enhanced permeant recovery
US7638675B2 (en) * 2007-09-07 2009-12-29 Uop Llc Processes for the isomerization of normal butane to isobutane
CN102051223B (zh) * 2009-10-27 2013-08-28 中国石油化工股份有限公司 一种催化裂化汽油加氢工艺方法
FR2975103B1 (fr) 2011-05-12 2014-08-29 IFP Energies Nouvelles Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
FR2980195B1 (fr) 2011-09-20 2013-08-23 IFP Energies Nouvelles Procede de separation du pentene-2 d'une coupe c5 contenant du pentene-2 et du pentene-1 par oligomerisation selective du pentene-1
FR2984916B1 (fr) * 2011-12-23 2014-01-17 IFP Energies Nouvelles Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
WO2014074833A1 (en) 2012-11-12 2014-05-15 Uop Llc Process for making gasoline by oligomerization
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
CA2984052A1 (en) 2016-10-27 2018-04-27 Fccl Partnership Process and system to separate diluent
KR102521452B1 (ko) * 2017-12-20 2023-04-13 주식회사 엘지화학 파라핀 혼합물 및 이의 제조 방법
KR102521448B1 (ko) * 2017-12-20 2023-04-13 주식회사 엘지화학 파라핀 혼합물 및 이의 제조 방법
FR3089518B1 (fr) 2018-12-10 2020-11-20 Ifp Energies Now Procede ameliore de conversion d’une charge lourde en distillats moyens faisant appel a un enchainement d’unites d’hydrocraquage, de vapocraquage et d’oligomerisation
FR3089519B1 (fr) 2018-12-10 2020-11-20 Ifp Energies Now Procédé amélioré de conversion d’une charge lourde en distillats moyens faisant appel à un enchainement d’unités d’hydrocraquage, de craquage catalytique de naphta et d’oligomérisation
FR3134110A1 (fr) 2022-04-05 2023-10-06 Axens Procédé amélioré de production de distillats moyens par oligomérisation d’une charge oléfinique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2388095A (en) * 1940-01-25 1945-10-30 Jasco Inc Refining process
DE3030998A1 (de) * 1980-08-16 1982-04-01 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur herstellung von kraftstoffen mit einem ueberwiegenden anteil an dieseloel
FI96320C (fi) * 1994-12-29 1996-06-10 Neste Oy Menetelmä alkeenien oligomeroimiseksi
US6043177A (en) * 1997-01-21 2000-03-28 University Technology Corporation Modification of zeolite or molecular sieve membranes using atomic layer controlled chemical vapor deposition
AU2001249695A1 (en) * 2000-04-03 2001-10-15 Chevron U.S.A. Inc. Improved conversion of syngas to distillate fuels
AU2001281413B2 (en) * 2000-07-10 2006-11-16 Sasol Technology (Pty) Ltd Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
US6818333B2 (en) * 2002-06-03 2004-11-16 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation
FR2871168B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole

Also Published As

Publication number Publication date
US7847141B2 (en) 2010-12-07
FR2871167B1 (fr) 2006-08-04
CN1724617A (zh) 2006-01-25
EP1602637B8 (de) 2009-06-03
DE602005011070D1 (de) 2009-01-02
US20050283037A1 (en) 2005-12-22
EP1602637A1 (de) 2005-12-07
JP2005344118A (ja) 2005-12-15
FR2871167A1 (fr) 2005-12-09

Similar Documents

Publication Publication Date Title
EP1602637B1 (de) Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen
EP1602705B1 (de) Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung
EP2256179B1 (de) Verfahren zur Herstellung einer Kohlewasserstofffraktion mit hohem Oktan- und niedrigem Schwefelgehalt
EP2321385B1 (de) Verfahren zur umwandlung einer schweren ladung in benzin und propylen mit einer struktur für variablen ertrag
CA2611089C (fr) Procede d'hydrocraquage doux incluant une dilution de la charge
EP1777284B1 (de) Verfahren zur Direktumwandlung eines Olefine mit mindestens vier oder fünf Kohlenstoffatomen enthaltenden Einsatzstoffs zur Herstellung von Propylen und von entschwefeltem Benzin mit hoher Oktanzahl
FR2999190A1 (fr) Procede d'obtention de solvants hydrocarbones de temperature d'ebullition superieure a 300°c et de point d'ecoulement inferieur ou egal a -25°c
FR2796650A1 (fr) Melange liquide approprie comme essence, contenant des composants oxygenes et presentant un indice d'octane eleve
EP2636661B1 (de) Umwandlungsverfahren einer schweren Ladung durch Einsatz einer Katkrackeinheit und einer selektiven Hydrierphase des aus dem Katkrackverfahren entstandenen Kraftstoffs
WO2013093227A1 (fr) Procede ameliore de conversion d'une charge lourde en distillat moyen faisant appel a un pretraitement en amont de l'unite de craquage catalytique
FR2968010A1 (fr) Procede de conversion d'une charge lourde en distillat moyen
EP1474499B1 (de) Integriertes verfahren zur entschwefelung eines abflusses vom cracken oder dampfcracken von kohlenwasserstoffen.
EP1433835B1 (de) Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl
EP1396532B1 (de) Verfahren zur Verwertung einer Kohlenwasserstoffeinsatzes und Minderung des Dampfdrucks dieses Einsatzes
WO2012153011A2 (fr) Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
EP0325502A1 (de) Katalytische Krackverfahren
EP0589112B1 (de) Verfahren zur Herstellung einer an tertiärem Amylmethyläther reichen Fraktion frei von Olefinen und einer an n-Pentan reichen paraffinischen Fraktion
EP2597135B1 (de) Herstellungsverfahren von Mitteldestillaten aus einer konventionellen schweren Charge, einschließlich einer selektiven Hydrierphase des HCO-EX-FCC-Verschnitts
WO2002072739A1 (fr) Procede de production d'essence a faible teneur en soufre
FR2730486A1 (fr) Procede comportant l'etherification optimisee d'une coupe d'hydrocarbures contenant des olefines ayant 6 atomes de carbone par molecule
FR2857370A1 (fr) Procede de production de distillats et d'huiles lubrifiantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRIOT, PATRICK

Inventor name: METHIVIER, ALAIN

Inventor name: BAUDOT, ARNAUD

Inventor name: COUPARD, VINCENT

17P Request for examination filed

Effective date: 20060607

AKX Designation fees paid

Designated state(s): BE BG DE NL

17Q First examination report despatched

Effective date: 20061204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE BG DE NL

REF Corresponds to:

Ref document number: 602005011070

Country of ref document: DE

Date of ref document: 20090102

Kind code of ref document: P

RBV Designated contracting states (corrected)

Designated state(s): BE DE GB NL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090820

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005011070

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110531

Year of fee payment: 7

Ref country code: GB

Payment date: 20110525

Year of fee payment: 7

Ref country code: BE

Payment date: 20110531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110601

Year of fee payment: 7

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20120531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005011070

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201