EP1433835B1 - Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl - Google Patents

Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl Download PDF

Info

Publication number
EP1433835B1
EP1433835B1 EP03293026A EP03293026A EP1433835B1 EP 1433835 B1 EP1433835 B1 EP 1433835B1 EP 03293026 A EP03293026 A EP 03293026A EP 03293026 A EP03293026 A EP 03293026A EP 1433835 B1 EP1433835 B1 EP 1433835B1
Authority
EP
European Patent Office
Prior art keywords
effluent
ethers
cut
process according
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03293026A
Other languages
English (en)
French (fr)
Other versions
EP1433835A1 (de
Inventor
Patrick Briot
Vincent Coupard
Alain Forestiere
Eric Llido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1433835A1 publication Critical patent/EP1433835A1/de
Application granted granted Critical
Publication of EP1433835B1 publication Critical patent/EP1433835B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • C10G57/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process with polymerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/14Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition

Definitions

  • the present invention relates to a method allowing a simple and economical way to modulate the respective productions of gasoline and diesel fuel for example within the refinery. More precisely, according to the process that is the subject of the present invention, it is possible to convert an initial charge of hydrocarbons comprising from 4 to 15 carbon atoms, inclusive limits, preferably from 4 to 11 carbon atoms, inclusive limits, or even 4 to 10 carbon atoms, inclusive, in at least one hydrocarbon fraction having an improved octane number and a hydrocarbon fraction with a high cetane number.
  • the processes for adding to isobutane (branched alkane) alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 6 and 9 carbon atoms and generally characterized by high octane numbers.
  • ethers of the type MTBE methyl tertiary butyl ether
  • ETBE ethyl tert-butyl ether
  • TAME tert-amyl methyl ether
  • the oligomerization processes based essentially on the dimerization and trimerization of light olefins resulting from catalytic cracking process and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates.
  • Such a method is for example described in the application for EP-A-0734766 .
  • the effluents resulting from the processes of conversion of more or less heavy residues resulting from the atmospheric or vacuum distillation of the crude oil within the refinery contain an olefin content between 10 and 80%.
  • These effluents are used in the composition of commercial species at a rate of 20 to 40% depending on the geographical origin (about 27% in Western Europe and about 36% in the USA). This content varies mainly depending on the final boiling point of the petrol cut and the refinery. It is likely that in the context of environmental protection, the standards for commercial species will be oriented in the coming years towards a reduction of the olefin content allowed in these species.
  • One of the aims of the present invention is to separate linear olefins from branched olefins from an initial gasoline feedstock.
  • Another object of the present invention is to provide an alternative allowing increased flexibility in the management of products from the refinery. More precisely, the process according to the present invention advantageously makes it possible to modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.
  • step a) of the process according to the invention at least 50% of the branched olefins, preferably at least 70% and very preferably at least 90% of said olefins are etherified.
  • the final boiling point of the ⁇ -cut corresponds most often to the initial boiling point of the ⁇ cut.
  • step a) all of the effluent from step a) is treated in step b) and the ⁇ -cut comprises the ethers formed during step a).
  • the process further comprises a step of separating the ethers from the rest of the effluent resulting from step a), said effluent freed from said ethers is treated according to step b) and said ethers are treated with the ⁇ cut according to step d).
  • All the ethers included in the ⁇ -cut can be cracked during step d).
  • the experimental conditions are selected in such a way that a variable part of the ethers included in the ⁇ -section can be cracked during step d).
  • said portion may be between 85 and 99.9 mol%, or even between 90 and 99.9 mol%.
  • said oligomerization is carried out at a pressure of between 0.2 and 10 MPa, a charge flow rate ratio by volume of catalyst of between 0.05 and 50 l / l / h and a temperature of between 15 and 300. ° C.
  • said oligomerization may be carried out in the presence of a catalyst comprising at least one metal of group VIB of the periodic table.
  • said etherification is carried out at a pressure of between 0.2 and 10 MPa, a charge flow ratio on catalyst volume of between 0.05 and 50 l / l / h and a temperature of between 15 and 300 ° C. vs.
  • the present process may further comprise a step of removing at least a portion of the nitrogenous or basic impurities contained in the initial hydrocarbon feedstock.
  • the initial hydrocarbon feedstock treated by the present process may be from a catalytic cracking, catalytic reforming or paraffin dehydrogenation process.
  • the initial hydrocarbon feedstock is conveyed via line 1 to a unit A.
  • This unit A makes it possible to eliminate a large part, that is to say at least 90% by weight, of the nitrogen compounds and / or basic contents contained in the load. This elimination, although optional, is necessary when the feedstock comprises a high level, that is to say at least 5 ppm, of said nitrogenous and / or basic compounds as these constitute a poison for the catalysts of the following stages of the process. process according to the invention. Said compounds can be removed by adsorption on an acidic solid.
  • This solid may be chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed alumina-titanium oxide oxides, clays, resins, mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble, and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (gamma forms, delta, eta, alone or in admixture), silica, silica-aluminas, titanium-silica-oxides, zirconia silicas, ion-exchange resins, for example sulphonated styrene-divinylbenzene resins, such as Amberlyst® type resins or any other acidic resin.
  • a particular embodiment of the invention may consist in implementing a physical mixture of at least two of the previously described solids.
  • the pressure is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is in the liquid state is preferably selected.
  • the ratio of the charge rate to the volume of catalytic solid is most often between 0.05 l / l / h and 50 l / l / h and preferably between 0.1 l / l / h and 20 l / l / h. l / h, or even between 0.2 and 10 l / l / h.
  • the temperature is between 15 and 300 ° C, preferably between 15 and 150 ° C and very preferably between 15 ° C and 60 ° C.
  • the elimination of nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.
  • the purified feed is conveyed via line 2 to an etherification unit B corresponding to step a) of the process according to the invention.
  • the branched olefins react preferentially with an alcohol to form an ether.
  • Alcohol is preferably, methanol or ethanol and may be added, via line 3, to the hydrocarbon feedstock, in a molar ratio of alcohol to olefins generally of between 0.5 and 3 and preferably of about 1.
  • the pressure of the unit is such that under the temperature conditions of the catalyst used in said step a) of the method according to the invention, the charge is in the liquid state, that is to say that the pressure is generally between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa or between 0.3 and 4 MPa.
  • the ratio of the feed rate to the volume of catalyst is generally between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h or still between 0.2 and 10 l / l / h.
  • the temperature is between 15 and 300 ° C, preferably between 30 and 150 ° C and very often between 30 ° C and 100 ° C.
  • the etherifying unit B advantageously contains an acid catalyst.
  • the acid catalyst may be a catalyst of the same nature as those conventionally used for the production of MTBE, ETBE or TAME.
  • it may be chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed alumina-titanium oxide oxides, clays, resins and mixed oxides obtained by grafting and comprising at least one element selected from the group consisting of group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), the silica, alumina silicas, titanium dioxide silicas, zirconia silicas, Amberlyst type ion exchange resins or any other acidic resin.
  • a particular embodiment of the invention may consist in using a physical mixture of at least two of the previously described catalysts.
  • the effluent from the etherification unit B is then optionally treated under conditions of elimination of at least a portion of the excess alcohol contained in the mixture obtained. This elimination can be done conventionally by washing with water or by any equivalent means known to those skilled in the art.
  • all of the effluent from the etherification unit B is sent to an oligomerization unit C corresponding to step b) of the process according to the invention, without intermediate separation of the ethers.
  • linear olefins present in the initial hydrocarbon feedstock and unreacted during the previous etherification step will undergo moderate oligomerization reactions, that is to say in general dimerizations or trimerizations, the conditions of said reaction being optimized for the production of a majority of hydrocarbons whose number of carbon atoms is included between 9 and 25, preferably between 10 and 20.
  • the catalyst of the oligomerization unit C can be chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides alumina-titanium oxides, clays resins, mixed oxides obtained by grafting at least one organo-metallic organosoluble or water-soluble compound and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, silica-titanium oxides, zirconia silicas or any other solid having any acidity.
  • the catalyst used to carry out said oligomerization comprises at least one Group VIB metal of the periodic classification and advantageously an oxide of said metal.
  • This catalyst may furthermore comprise an oxide support selected from the group of aluminas, titanates, silicas, zirconiums, aluminosilicates.
  • a particular embodiment of the invention may consist in using a physical mixture of at least two of the catalysts mentioned above. It has surprisingly been found that the experimental conditions used in the oligomerization unit C have a very significant influence not only on the final yield of the various products of the oligomerization reaction but also on the quality of said products. in particular on the cetane number of the gasoil section and on the octane number of the gasoline section finally obtained.
  • the RON octane number of the petrol fraction finally obtained is advantageously at least 93, preferably at least 95.
  • the cetane number of the gasoil fraction is advantageously at least 40, preferably at least 50 and most preferably at least 55.
  • the pressure of the oligomerization unit C is most often selected so that the charge is in a liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and still between 0.3 and 4 MPa.
  • the ratio of the feed rate to the volume of catalyst can be between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and even more preferably between 0.2 and 10 l / l / h. It was found by the applicant that, under the prevailing pressure and VVH conditions, the oligomerization reaction temperature should be between 15 and 300 ° C, preferably between 60 and 250 ° C and more particularly between 100 and 200 ° C to optimize the quality of the products finally obtained.
  • the heavy cut ⁇ is a section whose initial boiling point corresponds to a diesel cut. This section may be mixed with hydrogen, conveyed via line 8, to be hydrogenated in a hydrogenation unit E of conventional structure in the presence of a catalyst and under operating conditions known to those skilled in the art. .
  • the hydrocarbon effluent recovered via line 9 is an improved cetane-index gas oil, that is to say having a cetane number of at least 40, preferably at least 50 and preferably from less 55.
  • the light cut ⁇ is a gasoline cut and is conveyed via line 6 to a cracking unit F corresponding to step d) of the process according to the invention.
  • the conditions are selected such that all the ethers present in the ⁇ -section are cracked to a hydrocarbon fraction comprising olefins, mainly branched olefins. , and a fraction comprising the initial alcohol.
  • the cracking conditions can be adjusted in such a way that only a part of said ethers is cracked. This mode advantageously makes it possible to further improve the octane number of the gasoline fraction finally obtained, but is however limited by the current legislation of many countries concerning the content of oxygenated compounds in gasolines.
  • said portion may be between 85 and 99.9 mol%, or even between 90 and 99.9 mol%.
  • the pressure of the cracking unit F is between 0.2 and 10 MPa, preferably between 0.3 and 6 MPa, or even between 0.3 and 4 MPa.
  • the ratio of the charge rate to the volume of catalyst is between 0.05 l / l / h and 50 l / l / h, preferably between 0.1 l / l / h and 20 l / l / h and still between 0.2 and 10 l / l / h.
  • the temperature is generally above 15 ° C, and most often between 15 ° C and 350 ° C, preferably between 100 ° C and 350 ° C.
  • the catalyst used in the cracking unit F may be an acid catalyst chosen from the group formed by zeolites, silicoaluminates, titanosilicates, mixed oxides of alumina-titanium oxides, clays, resins and mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble, and comprising at least one element selected from the group consisting of titanium, zirconium, silicon, germanium, tin, tantalum and niobium on at least one oxide such as alumina (gamma, delta, eta, alone or in admixture), silica, silica aluminas, titanium silicas, zirconia silicas, Amberlyst type ion exchange resins or any other solid having any acidity.
  • a particular embodiment of the invention may consist in using a physical mixture of at least two of the previously described catalysts.
  • the effluent from the cracking unit F is conveyed via line 11 to a unit G making it possible to separate the alcohols from the hydrocarbons and the ethers that have not cracked during the previous step.
  • This unit G can be a distillation column, a thermal diffusion column or a known means of washing with water or any other means known to those skilled in the art for the separation of alcohols and hydrocarbons.
  • the alcohol can be recycled via line 13 at the inlet of the etherification unit B or sent to a storage tank via line 12.
  • the hydrocarbon effluent recovered via line 14 is a gasoline with a improved octane whose olefin content is lower than that of the initial hydrocarbon feedstock.
  • the olefin content is advantageously reduced by at least 40% by weight, very advantageously by at least 50% by weight.
  • the ethers contained in the effluent from the etherification unit B can be separated from the hydrocarbon fraction.
  • Units C and D then treat in this mode an effluent freed of substantially all the ethers.
  • the gasoline obtained in this case at the outlet of the unit D can be mixed with the ethers in the case where the ethers have been removed after the etherification unit B. This section can then be sent to the cracking unit F and then to the separation unit G.
  • the initial charge I is a boiling point FCC gasoline between 40 ° C and 150 ° C. This essence contains 10 ppm of basic nitrogen.
  • This feed is sent to a reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the unit is 0.2 MPa, the ratio of the liquid flow rate of the feedstock to the volume of acidic solid is 1 liter / liter / hour.
  • the temperature of the reactor is 20 ° C. Table 1 gives the composition of the initial charge I and that of the effluent A from unit A.
  • Table 1 composition of the feedstock and the effluent of step A. Charge I Effluent A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the effluent A is then sent to an etherification reactor B containing an Amberlyst 15 ion exchange resin sold by Rohm & Haas. To this product is added methanol in a ratio of 1 mole of methanol per mole of olefin.
  • the pressure of unit B is 3 MPa.
  • the ratio of the feed rate to the catalyst volume is 1 liter / liter / hour.
  • the temperature is 90 ° C.
  • Table 2 gives the composition of effluent B from unit B relative to that of effluent A. Table 2: composition of effluents A and B.
  • the effluent B is injected into an oligomerization reactor C containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the unit is 2 MPa, the ratio of the feed rate on the catalyst volume is equal to 1.5 liter / liter / hour.
  • the temperature is set at 170 ° C.
  • An effluent C is obtained at the outlet of unit C.
  • Table 3 olefin content of effluents A, B, C.
  • the figure 2 presents the comparison of simulated distillations of the initial charge (black circles) and effluent C (white squares). It is observed that 24% by weight of the effluent boils at a temperature above 150 ° C., the end point of distillation of the initial charge.
  • the light fraction ⁇ distillation interval 40 ° C-200 ° C and from the unit D is injected into a cracking reactor F containing Deloxan marketed by the company Degussa.
  • This catalyst is a polysiloxane grafted with alkylsulphonic acid groups (of the -CH2-CH2-CH2-SO3H type).
  • the pressure of the unit is 3 MPa.
  • the ratio of the feed rate to the catalyst volume is 3 liters / liter.
  • the temperature is 200 ° C.
  • the characteristics of the gasoline cut G, from the unit F and after separation of the methanol by extraction with water, can be compared with those of the initial charge I with reference to Table 5.
  • the same initial charge I is treated by the units A and B under conditions identical to those of Example 1.
  • the effluent B obtained is introduced into the reactor C comprising the same catalyst and under the same conditions as for example 1 with the difference that the temperature in said reactor C is this time raised to 350 ° C.
  • An effluent C 'containing rates of zero or less than 0.02% of C5 to C9 olefins is obtained at the outlet of reactor C.
  • the figure 3 presents the comparison of the simulated distillations of the initial charge (black circles) and of the effluent C '(white squares). This time, it is observed that 32% by weight of the effluent C 'boils at a temperature above 150 ° C., the end point of distillation of the initial charge.
  • cetane number of the gas oil obtained when the oligomerization is carried out at a higher temperature is substantially lower than that obtained when the oligomerization is carried out at a lower temperature (170 ° C.).
  • Gas oil from oligomerization at 350 ° C is unsuitable for marketing, which is not the case for that obtained at 170 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Claims (9)

  1. Verfahren zur Umwandlung einer Kohlenwasserstoffbeschickung, die lineare und verzweigte Olefine umfasst, die 4 bis 15 Kohlenstoffatome umfassen, wobei das Verfahren die folgenden Schritte umfasst:
    a) eine selektive Veretherung des Großteils der verzweigten Olefine, die in der Beschickung vorhanden sind,
    b) eine Behandlung der linearen Olefine, die in der Beschickung enthalten sind, unter moderaten Oligomerisationsbedingungen,
    c) eine Trennung des Abflusses, der aus Schritt b) stammt, in mindestens zwei Schnitte:
    - einen Schnitt β, der die Kohlenwasserstoffe umfasst, deren Endsiedepunkt kleiner ist als eine Temperatur im Bereich zwischen 150°C und 200 C,
    - einen Schnitt γ, der mindestens einen Teil der Kohlenwasserstoffe umfasst, deren Anfangssiedepunkt größer ist als eine Temperatur im Bereich zwischen 150°C und 200°C,
    d) eine Behandlung der Kohlenwasserstofffraktion, die die Ether enthält, die im Verlauf von Schritt a) gebildet wurden, unter Bedingungen, bei denen die Ether mindestens teilweise gecrackt werden, wobei auf die Behandlung eine Trennung in eine Benzinfraktion mit verbesserter Oktanzahl und in eine Fraktion folgt, die den Ausgangsalkohol enthält,
    e) eine Hydrierung des Schnitts γ unter Bedingungen zum Erhalt eines Gasöls mit hoher Cetanzahl.
  2. Verfahren nach Anspruch 1, wobei die Gesamtheit des Abflusses, der aus Schritt a) stammt, in Schritt b) behandelt wird, und wobei der Schnitt β die Ether umfasst, die im Verlauf von Schritt a) gebildet wurden.
  3. Verfahren nach Anspruch 1, das einen Schritt der Trennung der Ether vom Rest des Abflusses, der aus Schritt a) stammt, umfasst, wobei der von den Ethern befreite Abfluss gemäß Schritt b) behandelt wird, und die Ether mit Schnitt β gemäß Schritt d) behandelt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Gesamtheit der Ether, die Schnitt β umfasst, im Verlauf von Schritt d) gecrackt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Oligomerisation mit einem Druck im Bereich zwischen 0,2 und 10 MPa, einem Verhältnis der Durchflussgeschwindigkeit der Beschickung zum Katalysatorvolumen im Bereich zwischen 0,05 und 50 l/l/h und einer Temperatur im Bereich zwischen 15°C und 300°C durchgeführt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Oligomerisation in Gegenwart eines Katalysators durchgeführt wird, der mindestens ein Metall der Gruppe VIB des Periodensystems der Elemente umfasst.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Veretherung mit einem Druck im Bereich zwischen 0,2 und 10 MPa, einem Verhältnis der Durchflussgeschwindigkeit der Beschickung zum Katalysatorvolumen im Bereich zwischen 0,05 und 50 l/l/h und einer Temperatur im Bereich zwischen 15° und 300°C durchgeführt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, das einen Schritt umfasst, bei dem mindesten ein Teil der stickstoffhaltigen oder basischen Verunreinigungen entfernt wird, die in der Ausgangskohlenwasserstoffbeschickung enthalten sind.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Ausgangskohlenwasserstoffbeschickung aus einem Verfahren zum katalytischen Cracken, zum katalytischen Reformieren oder zur Dehydrierung von Paraffinen stammt.
EP03293026A 2002-12-23 2003-12-03 Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl Expired - Fee Related EP1433835B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216474 2002-12-23
FR0216474A FR2849051B1 (fr) 2002-12-23 2002-12-23 Procede de transformation d'hydrocarbures en une fraction presentant un indice d'octane ameliore et une fraction a fort indice de cetane

Publications (2)

Publication Number Publication Date
EP1433835A1 EP1433835A1 (de) 2004-06-30
EP1433835B1 true EP1433835B1 (de) 2009-09-02

Family

ID=32406360

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03293026A Expired - Fee Related EP1433835B1 (de) 2002-12-23 2003-12-03 Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl

Country Status (6)

Country Link
US (1) US7329787B2 (de)
EP (1) EP1433835B1 (de)
DE (1) DE60329065D1 (de)
ES (1) ES2330513T3 (de)
FR (1) FR2849051B1 (de)
RU (1) RU2317317C2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245259B (zh) * 2007-02-14 2011-01-19 中国石油化工股份有限公司石油化工科学研究院 一种与催化裂化吸收稳定系统组合的烃类醚化方法
FR2944028B1 (fr) * 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch mettant en oeuvre une resine
FR2944027B1 (fr) * 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
EP2404980A1 (de) 2010-07-08 2012-01-11 Total Raffinage Marketing Erhöhung des durchschnittlichen Molekulargewichts von Kohlenwasserstoffeinsätzen
US20130267742A1 (en) 2010-12-28 2013-10-10 Total Raffinage Marketing Nitrile containing hydrocarbon feedstock, process for making the same and use thereof
FR2975103B1 (fr) * 2011-05-12 2014-08-29 IFP Energies Nouvelles Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
WO2013104614A1 (en) 2012-01-09 2013-07-18 Total Raffinage Marketing Method for the conversion of low boiling point olefin containing hydrocarbon feedstock

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2925379A (en) * 1956-11-13 1960-02-16 Union Oil Co Hydrocarbon denitrogenation
US4528411A (en) * 1982-09-24 1985-07-09 Phillips Petroleum Company Diesel fuel and gasoline production
FR2594139B1 (fr) * 1986-02-13 1988-05-20 Inst Francais Du Petrole Procede d'obtention de methyltertiobutylether de supercarburant et de combustible pour carburateur a partir des butanes et/ou des coupes c4 d'un craquage ou d'un reformage catalytique
GB8804033D0 (en) * 1988-02-22 1988-03-23 Shell Int Research Process for preparing normally liquid hydrocarbonaceous products from hydrocarbon feed
US5382705A (en) * 1989-03-20 1995-01-17 Mobil Oil Corporation Production of tertiary alkyl ethers and tertiary alkyl alcohols
DE4343453A1 (de) 1993-12-20 1995-06-22 Bayer Ag Verfahren zur Herstellung von Alkyl-tert.-alkyl-ether enthaltenden Kohlenwasserstoffgemischen
FR2747120B1 (fr) * 1996-04-09 1998-05-15 Inst Francais Du Petrole Procede de production d'olefine(s) tertiaire(s) par decomposition de l'ether correspondant a l'aide d'un catalyseur particulier
FR2760006B1 (fr) * 1997-02-21 1999-04-16 Inst Francais Du Petrole Procede de production d'olefine tertiaire par decomposition d'ether alkylique tertiaire

Also Published As

Publication number Publication date
FR2849051B1 (fr) 2005-02-04
ES2330513T3 (es) 2009-12-11
DE60329065D1 (de) 2009-10-15
RU2003136849A (ru) 2005-06-10
US20040186331A1 (en) 2004-09-23
RU2317317C2 (ru) 2008-02-20
US7329787B2 (en) 2008-02-12
EP1433835A1 (de) 2004-06-30
FR2849051A1 (fr) 2004-06-25

Similar Documents

Publication Publication Date Title
EP1602637B1 (de) Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen
EP1602705B1 (de) Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung
EP0621334B1 (de) Verfahren zur Herstellung von Brennstoff-durch Extraktion und Wasserstoffbehandlung von Kohlenwasserstoffeinsatz und so hergestellte Gasöl
EP2321385B1 (de) Verfahren zur umwandlung einer schweren ladung in benzin und propylen mit einer struktur für variablen ertrag
EP1739069B1 (de) Verfahren zur Herstellung einer Dieselfraktion durch Oligomerisation
FR2796650A1 (fr) Melange liquide approprie comme essence, contenant des composants oxygenes et presentant un indice d'octane eleve
EP1777284B1 (de) Verfahren zur Direktumwandlung eines Olefine mit mindestens vier oder fünf Kohlenstoffatomen enthaltenden Einsatzstoffs zur Herstellung von Propylen und von entschwefeltem Benzin mit hoher Oktanzahl
EP0132172A1 (de) Verfahren zur Herstellung von Superbrennstoff durch Polymerisation von C4-Schnitten
EP2636661B1 (de) Umwandlungsverfahren einer schweren Ladung durch Einsatz einer Katkrackeinheit und einer selektiven Hydrierphase des aus dem Katkrackverfahren entstandenen Kraftstoffs
EP1433835B1 (de) Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl
EP0172040B1 (de) Verfahren zur Herstellung von einem hoch Oktan-Kohlenwasserstoffenschnitt durch Etherifierung von Olefinen
EP1474499B1 (de) Integriertes verfahren zur entschwefelung eines abflusses vom cracken oder dampfcracken von kohlenwasserstoffen.
EP0068981B1 (de) Verfahren zur gleichzeitigen Herstellung von hochreinem Buten-1 und Superkraftstoff aus einem olefinischen C4-Schnitt
EP0869107B1 (de) Verfahren zur Herstellung von alpha-Olefinen, tertiären Olefinen und/oder Ethern aus einer ungesättigten Kohlenwasserstofffraktion
FR2520356A1 (fr) Procede de valorisation des coupes c4 olefiniques
EP1396532B1 (de) Verfahren zur Verwertung einer Kohlenwasserstoffeinsatzes und Minderung des Dampfdrucks dieses Einsatzes
FR2885137A1 (fr) Procede de desulfuration d'essences olefiniques
WO2012153011A2 (fr) Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
EP0589112B1 (de) Verfahren zur Herstellung einer an tertiärem Amylmethyläther reichen Fraktion frei von Olefinen und einer an n-Pentan reichen paraffinischen Fraktion
FR2705684A1 (fr) Carburant obtenu par un procédé comportant l'éthérification d'une coupe d'hydrocarbures contenant des oléfines ayant de 5 à 8 atomes de carbone.
EP0325502A1 (de) Katalytische Krackverfahren
EP2597135B1 (de) Herstellungsverfahren von Mitteldestillaten aus einer konventionellen schweren Charge, einschließlich einer selektiven Hydrierphase des HCO-EX-FCC-Verschnitts
FR2730486A1 (fr) Procede comportant l'etherification optimisee d'une coupe d'hydrocarbures contenant des olefines ayant 6 atomes de carbone par molecule
FR2730501A1 (fr) Carburant obtenu par un procede comportant l'etherification optimisee en presence d'alcool d'une coupe d'hydrocarbures contenant des olefines ayant de 5 a 8 atomes de carbone
FR2730487A1 (fr) Procede integre comportant l'etherification optimisee d'une coupe d'hydrocarbures contenant des olefines ayant 6 atomes de carbone par molecule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRIOT, PATRICK

Inventor name: FORSTIERE, ALAIN

Inventor name: LLIDO, ERIC

Inventor name: COUPARD, VINCENT

17P Request for examination filed

Effective date: 20041230

AKX Designation fees paid

Designated state(s): DE ES GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: COUPARD, VINCENT

Inventor name: BRIOT, PATRICK

Inventor name: LLIDO, ERIC

Inventor name: FORESTIERE, ALAIN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT NL

REF Corresponds to:

Ref document number: 60329065

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2330513

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60329065

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 60329065

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20171220

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180117

Year of fee payment: 15

Ref country code: DE

Payment date: 20171229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171229

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60329065

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181204