EP1602705B1 - Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung - Google Patents

Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung Download PDF

Info

Publication number
EP1602705B1
EP1602705B1 EP05291115A EP05291115A EP1602705B1 EP 1602705 B1 EP1602705 B1 EP 1602705B1 EP 05291115 A EP05291115 A EP 05291115A EP 05291115 A EP05291115 A EP 05291115A EP 1602705 B1 EP1602705 B1 EP 1602705B1
Authority
EP
European Patent Office
Prior art keywords
fraction
process according
membrane
membrane separation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05291115A
Other languages
English (en)
French (fr)
Other versions
EP1602705A1 (de
Inventor
Patrick Briot
Arnaud Baudot
Vincent Coupard
Stéphane Morin
Alain Methivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1602705A1 publication Critical patent/EP1602705A1/de
Application granted granted Critical
Publication of EP1602705B1 publication Critical patent/EP1602705B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention relates to a method allowing a simple and economical way to modulate the respective productions of gasoline and diesel. More precisely, according to the process that is the subject of the present application, it is possible to convert an initial hydrocarbon feedstock in the gasoline cut, comprising from 4 to 15 carbon atoms and preferably from 4 to 11 carbon atoms, into a gasoline fraction of improved octane number with respect to the charge, and a gas oil fraction with a high cetane number.
  • the effects of this improvement relate to the efficiency of the gasoil fraction obtained, to the octane number of the gasoline fraction obtained, and finally to the fact that the starting gasoline fraction can be of absolutely any composition while respecting only the range of number of carbon atoms.
  • the object of the present invention is, from any gasoline cut, to produce an improved octane gasoline cut with respect to the starting gasoline cut, and a gas oil cut of cetane number at least equal to 45 and preferably greater than 50.
  • the effluents from the conversion processes of more or less heavy residues such as for example the gasoline cuts from the fluidized catalytic cracking (FCC) process, contain an olefin content of between 10 and 80%.
  • One of the objects of the present invention is to separate linear olefins from branched olefins from an initial gasoline feedstock.
  • Another object of the present invention is to provide an alternative allowing increased flexibility in the management of products from the refinery.
  • the use of the present process may advantageously make it possible to modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.
  • aliphatic alkylation between paraffins and olefins to produce high octane gasoline cuts.
  • This process can utilize mineral acids such as sulfuric acid (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208 th National Meeting, American Chemical Society - August 1994, which can be translated as "Symposium on Hydrogen Transfer in hydrocarbon feedstocks), solvent-soluble catalysts ( EP 0714871 ) or heterogeneous catalysts ( US 4,956,518 ).
  • the processes for adding isobutane to alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 7 and 9 carbon atoms, and generally characterized by high indices. octane.
  • the oligomerization processes based essentially on the dimerization and trimerization of light olefins from the catalytic cracking process and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates.
  • An example of such a method is described in EP 0734766 .
  • the US Patent 5,382,705 proposes to couple the oligomerization and etherification processes previously described in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.
  • patent US 2003/0171632 A1 describes a process for producing a gas oil fraction from an olefinic feedstock comprising branched olefins with a number of carbon atoms between 3 and 8, by bringing said feedstock into contact with a zeolite type acid catalyst with a selectivity of form, at high temperature and under pressure, so as to obtain longer olefins.
  • This patent does not describe any prior separation of normal and iso paraffins.
  • the ⁇ cut resulting from the distillation separation stage and comprising the majority of linear paraffins and a part of linear olefins is directly introduced into a catalytic reforming unit of the gasolines that is supposed to exist on the site of production.
  • the section ⁇ resulting from the dehydrogenation (F) is recycled at least partly to the inlet of the membrane separation unit (B), the other part of said section ⁇ being mixed with the ⁇ cut to form a high octane gasoline.
  • the section ⁇ resulting from the hydrogenation (G) is not completely recycled at the inlet of the membrane separation unit (B), at least a portion is mixed with the cut ⁇ to form a gasoline high octane.
  • the oligomerization step is carried out at a pressure of between 0.2 and 10 MPa, with a volume flow rate of charge on catalyst volume (called VVH) of between 0.degree. , 05 and 50 liters / liter.hour, and at a temperature between 15 ° C and 300 ° C.
  • VVH volume flow rate of charge on catalyst volume
  • the oligomerization step is generally carried out in the presence of a catalyst comprising at least one Group VIB metal of the periodic table.
  • the step of separating linear olefins and paraffins on the one hand, and branched olefins and paraffins, on the other hand, is carried out in a so-called membrane separation unit which can use a very wide variety of membrane types. 'being in no way related to a particular type of membrane.
  • the membranes which may be used in the context of the invention are preferably membranes used in nanofiltration and in reverse osmosis (membranes falling within the category of membranes for filtration processes) or membranes used in permeation in the gas phase or in pervaporation ( membrane falling within the category of membranes for permeation processes).
  • these membranes may be either zeolite type membranes, or polymer (or organic) type membranes, or ceramic (or mineral) type membranes, or even composite type in the sense that they may consist of a polymer and at least one mineral compound.
  • the membranes that can be used in the process that is the subject of the invention may also be based on film.
  • the membranes based on film formed by molecular sieves or film-based membranes formed from molecular sieves of silicates, aluminosilicates, aluminophosphates, silicoaluminophosphates, metalloaluminophosphates, stanosilicates, or a mixing at least one of these two types of constituents.
  • zeolite-based membranes mention may be made more particularly of membranes based on zeolites of type MFI or ZSM-5, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba + and zeolite membrane type LTA.
  • the process according to the invention may comprise a step of removing at least a portion of the nitrogenous or basic impurities contained in the initial charge of hydrocarbons.
  • the initial charge of hydrocarbons will result from a process of catalytic cracking, thermal cracking or dehydrogenation of paraffins. It can be introduced in the process object of the present invention either alone or in admixture with other fillers.
  • the hydrocarbon feedstock is conveyed via line 1 to a purification unit A.
  • This unit A eliminates a large part of the nitrogen compounds and / or basic contained in the load. This removal, although optional, is necessary when the feedstock comprises a high level of nitrogen and / or basic compounds, as these constitute a poison for the catalysts of the subsequent steps of the present process.
  • Said compounds can be removed by adsorption on an acidic solid.
  • This solid may be selected from the group consisting of silicoaluminates, titanosilicates, mixed oxides titanium alumina, clays, resins.
  • the solid may also be chosen from mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble, of at least one element selected from the group consisting of titanium, zirconium, silicon, germanium tin, tantalum, niobium, on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, titanium silicas, zirconia silicas, resins ion exchange type Amberlyst, or any other solid having any acidity.
  • organometallic compound organosoluble or water-soluble
  • element selected from the group consisting of titanium, zirconium, silicon, germanium tin, tantalum, niobium
  • oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, titanium silicas, zirconia silicas, resins ion exchange type Amber
  • a particular embodiment of the invention may consist in using a mixture of at least two of the previously described catalysts.
  • the pressure of the purification unit (A) of the charge is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is located is preferably chosen. liquid state.
  • VVH The ratio of the volume flow rate of charge to the volume of catalytic solid
  • the temperature of the purification unit (A) is between 15 ° C and 300 ° C, preferably between 15 ° C and 150 ° C, and more preferably between 15 ° C and 60 ° C.
  • the elimination of the nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.
  • the purified ⁇ -cut feed is conveyed via line 2 to the membrane separation unit (B).
  • the linear olefins and paraffins forming the ⁇ -section are separated by a membrane from the remainder of the gasoline cut (forming the ⁇ -section), and are discharged via line 3 to feed an oligomerization unit. (VS).
  • the fraction depleted in linear olefins and paraffins is removed from the unit (B) by the line 7.
  • This so-called ⁇ -section cut the linear olefin content of which has notably decreased since it contains mainly only the branched olefins, has a improved octane number compared to the initial gasoline cut or ⁇ cut.
  • any type of membrane that makes it possible to carry out the separation between paraffins and linear olefins on the one hand, and paraffins and branched olefins on the other hand, can be used, whether organic or polymeric membranes (for example , the PDMS 1060 membrane of Sulzer Chemtech Membrane Systems), ceramics or minerals (composed for example at least partly of zeolite, silica, alumina, glass or carbon), or composites consisting of polymer and at least one mineral or ceramic compound (eg, Sulzer Chemtech Membrane Systems PDMS 1070 membrane).
  • organic or polymeric membranes for example , the PDMS 1060 membrane of Sulzer Chemtech Membrane Systems
  • ceramics or minerals composed for example at least partly of zeolite, silica, alumina, glass or carbon
  • composites consisting of polymer and at least one mineral or ceramic compound eg, Sulzer Chemtech Membrane Systems PDMS 1070 membrane.
  • the selectivity of this type of membrane is essentially based on a difference in diffusivity between the linear compounds, diffusing faster because offering a kinetic diameter substantially smaller than the micropore diameter of the zeolite, and the connected compounds, diffusing more slowly because having a kinetic diameter close to that of the micropores.
  • the MFI zeolite membranes finally provide high normal / isoolefin selectivities, close to those observed for normal / iso paraffins under similar operating conditions.
  • the operating temperature of the membrane will be between room temperature and 400 ° C, and preferably between 80 ° C and 300 ° C.
  • the linear olefins and paraffins ( ⁇ -section) separated from the petrol fraction in unit B are sent to an oligomerization reactor, represented by unit C, via line 3.
  • This unit C contains an acid catalyst.
  • the hydrocarbons present in the mixture of paraffins and linear olefins will undergo moderate oligomerization reactions, ie in general dimerizations or trimerizations, the conditions of the reaction being optimized for the production of a majority of hydrocarbons whose carbon number is mainly between 9 and 25, and preferably between 10 and 20.
  • the catalyst of unit C may be chosen from the group formed by silicoaluminates, titanosilicates, mixed titanium alumina, clays, resins, mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble ( selected from the group consisting of alkys and / or alkoxides, metals having at least one element such as titanium, zirconium silicon, germanium, tin, tantalum, niobium) on an oxide support such as alumina (gamma, delta, eta, alone or in admixture), silica, silica aluminas, titanium silicas, zirconia silicas, or any other solid having any acidity.
  • organometallic compound selected from the group consisting of alkys and / or alkoxides, metals having at least one element such as titanium, zirconium silicon, germanium, tin, tantalum, niobium
  • an oxide support such as alumina (gamm
  • the catalyst used to carry out the oligomerization comprises at least one Group VIB metal of the periodic classification, and advantageously an oxide of said metal.
  • Said catalyst may further comprise an oxide support selected from the group consisting of aluminas, titanates, silicas, zirconias, aluminosilicates.
  • a particular embodiment of the invention consists in using a physical mixture of at least two of the catalysts mentioned above.
  • the pressure of the unit C is most often such that the charge is in liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and more preferably between 0.3 and 4 MPa.
  • the ratio of the volume flow rate of charge to the volume of catalyst (also called hourly volume velocity or VVH) can be between 0.05 liter / liter.hour and 50 liters / liter.hour, preferably between 0.1 liter / liter hour and 20 liters / liter.hour, and still more preferably between 0.2 liter / liter.hour and 10 liters / liter.hour.
  • the reaction temperature should be between 15 ° C and 300 ° C, preferably between 60 ° C and 250 ° C, and more particularly between 100 ° C and 250 ° C to optimize the quality of the products obtained.
  • the effluent from the unit (C) is then sent via line 4 into one or more distillation columns shown in the diagram of the figure 1 by the unit (D).
  • This cut consists mainly of olefins and diolefins resulting from the polymerization of linear olefins.
  • This section can be hydrogenated in a conventional hydrogenation unit in the presence of a catalyst and under operating conditions that are well known to those skilled in the art. These olefins are then converted to linear paraffins.
  • the effluent of the hydrogenation unit (E) constitutes a gas oil with a cetane number greater than 45 and preferably greater than 50.
  • the ⁇ cut consists mainly of non-reactive linear paraffins during the oligomerization reaction.
  • This cut conveyed via line 5, is mixed with hydrogen, conveyed via line 10, is injected into a dehydrogenation unit (F).
  • Water or any other compound capable of decomposing into water under the dehydrogenation conditions may be added to the load.
  • the amount of water present in the hydrocarbon feedstock, (this water may be generated by the decomposition of another compound, such as for example an alcohol, an aldehyde, a ketone, an ether), will be between 1 and 10000 ppm weight of water relative to the hydrocarbon charge.
  • the dehydrogenation unit (F) operates at temperatures of between 400 ° C and 520 ° C, preferably between 450 ° C and 490 ° C.
  • the pressures of the dehydrogenation unit (F) are between 0.05 MPa and 1 MPa, preferably between 0.1 MPa and 0.5 MPa.
  • the ratio of the volume flow rate of the feedstock to the catalyst volume is between 1 h -1 and 500 h -1 , preferably between 15 h -1 and 300 h -1 .
  • the molar ratio of hydrogen to hydrocarbon is between 1 and 20 mol / mol, and preferably between 4 and 12 mol / mol.
  • the dehydrogenation catalyst of the unit (F) may be chosen from catalysts known to those skilled in the art for the dehydrogenation of short paraffins ranging from C 2 to C 5 or long paraffins ranging from C 10 to C 14.
  • the catalyst thus consists of a metal phase supported on a support whose specific surface is advantageously between 5 and 300 m 2 / g.
  • This catalyst support comprises at least one refractory oxide which is generally chosen from metal oxides of groups IIA, IIIA, IIIB, IVA or IVB of the periodic table of elements such as, for example, oxides of magnesium, aluminum, silicon, zirconium taken alone or mixed with each other, or mixed with oxides of other elements of the periodic table. We can also use coal.
  • the dehydrogenation catalyst of the unit (F) may also contain a sulfur compound, at a weight content of sulfur element generally between 0.005 and 1% relative to the catalyst mass.
  • the catalyst of the unit (F) may also contain one or more additional elements which conventionally make it possible to limit the acidity of the support, such as alkaline or alkaline-earth metals, with a weight percentage of 0.01% to 3%.
  • alkaline and / or alkaline earth compounds, on the one hand, and halogenated compounds, on the other, may be adjusted so as to modify the content of compounds alkylaromatics, and / or branched paraffins formed during the dehydrogenation reaction.
  • the diesel fraction will be favored by the use of a dehydrogenation catalyst having from 0.01% to 3% of at least one alkaline and / or alkaline earth metal and less than 0.2% of halogenated compound. .
  • the proportion of aromatic compounds resulting from this dehydrogenation step may also be minimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio
  • H2 / HC ratio makes it possible to limit the formation of aromatics during the dehydrogenation step (F).
  • a VVH value of between 15 and 300 h -1 , and an H 2 / HC value of between 4 and 12 will generally be preferred.
  • the gasoline cut will for example be favored by the use of a dehydrogenation catalyst having from 0.1% to 3% of a halogenated compound, and less than 0.5% of an alkaline and / or alkaline earth metal.
  • the catalyst may in certain cases not contain an alkali metal or alkaline earth metal.
  • the proportion of aromatic compounds resulting from this dehydrogenation step (F) may also be optimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio of catalyst
  • the dehydrogenation step of paraffins to olefins is also accompanied, in addition to branched aromatic and paraffin compounds, the formation of diolefins and possibly other unsaturated compounds such as alkynes, triolefins .
  • diolefins The formation of diolefins is strongly influenced by the thermodynamic equilibrium between paraffins / olefins / diolefins.
  • the effluent from the unit (F) evacuated via the line (11) is mixed with hydrogen brought by the line (12) and then sent to a selective hydrogenation unit (G) whose purpose is elimination by hydrogenation of small amounts of diolefins and possible alkynes and triolefins, without affecting the olefins and aromatic compounds formed in unit (F).
  • This selective hydrogenation operates in pressure ranges of between 1 MPa and 8 MPa, and preferably between 2 MPa and 6 MPa.
  • the temperature is between 40 ° C and 350 ° C, and preferably between 40 ° C and 250 ° C.
  • the ratio of the volume flow rate of charge to the volume of catalyst is between 0.5 and 10 m 3 / m 3 / hour and preferably between 1 and 5 m 3 / m 3 / hour.
  • the catalyst of the hydrogenation unit (G) consists of a support based on silica, or alumina on which is deposited a nickel, platinum or palladium type metal.
  • the catalyst of the hydrogenation unit (G) may also consist of mixtures of nickel and molybdenum or mixtures of nickel and tungsten.
  • the effluent of the unit (G) contains mainly linear paraffins, olefins and aromatics. This cut called ⁇ cut, is then recycled all or in part by the line (13) at the entrance of the unit (B).
  • Example 1 corresponds to the invention and will be better understood by following the figure 1 .
  • Example 2 is a comparative example
  • the feedstock is a FCC gasoline boiling point between 40 ° C and 150 ° C.
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the volume of acid solid (VVH) is 1 liter / liter hour.
  • the temperature of the reactor is 20 ° C.
  • Table 1 gives the composition of the initial charge and that of the effluent from unit A ( ⁇ cut). The charge rate used is 1 kg / h. Table 1: Load and effluent characteristics of unit A. Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the effluent from unit A ( ⁇ cut) is then sent to a membrane reactor B consisting of a support based on ⁇ -alumina on which is deposited a layer of MFI zeolite with a thickness of between 5 and 15 ⁇ m. .
  • the pressure of the membrane reactor B is equal to 0.1 MPa and the temperature is equal to 150 ° C.
  • Table 2 gives the composition of effluents from unit B ( ⁇ cut and ⁇ cut). Table 2: characteristics of the effluents of stage B (before recycling). ⁇ cut ⁇ cup Yield (%) (relative to the ⁇ cut) 8.8 91.2 Production (g / h) 88 912 Paraffins (% wt) 45.5 23.1 Naphthenes (% wt) 10.7 Aromatic (% by weight) 38.5 Olefins (% by weight) 54.5 27.7
  • the ⁇ cut from the membrane separation unit is injected into an oligomerization reactor (C) containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the unit is 2 MPa, the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 1.5 liters / liter.hour.
  • the temperature is set at 170 ° C.
  • the heavy cut ⁇ is sent to a hydrogenation reactor (E) containing a catalyst comprising an alumina support on which are deposited nickel and molybdenum (marketed by AXENS under the trade name HR348, registered trademark).
  • the pressure of the unit is 5 MPa, the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature is 320 ° C.
  • the light fraction ⁇ of the distillation range 40 ° C. to 200 ° C. resulting from the distillation step (D) is mixed with hydrogen with a molar ratio of hydrogen to hydrocarbon of 6 mol / mol and then sent to the dehydrogenation unit (F).
  • the total pressure of the dehydrogenation unit (F) is 0.3 MPa, and the temperature is 475 ° C.
  • the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 20 liters / liter / hour.
  • the catalyst used in the dehydrogenation unit (F) is marketed by AXENS under the reference DP 805, registered trademark.
  • composition of the section ⁇ resulting from the dehydrogenation (F) or ⁇ section is presented in Table 5 and compared to the charge of the dehydrogenation unit (F) or cut ⁇ .
  • Table 4 characteristics of the effluent from unit F ( ⁇ section) Cup ⁇ ⁇ section Linear paraffins (% by weight) 100 85.1 Branched paraffins (% by weight) 0.3 Olefins (% by weight) 12 Aromatic (%) 2 Diolefins (% by weight) 0.6
  • This section ⁇ is mixed with hydrogen and sent to a hydrogenation reactor (G) containing a catalyst marketed by AXENS under the reference LD 265, registered trademark.
  • the pressure of the unit is 2.8 MPa, the temperature is equal to 90 ° C, and the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 3 liters / liter.hour.
  • composition of the ⁇ -section resulting from this selective hydrogenation is compared with that of the ⁇ -section in Table 6.
  • Table 5 characteristics of the effluent from unit G ( ⁇ cut) ⁇ section ⁇ cut Linear paraffins (% by weight) 85.1 85.2 Branched paraffins (% by weight) 0.3 0.3 Olefins (% by weight) 12 12.5 Aromatic (%) 2 2 Diolefins (% by weight) 0.6 0
  • This section ⁇ is completely recycled at the entrance of the membrane reactor (B).
  • Paraffins and linear olefins are thus found in the new ⁇ -section obtained after recycling and thereby increase the diesel yield.
  • the present method makes it possible to obtain, from a gasoline cutoff resulting from an FCC, a gasoline cut ( ⁇ cut) having an improved octane number relative to that of the initial cut (97 against 92) and a cut diesel, effluent from the unit (E), with a high cetane number (55), perfectly compatible with marketing to European and US specifications.
  • Example 2 corresponds to the prior art and consists in sending directly to an oligomerization unit (C) an FCC gasoline cut ( ⁇ cut) whose boiling point is between 40 ° C and 150 ° C.
  • C oligomerization unit
  • ⁇ cut FCC gasoline cut
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the volume of acid solid (VVH) is 1 liter / liter hour.
  • the temperature of the reactor is 20 ° C.
  • Table 7 gives the composition of the initial charge and that of the effluent from unit A.
  • the charge rate used is 1 kg / h.
  • Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the heavy cut ⁇ ' is sent to a hydrogenation reactor (E) containing an alumina catalyst on which nickel and molybdenum are deposited.
  • the pressure of the unit (E) is 5 MPa
  • the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature of the unit (E) is 320 ° C.
  • the characteristics of the effluent from the unit (E) which are those of a diesel fuel, are presented in Table 8.
  • Table 8 characteristics of the effluent from unit E Effluent of unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Motor cetane index 35
  • the gas oil obtained according to the scheme of Example 2 is unfit for marketing, which is not the case of that obtained in Example 1 according to the invention.
  • the final gasoline cut ⁇ ' has an octane number of 85, lower than that obtained in Example 1, which can make marketing problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Claims (12)

  1. Verfahren zur Umwandlung einer Kohlenwasserstoffbeschickung aus dem Benzinbereich, der 4 bis 15 Kohlenstoffatome umfasst, in einen Benzinschnitt mit einer Oktanzahl, die größer ist als die der Beschickung, und in einen Gasölschnitt mit einer Cetanzahl größer als 45, wobei das Verfahren die folgenden Schritte umfasst:
    a) einen Schritt der Trennung mittels Membran (B) der Kohlenwasserstoffbeschickung unter Bedingungen, die die selektive Trennung des Großteils der linearen Olefine ermöglichen, die in der Beschickung vorhanden sind, und den Schnitt β bilden, wobei der Schnitt, der den Großteil der verzweigten Olefine enthält, Schnitt γ genannt, ein Benzin mit hoher Oktanzahl, größer als die der Beschickung, bildet,
    b) einen Schritt der Oligomerisation (C) der linearen Olefine (Schnitt β), die in den Abflüssen, die aus dem Schritt der Trennung auf Membran (B) stammen, enthalten sind, unter moderaten Oligomerisationsbedingungen,
    c) einen Schritt der Trennung mittels Destillation (D) der Abflüsse, die aus dem Schritt der Oligomerisation stammen, in mindestens zwei Schnitte:
    - einen Schnitt δ, der die Kohlenwasserstoffe umfasst, deren Endsiedepunkt kleiner ist als eine Temperatur im Bereich zwischen 150 °C und 200 °C,
    - einen Schnitt η, der die Kohlenwasserstoffe umfasst, deren Anfangssiedepunkt größer ist als eine Temperatur im Bereich zwischen 150 °C und 200 °C,
    d) einen Schritt der Hydrierung (E) des Schnitts η, der es ermöglicht, ein Gasöl mit einer Cetanzahl von mindestens gleich 45 zu erhalten.
    e) einen Schritt der Dehydrierung (F) des Schnitts δ, der es ermöglicht, mindestens einen Teil der Paraffine in Olefine zu verwandeln, und einen Schnitt µ zu produzieren, der mindestens teilweise zum Schritt der Trennung mittels Membran (B) recycelt wird.
  2. Verfahren nach Anspruch 1, wobei der Schnitt p, der aus dem Schritt der Dehydrierung (F) stammt, einer selektiven Hydrierung (G) unterzogen wird, mit dem Ziel, die Diolefine zu entfernen, um einen Schnitt λ zu produzieren, der mindestens teilweise zum Schritt der Trennung mittels Membran (B) recycelt wird.
  3. Verfahren nach Anspruch 1, wobei der Schnitt µ, der aus dem Schritt der Dehydrierung (F) des Schnitt δ stammt, mindestens teilweise mit dem Schnitt γ gemischt ist, der aus der Einheit zur Trennung mittels Membran (B) stammt.
  4. Verfahren nach Anspruch 2, wobei der Schnitt λ, der aus dem Schritt der selektiven Hydrierung (G) stammt, mindestens teilweise mit dem Schnitt γ gemischt ist, der aus dem Schritt der Trennung mittels Membran (B) stammt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Schritt der Oligomerisation (C) bei einem Druck im Bereich zwischen 0,2 und 10 MPa, einem Verhältnis der Durchflussgeschwindigkeit der Beschickung zum Katalysatorvolumen (HSV) im Bereich zwischen 0,05 Liter/Liter.Stunde und 50 Liter/Liter.Stunde, einer Temperatur im Bereich zwischen 15 °C und 300 °C, und in Gegenwart eines Katalysators ausgeführt wird, der mindestens ein Metall der Gruppe VIB des Periodensystems der Elemente umfasst.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei der Schritt der Trennung auf Membran mit einer Membran durchgeführt wird, wie sie in Nanofiltrations- oder Umkehrosmose- oder Gasphasenpermeations- oder Pervaporationsverfahren verwendet werden.
  7. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Einheit zur Trennung mittels Membran eine Membran auf der Basis eines Films verwendet, die aus Molekularsieben des Typs Silicate, Alumosilicate, Alumophosphate, Silicoaluminophosphate, Metallaluminophosphate, Zinnsilicate oder einem Gemisch aus mindestens einem dieser zwei Typen von Bestandteilen gebildet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Einheit zur Trennung mittels Membran eine Membran auf der Basis von Zeolithen vom Typ MFI oder ZSM-5 verwendet, die nativ sind oder einem Ionenaustausch mit H+; Na+; K+; Cs+; Ca+; Ba+ unterzogen wurden.
  9. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Einheit zur Trennung mittels Membran eine Membran auf der Basis von Zeolithen vom Typ LTA verwendet.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der Katalysator zur Dehydrierung der Einheit (F) aus einer Metallphase gebildet wird, die auf einem Träger abgelagert ist, wobei dieser Träger mindestens ein feuerfestes Oxid umfasst, ausgewählt aus den Oxiden der Metalle der Gruppen IIA, IIIA, IIIB, IVA oder IVB des Periodensystems der Elemente.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei der Katalysator der Einheit (F) ein oder mehrere zusätzliche Elemente, ausgewählt aus den Alkalien oder Erdalkalien, mit einem Gewichtsanteil im Bereich zwischen 0,01 % und 3 %, enthält.
  12. Verfahren nach einem der Ansprüche 1 bis 11, das einen Schritt (A) zur Entfernung mindestens eines Teils der stickstoffhaltigen oder basischen Verunreinigungen umfasst, die in der ursprünglichen Kohlenwasserstoffbeschickung enthalten sind, wobei dieser Schritt (A) stromaufwärts der Einheit zur Trennung mittels Membran (B) liegt.
EP05291115A 2004-06-04 2005-05-24 Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung Not-in-force EP1602705B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406097 2004-06-04
FR0406097A FR2871168B1 (fr) 2004-06-04 2004-06-04 Procede d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole

Publications (2)

Publication Number Publication Date
EP1602705A1 EP1602705A1 (de) 2005-12-07
EP1602705B1 true EP1602705B1 (de) 2008-11-12

Family

ID=34942341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291115A Not-in-force EP1602705B1 (de) 2004-06-04 2005-05-24 Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung

Country Status (6)

Country Link
US (1) US7705193B2 (de)
EP (1) EP1602705B1 (de)
JP (1) JP4860188B2 (de)
CN (1) CN1706919B (de)
DE (1) DE602005010937D1 (de)
FR (1) FR2871168B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099549A2 (pt) 2013-12-23 2015-07-02 Instituto Superior Técnico Reactor catalítico para a oligomerizaçao de olefinas em c4-c7 e processo de oligomerizaçao catalítica utilizando o referido reactor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871167B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles
FR2952646B1 (fr) * 2009-11-13 2012-09-28 Inst Francais Du Petrole Procede de production de carburants kerosene et diesel de haute qualite et de coproduction d'hydrogene a partir de coupes saturees legeres
FI20106312A (fi) * 2010-12-10 2012-06-11 Neste Oil Oyj Menetelmä keskitislekomponenttien valmistamiseksi bensiinikomponenteista
FR2975103B1 (fr) 2011-05-12 2014-08-29 IFP Energies Nouvelles Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
FR2980195B1 (fr) 2011-09-20 2013-08-23 IFP Energies Nouvelles Procede de separation du pentene-2 d'une coupe c5 contenant du pentene-2 et du pentene-1 par oligomerisation selective du pentene-1
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
WO2014074833A1 (en) 2012-11-12 2014-05-15 Uop Llc Process for making gasoline by oligomerization
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
US10378427B2 (en) 2017-03-31 2019-08-13 Saudi Arabian Oil Company Nitrogen enriched air supply for gasoline compression ignition combustion
US10508017B2 (en) * 2017-10-13 2019-12-17 Saudi Arabian Oil Company Point-of-sale octane/cetane-on-demand systems for automotive engines
US10378462B1 (en) 2018-01-31 2019-08-13 Saudi Arabian Oil Company Heat exchanger configuration for adsorption-based onboard octane on-demand and cetane on-demand
US10436126B2 (en) 2018-01-31 2019-10-08 Saudi Arabian Oil Company Adsorption-based fuel systems for onboard cetane on-demand and octane on-demand
US10422288B1 (en) 2018-03-29 2019-09-24 Saudi Arabian Oil Company Adsorbent circulation for onboard octane on-demand and cetane on-demand
US10408139B1 (en) 2018-03-29 2019-09-10 Saudi Arabian Oil Company Solvent-based adsorbent regeneration for onboard octane on-demand and cetane on-demand

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3030998A1 (de) * 1980-08-16 1982-04-01 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur herstellung von kraftstoffen mit einem ueberwiegenden anteil an dieseloel
US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
JPH01259089A (ja) * 1988-03-04 1989-10-16 Res Assoc Util Of Light Oil 重質油熱分解軽質留分の処理方法
CN1042937A (zh) * 1989-04-03 1990-06-13 吴兆平 渣油炼制油品的方法和装置
WO1993019841A1 (en) * 1992-03-27 1993-10-14 Stichting Energieonderzoek Centrum Nederland Membrane for separating off small molecules and method for the production thereof
US6043177A (en) * 1997-01-21 2000-03-28 University Technology Corporation Modification of zeolite or molecular sieve membranes using atomic layer controlled chemical vapor deposition
AU8141301A (en) * 2000-07-10 2002-01-21 Sasol Tech Pty Ltd Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
JP2002348579A (ja) * 2001-05-23 2002-12-04 Nard Inst Ltd ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
FR2840236B1 (fr) * 2002-06-03 2005-02-04 Inst Francais Du Petrole Membrane zeolithique de faible epaisseur, sa preparation et son utilisation en separation
US6818333B2 (en) * 2002-06-03 2004-11-16 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation
CN1209441C (zh) * 2002-11-01 2005-07-06 石油大学(北京) 催化汽油改质油气的分离方法和装置
FR2871167B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099549A2 (pt) 2013-12-23 2015-07-02 Instituto Superior Técnico Reactor catalítico para a oligomerizaçao de olefinas em c4-c7 e processo de oligomerizaçao catalítica utilizando o referido reactor

Also Published As

Publication number Publication date
FR2871168B1 (fr) 2006-08-04
DE602005010937D1 (de) 2008-12-24
JP4860188B2 (ja) 2012-01-25
JP2005344119A (ja) 2005-12-15
EP1602705A1 (de) 2005-12-07
FR2871168A1 (fr) 2005-12-09
US7705193B2 (en) 2010-04-27
CN1706919B (zh) 2011-06-08
US20060009670A1 (en) 2006-01-12
CN1706919A (zh) 2005-12-14

Similar Documents

Publication Publication Date Title
EP1602705B1 (de) Verfahren zur Verbesserung von Benzinfraktionen und Umwandlung in Gasölen mit zusätzlicher Behandlung für die Erhöhung der Gasölleistung
EP1602637B1 (de) Verfahren zur Verbesserung von Benzinschnitten und zur Umwandlung zu Gasölen
EP1487768B1 (de) Mehrstufenverfahren zur umsetzung einer beschickung, die olefine mit drei, vier oder mehr kohlenstoffatomen enthält, zur herstellung von propylen
EP1777284B1 (de) Verfahren zur Direktumwandlung eines Olefine mit mindestens vier oder fünf Kohlenstoffatomen enthaltenden Einsatzstoffs zur Herstellung von Propylen und von entschwefeltem Benzin mit hoher Oktanzahl
WO2006067305A1 (fr) Procede de conversion directe d’une charge comprenant des olefines a quatre et/ou cinq atomes de carbone, pour la production de propylene avec une co-production d’essence
CA2894475A1 (fr) Procede d'obtention de solvants hydrocarbones de temperature d'ebullition superieure a 300°c et de point d'ecoulement inferieur ou egal a -25°c
EP2636661B1 (de) Umwandlungsverfahren einer schweren Ladung durch Einsatz einer Katkrackeinheit und einer selektiven Hydrierphase des aus dem Katkrackverfahren entstandenen Kraftstoffs
EP1406989B1 (de) Verfahren zur herstellung von mitteldestillaten durch hydroisomerisation und hydrocracking aus einer schwerfraktion der reaktionsprodukte aus dem fischer-tropsch verfahren
EP1088879A1 (de) Verfahren zur Erzeugung von Benzin mit verbesserter Oktanzahl
FR2635112A1 (fr) Procede de fractionnement et d'extraction d'hydrocarbures permettant l'obtention d'une essence a indice d'octane ameliore et d'un kerosene a point de fumee ameliore
EP1406988B1 (de) Verfahren zur herstellung von mitteldestillaten durch hydroisomerisation und hydrocracking von reaktionsprodukten aus dem fischer-tropsch verfahren
FR2862311A1 (fr) Procede de production d'essences a haut indice d'octane a partir d'une coupe c5/c6 utilisant une unite de separation par menbrane
EP3164467B1 (de) Verfahren zur dearomatisierung von ölfraktionen
WO2009004179A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
CA2139286A1 (fr) Procede de reduction de la teneur en benzene dans les essences
EP1433835B1 (de) Verfahren zur Umwandlung von Kohlenwasserstoffen in eine Fraktion mit verbesserter Oktanzahl und eine Fraktion mit hoher Cetanzahl
EP1417283B1 (de) Verfahren zur isomerisierung von c5-c8 kohlenwasserstofffreaktionen mit zwei parallelreaktoren
FR2520356A1 (fr) Procede de valorisation des coupes c4 olefiniques
EP1396532B1 (de) Verfahren zur Verwertung einer Kohlenwasserstoffeinsatzes und Minderung des Dampfdrucks dieses Einsatzes
EP0589112B1 (de) Verfahren zur Herstellung einer an tertiärem Amylmethyläther reichen Fraktion frei von Olefinen und einer an n-Pentan reichen paraffinischen Fraktion
FR3084084A1 (fr) Procede de production d'olefines et de distillats moyens a partir d'un effluent hydrocarbone issu de la synhtese fischer-tropsch
FR2857370A1 (fr) Procede de production de distillats et d'huiles lubrifiantes
FR2686094A1 (fr) Production de base pour carburant exempt de benzene, presentant un indice d'octane eleve.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MORIN, STEPHANE

Inventor name: METHIVIER, ALAIN

Inventor name: COUPARD, VINCENT

Inventor name: BAUDOT, ARNAUD

Inventor name: BRIOT, PATRICK

17P Request for examination filed

Effective date: 20060607

AKX Designation fees paid

Designated state(s): BE DE GB NL

17Q First examination report despatched

Effective date: 20070314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005010937

Country of ref document: DE

Date of ref document: 20081224

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005010937

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180521

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180516

Year of fee payment: 14

Ref country code: NL

Payment date: 20180517

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005010937

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190524

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531