EP1602705B1 - Procédé d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole - Google Patents

Procédé d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole Download PDF

Info

Publication number
EP1602705B1
EP1602705B1 EP05291115A EP05291115A EP1602705B1 EP 1602705 B1 EP1602705 B1 EP 1602705B1 EP 05291115 A EP05291115 A EP 05291115A EP 05291115 A EP05291115 A EP 05291115A EP 1602705 B1 EP1602705 B1 EP 1602705B1
Authority
EP
European Patent Office
Prior art keywords
fraction
process according
membrane
membrane separation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05291115A
Other languages
German (de)
English (en)
Other versions
EP1602705A1 (fr
Inventor
Patrick Briot
Arnaud Baudot
Vincent Coupard
Stéphane Morin
Alain Methivier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1602705A1 publication Critical patent/EP1602705A1/fr
Application granted granted Critical
Publication of EP1602705B1 publication Critical patent/EP1602705B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/10Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for with the aid of centrifugal force
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the present invention relates to a method allowing a simple and economical way to modulate the respective productions of gasoline and diesel. More precisely, according to the process that is the subject of the present application, it is possible to convert an initial hydrocarbon feedstock in the gasoline cut, comprising from 4 to 15 carbon atoms and preferably from 4 to 11 carbon atoms, into a gasoline fraction of improved octane number with respect to the charge, and a gas oil fraction with a high cetane number.
  • the effects of this improvement relate to the efficiency of the gasoil fraction obtained, to the octane number of the gasoline fraction obtained, and finally to the fact that the starting gasoline fraction can be of absolutely any composition while respecting only the range of number of carbon atoms.
  • the object of the present invention is, from any gasoline cut, to produce an improved octane gasoline cut with respect to the starting gasoline cut, and a gas oil cut of cetane number at least equal to 45 and preferably greater than 50.
  • the effluents from the conversion processes of more or less heavy residues such as for example the gasoline cuts from the fluidized catalytic cracking (FCC) process, contain an olefin content of between 10 and 80%.
  • One of the objects of the present invention is to separate linear olefins from branched olefins from an initial gasoline feedstock.
  • Another object of the present invention is to provide an alternative allowing increased flexibility in the management of products from the refinery.
  • the use of the present process may advantageously make it possible to modulate the gasoline / diesel proportions obtained at the refinery outlet according to the needs of the market.
  • aliphatic alkylation between paraffins and olefins to produce high octane gasoline cuts.
  • This process can utilize mineral acids such as sulfuric acid (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208 th National Meeting, American Chemical Society - August 1994, which can be translated as "Symposium on Hydrogen Transfer in hydrocarbon feedstocks), solvent-soluble catalysts ( EP 0714871 ) or heterogeneous catalysts ( US 4,956,518 ).
  • the processes for adding isobutane to alkenes having between 2 and 5 carbon atoms make it possible to produce highly branched molecules having between 7 and 9 carbon atoms, and generally characterized by high indices. octane.
  • the oligomerization processes based essentially on the dimerization and trimerization of light olefins from the catalytic cracking process and having between 2 and 4 carbon atoms, allow the production of gasoline cuts or distillates.
  • An example of such a method is described in EP 0734766 .
  • the US Patent 5,382,705 proposes to couple the oligomerization and etherification processes previously described in order to produce, from a C 4 fraction, tertiary alkyl ethers such as MTBE or ETBE and lubricants.
  • patent US 2003/0171632 A1 describes a process for producing a gas oil fraction from an olefinic feedstock comprising branched olefins with a number of carbon atoms between 3 and 8, by bringing said feedstock into contact with a zeolite type acid catalyst with a selectivity of form, at high temperature and under pressure, so as to obtain longer olefins.
  • This patent does not describe any prior separation of normal and iso paraffins.
  • the ⁇ cut resulting from the distillation separation stage and comprising the majority of linear paraffins and a part of linear olefins is directly introduced into a catalytic reforming unit of the gasolines that is supposed to exist on the site of production.
  • the section ⁇ resulting from the dehydrogenation (F) is recycled at least partly to the inlet of the membrane separation unit (B), the other part of said section ⁇ being mixed with the ⁇ cut to form a high octane gasoline.
  • the section ⁇ resulting from the hydrogenation (G) is not completely recycled at the inlet of the membrane separation unit (B), at least a portion is mixed with the cut ⁇ to form a gasoline high octane.
  • the oligomerization step is carried out at a pressure of between 0.2 and 10 MPa, with a volume flow rate of charge on catalyst volume (called VVH) of between 0.degree. , 05 and 50 liters / liter.hour, and at a temperature between 15 ° C and 300 ° C.
  • VVH volume flow rate of charge on catalyst volume
  • the oligomerization step is generally carried out in the presence of a catalyst comprising at least one Group VIB metal of the periodic table.
  • the step of separating linear olefins and paraffins on the one hand, and branched olefins and paraffins, on the other hand, is carried out in a so-called membrane separation unit which can use a very wide variety of membrane types. 'being in no way related to a particular type of membrane.
  • the membranes which may be used in the context of the invention are preferably membranes used in nanofiltration and in reverse osmosis (membranes falling within the category of membranes for filtration processes) or membranes used in permeation in the gas phase or in pervaporation ( membrane falling within the category of membranes for permeation processes).
  • these membranes may be either zeolite type membranes, or polymer (or organic) type membranes, or ceramic (or mineral) type membranes, or even composite type in the sense that they may consist of a polymer and at least one mineral compound.
  • the membranes that can be used in the process that is the subject of the invention may also be based on film.
  • the membranes based on film formed by molecular sieves or film-based membranes formed from molecular sieves of silicates, aluminosilicates, aluminophosphates, silicoaluminophosphates, metalloaluminophosphates, stanosilicates, or a mixing at least one of these two types of constituents.
  • zeolite-based membranes mention may be made more particularly of membranes based on zeolites of type MFI or ZSM-5, native or having been exchanged with H + ions; Na +; K +; Cs +; Ca +; Ba + and zeolite membrane type LTA.
  • the process according to the invention may comprise a step of removing at least a portion of the nitrogenous or basic impurities contained in the initial charge of hydrocarbons.
  • the initial charge of hydrocarbons will result from a process of catalytic cracking, thermal cracking or dehydrogenation of paraffins. It can be introduced in the process object of the present invention either alone or in admixture with other fillers.
  • the hydrocarbon feedstock is conveyed via line 1 to a purification unit A.
  • This unit A eliminates a large part of the nitrogen compounds and / or basic contained in the load. This removal, although optional, is necessary when the feedstock comprises a high level of nitrogen and / or basic compounds, as these constitute a poison for the catalysts of the subsequent steps of the present process.
  • Said compounds can be removed by adsorption on an acidic solid.
  • This solid may be selected from the group consisting of silicoaluminates, titanosilicates, mixed oxides titanium alumina, clays, resins.
  • the solid may also be chosen from mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble, of at least one element selected from the group consisting of titanium, zirconium, silicon, germanium tin, tantalum, niobium, on at least one oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, titanium silicas, zirconia silicas, resins ion exchange type Amberlyst, or any other solid having any acidity.
  • organometallic compound organosoluble or water-soluble
  • element selected from the group consisting of titanium, zirconium, silicon, germanium tin, tantalum, niobium
  • oxide support such as alumina (gamma, delta, eta, alone or as a mixture), silica, silica aluminas, titanium silicas, zirconia silicas, resins ion exchange type Amber
  • a particular embodiment of the invention may consist in using a mixture of at least two of the previously described catalysts.
  • the pressure of the purification unit (A) of the charge is between atmospheric pressure and 10 MPa, preferably between atmospheric pressure and 5 MPa, and a pressure under which the charge is located is preferably chosen. liquid state.
  • VVH The ratio of the volume flow rate of charge to the volume of catalytic solid
  • the temperature of the purification unit (A) is between 15 ° C and 300 ° C, preferably between 15 ° C and 150 ° C, and more preferably between 15 ° C and 60 ° C.
  • the elimination of the nitrogenous and / or basic compounds contained in the feed may also be carried out by washing with an acidic aqueous solution, or by any equivalent means known to those skilled in the art.
  • the purified ⁇ -cut feed is conveyed via line 2 to the membrane separation unit (B).
  • the linear olefins and paraffins forming the ⁇ -section are separated by a membrane from the remainder of the gasoline cut (forming the ⁇ -section), and are discharged via line 3 to feed an oligomerization unit. (VS).
  • the fraction depleted in linear olefins and paraffins is removed from the unit (B) by the line 7.
  • This so-called ⁇ -section cut the linear olefin content of which has notably decreased since it contains mainly only the branched olefins, has a improved octane number compared to the initial gasoline cut or ⁇ cut.
  • any type of membrane that makes it possible to carry out the separation between paraffins and linear olefins on the one hand, and paraffins and branched olefins on the other hand, can be used, whether organic or polymeric membranes (for example , the PDMS 1060 membrane of Sulzer Chemtech Membrane Systems), ceramics or minerals (composed for example at least partly of zeolite, silica, alumina, glass or carbon), or composites consisting of polymer and at least one mineral or ceramic compound (eg, Sulzer Chemtech Membrane Systems PDMS 1070 membrane).
  • organic or polymeric membranes for example , the PDMS 1060 membrane of Sulzer Chemtech Membrane Systems
  • ceramics or minerals composed for example at least partly of zeolite, silica, alumina, glass or carbon
  • composites consisting of polymer and at least one mineral or ceramic compound eg, Sulzer Chemtech Membrane Systems PDMS 1070 membrane.
  • the selectivity of this type of membrane is essentially based on a difference in diffusivity between the linear compounds, diffusing faster because offering a kinetic diameter substantially smaller than the micropore diameter of the zeolite, and the connected compounds, diffusing more slowly because having a kinetic diameter close to that of the micropores.
  • the MFI zeolite membranes finally provide high normal / isoolefin selectivities, close to those observed for normal / iso paraffins under similar operating conditions.
  • the operating temperature of the membrane will be between room temperature and 400 ° C, and preferably between 80 ° C and 300 ° C.
  • the linear olefins and paraffins ( ⁇ -section) separated from the petrol fraction in unit B are sent to an oligomerization reactor, represented by unit C, via line 3.
  • This unit C contains an acid catalyst.
  • the hydrocarbons present in the mixture of paraffins and linear olefins will undergo moderate oligomerization reactions, ie in general dimerizations or trimerizations, the conditions of the reaction being optimized for the production of a majority of hydrocarbons whose carbon number is mainly between 9 and 25, and preferably between 10 and 20.
  • the catalyst of unit C may be chosen from the group formed by silicoaluminates, titanosilicates, mixed titanium alumina, clays, resins, mixed oxides obtained by grafting at least one organometallic compound, organosoluble or water-soluble ( selected from the group consisting of alkys and / or alkoxides, metals having at least one element such as titanium, zirconium silicon, germanium, tin, tantalum, niobium) on an oxide support such as alumina (gamma, delta, eta, alone or in admixture), silica, silica aluminas, titanium silicas, zirconia silicas, or any other solid having any acidity.
  • organometallic compound selected from the group consisting of alkys and / or alkoxides, metals having at least one element such as titanium, zirconium silicon, germanium, tin, tantalum, niobium
  • an oxide support such as alumina (gamm
  • the catalyst used to carry out the oligomerization comprises at least one Group VIB metal of the periodic classification, and advantageously an oxide of said metal.
  • Said catalyst may further comprise an oxide support selected from the group consisting of aluminas, titanates, silicas, zirconias, aluminosilicates.
  • a particular embodiment of the invention consists in using a physical mixture of at least two of the catalysts mentioned above.
  • the pressure of the unit C is most often such that the charge is in liquid form. This pressure is in principle between 0.2 MPa and 10 MPa, preferably between 0.3 and 6 MPa, and more preferably between 0.3 and 4 MPa.
  • the ratio of the volume flow rate of charge to the volume of catalyst (also called hourly volume velocity or VVH) can be between 0.05 liter / liter.hour and 50 liters / liter.hour, preferably between 0.1 liter / liter hour and 20 liters / liter.hour, and still more preferably between 0.2 liter / liter.hour and 10 liters / liter.hour.
  • the reaction temperature should be between 15 ° C and 300 ° C, preferably between 60 ° C and 250 ° C, and more particularly between 100 ° C and 250 ° C to optimize the quality of the products obtained.
  • the effluent from the unit (C) is then sent via line 4 into one or more distillation columns shown in the diagram of the figure 1 by the unit (D).
  • This cut consists mainly of olefins and diolefins resulting from the polymerization of linear olefins.
  • This section can be hydrogenated in a conventional hydrogenation unit in the presence of a catalyst and under operating conditions that are well known to those skilled in the art. These olefins are then converted to linear paraffins.
  • the effluent of the hydrogenation unit (E) constitutes a gas oil with a cetane number greater than 45 and preferably greater than 50.
  • the ⁇ cut consists mainly of non-reactive linear paraffins during the oligomerization reaction.
  • This cut conveyed via line 5, is mixed with hydrogen, conveyed via line 10, is injected into a dehydrogenation unit (F).
  • Water or any other compound capable of decomposing into water under the dehydrogenation conditions may be added to the load.
  • the amount of water present in the hydrocarbon feedstock, (this water may be generated by the decomposition of another compound, such as for example an alcohol, an aldehyde, a ketone, an ether), will be between 1 and 10000 ppm weight of water relative to the hydrocarbon charge.
  • the dehydrogenation unit (F) operates at temperatures of between 400 ° C and 520 ° C, preferably between 450 ° C and 490 ° C.
  • the pressures of the dehydrogenation unit (F) are between 0.05 MPa and 1 MPa, preferably between 0.1 MPa and 0.5 MPa.
  • the ratio of the volume flow rate of the feedstock to the catalyst volume is between 1 h -1 and 500 h -1 , preferably between 15 h -1 and 300 h -1 .
  • the molar ratio of hydrogen to hydrocarbon is between 1 and 20 mol / mol, and preferably between 4 and 12 mol / mol.
  • the dehydrogenation catalyst of the unit (F) may be chosen from catalysts known to those skilled in the art for the dehydrogenation of short paraffins ranging from C 2 to C 5 or long paraffins ranging from C 10 to C 14.
  • the catalyst thus consists of a metal phase supported on a support whose specific surface is advantageously between 5 and 300 m 2 / g.
  • This catalyst support comprises at least one refractory oxide which is generally chosen from metal oxides of groups IIA, IIIA, IIIB, IVA or IVB of the periodic table of elements such as, for example, oxides of magnesium, aluminum, silicon, zirconium taken alone or mixed with each other, or mixed with oxides of other elements of the periodic table. We can also use coal.
  • the dehydrogenation catalyst of the unit (F) may also contain a sulfur compound, at a weight content of sulfur element generally between 0.005 and 1% relative to the catalyst mass.
  • the catalyst of the unit (F) may also contain one or more additional elements which conventionally make it possible to limit the acidity of the support, such as alkaline or alkaline-earth metals, with a weight percentage of 0.01% to 3%.
  • alkaline and / or alkaline earth compounds, on the one hand, and halogenated compounds, on the other, may be adjusted so as to modify the content of compounds alkylaromatics, and / or branched paraffins formed during the dehydrogenation reaction.
  • the diesel fraction will be favored by the use of a dehydrogenation catalyst having from 0.01% to 3% of at least one alkaline and / or alkaline earth metal and less than 0.2% of halogenated compound. .
  • the proportion of aromatic compounds resulting from this dehydrogenation step may also be minimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio
  • H2 / HC ratio makes it possible to limit the formation of aromatics during the dehydrogenation step (F).
  • a VVH value of between 15 and 300 h -1 , and an H 2 / HC value of between 4 and 12 will generally be preferred.
  • the gasoline cut will for example be favored by the use of a dehydrogenation catalyst having from 0.1% to 3% of a halogenated compound, and less than 0.5% of an alkaline and / or alkaline earth metal.
  • the catalyst may in certain cases not contain an alkali metal or alkaline earth metal.
  • the proportion of aromatic compounds resulting from this dehydrogenation step (F) may also be optimized by a judicious choice of operating conditions, known to those skilled in the art.
  • VVH charge-to-volume ratio of catalyst
  • the dehydrogenation step of paraffins to olefins is also accompanied, in addition to branched aromatic and paraffin compounds, the formation of diolefins and possibly other unsaturated compounds such as alkynes, triolefins .
  • diolefins The formation of diolefins is strongly influenced by the thermodynamic equilibrium between paraffins / olefins / diolefins.
  • the effluent from the unit (F) evacuated via the line (11) is mixed with hydrogen brought by the line (12) and then sent to a selective hydrogenation unit (G) whose purpose is elimination by hydrogenation of small amounts of diolefins and possible alkynes and triolefins, without affecting the olefins and aromatic compounds formed in unit (F).
  • This selective hydrogenation operates in pressure ranges of between 1 MPa and 8 MPa, and preferably between 2 MPa and 6 MPa.
  • the temperature is between 40 ° C and 350 ° C, and preferably between 40 ° C and 250 ° C.
  • the ratio of the volume flow rate of charge to the volume of catalyst is between 0.5 and 10 m 3 / m 3 / hour and preferably between 1 and 5 m 3 / m 3 / hour.
  • the catalyst of the hydrogenation unit (G) consists of a support based on silica, or alumina on which is deposited a nickel, platinum or palladium type metal.
  • the catalyst of the hydrogenation unit (G) may also consist of mixtures of nickel and molybdenum or mixtures of nickel and tungsten.
  • the effluent of the unit (G) contains mainly linear paraffins, olefins and aromatics. This cut called ⁇ cut, is then recycled all or in part by the line (13) at the entrance of the unit (B).
  • Example 1 corresponds to the invention and will be better understood by following the figure 1 .
  • Example 2 is a comparative example
  • the feedstock is a FCC gasoline boiling point between 40 ° C and 150 ° C.
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the volume of acid solid (VVH) is 1 liter / liter hour.
  • the temperature of the reactor is 20 ° C.
  • Table 1 gives the composition of the initial charge and that of the effluent from unit A ( ⁇ cut). The charge rate used is 1 kg / h. Table 1: Load and effluent characteristics of unit A. Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the effluent from unit A ( ⁇ cut) is then sent to a membrane reactor B consisting of a support based on ⁇ -alumina on which is deposited a layer of MFI zeolite with a thickness of between 5 and 15 ⁇ m. .
  • the pressure of the membrane reactor B is equal to 0.1 MPa and the temperature is equal to 150 ° C.
  • Table 2 gives the composition of effluents from unit B ( ⁇ cut and ⁇ cut). Table 2: characteristics of the effluents of stage B (before recycling). ⁇ cut ⁇ cup Yield (%) (relative to the ⁇ cut) 8.8 91.2 Production (g / h) 88 912 Paraffins (% wt) 45.5 23.1 Naphthenes (% wt) 10.7 Aromatic (% by weight) 38.5 Olefins (% by weight) 54.5 27.7
  • the ⁇ cut from the membrane separation unit is injected into an oligomerization reactor (C) containing a catalyst consisting of a mixture of 50% by weight of zirconia and 50% by weight of H 3 PW 12 O 40 .
  • the pressure of the unit is 2 MPa, the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 1.5 liters / liter.hour.
  • the temperature is set at 170 ° C.
  • the heavy cut ⁇ is sent to a hydrogenation reactor (E) containing a catalyst comprising an alumina support on which are deposited nickel and molybdenum (marketed by AXENS under the trade name HR348, registered trademark).
  • the pressure of the unit is 5 MPa, the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature is 320 ° C.
  • the light fraction ⁇ of the distillation range 40 ° C. to 200 ° C. resulting from the distillation step (D) is mixed with hydrogen with a molar ratio of hydrogen to hydrocarbon of 6 mol / mol and then sent to the dehydrogenation unit (F).
  • the total pressure of the dehydrogenation unit (F) is 0.3 MPa, and the temperature is 475 ° C.
  • the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 20 liters / liter / hour.
  • the catalyst used in the dehydrogenation unit (F) is marketed by AXENS under the reference DP 805, registered trademark.
  • composition of the section ⁇ resulting from the dehydrogenation (F) or ⁇ section is presented in Table 5 and compared to the charge of the dehydrogenation unit (F) or cut ⁇ .
  • Table 4 characteristics of the effluent from unit F ( ⁇ section) Cup ⁇ ⁇ section Linear paraffins (% by weight) 100 85.1 Branched paraffins (% by weight) 0.3 Olefins (% by weight) 12 Aromatic (%) 2 Diolefins (% by weight) 0.6
  • This section ⁇ is mixed with hydrogen and sent to a hydrogenation reactor (G) containing a catalyst marketed by AXENS under the reference LD 265, registered trademark.
  • the pressure of the unit is 2.8 MPa, the temperature is equal to 90 ° C, and the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 3 liters / liter.hour.
  • composition of the ⁇ -section resulting from this selective hydrogenation is compared with that of the ⁇ -section in Table 6.
  • Table 5 characteristics of the effluent from unit G ( ⁇ cut) ⁇ section ⁇ cut Linear paraffins (% by weight) 85.1 85.2 Branched paraffins (% by weight) 0.3 0.3 Olefins (% by weight) 12 12.5 Aromatic (%) 2 2 Diolefins (% by weight) 0.6 0
  • This section ⁇ is completely recycled at the entrance of the membrane reactor (B).
  • Paraffins and linear olefins are thus found in the new ⁇ -section obtained after recycling and thereby increase the diesel yield.
  • the present method makes it possible to obtain, from a gasoline cutoff resulting from an FCC, a gasoline cut ( ⁇ cut) having an improved octane number relative to that of the initial cut (97 against 92) and a cut diesel, effluent from the unit (E), with a high cetane number (55), perfectly compatible with marketing to European and US specifications.
  • Example 2 corresponds to the prior art and consists in sending directly to an oligomerization unit (C) an FCC gasoline cut ( ⁇ cut) whose boiling point is between 40 ° C and 150 ° C.
  • C oligomerization unit
  • ⁇ cut FCC gasoline cut
  • This gasoline contains 10 ppm nitrogen.
  • This charge is sent to a purification reactor A containing a solid consisting of a mixture of 20% alumina and 80% by weight of zeolite of the mordenite type.
  • the zeolite used in the present example has a silicon / aluminum ratio of 45.
  • the pressure of the purification unit is 0.2 MPa.
  • the ratio of the liquid volume flow rate of the charge to the volume of acid solid (VVH) is 1 liter / liter hour.
  • the temperature of the reactor is 20 ° C.
  • Table 7 gives the composition of the initial charge and that of the effluent from unit A.
  • the charge rate used is 1 kg / h.
  • Charge A Effluent of unit A Nitrogen (ppm) 10 0.2 Paraffins (% wt) 25.2 25.1 Naphthenes (% wt) 9.6 9.8 Aromatic (% by weight) 34.9 35 Olefins (% by weight) 30.3 30.1
  • the heavy cut ⁇ ' is sent to a hydrogenation reactor (E) containing an alumina catalyst on which nickel and molybdenum are deposited.
  • the pressure of the unit (E) is 5 MPa
  • the ratio of the volume flow rate of charge on the volume of catalyst (VVH) is equal to 2 liters / liter.hour.
  • the ratio of the injected hydrogen flow rate to the feed rate is equal to 600 liters / liter.
  • the reactor temperature of the unit (E) is 320 ° C.
  • the characteristics of the effluent from the unit (E) which are those of a diesel fuel, are presented in Table 8.
  • Table 8 characteristics of the effluent from unit E Effluent of unit E Density at 20 ° C (kg / l) 0.787 Sulfur (ppm) 1 Motor cetane index 35
  • the gas oil obtained according to the scheme of Example 2 is unfit for marketing, which is not the case of that obtained in Example 1 according to the invention.
  • the final gasoline cut ⁇ ' has an octane number of 85, lower than that obtained in Example 1, which can make marketing problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

    Domaine de l'invention:
  • La présente invention se rapporte à un procédé permettant de façon simple et économique de moduler les productions respectives d'essence et de gazole. Plus précisément, selon le procédé objet de la présente demande, il est possible de transformer une charge initiale d'hydrocarbures se situant dans la coupe essence, comprenant de 4 à 15 atomes de carbone et de préférence de 4 à 11 atomes de carbone, en une fraction essence d'indice d'octane amélioré par rapport à la charge, et une fraction gazole à fort indice de cétane.
  • La présente demande constitue une amélioration de la demande intitulé" Procédé d'amélioration de coupes essences et de transformation en gazoles" des mêmes inventeurs et déposée le même jour que la présente demande.
  • Les effets de cette amélioration portent sur le rendement de la coupe gazole obtenue, sur l'indice d'octane de la coupe essence obtenue, et enfin sur le fait que la coupe essence de départ peut être de composition absolument quelconque en respectant seulement l'intervalle de nombre d'atomes de carbone.
  • Il est connu (Carburants et Moteurs de J.C. Guibet, Edition Technip, tome I (1987)) que la nature chimique des oléfines contenues dans les essences contribuent fortement à l'indice d'octane desdites essences. Les oléfines peuvent être classées pour cette raison en deux catégories distinctes :
    1. a) les oléfines ramifiées qui possèdent de bons indices d'octane. Cet indice d'octane augmente avec le nombre de ramifications et diminue avec la longueur de chaîne.
    2. b) les oléfines linéaires qui possèdent un faible indice d'octane, cet indice d'octane diminuant fortement avec la longueur de chaîne.
  • Le but de la présente invention est, à partir d'une coupe essence quelconque, de produire une coupe essence à indice d'octane amélioré par rapport à la coupe essence de départ, et une coupe gazole d'indice de cétane au moins égal à 45 et préférentiellement supérieur à 50.
  • Par ailleurs, les effluents issus des procédés de conversion de résidus plus ou moins lourds, tels que par exemple les coupes essences issues du procédé de craquage catalytique en lit fluidisé (FCC), contiennent une teneur en oléfines comprise entre 10 et 80%.
  • Lesdits effluents entrent dans la composition des essences commerciales à hauteur de 20 à 40% selon l'origine géographique (27% en Europe de l'Ouest et 36% aux USA).
  • Il est vraisemblable que dans le cadre de la protection de l'environnement, les normes concernant les essences commerciales soient orientées dans les années à venir vers une réduction de la teneur en oléfines autorisées dans les essences.
  • Il découle des différents points qui précèdent que la production d'essences à faible taux d'oléfines, mais conservant un indice d'octane acceptable ne pourra se faire qu'en sélectionnant comme base pour essence, exclusivement ou en très fortes proportions, les oléfines ramifiées à fort indice d'octane.
  • L'un des objets de la présente invention est de séparer d'une charge essence initiale les oléfines linéaires des oléfines ramifiées.
  • Un autre objet de la présente invention est de fournir une alternative permettant une flexibilité accrue de la gestion des produits issus la raffinerie.
  • Plus précisément, l'utilisation du présent procédé peut permettre de façon avantageuse de moduler les proportions essence/gazole obtenues en sortie de raffinerie suivant les besoins du marché.
  • Examen de l'art antérieur
  • On connaît différents procédés de transformation des oléfines permettant d'augmenter leur indice d'octane.
  • Par exemple, on peut citer l'alkylation aliphatique entre des paraffines et des oléfines afin de produire des coupes essences à haut indice d'octane. Ce procédé peut utiliser des acides minéraux tel que l'acide sulfurique (Symposium on Hydrogen Transfer in Hydrocarbon Processing, 208th National Meeting, American Chemical Society -Août 1994, qu'on peut traduire par "Symposium sur le transfert d'hydrogène dans les procédés portant sur des charges hydrocarbonnées"), des catalyseurs solubles dans un solvant ( EP 0714871 ) ou des catalyseurs hétérogènes ( US 4,956,518 ).
  • A titre d'exemple, les procédés d'addition sur l'isobutane d'alcènes possédant entre 2 et 5 atomes de carbone permettent de produire des molécules très ramifiées possédant entre 7 et 9 atomes de carbone, et en général caractérisées par de hauts indices d'octane.
  • On connaît d'autres transformations mettant en oeuvre des procédés d'éthérification des oléfines ramifiées, tels que par exemple ceux décrits dans les brevets US 5,633,416 et EP 0451989 . Ces procédés permettent de produire des éthers de type MTBE (méthyl tertio butyl éther), ETBE (ethyl tertio butyl éther) et TAME (tertio amyl méthyl éther), composés bien connus pour améliorer l'indice d'octane des essences.
  • Selon une troisième voie, les procédés d'oligomérisation, basés essentiellement sur la dimérisation et la trimérisation d'oléfines légères issues du procédé de craquage catalytique et possédant entre 2 et 4 atomes de carbone, permettent la production de coupes essences ou de distillats. Un exemple d'un tel procédé est décrit dans le brevet EP 0734766 .
  • Il permet d'obtenir principalement des produits ayant 6 atomes de carbone quand l'oléfine utilisée est du propylène, et 8 atomes de carbone quand l'oléfine est du butène linéaire.
  • Ces procédés d'oligomérisation sont connus pour donner des coupes essences possédant de bons indices d'octane, mais lorsqu'ils sont réalisés dans des conditions favorisant la formation de coupes plus lourdes, ils génèrent des coupes gasoils à très faible indice de cétane.
  • De tels exemples sont par ailleurs illustrés par les brevet US 4,456,779 et US 4,211,640 .
  • Le brevet US 5,382,705 propose de coupler les procédés d'oligomérisation et d'éthérification précédemment décrits afin de produire à partir d'une coupe C4, des éthers alkyls tertiaires tel que le MTBE ou L'ETBE et des lubrifiants.
  • Enfin le brevet US 2003/0171632 A1 décrit un procédé de production d'une coupe gazole à partir d'une charge oléfinique comprenant des oléfines branchées à nombre d'atomes de carbone entre 3 et 8, par mise en contact de ladite charge avec un catalyseur acide de type zéolithe à sélectivité de forme, à température élevée et sous pression, de manière à obtenir des oléfines plus longues. Ce brevet ne décrit aucune séparation préalable des normales et des iso paraffines.
  • Le brevet US 2004/0033370 A1 décrit une membrane zéolithe déposée sur un support et ayant des performances données de perméation et de sélectivité mesurées sur la séparation du normale et de l'iso butane. Ce brevet cite une application à la séparation des normales et iso oléfines, mais ne décrit aucun procédé de production d'un gazole et de co production d'essence à indice d'octane amélioré par rapport à la charge..
  • Description sommaire de l'invention:
  • L'invention concerne un procédé de transformation d'une charge d'hydrocarbures contenant de 4 à 15 atomes de carbone et de préférence de 4 à 11 atomes de carbone, et ayant une composition quelconque en paraffines, oléfines et aromatiques, ledit procédé comprenant les étapes suivantes :
    • a) une étape de séparation par membrane de la charge hydrocarbonée (coupe α) dans des conditions permettant la séparation sélective de la majorité des oléfines linéaires présentes dans ladite charge (coupe β), la coupe contenant la majorité des oléfines ramifiées (coupe γ) constituant une essence à fort indice d'octane, c'est à dire supérieur à celui de la charge.
    • b) une étape de traitement des oléfines linéaires contenues dans les effluents issus de l'étape de séparation sur membrane (coupe β) dans des conditions d'oligomérisation modérées,
    • c) une étape de séparation par distillation des effluents issus de l'étape d'oligomérisation en au moins deux coupes :
      • une coupe légère dite coupe δ, comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150°C et 200°C,
      • une coupe lourde dite coupe η, comprenant les hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150°C et 200°C,
    • d) une étape d' hydrogénation de la coupe η dans des conditions d'obtention d'un gazole à fort indice de cétane, c'est à dire au moins égal à 45, et préférentiellement supérieur à 50.
    • e) une étape de déshydrogénation (F) de la coupe légère δ, issue de l'étape de séparation par distillation, et produisant une coupe µ qui est au moins en partie recyclée à l'entrée de l'étape de séparation par membrane.
    • f) facultativement, une étape d'hydrogénation sélective (G) de la coupe µ produisant une coupe λ qui est au moins en partie recyclée à l'entrée de l'étape de séparation par membrane.
  • Selon une première variante du procédé, la coupe δ issue de l'étape de séparation par distillation et comprenant la majorité des paraffines linéaires et une partie des oléfines linéaires, est directement introduite dans une unité de reformage catalytique des essences supposée existant sur le site de production.
  • Selon une autre variante de l'invention, la coupe µ issue de la déshydrogénation (F) est recyclée au moins en partie à l'entrée de l'unité de séparation par membrane (B), l'autre partie de la dite coupe µ étant envoyée en mélange avec la coupe γ pour former une essence à haut indice d'octane.
  • Selon une autre variante de l'invention, la coupe λ issue de l'hydrogénation (G) n'est pas intégralement recyclée à l'entrée de l'unité de séparation par membrane (B), au moins une partie est mélangée avec la coupe γ pour former une essence à haut indice d'octane.
  • De manière générale, dans le cadre de l'invention, l'étape d'oligomérisation est effectuée à une pression comprise entre 0,2 et 10 MPa, avec un rapport débit volumique de charge sur volume de catalyseur (appelé VVH) compris entre 0,05 et 50 litres /litre.heure, et à une température comprise entre 15°C et 300°C.
  • L'étape d'oligomérisation est généralement effectuée en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.
  • L'étape de séparation des oléfines et paraffines linéaires d'une part, et des oléfines et paraffines ramifiées d'autre part, est réalisée dans une unité dite de séparation par membrane qui pourra utiliser des types de membrane très divers, l'invention n'étant aucunement liée à un type de membrane particulier.
  • Les membranes qui pourront être utilisées dans le cadre de l'invention sont préférentiellement des membranes utilisées en nanofiltration et en osmose inverse (membranes rentrant dans la catégorie des membranes pour procédés de filtration) ou des membranes utilisées en perméation en phase gaz ou en pervaporation (membrane rentrant dans la catégorie des membranes pour procédés de perméation).
  • Du point de vue des matériaux, ces membranes pourront être soit des membranes de type zéolithique, soit des membranes de type polymères (ou organique), soit encore des membranes de type céramique (ou minéral), soit encore de type composite au sens où elles peuvent être constituées d'un polymère et d'au moins un composé minéral.
  • Les membranes utilisables dans le procédé objet de l'invention pourront également être à base de film. Par exemple, on peut citer dans cette dernière catégorie les membranes à base de film formé de tamis moléculaire, ou les membranes à base de film formé de tamis moléculaire de type silicates, aluminosilicates, aluminophosphates, silicoalumino-phosphates, métalloaluminophosphates, stanosilicates, ou un mélange d'au moins un de ces deux types de constituants.
  • En ce qui concerne les membranes à base de zéolithes, on peut plus particulièrement citer les membrane à base de zéolithes de type MFI ou ZSM-5, natives ou ayant été échangées avec des ions H+; Na +; K+; Cs+; Ca+; Ba+ et les membrane à base de zéolithes de type LTA.
  • Dans certains cas, le procédé selon l'invention pourra comprendre une étape d'élimination d'au moins une partie des impuretés azotés ou basiques contenues dans la charge initiale d'hydrocarbures.
  • Généralement, la charge initiale d'hydrocarbures sera issue d'un procédé de craquage catalytique, de craquage thermique ou de déshydrogénation des paraffines. Elle pourra être introduite dans le procédé objet de la présente invention soit seule, soit en mélange avec d'autres charges.
  • Description détaillée de l'invention:
  • L'invention sera mieux comprise à la lecture de la figure 1 qui correspond au schéma de procédé selon l'invention et dans laquelle on a indiqué en trait pointillé les unités facultatives, les autres unités en trait plein étant obligatoires.
  • Selon la figure 1, la charge hydrocarbonée est acheminée par la ligne 1 vers une unité A de purification.
  • Cette unité A permet d'éliminer une grande partie des composés azotés et/ou basiques contenues dans la charge. Cette élimination, bien que facultative, est nécessaire lorsque la charge comprend un fort taux de composés azotés et/ou basiques, car ceux-ci constituent un poison pour les catalyseurs des étapes suivantes du présent procédé.
  • Lesdits composés peuvent être éliminés par adsorption sur un solide acide. Ce solide peut être choisi dans le groupe formé par les silicoaluminates, les titanosilicates, les oxydes mixtes alumine titane, les argiles, les résines.
  • Le solide peut également être choisi parmi les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquasoluble, d'au moins un élément choisi dans le groupe constitué par le titane, le zirconium, le silicium, le germanium, l'étain, le tantale, le niobium, sur au moins un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange) la silice, les silices alumines, les silices titane, les silices zircone, les résines échangeuses d'ions type Amberlyst, ou tout autre solide présentant une acidité quelconque.
  • Un mode particulier de réalisation de l'invention peut consister à mettre en oeuvre un mélange d'au moins deux des catalyseurs précédemment décrits.
  • La pression de l'unité de purification (A) de la charge est comprise entre la pression atmosphérique et 10 MPa, de préférence entre la pression atmosphérique et 5 MPa, et on choisira de préférence une pression sous laquelle la charge se trouve à l'état liquide.
  • Le rapport du débit volumique de charge sur le volume de solide catalytique (appelé VVH) est le plus souvent compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, de préférence compris entre 0,1 litre/litre.heure et 20 litres/litre.heure, et de manière encore préférée, entre 0,2 litre /litre.heure et 10 litres /litre.heure.
  • La température de l'unité de purification (A) est comprise entre 15°C et 300°C, de préférence entre 15°C et 150°C, et de manière encore préférée entre 15°C et 60°C.
  • L'élimination des composés azotés et/ou basiques contenus dans la charge peut également être effectuée par lavage par une solution aqueuse acide, ou par tout moyen équivalent connu de l'homme de l'art.
  • La charge purifiée dite coupe α est acheminée par la ligne 2 vers l'unité (B) de séparation sur membrane. Dans l'unité (B), les oléfines et paraffines linéaires formant la coupe β, sont séparées par une membrane du reste de la coupe essence (formant la coupe γ), et sont évacuées par la ligne 3 pour alimenter une unité d'oligomérisation (C).
  • La coupe appauvrie en oléfines et paraffines linéaires est évacuée de l'unité (B) par la ligne 7. Cette coupe dite coupe γ, dont la teneur en oléfines linéaires a notablement diminué puisqu'elle ne contient principalement que les oléfines branchées, possède un indice d'octane amélioré par rapport à la coupe essence initiale ou coupe α.
  • Plus précisément, tout type de membrane permettant d'effectuer la séparation entre les paraffines et oléfines linéaires d'une part, et les paraffines et oléfines branchées d'autre part, peut être utilisé, que ce soit des membranes organiques ou polymères (par exemple, la membrane PDMS 1060 de Sulzer Chemtech Membrane Systems), céramiques ou minérales (composées par exemple au moins en partie de zéolithe, silice, alumine, verre ou carbone), ou composites constituées de polymère et d'au moins un composé minéral ou céramique (par exemple, la membrane PDMS 1070 de Sulzer Chemtech Membrane Systems).
  • De nombreux travaux de la littérature font référence aux membranes à base de film formé de tamis moléculaire, tels que les zéolithes de type MFI, qui permettent de séparer de manière très efficace les paraffines linéaires des paraffines branchées grâce à un mécanisme de sélectivité diffusionnelle.
  • Tous les types de membrane à base de zéolithes MFI, que ce soient les membranes à base de silicalite, à base de zéolithe MFI complètement désaluminée, présentent une sélectivité normale/isoparaffines et peuvent donc être utilisées dans le cadre de la présente invention.
  • Parmi ces zéolithes de type MFI, on peut citer celles décrites dans les articles ou communications suivants:
    • van de Graaf, J.M., van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, J.A., dans Industrial Engineering Chemistry Research ("Recherche en genie des procédés industriels"), 37, 1998, 4071-4083;
    • Gora, L., Nishiyama, N., Jansen, J.C., Kapteijn, F., Teplyakov, V., Maschmeyer, Th., dans Separation Purification Technology ("Technologies de séparation/purification"), 22-23, 2001, 223-229;
    • Nishiyama, N., Gora, L., Teplyakov, V., Kapteijn, F., Moulijn, J.A., dans Separation
  • Purification Technology ("Technologies de séparation /purification"), 22-23, 2001, 295-307.
  • Parmi les membranes à base de zéolithes ZSM-5 natives, on peut citer les communications suivantes:
  • Enfin parmi les membranes ayant été échangées avec des ions de type H+, Na+, K+, Cs+, Ca+ ou Ba+ on peut citer Aoki, K., Tuan, V.A., Falconer, J.L., Noble, R.D., dans Microporous Mesoporous Materials ("Matériaux microporeux et mésoporeux"), 39, 2000, 485-492.
  • Les valeurs publiées de sélectivité n-C4/i-C4 en mélange, obtenues avec ce type de membrane, varient entre 10 et 50 suivant les conditions opératoires. On pourra sur ce point consulter la publication van de Graaf, J.M., van der Bijl, E., Stol, A., Kapteijn, F., Moulijn, J.A., dans Industrial Engineering Chemistry Research ("Recherche en génie des procédés industriels"), 37, 1998, 4071-4083.
    Les sélectivités de séparation observées avec des membranes à base de zéolithes MFI appliquées à la séparation n-hexane / diméthylbutane sont encore plus élevées :
    • 200 à 400 tel que cité dans la publication de Coronas, J., Noble, R.D., Falconer, J.L., dans Industrial Engeneering and Chemical Research ("Recherche en génie des procédés industriels"), 37, 1998, 166-176;
    • de 100 à 700 (Gump, C.J., Noble, R.D., Falconer, J.L., dans Industrial Engeneering and Chemical Research ("Recherche en génie des procédés industriels"), 38, 1999,2775-2781;
    • de 600 à plus de 2000 (Keizer, K., Burggraaf, A.J., Vroon, Z.A.E.P., Verweij, H., dans
  • Journal of Membrane Science ("Journal de la science des membranes"), 147, 1998, 159-172.
  • La sélectivité de ce type de membrane est essentiellement basée sur une différence de diffusivité entre les composés linéaires, diffusants plus rapidement car offrant un diamètre cinétique sensiblement plus faible que le diamètre des micropores de la zéolithe, et les composés branchés, diffusants plus lentement car ayant un diamètre cinétique proche de celui des micropores.
  • Les paraffines et leurs homologues oléfiniques branchées ou linéaires ayant un diamètre cinétique très proche, les membranes à base de zéolithe MFI offrent finalement des sélectivités normale/iso oléfines élevées, proches de celles observées pour des normale/iso paraffines dans des conditions opératoires similaires.
  • On peut également envisager d'utiliser des membranes à base de zéolithe de type structural LTA, zéolithe qui possède une très bonne sélectivité de forme vis à vis des normales paraffines.
  • La température de fonctionnement de la membrane sera comprise entre la température ambiante et 400°C, et de façon préférentielle entre 80°C et 300°C.
  • Les oléfines et paraffines linéaires (coupe β) séparées de la coupe essence dans l'unité B, sont envoyées dans un réacteur d'oligomérisation, représenté par l'unité C, par l'intermédiaire de la ligne 3.
  • Cette unité C contient un catalyseur acide. Les hydrocarbures présents dans le mélange de paraffines et d' oléfines linéaires vont subir des réactions d'oligomérisation modérées, c'est à dire en général des dimérisations ou des trimérisations, les conditions de la réaction étant optimisées pour la production d'une majorité d'hydrocarbures dont le nombre de carbone est majoritairement compris entre 9 et 25, et de préférence entre 10 et 20.
  • Le catalyseur de l'unité C peut être choisi dans le groupe formé par les silicoaluminates, les titanosilicates, les mixtes alumine titane, les argiles, les résines, les oxydes mixtes obtenus par greffage d'au moins un composé organométallique, organosoluble ou aquasoluble (choisi dans le groupe formé par les alkys. et/ou les alcoxy. métaux ayant au moins un élément tels que le titane, le zirconium le silicium, le germanium, l'étain, le tantale, le niobium) sur un support oxyde tel que l'alumine (formes gamma, delta, éta, seules ou en mélange), la silice, les silices alumines, les silices titane, les silices zircone, ou tout autre solide présentant une acidité quelconque.
  • Préférentiellement, le catalyseur utilisé pour effectuer l'oligomérisation comprend au moins un métal du groupe VIB de la classification périodique, et avantageusement un oxyde dudit métal. Ledit catalyseur peut comprendre en outre un support oxyde choisi dans le groupe formé par les alumines, les titanates, les silices, les zircones, les alumino-silicates.
  • Un mode particulier de réalisation de l'invention consiste à mettre en oeuvre un mélange physique d'au moins deux des catalyseurs cités précédemment.
  • La pression de l'unité C est le plus souvent telle que la charge se trouve sous forme liquide. Cette pression est en principe comprise entre 0,2 MPa et 10 MPa, de préférence entre 0,3 et 6 MPa, et de manière encore préférée entre 0,3 et 4 MPa. Le rapport du débit volumique de charge sur le volume de catalyseur (encore appelé vitesse volumique horaire ou VVH) peut être compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, de préférence entre 0,1 litre/litre.heure et 20 litres/litre.heure, et de manière encore préférée entre 0,2 litre/litre.heure et 10 litres/litre.heure .
  • Il a été trouvé par le demandeur que, dans les conditions de pression et de VVH précédentes, la température de réaction devait être comprise entre 15°C et 300°C, de préférence entre 60°C et 250°C, et plus particulièrement entre 100°C et 250°C pour optimiser la qualité des produits obtenus.
  • L'effluent issu de l'unité (C) est alors envoyé par l'intermédiaire de la ligne 4 dans une ou plusieurs colonnes de distillation représentées sur le schéma de la figure 1 par l'unité (D).
  • L'unité (D) peut également être constituée d' un ballon flash ou de tout autre moyen connu de l'homme de l'art permettant de séparer les effluents en au moins deux coupes distinctes par leur point d'ébullition :
    • une coupe δ dite légère dont le point final de distillation est compris entre environ 150°C et environ 200°C, de préférence entre 150°C et 180°C.
    • une coupe η dite lourde dont le point initial d'ébullition est compris entre environ 150°C et environ 200°C, de préférence entre 150°C et 180°C. Cette coupe est transportée par la ligne 6 vers l'unité (E).
    La coupe lourde η est une coupe dont le point initial correspond une coupe gazole.
  • Cette coupe est constituée en majorité d'oléfines et de dioléfines résultant de la polymérisation des oléfines linéaires. Cette coupe peut être hydrogénée dans une unité d'hydrogénation classique en présence d'un catalyseur et dans des conditions opératoires bien connues de l'homme de l'art. Ces oléfines sont alors transformées en paraffines linéaires. L'effluent de l'unité d'hydrogénation (E) constitue un gazole à indice de cétane supérieur à 45 et préférentiellement supérieur à 50.
  • La coupe δ est constituée principalement de paraffines linéaires non réactives lors de la réaction d'oligomérisation. Cette coupe, acheminée par la ligne 5, est mélangée à de l'hydrogène, acheminée par la ligne 10, est injectée dans une unité de déshydrogénation (F). De l'eau ou tout autre composé susceptible de se décomposer en eau dans les conditions de déshydrogénation pourra être ajouté à la charge. La quantité d'eau présente dans la charge d'hydrocarbures, (cette eau pouvant être générée par la décomposition d'un autre composé, tel que par exemple un alcool, une aldéhyde, une cétone, un éther), sera comprise entre 1 et 10000 ppm poids d'eau par rapport à la charge d'hydrocarbures.
  • L'unité de déshydrogénation (F) fonctionne dans des conditions de températures comprises entre 400°C et 520°C, de préférence entre 450°C et 490°C.
  • Les pressions de l'unité de déshydrogénation (F) sont comprise entre 0,05 MPa et 1 MPa, de préférence entre 0,1 MPa et 0,5 MPa.
  • Le rapport du débit volumique de la charge sur le volume de catalyseur est compris entre 1 h-1 et 500 h-1, de préférence entre 15 h-1 et 300 h-1. Le rapport molaire hydrogène sur hydrocarbure est compris entre 1 et 20 moles/mole, et de préférence entre 4 et 12 moles/mole.
  • Le catalyseur de déshydrogénation de l'unité (F) peut être choisi parmi les catalyseurs connus de l'homme de l'art pour la déshydrogénation des paraffines courtes allant de C2 à C5 ou les normales-paraffines longues allant de C10 à C 14. Le catalyseur est ainsi constitué d'une phase métallique supportée sur un support dont la surface spécifique est avantageusement comprise entre 5 et 300 m2/g.
  • Ce support de catalyseur comporte au moins un oxyde réfractaire qui est généralement choisi parmi les oxydes de métaux des groupes IIA, IIIA, IIIB, IVA ou IVB de la classification périodique des éléments tels que par exemple les oxydes de magnésium, d'aluminium, de silicium, de zirconium pris seuls ou en mélange entre eux, ou en mélange avec des oxydes d'autres éléments de la classification périodique. On peut aussi utiliser le charbon.
  • Le catalyseur de l'unité de déshydrogénation (F) renferme outre ce support :
    1. a) au moins un métal du groupe VIII choisi parmi l'iridium, le nickel, le palladium, le platine, le rhodium et le ruthénium. Le platine sera généralement le métal préféré. Le pourcentage pondéral est choisi entre 0,01 et 5%, et de préférence entre 0,02 et 1 %.
    2. b) au moins un élément additionnel choisi dans le groupe constitué par le germanium, l'étain, le plomb, le rhénium, le gallium, le fer, l'indium et le thallium. Le pourcentage pondéral est choisi entre 0,01% et 10%, et de préférence entre 0,02% et 5%. On peut avantageusement dans certains cas utiliser à la fois au moins deux des métaux de ce groupe.
  • Optionnellement, le catalyseur de déshydrogénation de l'unité (F) pourra aussi contenir un composé soufré, à une teneur pondéral en élément soufre généralement comprise entre 0,005 et 1% par rapport à la masse de catalyseur.
  • Le catalyseur de l'unité (F) pourra aussi contenir un ou plusieurs éléments additionnels permettant classiquement de limiter l'acidité du support tels que les alcalins ou alcalino-terreux, avec un pourcentage pondéral de 0,01% à 3%.
  • Il pourra aussi contenir de 0,01 % à 3% d'un halogène ou composé halogéné.
  • Les quantités de ces composés alcalins et/ou alcalino-terreux d'une part, et composés halogénés d'autre part, pourront être ajustées de façon à modifier la teneur en composés alkyl-aromatiques, et/ou paraffines branchées formés lors de la réaction de déshydrogénation.
  • Ces composés sont en effet des produits successifs de la réaction de déshydrogénation des paraffines traitées dans ce procédé.
  • Il est connu que les composés aromatiques ainsi que les paraffines branchées ont un bien meilleur indice d'octane que les paraffines linéaires. Puisque ces produits ne sont pas affectés par l'étape d'hydrogénation sélective, leur production au niveau de l'étape de déshydrogénation (F) permettra d'enrichir la coupe essence (évacuée par la ligne (7)) après l'étape de séparation par membrane (B).
  • Ainsi, la coupe gazole sera par exemple favorisée par l'utilisation d'un catalyseur de déshydrogénation présentant de 0,01% à 3% d' au moins un alcalin et/ou alcalino-terreux et moins de 0,2% de composé halogéné.
  • Selon une première variante, la proportion de composés aromatiques issus de cette étape de déshydrogénation pourra aussi être minimisée par un choix judicieux de conditions opératoires, connues de l'homme de l'art. L'utilisation d'un fort rapport débit de charge sur volume de catalyseur (VVH), ou d'un fort rapport H2/HC permet de limiter la formation des aromatiques lors de l'étape de déshydrogénation (F). Une valeur de VVH comprise entre 15 et 300 h-1, et une valeur de H2/HC comprise entre 4 et 12 seront généralement préférées.
  • La coupe essence sera par exemple favorisée par l'utilisation d'un catalyseur de déshydrogénation présentant de 0,1% à 3% d'un composé halogéné, et moins de 0,5% d' un alcalin et/ou alcalino-terreux. Le catalyseur pourra dans certains cas ne pas contenir de métal alcalin ou alcalino-terreux.
  • Selon une seconde variante, la proportion de composés aromatiques issus de cette étape de déshydrogénation (F) pourra aussi être optimisée par un choix judicieux de conditions opératoires, connu de l'homme de l'art. L'utilisation d'un faible rapport débit de charge sur volume de catalyseur (VVH) permet par exemple d'augmenter la formation des aromatiques vis à vis de la formation d'oléfines. Une valeur de VVH comprise entre 1 et 50 h-1 sera dans ce cas généralement préférée.
  • Dans l'unité (F), l'étape de déshydrogénation des paraffines en oléfines s'accompagne aussi, en plus des composés aromatiques et paraffines branchées, de la formation de dioléfines et éventuellement d'autres composés insaturés tels que les alcynes, les trioléfines.
  • La formation des dioléfines est fortement influencée par l'équilibre thermodynamique entre les paraffines / oléfines / dioléfines.
  • L'effluent de l'unité (F) évacué par la ligne (11), est mélangé à de l'hydrogène amené par la ligne (12) et ensuite envoyé dans une unité d'hydrogénation sélective (G) dont le but est l'élimination par hydrogénation des faibles quantités de dioléfines et d'éventuels alcynes et trioléfines, sans toucher aux oléfines et aux composés aromatiques formés dans l'unité (F). Cette hydrogénation sélective fonctionne dans des gammes de pression comprises entre 1 MPa et 8 MPa, et de préférence entre 2 MPa et 6 MPa. La température est comprise entre 40°C et 350°C, et de préférence entre 40°C et 250°C.
  • Le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est compris entre 0,5 et 10 m3/m3.heure et de préférence entre 1 et 5 m3/m3.heure.
  • Le catalyseur de l'unité d'hydrogénation (G) est constitué d'un support à base de silice, ou d'alumine sur lequel est déposé un métal type nickel, platine ou palladium. Le catalyseur de l'unité d'hydrogénation (G) peut aussi être constitué de mélanges de nickel et molybdène ou de mélanges de nickel et de tungstène.
  • A l'issue de l'hydrogénation sélective (G), l'effluent de l'unité (G) contient majoritairement des paraffines linéaires, des oléfines et des aromatiques. Cette coupe dite coupe λ, est alors recyclée tout ou en partie par la ligne (13) à l'entrée de l'unité (B).
  • Exemples:
  • Les exemples qui suivent permettent d'illustrer les avantages liés à la présente invention.
  • L' exemple 1 correspond à l'invention et sera mieux compris en suivant la figure 1.
  • L'exemple 2 est un exemple comparatif
  • Exemple 1: (selon l'invention)
  • Dans cet exemple, la charge est une essence de FCC de point d'ébullition compris entre 40°C et 150°C. Cette essence contient 10 ppm d'azote.
  • Cette charge est envoyée dans un réacteur de purification A contenant un solide constitué d'un mélange de 20% d'alumine et 80% poids de zéolithe du type mordénite. La zéolithe utilisée dans le présent exemple possède un rapport silicium/aluminium de 45.
  • La pression de l'unité de purification est de 0,2 MPa.
  • Le rapport du débit volumique liquide de la charge sur le volume de solide acide (VVH) est de 1 litre /litre.heure. La température du réacteur est de 20°C.
  • Le tableau 1 donne la composition de la charge initiale et celle de l'effluent issu de l'unité A (coupe α). Le débit de charge utilisé est de 1 kg/h. Tableau 1 : caractéristiques de la charge et de l'effluent de l'unité A.
    Charge A Effluent de l'unité A
    Azote (ppm) 10 0,2
    Paraffines (%poids) 25,2 25,1
    Naphtènes (% poids) 9,6 9,8
    Aromatiques (% poids) 34,9 35
    Oléfines (% poids) 30,3 30,1
  • L'effluent de l'unité A (coupe α) est ensuite envoyé dans un réacteur membranaire B constitué d'un support à base d'alumine α sur lequel est déposée une couche de zéolithe MFI d'une épaisseur comprise entre 5 et 15 µm.
  • La pression du réacteur membranaire B est égale à 0,1 MPa et la température est égale à 150°C.
  • Le tableau 2 donne la composition des effluents issus de l'unité B (coupe β et coupe γ). Tableau 2 : caractéristiques des effluents de l'étape B (avant recyclage).
    Coupe β Coupe γ
    Rendement (%) (par rapport à la coupe α) 8,8 91,2
    Production (g/h) 88 912
    Paraffines (%poids) 45,5 23,1
    Naphtènes (% poids) 10,7
    Aromatiques (% poids) 38,5
    Oléfines (% poids) 54,5 27,7
  • La coupe β issue de l'unité de séparation par membrane est injectée dans un réacteur d'oligomérisation (C) contenant un catalyseur constitué d'un mélange à 50% poids de zircone et à 50% poids de H3PW12O40.
  • La pression de l'unité est de 2 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 1,5 litres /litre.heure. La température est fixée à 170°C.
  • On obtient en sortie du réacteur de l'unité d'oligomérisation (C) un effluent qui est ensuite séparé en deux coupes au moyen d'une colonne à distiller (D): une coupe légère δ, et une coupe lourde η dont les compositions et rendements sont donnés dans le tableau 3 ci dessous: Tableau 3 : Production et composition des coupes δ et η
    Coupe δ Coupe η
    Production (g/h) 39,6 48
    Paraffines (%) 100
    Oléfines (%) 100
  • La coupe lourde η est envoyée dans un réacteur d'hydrogénation (E) contenant un catalyseur comprenant un support alumine sur lequel sont déposés du nickel et du molybdène (commercialisé par AXENS sous l'appellation commerciale HR348, marque déposée).
  • La pression de l'unité est de 5 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 2 litres/litre.heure.
  • Le rapport du débit d'hydrogène injecté sur le débit de charge est égale à 600 litres/litre.
  • La température du réacteur est de 320°C.
  • Les caractéristiques de l'effluent issu de l'étape (E) qui sont celles d'un gazole, sont présentées dans le tableau 4. Tableau 4 : caractéristiques de l'effluent issu de l'unité E
    effluent de l'unité E
    Densité à 20°C (kg/l) 0,787
    Soufre (ppm) 1
    Cétane moteur 55
  • La coupe légère δ d'intervalle de distillation 40°C-200°C issue de l'étape de distillation (D), est mélangée à de l'hydrogène avec un rapport molaire hydrogène sur hydrocarbure de 6 moles/mole, puis envoyée dans l'unité de déshydrogénation (F).
  • La pression totale de l'unité de déshydrogénation (F) est égale à 0,3 MPa, et la température est de 475°C. Le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 20 litres/litre.heure. Le catalyseur utilisé dans l'unité de déshydrogénation (F) est commercialisé par la société AXENS sous la référence DP 805, marque déposée.
  • La composition de la coupe µ issue de la déshydrogénation (F) ou coupe µ est présentée dans le tableau 5 et comparée à la charge de l'unité de déshydrogénation (F) ou coupe δ. Tableau 4 : caractéristiques de l'effluent issu de l'unité F (coupe µ)
    Coupe δ Coupe µ
    Paraffines linéaires (%poids) 100 85,1
    Paraffines ramifiées (%poids) 0,3
    Oléfines (% poids) 12
    Aromatiques (%) 2
    Dioléfines (%poids) 0,6
  • Cette coupe µ est mélangée avec de l'hydrogène et envoyée dans un réacteur d'hydrogénation (G) contenant un catalyseur commercialisée par la société AXENS sous la référence LD 265, marque déposée.
  • La pression de l'unité est de 2,8 MPa, la température est égale à 90°C, et le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égale à 3 litres /litre.heure.
  • La composition de la coupe λ résultant de cette hydrogénation sélective (G) est comparée à celle de la coupe µ dans le tableau 6. Tableau 5 : caractéristiques de l'effluent issu de l'unité G (coupe λ)
    Coupe µ Coupe λ
    Paraffines linéaires (%poids) 85,1 85,2
    Paraffines ramifiées (%poids) 0,3 0,3
    Oléfines (% poids) 12 12,5
    Aromatiques (%) 2 2
    Dioléfines (%poids) 0,6 0
  • Cette coupe λ est intégralement recyclée à l'entrée du réacteur membranaire (B).
  • Les paraffines et les oléfines linéaires se retrouvent ainsi dans la nouvelle coupe β obtenue après recyclage et permettent de ce fait d'augmenter le rendement en gazole.
  • Les propriétés de la coupe γ ainsi obtenue sont présentées dans le tableau 6 et comparées à celles de la coupe α de départ. Tableau 6 : Comparaison des caractéristiques de la coupe initiale α et de la coupe finale γ.
    Coupe α Coupe γ finale
    Paraffines (%poids) 25,2 22,9
    Naphtènes (% poids) 9,6 10,4
    Aromatiques (% poids) 34,9 37,8
    Oléfines (% poids) 30,3 27,6
    Indice d'octane RON 92 97
  • Le présent procédé permet d'obtenir à partir d'une coupe essence issue d'un FCC, une coupe essence (coupe γ) présentant un indice d'octane amélioré par rapport à celui de la coupe initiale (97 contre 92) et une coupe gazole, effluent de l'unité (E), à fort indice de cétane (55), parfaitement compatible avec une commercialisation aux spécifications européennes et US.
  • Exemple 2: (comparatif)
  • L'exemple 2 correspond à l'art antérieur et consiste à envoyer directement vers une unité d'oligomérisation (C) une coupe essence de FCC (coupe α) dont le point d'ébullition est compris entre 40°C et 150°C.
  • Cette essence contient 10 ppm d'azote.
  • Cette charge est envoyée dans un réacteur de purification A contenant un solide constitué d'un mélange de 20% d'alumine et 80% poids de zéolithe du type mordénite. La zéolithe utilisée dans le présent exemple possède un rapport silicium/aluminium de 45.
  • La pression de l'unité de purification est de 0,2 MPa.
  • Le rapport du débit volumique liquide de la charge sur le volume de solide acide (VVH) est de 1 litre /litre.heure. La température du réacteur est de 20°C.
  • Le tableau 7 donne la composition de la charge initiale et celle de l'effluent issu de l'unité A. Le débit de charge utilisé est de 1 kg/h. Tableau 7 : caractéristiques de la charge et de l'effluent de l'unité A.
    Charge A Effluent de l'unité A
    Azote (ppm) 10 0,2
    Paraffines (%poids) 25,2 25,1
    Naphtènes (% poids) 9,6 9,8
    Aromatiques (% poids) 34,9 35
    Oléfines (% poids) 30,3 30,1
  • L'effluent de l'unité A (coupe α) est envoyé dans une unité d' oligomérisation (C) travaillant dans les conditions décrites dans l'exemple 1.
  • A l'issue de l'étape (C) d'oligomérisation, l'effluent de l'unité d'oligomérisation (C) est séparé en 2 coupes au moyen de la colonne à distiller (D):
    • une coupe légère δ' d'intervalle de distillation 40°C-200°C obtenue avec un rendement poids de 70%,
    • une coupe lourde η' comprenant les hydrocarbures dont le point de distillation initial est supérieur à 200°C, obtenue avec un rendement poids de 30%.
  • La coupe lourde η' est envoyée dans un réacteur d'hydrogénation (E) contenant un catalyseur à base d'alumine sur laquelle sont déposés du nickel et du molybdène.
  • La pression de l'unité (E) est de 5 MPa, le rapport du débit volumique de charge sur le volume de catalyseur (VVH) est égal à 2 litres /litre.heure. Le rapport du débit d'hydrogène injecté sur le débit de charge est égale à 600 litres/litre.
  • La température du réacteur de l'unité (E) est de 320°C. Les caractéristiques de l'effluent issu de l'unité (E) qui sont celles d'un gazole, sont présentés dans le tableau 8. Tableau 8 : caractéristiques de l'effluent de l'unité E
    Effluent de l'unité E
    Densité à 20°C (kg/l) 0,787
    Soufre (ppm) 1
    Indice cétane moteur 35
  • On constate que l'indice de cétane du gazole obtenu lorsque l'oligomérisation est effectuée sans séparer préalablement les composés linéaires des composés ramifiés est nettement inférieur à celui obtenu de l'exemple 1 selon l'invention.
  • Le gasoil obtenu selon le schéma de l'exemple 2 est impropre à la commercialisation, ce qui n'est pas le cas de celui obtenu dans l'exemple 1 selon l'invention.
  • De même, la coupe essence finale δ' possède un indice d'octane de 85, inférieur à celui obtenu dans l'exemple 1, ce qui peut rendre sa commercialisation problématique.
  • Les propriétés de cette coupe essence δ' sont comparées à celles de la coupe essence initiale (coupe α) dans le tableau 9 ci dessous. tableau 9: caractéristiques des coupes α et δ'
    Coupe α Coupe δ'
    Production (g/l) 1000 700
    Paraffines (%poids) 25,2 36,2
    Naphtènes (% poids) 9,6 13,7
    Aromatiques (% poids) 34,9 50,1
    Oléfines (% poids) 30,3
    Indice d'octane RON 92 85

Claims (12)

  1. Procédé de transformation d'une charge hydrocarbonée de type essence, comprenant de 4 à 15 atomes de carbone, en une coupe essence de nombre d'octane supérieur à celui de la charge et une coupe gazole d'indice de cétane supérieur à 45, ledit procédé comprenant les étapes suivantes :
    a) une étape de séparation par membrane (B) de la charge hydrocarbonée dans des conditions permettant la séparation sélective de la majorité des oléfines linéaires présentes dans ladite charge et constituant la coupe β, la coupe contenant la majorité des oléfines ramifiées, dite coupe γ, constituant une essence à fort indice d'octane, supérieur à celui de la charge.
    b) une étape d'oligomérisation (C) des oléfines linéaires (coupe β) contenues dans les effluents issus de l'étape de séparation sur membrane (B) dans des conditions d'oligomérisation modérées,
    c) une étape de séparation par distillation (D) des effluents issus de l'étape d'oligomérisation en au moins deux coupes :
    - une coupe δ comprenant les hydrocarbures dont le point d'ébullition final est inférieur à une température comprise entre 150°C et 200°C,
    - une coupe η comprenant les hydrocarbures dont le point d'ébullition initial est supérieur à une température comprise entre 150°C et 200°C,
    d) une étape d'hydrogénation (E) de la coupe η permettant d'obtenir un gazole d'indice de cétane au moins égal à 45.
    e) une étape de déshydrogénation (F) de la coupe δ permettant de convertir une partie au moins des paraffines en oléfines, et produisant une coupe µ qui est, au moins en partie, recyclée à l'étape de séparation par membrane (B).
  2. Procédé selon la revendication 1, dans lequel la coupe µ issue de l'étape de déshydrogénation (F) subit une hydrogénation sélective (G), en vue d'éliminer les dioléfines de manière à produire une coupe λ qui est recyclée au moins en partie à l'étape de séparation par membrane (B).
  3. Procédé selon la revendication 1, dans lequel la coupe µ issue de l'étape de déshydrogénation (F) de la coupe δ, est mélangée au moins en partie avec la coupe γ, issue de l'unité de séparation par membrane (B).
  4. Procédé selon la revendication 2, dans lequel la coupe λ issue de l'étape d'hydrogénation sélective (G) est au moins en partie mélangée avec la coupe γ, issue de l'étape de séparation par membrane (B).
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel l'étape d'oligomérisation (C) est effectuée à une pression comprise entre 0,2 et 10 MPa, un rapport de débit volumique de charge sur volume de catalyseur (VVH) compris entre 0,05 litre/litre.heure et 50 litres/litre.heure, une température comprise entre 15°C et 300°C, et en présence d'un catalyseur comprenant au moins un métal du groupe VIB de la classification périodique.
  6. Procédé selon l'une des revendications 1 à 5, dans lequel l'étape de séparation sur membrane est réalisée avec une membrane telle que celles utilisées dans les procédés de nanofiltration ou d'osmose inverse, ou de perméation en phase gaz, ou de pervaporation.
  7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'unité de séparation par membrane utilise une membrane à base de film formé de tamis moléculaire de type silicates, aluminosilicates, aluminophosphates, silicoalumino-phosphates, métalloaluminophosphates, stanosilicates ou un mélange d'au moins un de ces deux types de constituants.
  8. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'unité de séparation par membrane utilise une membrane à base de zéolithes de type MFI ou ZSM-5, natives ou ayant été échangées avec des ions H+; Na +; K+; Cs+; Ca+; Ba+.
  9. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel l'unité de séparation par membrane utilise une membrane à base de zéolithes de type LTA.
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel le catalyseur de déshydrogénation de l'unité (F) est constitué d'une phase métallique déposée sur un support, ce support comportant au moins un oxyde réfractaire choisi parmi les oxydes de métaux des groupes IIA, IIIA, IIIB, IVA ou IVB de la classification périodique des éléments.
  11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le catalyseur de l'unité (F) contient un ou plusieurs éléments additionnels choisi parmi les alcalins ou les alcalino-terreux, avec un pourcentage pondéral compris entre 0,01% et 3%.
  12. Procédé selon l'une quelconque des revendications 1 à 11, comprenant une étape (A) d'élimination d'au moins une partie des impuretés azotés ou basiques contenues dans la charge initiale d'hydrocarbures, cette étape (A) étant située en amont de l'unité de séparation par membrane (B).
EP05291115A 2004-06-04 2005-05-24 Procédé d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole Expired - Fee Related EP1602705B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0406097 2004-06-04
FR0406097A FR2871168B1 (fr) 2004-06-04 2004-06-04 Procede d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole

Publications (2)

Publication Number Publication Date
EP1602705A1 EP1602705A1 (fr) 2005-12-07
EP1602705B1 true EP1602705B1 (fr) 2008-11-12

Family

ID=34942341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05291115A Expired - Fee Related EP1602705B1 (fr) 2004-06-04 2005-05-24 Procédé d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole

Country Status (6)

Country Link
US (1) US7705193B2 (fr)
EP (1) EP1602705B1 (fr)
JP (1) JP4860188B2 (fr)
CN (1) CN1706919B (fr)
DE (1) DE602005010937D1 (fr)
FR (1) FR2871168B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099549A2 (fr) 2013-12-23 2015-07-02 Instituto Superior Técnico Réacteur catalytique pour l'oligomérisation d'oléfines en c4-c7 et procédé d'oligomérisation catalytique faisant intervenir ledit réacteur

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871167B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles
FR2952646B1 (fr) * 2009-11-13 2012-09-28 Inst Francais Du Petrole Procede de production de carburants kerosene et diesel de haute qualite et de coproduction d'hydrogene a partir de coupes saturees legeres
FI20106312A (fi) * 2010-12-10 2012-06-11 Neste Oil Oyj Menetelmä keskitislekomponenttien valmistamiseksi bensiinikomponenteista
FR2975103B1 (fr) 2011-05-12 2014-08-29 IFP Energies Nouvelles Procede de production de coupes kerosene ou gazole a partir d'une charge olefinique ayant majoritairement de 4 a 6 atomes de carbone
FR2980195B1 (fr) 2011-09-20 2013-08-23 IFP Energies Nouvelles Procede de separation du pentene-2 d'une coupe c5 contenant du pentene-2 et du pentene-1 par oligomerisation selective du pentene-1
US10508064B2 (en) 2012-11-12 2019-12-17 Uop Llc Process for oligomerizing gasoline without further upgrading
US9522375B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for fluid catalytic cracking oligomerate
US9663415B2 (en) 2012-11-12 2017-05-30 Uop Llc Process for making diesel by oligomerization of gasoline
US9914673B2 (en) 2012-11-12 2018-03-13 Uop Llc Process for oligomerizing light olefins
US9278893B2 (en) 2012-11-12 2016-03-08 Uop Llc Process for making gasoline by oligomerization
US9644159B2 (en) 2012-11-12 2017-05-09 Uop Llc Composition of oligomerate
US9441173B2 (en) 2012-11-12 2016-09-13 Uop Llc Process for making diesel by oligomerization
US9434891B2 (en) 2012-11-12 2016-09-06 Uop Llc Apparatus for recovering oligomerate
US9834492B2 (en) 2012-11-12 2017-12-05 Uop Llc Process for fluid catalytic cracking oligomerate
US9567267B2 (en) 2012-11-12 2017-02-14 Uop Llc Process for oligomerizing light olefins including pentenes
US9522373B2 (en) 2012-11-12 2016-12-20 Uop Llc Apparatus for oligomerizing light olefins
US10378427B2 (en) 2017-03-31 2019-08-13 Saudi Arabian Oil Company Nitrogen enriched air supply for gasoline compression ignition combustion
US10508017B2 (en) * 2017-10-13 2019-12-17 Saudi Arabian Oil Company Point-of-sale octane/cetane-on-demand systems for automotive engines
US10378462B1 (en) 2018-01-31 2019-08-13 Saudi Arabian Oil Company Heat exchanger configuration for adsorption-based onboard octane on-demand and cetane on-demand
US10436126B2 (en) 2018-01-31 2019-10-08 Saudi Arabian Oil Company Adsorption-based fuel systems for onboard cetane on-demand and octane on-demand
US10408139B1 (en) 2018-03-29 2019-09-10 Saudi Arabian Oil Company Solvent-based adsorbent regeneration for onboard octane on-demand and cetane on-demand
US10422288B1 (en) 2018-03-29 2019-09-24 Saudi Arabian Oil Company Adsorbent circulation for onboard octane on-demand and cetane on-demand

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3030998A1 (de) * 1980-08-16 1982-04-01 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur herstellung von kraftstoffen mit einem ueberwiegenden anteil an dieseloel
US4456779A (en) * 1983-04-26 1984-06-26 Mobil Oil Corporation Catalytic conversion of olefins to higher hydrocarbons
US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
JPH01259089A (ja) * 1988-03-04 1989-10-16 Res Assoc Util Of Light Oil 重質油熱分解軽質留分の処理方法
CN1042937A (zh) * 1989-04-03 1990-06-13 吴兆平 渣油炼制油品的方法和装置
WO1993019841A1 (fr) * 1992-03-27 1993-10-14 Stichting Energieonderzoek Centrum Nederland Membrane de separation de petites molecules et procede de production
US6043177A (en) * 1997-01-21 2000-03-28 University Technology Corporation Modification of zeolite or molecular sieve membranes using atomic layer controlled chemical vapor deposition
AU8141301A (en) * 2000-07-10 2002-01-21 Sasol Tech Pty Ltd Process and apparatus for the production of diesel fuels by oligomerisation of olefinic feed streams
JP2002348579A (ja) * 2001-05-23 2002-12-04 Nard Inst Ltd ゼオライト系分離膜を用いた炭化水素混合物の分離方法、および分離して炭化水素を得る方法
FR2840236B1 (fr) * 2002-06-03 2005-02-04 Inst Francais Du Petrole Membrane zeolithique de faible epaisseur, sa preparation et son utilisation en separation
US6818333B2 (en) * 2002-06-03 2004-11-16 Institut Francais Du Petrole Thin zeolite membrane, its preparation and its use in separation
CN1209441C (zh) * 2002-11-01 2005-07-06 石油大学(北京) 催化汽油改质油气的分离方法和装置
FR2871167B1 (fr) * 2004-06-04 2006-08-04 Inst Francais Du Petrole Procede d'amelioration de coupes essences et de transformation en gazoles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099549A2 (fr) 2013-12-23 2015-07-02 Instituto Superior Técnico Réacteur catalytique pour l'oligomérisation d'oléfines en c4-c7 et procédé d'oligomérisation catalytique faisant intervenir ledit réacteur

Also Published As

Publication number Publication date
JP4860188B2 (ja) 2012-01-25
US20060009670A1 (en) 2006-01-12
FR2871168B1 (fr) 2006-08-04
FR2871168A1 (fr) 2005-12-09
DE602005010937D1 (de) 2008-12-24
JP2005344119A (ja) 2005-12-15
US7705193B2 (en) 2010-04-27
EP1602705A1 (fr) 2005-12-07
CN1706919A (zh) 2005-12-14
CN1706919B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
EP1602705B1 (fr) Procédé d'amelioration de coupes essences et de transformation en gazoles avec traitement complementaire permettant d'augmenter le rendement de la coupe gazole
EP1602637B1 (fr) Procédé d'amelioration de coupes essences et de transformation en gazoles
EP1487768B1 (fr) Procede de conversion en plusieurs etapes d'une charge comprenant des olefines a quatre, cinq atomes de carbone et plus, en vue de produire du propylene
EP1777284B1 (fr) Procédé de conversion directe d'une charge comprenant des oléfines à quatre, et/ou cinq atomes de carbone, pour la production de propylène avec une co-production d'essence désulfurée à haut indice d'octane
WO2006067305A1 (fr) Procede de conversion directe d’une charge comprenant des olefines a quatre et/ou cinq atomes de carbone, pour la production de propylene avec une co-production d’essence
CA2894475A1 (fr) Procede d'obtention de solvants hydrocarbones de temperature d'ebullition superieure a 300°c et de point d'ecoulement inferieur ou egal a -25°c
EP2636661B1 (fr) Procédé de conversion d'une charge lourde, mettant en oeuvre une unité de craquage catalytique et une étape d'hydrogénation sélective de l'essence issue du craquage catalytique
EP1406989B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
EP1088879A1 (fr) Procédé de production d'essences à indice d'octane amélioré
FR2635112A1 (fr) Procede de fractionnement et d'extraction d'hydrocarbures permettant l'obtention d'une essence a indice d'octane ameliore et d'un kerosene a point de fumee ameliore
EP1406988B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2862311A1 (fr) Procede de production d'essences a haut indice d'octane a partir d'une coupe c5/c6 utilisant une unite de separation par menbrane
WO2009004179A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
CA2139286A1 (fr) Procede de reduction de la teneur en benzene dans les essences
EP1433835B1 (fr) Procédé de transformation d'hydrocarbures en une fraction présentant un indice d'octane amélioré et une fraction à fort indice de cétane
EP1417283B1 (fr) Procede d'isomerisation d'une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
EP3164467B1 (fr) Procédé de désaromatisation de coupes pétrolières
FR2520356A1 (fr) Procede de valorisation des coupes c4 olefiniques
EP1396532B1 (fr) Procédé de valorisation d'une charge d'hydrocarbures et de diminution de la tension de vapeur de ladite charge
EP0589112B1 (fr) Procédé de production d'une coupe riche en tertioamylathyléther exempte d'oléfines et d'une coupe parafinique riche en n-pentane
FR3084084A1 (fr) Procede de production d'olefines et de distillats moyens a partir d'un effluent hydrocarbone issu de la synhtese fischer-tropsch
FR2857370A1 (fr) Procede de production de distillats et d'huiles lubrifiantes
FR2686094A1 (fr) Production de base pour carburant exempt de benzene, presentant un indice d'octane eleve.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MORIN, STEPHANE

Inventor name: METHIVIER, ALAIN

Inventor name: COUPARD, VINCENT

Inventor name: BAUDOT, ARNAUD

Inventor name: BRIOT, PATRICK

17P Request for examination filed

Effective date: 20060607

AKX Designation fees paid

Designated state(s): BE DE GB NL

17Q First examination report despatched

Effective date: 20070314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005010937

Country of ref document: DE

Date of ref document: 20081224

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005010937

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180521

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180516

Year of fee payment: 14

Ref country code: NL

Payment date: 20180517

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005010937

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190524

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531