EP1601727A1 - Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herste llung - Google Patents

Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herste llung

Info

Publication number
EP1601727A1
EP1601727A1 EP03758013A EP03758013A EP1601727A1 EP 1601727 A1 EP1601727 A1 EP 1601727A1 EP 03758013 A EP03758013 A EP 03758013A EP 03758013 A EP03758013 A EP 03758013A EP 1601727 A1 EP1601727 A1 EP 1601727A1
Authority
EP
European Patent Office
Prior art keywords
meth
weight
shaped body
acrylate
acrylates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03758013A
Other languages
English (en)
French (fr)
Inventor
Thomas Hasskerl
Patrick Becker
Rolf Neeb
Ghirmay Seyoum
Reiner Lingelbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of EP1601727A1 publication Critical patent/EP1601727A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/04Polysulfides

Definitions

  • the present invention relates to coating compositions for the production of formable scratch-resistant coatings with a dirt-repellent effect, moldings coated with these coating compositions with a scratch-resistant, formable and dirt-repellent coating, and to processes for the production of the coated moldings.
  • thermoplastically deformable plastics do not achieve the scratch resistance of many metals or mineral glasses.
  • the susceptibility to scratches with transparent plastics is particularly disadvantageous, since the objects in question very quickly become unsightly.
  • Scratch-resistant coatings for plastics are known per se.
  • the publication DE 195 07 174 describes UV-curing, scratch-resistant coatings for plastics which have a particularly high UV stability. These coatings already show a good range of properties.
  • plastic moldings, including scratch-resistant coatings are used primarily in the form of panels in building exterior areas, such as for noise barriers or as glazing for facades, bus stops, advertising spaces, advertising pillars, so-called "mobile urban", wherever are exposed to both natural pollution and vandalism-related contamination such as graffiti smearing. The cleaning of such surfaces is very complex since the surface is often attacked as a result.
  • fluorine-containing acrylates are often added to the coating compositions. Such coating compositions are described, for example, in DE 43 19 199.
  • a disadvantage of known coating agents is that the coatings produced therefrom on plastic bodies form cracks during thermal forming, the coating on the formed body becoming milky, cloudy and unsightly.
  • coated, formable construction parts can be made for much broader customer groups than pre-formed plates specially produced for a customer.
  • plastic bodies with a scratch-resistant coating according to the invention have a high durability, in particular a high resistance to UV radiation or weathering.
  • Another object of the present invention was to provide coating compositions with an anti-graffiti effect which do not adversely change the properties of the substrate.
  • the spray paints used to produce graffiti should no longer or only very weakly on the plastic body due to an anti-graffiti finish according to the invention. stick, whereby sprayed substrates should be easy to clean, so that e.g. Water, rags, surfactant, high-pressure cleaners, mild solvents ("easy-to-clean”) are sufficient.
  • the invention was based on the object of providing scratch-resistant, dirt-repellent molded articles which can be produced in a particularly simple manner.
  • substrates which can be obtained by extrusion, injection molding and by casting processes should be able to be used for the production of the moldings.
  • Another object of the present invention was to provide scratch-resistant, formable, dirt-repellent molded articles which have excellent mechanical properties. This property is particularly important for applications in which the plastic body is said to have high stability against impact. In addition, the moldings should have particularly good optical properties.
  • Another object of the present invention was to provide scratch-resistant, formable, dirt-repellent molded articles which can be easily adapted to the requirements in a larger form.
  • claims 12-21 provide a solution to the underlying problems.
  • A1) 1 to 10 parts by weight of at least one sulfur compound containing at least 3 thiol groups and A2) 90 to 99 parts by weight of alkyl (meth) acrylates,
  • the scratch-resistant coatings obtained with the coating compositions according to the invention have a particularly high adhesion to the plastic substrates, and this property is not impaired by weathering.
  • the coated moldings show a high resistance to UV radiation.
  • plastic bodies coated according to the invention have a particularly low surface energy. As a result, the moldings provided can be cleaned particularly easily.
  • Scratch-resistant molded articles of the present invention can be easily adapted to certain requirements.
  • the size and shape of the plastic body can be varied over a wide range without the formability being impaired thereby.
  • the present invention also provides moldings with excellent optical properties.
  • the scratch-resistant, formable, dirt-repellent molded articles of the present invention have good mechanical properties.
  • the coating compositions according to the invention for the production of formable scratch-resistant coatings with a dirt-repellent effect comprise 1 to 30% by weight, preferably 2 to 25% by weight, based on the weight of the coating composition, of a prepolymer obtainable by free-radical polymerization of a mixture comprising
  • A1) 1-10 parts by weight, preferably 2-6 parts by weight of at least one sulfur compound containing at least three thiol groups and
  • A2) 90-99 parts by weight, preferably 94-98 parts by weight of alkyl (meth) acrylates.
  • Sulfur compounds with more than two thiol groups in the molecule are known, for example, from US Pat. No. 4,521,567.
  • sulfur compounds with at least three, preferably four thiol groups in the molecule are used.
  • the sulfur regulators preferably contain at least 3, preferably at least 6, carbon atoms in the molecule, but not more than 40.
  • the presence of one or preferably more ⁇ -mercapto-carboxylic acid ester groups in the molecule is advantageous, preferably starting from polyols, such as glycerol or pentaerythritol.
  • Suitable sulfur regulators with more than three thiol groups are, for example, 1, 2,6-hexanetriol trithioglycolate, trimethylolethane trithioglycolate, pentaerythritol tetrakis (2-mercaptoacetate), trimethylolethane tri- (3-mercaptopropionate), pentaerythritol tetrakis (3- mercaptopropionate), trimethylolpropane trithioglycolate, trimethylolpropane tri (3-mercaptopropionate), tetrakis (3-mercaptopropionate) pentaerytritol, 1, 1, 1-propanetriyl-tris (mercaptoacetate), 1, 1, 1-propanetriyl-tris- (3-mercaptopropionate ), Dipentaerythritol hexa- (3-mercatopropionate). Pentaerythritol tetrakis (2-mercap
  • the acrylic (meth) acrylates which can be used according to the invention for the preparation of the prepolymer are known per se, the expression (meth) acrylate standing for acrylates, methacrylates and for mixtures of the two.
  • the alkyl (meth) acrylates preferably have 1-20, in particular 1-8 carbon atoms.
  • Ci to Cs alkyl esters of acrylic acid or methacrylic acid are methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-hexyl acrylate and 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate and n-propyl methacrylate.
  • Preferred monomers are methyl methacrylate and n-butyl acrylate.
  • alkyl (meth) acrylates which comprise at least 10% by weight of methyl (meth) acrylate and / or ethyl acrylate and at least 2% by weight of alkyl (meth) acrylates having 3 to 8 carbon atoms are preferably used to prepare the prepolymer.
  • Methyl methacrylate fractions from 50 to 99% by weight, butyl methacrylate fractions from 5 to 40% by weight and acrylate fractions from 2 to 50% by weight.
  • the ratios of regulator to monomers can be varied in the preparation of the thickening polymers.
  • the polymerization of regulators and monomers can be carried out in a manner known per se as bulk, suspension or pearl, solution or emulsion polymerization using free-radical initiators become.
  • DE 33 29 765 C2 / US 4,521,567 can be used to derive or derive a suitable process for peripolymerization (polymerization step stage A).
  • the radical initiators are e.g. peroxidic or azo compounds in question (US-PS 2471 959).
  • peroxidic or azo compounds in question (US-PS 2471 959).
  • organic peroxides such as dibenzoyl peroxide, lauryl peroxide or peresters such as tert-butyl-per-2-ethylhexanoate, as well as azo compounds such as azobisisobutyronitrile.
  • the thickener polymers obtained can have molecular weights of approximately 2000 to 50,000, depending on the polymerization process and proportion of regulator.
  • the molecular weight can be determined in particular by viscometry, the prepolymer A) preferably measuring a viscosity number in accordance with DIN ISO 1628-6 in the range from 8 to 15 ml / g, in particular 9 to 13 ml / g and particularly preferably 10 to 12 ml / g in CHCI 3 at 20 ° C.
  • the coating compositions of the present invention contain 0.2-10% by weight, preferably 0.3-5.0% by weight and very particularly preferably 0.5-2% by weight, based on the total weight of the Coating agent, fluoroalkyl (meth) acrylates with 3 to 30 preferably 8 to 25 and particularly preferably 10 to 20 carbon atoms in the alcohol radical, which comprises 6 to 61, preferably 7 to 51 and particularly preferably 9 to 41 fluorine atoms.
  • the alcohol radical of the fluoroalkyl (meth) acrylate can comprise further substituents in addition to the fluorine atoms. These include in particular ester groups, amide groups, amine groups, nitro groups and halogen atoms, it being possible for this alcohol radical to be either linear or branched.
  • a fluoroalkyl (meth) acrylate according to formula I is used
  • a fluoroalkyl (meth) acrylate according to formula II is used
  • radical Ri is a hydrogen atom or a methyl radical and n is an integer in the range from 2 to 10, preferably 3 to 8, particularly preferably 3 to 5.
  • the fluoroalkyl (meth) acrylates which are present in component B) in the coating compositions of the invention include, among others
  • the fluoroalkyl (meth) acrylates are known compounds, and the fluoroalkyl (meth) acrylates can be used individually or as a mixture.
  • crosslinking monomers according to the invention are added to the coating agent. These have at least two polymerizable units, for example vinyl groups per molecule (cf. Brandrup-Immergut polymer handbook). According to the invention, these are used in amounts of 20-80% by weight, preferably 50-70% by weight, based on the total weight of the coating composition.
  • the diesters and higher esters of acrylic or methacrylic acid of polyhydric alcohols such as glycol, glycerol, trimethylolethane, trimethylolpropane, pentaerythritol, diglycerol, dimethylolpropane, ditrimethylolethane, dipentaerythritol, trimethylhexanediol-1, 6, cyclohexanediol-1,4 are mentioned.
  • crosslinking monomers examples include Ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, 1, 3-butanediol diacrylate, 1, 3-butanediol dimethacrylate, neopentyl glycol diacrylate, neopentyl glycol dithacrylate, 2,6-diethylene-4-methacrylate, 2,6-diethylene-4 dimethacrylate, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, pentanediol diacrylate, pentanediol dimethacrylate, hexanediol diacrylate, hexanediol dimethacrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetraacrylate, ditrimethylolprophramate tetraacrylate,
  • the multifunctional acrylates or methacrylates can also be oligomers or polymers, which may also contain other functional groups. Urethane or triacrylates or corresponding ester acrylates may be mentioned in particular.
  • Component D
  • Known initiators which are added to the coating composition in an amount of 0.01-10% by weight, preferably 1-3% by weight, based on the total weight of the coating composition, are used for the polymerization or curing of the coating composition according to the invention.
  • the preferred initiators include the azo initiators well known in the art, such as AIBN and 1,1-azobiscyclohexane carbonitrile, and peroxy compounds, such as methyl ethyl ketone peroxide, acetylacetone peroxide, dilauryl peroxide, tert-butyl per-2-ethylhexanoate, ketone peroxide, methyl isobutyl ketone peroxide, and tert-butyl peroxybenzoate, tert-butyl peroxyisopropyl carbonate, 2,5-bis (2-ethylhexanoyl-peroxy) -2,5-dimethylhexane, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxy-3,5,5-trimethylhexanoate , Dicumyl peroxide, 1, 1-bis (tert-butylperoxy) cyclohexane,
  • photoinitiators such as UV initiators are used for curing. These are compounds which split off free radicals when exposed to visible or UV light and thus initiate the polymerization of the coating composition.
  • Common UV initiators according to DE-OS 29 28 512 are, for example, benzoin, 2-methylbenzoin, benzoin methyl, ethyl or butyl ether, acetoin, benzil, benzil dimethyl ketal or benzophenone.
  • UV initiators are commercially available, for example, from Ciba AG under the trade names (DDarocur 1116, (DIrgacure 184, ®lrgacure 907 and from BASF AG under the brand name (DLucirin TPO.
  • Examples of photoinitiators which are absorbed in the short-wave visible range of light DLucirin TPO and ( DLucirin TPO-L from BASF, Ludwigshafen.
  • the coating compositions contain 2 to 75, preferably 6 to 50% by weight, based on the total weight of the coating composition, of thinners, which can also be used as a mixture.
  • Range from approx. 10 to approx. 250 mPa-s is set.
  • Low viscosities of about 1 to 20 mPa-s are customarily used for coating compositions which are intended for flood or dip coatings.
  • organic solvents can be used in these coatings in concentrations of up to 75% by weight.
  • the suitable viscosities for doctor blade coatings or roller application coatings are in the range from 20 to 250 mPa-s.
  • the stated values are only to be understood as guidelines and relate to the measurement of the viscosity at 20 ° C with a rotary viscometer according to DIN 53 019.
  • Monofunctional reactive thinners are preferred for coatings for roller application processes. Usual concentrations are between 5 and 25% by weight. Alternatively or in combination, however, organic solvents can also be used as thinners.
  • the monofunctional reactive thinners contribute to the good flow properties of the lacquer and thus to good workability.
  • the monofunctional reactive thinners have a radical polymerizable group, usually a vinyl function.
  • 1-alkenes such as 1-hexene, 1-heptene
  • branched alkenes such as vinylcyclohexane, 3,3-dimethyl-1-propene, 3-methyl-1-diisobutylene, 4-methylpentene-1;
  • Styrene substituted styrenes with an alkyl substituent in the side chain, such as. B. ⁇ -methylstyrene and ⁇ -ethylstyrene, substituted styrenes with an alkyl substituent on the ring, such as vinyltoluene and p-methylstyrene, halogenated styrenes such as monochlorostyrenes, dichlorostyrenes, tribromostyrenes and tetrabromostyrenes;
  • Heterocyclic vinyl compounds such as 2-vinylpyridine, 3-vinylpyridine, 2-methyl-5-vinylpyridine, 3-ethyl-4-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, vinylpyrimidine, vinylpiperidine, 9-vinylcarbazole, 3-vinylcarbazole, 4-vinylcarbazole, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinylpyrrolidone, 2-vinylpyrrolidone, N-vinylpyrrolidine, 3-vinylpyrrolidine, N-vinylcaprolactam, N-vinylbutyrolactam, vinyloxolane, vinylfuran, vinylthiophene, vinylthiophene, vinylthiolthene hydrogenated vinyl thiazoles, vinyl oxazoles and hydrogenated vinyl oxazoles;
  • Maleic acid derivatives such as maleic anhydride
  • (meth) acrylates and (meth) acrylates, with (meth) acrylates being particularly preferred.
  • the term (meth) acrylates encompasses methacrylates and acrylates and mixtures of the two.
  • (meth) acrylates derived from saturated alcohols such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl ( meth) acrylate, Pentyl (meth) acrylate and 2-ethylhexyl (meth) acrylate;
  • Aryl (meth) acrylates such as benzyl (meth) acrylate or
  • Phenyl (meth) acrylate where the aryl radicals can in each case be unsubstituted or substituted up to four times;
  • Cycloalkyl (meth) acrylates such as 3-vinylcyclohexyl (meth) acrylate,
  • Glycol di (meth) acrylates such as 1,4-butanediol di (meth) acrylate,
  • Particularly preferred monofunctional reactive diluents are, for example, butyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, 2-ethoxyethyl methacrylate or 2,2,3,3-tetrafluoropropyl methacrylate, Methyl methacrylate, tert-butyl methacrylate, isobornyl methacrylate.
  • EP 0 035 272 describes common organic solvents for coating compositions for scratch-resistant lacquers which can be used as thinners. Suitable are e.g. Alcohols such as ethanol, isopropanol, n-propanol, isobutyl alcohol and n-butyl alcohol, methoxypropanol, methoxyethanol. Aromatic solvents such as benzene, toluene or xylene can also be used. Ketones such as acetone or methyl ethyl ketone are suitable. Also ether compounds such as diethyl ether or ester compounds such as e.g. Ethyl acetate, n-butyl acetate or ethyl propionate can be used. The compounds can be used alone or in combination.
  • Alcohols such as ethanol, isopropanol, n-propanol, isobutyl alcohol and n-butyl alcohol, methoxypropanol, methoxyethanol.
  • Customary additives are to be understood as meaning additives for scratch-resistant coatings which are customary for coating compositions and which can optionally be present in amounts of 0 to 40% by weight, in particular 0 to 20% by weight. The use of these additives is not considered critical to the invention.
  • UV absorbers can be present in concentrations of, for example, 0.2 to 20% by weight, preferably 2 to 8% by weight. UV absorbers can be selected, for example, from the group of hydroxybenzotriazoles, triazines and hydroxybenzophenones (see, for example, EP 247480).
  • the coating agent according to the invention is intended for the production of scratch-resistant, weather-resistant coatings on plastic substrates.
  • polycarbonates include in particular polycarbonates, polystyrenes, polyesters, for example polyethylene terephthalate (PET), which can also be modified with glycol, and polybutylene terephthalate (PBT), cycloolefinic copolymers (COC), acrylonitride / butadiene / styrene copolymers and / or poly (meth) acrylates ,
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • COC cycloolefinic copolymers
  • acrylonitride / butadiene / styrene copolymers and / or poly (meth) acrylates
  • Polycarbonates, cycloolefinic polymers and poly (meth) acrylates are preferred, poly (meth) acrylates being particularly preferred.
  • Polycarbonates are known in the art. Polycarbonates can be considered formally as polyesters from carbonic acid and aliphatic or aromatic dihydroxy compounds. They are easily accessible by reacting diglycols or bisphenols with phosgene or carbonic acid diesters in polycondensation or transesterification reactions.
  • bisphenols include, in particular, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxyphenyl) butane (bisphenol B), 1,1-bis (4-hydroxyphenyl ) cyclohexane (bisphenol C), 2,2'-methylenediphenol (bisphenol F), 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (tetrabromobisphenol A) and 2,2-bis (3,5- dimethyl-4-hydroxyphenyl) propane (tetramethylbisphenol A).
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • bisphenol B 2,2-bis (4-hydroxyphenyl) butane
  • bisphenol C 1,1-bis (4-hydroxyphenyl ) cyclohexane
  • bisphenol F 2,2'-methylenediphenol
  • 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane tetrabromobisphenol A
  • Such aromatic polycarbonates are usually produced by interfacial polycondensation or transesterification, details of which are given in Encycl. Polym. Be. Engng. 11, 648-718.
  • the bisphenols are emulsified as an aqueous, alkaline solution in inert organic solvents, such as, for example, methylene chloride, chlorobenzene or tetrahydrofuran, and reacted with phosgene in a step reaction.
  • organic solvents such as, for example, methylene chloride, chlorobenzene or tetrahydrofuran
  • Amines are used as catalysts, and phase transfer catalysts are also used for sterically hindered bisphenols.
  • the resulting polymers are soluble in the organic solvents used.
  • the properties of the polymers can be varied widely by the choice of the bisphenols. If different bisphenols are used at the same time, block polymers can also be built up in multi-stage polycondensation.
  • Cycloolefinic polymers are polymers that can be obtained using cyclic olefins, in particular polycyclic olefins.
  • Cyclic olefins include, for example, monocyclic olefins, such as cyclopentene, cyclopentadiene, cyclohexene, cycloheptene, cyclooctene and alkyl derivatives of these monocyclic olefins having 1 to 3 carbon atoms, such as methyl, ethyl or propyl, such as methylcyclohexene or dimethylcyclohexene, and acrylate and / or methacrylate derivatives of these Links.
  • cycloalkanes with olefinic side chains can also be used as cyclic olefins, such as, for example, cyclopentyl methacrylate.
  • Bridged polycyclic olefin compounds are preferred. These polycyclic olefin compounds can have the double bond both in the ring, these are bridged polycyclic cycloalkenes, and in side chains. These are vinyl derivatives, allyloxycarboxy derivatives and (meth) acryloxy derivatives of polycyclic cycloalkane compounds. These compounds may also have alkyl, aryl or aralkyl substituents.
  • Exemplary polycyclic compounds are, without being restricted thereby, bicyclo [2.2.1] hept-2-ene (norbomen), Bicyclo [2.2.1] hept-2,5-diene (2,5-norbomadiene), ethyl-bicyclo [2.2.1] hept-2-ene (ethylnorbomen), ethylidene bicyclo [2.2.1] hept-2-ene ( Ethylidene-2-norbomen), phenylbicyclo [2.2.1] hept-2-ene, bicyclo [4.3.0] nona-3,8-diene, tricyclo [4.3.0.1 2 ' 5 ] -3-decene, tricyclo [4.3 .0.1 2.5 ] -3,8-decen- (3,8-dihydrodicyclopentadiene), tricyclo [4.4.0.1 2.5 ] -3-undecene, tetracyclo [4.4.0.1 2.5
  • the cycloolefinic polymers are produced using at least one of the cycloolefinic compounds described above, in particular the polycyclic hydrocarbon compounds.
  • other olefins which can be copolymerized with the aforementioned cycloolefinic monomers can be used in the preparation of the cycloolefinic polymers. These include Ethylene, propylene, isoprene, butadiene, methylpentene, styrene and vinyl toluene.
  • olefins especially the cycloolefins and polycycloolefins, can be obtained commercially.
  • many cyclic and polycyclic olefins are available through Diels-Alder addition reactions.
  • the cycloolefinic polymers can be prepared in a known manner, as described, inter alia, in Japanese Patents 11818/1972, 43412/1983, 1442/1986 and 19761/1987 and Japanese Patent Laid-Open Nos. 75700/1975, 129434/1980, 127728/1983, 168708/1985, 271308/1986, 221118/1988 and 180976/1990 and in European Patent Applications EP-A-0 6 610 851, EP-A-0 6 485 893, EP-A-0 6 407 870 and EP-A-0 6 688 801.
  • the cycloolefinic polymers can be polymerized in a solvent, for example, using aluminum compounds, vanadium compounds, tungsten compounds or boron compounds as a catalyst.
  • the polymerization can take place with ring opening or with opening of the double bond.
  • cycloolefinic polymers by radical polymerization, using light or an initiator as a radical generator.
  • This type of polymerization can take place both in solution and in bulk.
  • Another preferred plastic substrate comprises poly (meth) acrylates. These polymers are generally obtained by free-radical polymerization of mixtures which contain (meth) acrylates. These were set out above, whereby, depending on the preparation, both monofunctional and polyfunctional (meth) acrylates can be used, which are described under components C) and E).
  • these mixtures contain at least 40% by weight, preferably at least 60% by weight and particularly preferably at least 80% by weight, based on the weight of the monomers, methyl methacrylate.
  • compositions to be polymerized can also have further unsaturated monomers which are copolymerizable with methyl methacrylate and the aforementioned (meth) acrylates. Examples of this have been elaborated in particular under component E).
  • these comonomers are used in an amount of 0 to 60% by weight, preferably 0 to 40% by weight and particularly preferably 0 to 20% by weight, based on the weight of the monomers, the compounds being used individually or can be used as a mixture.
  • the polymerization is generally started with known radical initiators, which are described in particular under component D). These compounds are often used in an amount of 0.01 to 3% by weight, preferably 0.05 to 1% by weight, based on the weight of the monomers.
  • the aforementioned polymers can be used individually or as a mixture.
  • Various polycarbonates, poly (meth) acrylates or cycloolefinic polymers can also be used here, which differ, for example, in molecular weight or in the monomer composition.
  • the plastic substrates according to the invention can be produced, for example, from molding compositions of the aforementioned polymers.
  • Thermoplastic molding processes such as extrusion or injection molding, are generally used here.
  • the weight average molecular weight M w of the homopolymers and / or copolymers to be used according to the invention as a molding composition for the production of the plastic substrates can vary within wide limits, the molecular weight usually being matched to the intended use and processing mode of the molding composition. In general, however, it is in the range between 20,000 and 1,000,000 g / mol, preferably 50,000 to 500,000 g / mol and particularly preferably 80,000 to 300,000 g / mol, without any intention that this should impose a restriction. This size can be determined, for example, by means of gel permeation chromatography.
  • the plastic substrates can be produced by casting chamber processes.
  • suitable (meth) acrylic mixtures are given in a mold and polymerized.
  • Such (meth) acrylic mixtures generally have the (meth) acrylates set out above, in particular methyl methacrylate.
  • the (meth) acrylic mixtures can contain the copolymers set out above and, in particular for adjusting the viscosity, polymers, in particular poly (meth) acrylates.
  • the weight average molecular weight M w of the polymers produced by casting chamber processes is generally higher than the molecular weight of polymers used in molding compositions. This results in a number of known advantages. In general, the weight average molecular weight of polymers which are produced by casting chamber processes is in the range from 500,000 to 10,000,000 g / mol, without any intention that this should impose any restriction.
  • Preferred plastic substrates which have been produced by the casting chamber process can be obtained from Degussa, BU PLEXIGLAS, Darmstadt under the trade name PLEXIGLAS® GS or from Cyro Inc. USA commercially under the trade name ®Acrylite.
  • the molding compositions to be used for the production of the plastic substrates and the acrylic resins may contain all kinds of conventional additives. These include, among others, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, Dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds, such as phosphoric acid esters, phosphoric acid diesters and phosphoric acid monoesters, phosphites, phosphorinanes, phospholanes or phosphonates, pigments, weathering protection agents and plasticizers.
  • additives include, among others, antistatic agents, antioxidants, mold release agents, flame retardants, lubricants, Dyes, flow improvers, fillers, light stabilizers and organic phosphorus compounds, such as phosphoric acid esters, phosphoric acid diesters and phosphoric acid monoesters, phosphites, phosphorinanes, phospholanes or phosphonates, pigments, weathering protection agents and plasticizers.
  • additives include
  • Particularly preferred molding compositions comprising poly (meth) acrylates are commercially available under the trade name PLEXIGLAS® from Degussa, BU PLEXIGLAS, Darmstadt or under the trade name (DAcrylite from Cyro Inc. USA.
  • Preferred molding compositions the cycloolefinic polymers can be obtained under the trade name ® Topas from Ticona and ⁇ Zeonex from Nippon Zeon, for example polycarbonate molding compositions are available under the trade name ⁇ Makrolon from Bayer or ®Lexan from General Electric.
  • the plastic substrate particularly preferably comprises at least 80% by weight, in particular at least 90% by weight, based on the total weight of the substrate, of poly (meth) acrylates, polycarbonates and / or cycloolefinic polymers.
  • the plastic substrates particularly preferably consist of polymethyl methacrylate, it being possible for the polymethyl methacrylate to contain customary additives.
  • plastic substrates can have an impact strength according to ISO 179/1 of at least 10 kJ / m 2 , preferably at least 15 kJ / m 2 .
  • the shape and size of the plastic substrate are not essential to the present invention.
  • plate-shaped or tabular substrates are often used, which have a thickness in the range from 1 mm to 200 mm, in particular 5 to 30 mm.
  • the moldings can be vacuum-formed parts, blow-molded parts, injection molded parts or extruded plastic parts which, for. B. can be used as components outdoors, as parts of automobiles, housing parts, components of kitchens or sanitary facilities.
  • the coating compositions are particularly suitable for solid, flat plates and double or multi-wall sheets.
  • Usual dimensions e.g. for solid panels are in the range of 3 x 500 to 2000 x 2000 to 6000 mm (thickness x width x length).
  • Multi-wall sheets can be approx. 16 to 32 mm thick.
  • plastic substrates Before the plastic substrates are provided with a coating, these can be activated by suitable methods in order to improve the adhesion.
  • the plastic substrate can be treated with a chemical and / or physical method, the respective method being dependent on the plastic substrate.
  • the coating mixtures described above can be applied to the plastic substrates using any known method. These include immersion processes, spray processes, doctor blades, flood coatings and roller or roller application.
  • the coating agent is preferably applied to plastic bodies in such a way that the layer thickness of the hardened layer is 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m. With layer thicknesses below 1 ⁇ m, weather protection and scratch resistance are often inadequate, with layer thicknesses of more than 50 ⁇ m, cracks can form when subjected to bending stress.
  • the polymerization takes place, which can be carried out thermally or by means of UV radiation.
  • the polymerization can advantageously be carried out under an inert atmosphere to exclude the polymerization-inhibiting atmospheric oxygen, for example under nitrogen gas.
  • this is not an essential requirement.
  • the polymerization is usually carried out at temperatures below the glass transition temperature of the plastic body.
  • the applied coating agent is preferably cured by UV radiation.
  • the UV irradiation time required for this depends on the temperature and the chemical composition of the coating agent, on the type and power of the UV source, on its distance from the coating agent and on whether there is an inert atmosphere. A few seconds to a few minutes can serve as a guideline.
  • the corresponding UV source should emit radiation in the range from approximately 150 to 400 nm, preferably with a maximum between 250 and 280 nm.
  • the radiated energy should be approx. 50 - 4000 mJ / cm2. Approx. 100 to 200 mm can be given as a guideline for the distance between the UV source and the coating layer.
  • the moldings of the present invention can be thermoformed extremely well, without thereby damaging their scratch-resistant, dirt-repellent coating.
  • the shaping is known to the person skilled in the art.
  • the molded body is heated and shaped using a suitable template.
  • the temperature at which the forming takes place depends on the softening temperature of the substrate from which the plastic body was produced.
  • the other parameters, such as the forming speed and forming force, are also dependent on the plastic, these parameters being known to the person skilled in the art.
  • bending forming processes are particularly preferred. Such methods are used in particular for processing cast glass. More detailed information can be found in "Acrylic glass and polycarbonate correct machining and processing" by H.Kaufmann et al. published by Technology transfer ring craft NRW and in VDI guideline 2008 sheet 1 and DIN 8580/9 /.
  • the molded articles of the present invention provided with a scratch-resistant, dirt-repellent coating show a high scratch resistance.
  • the molded body is transparent, the transparency XD 65 / I O according to DIN 5033 being at least 70%, preferably at least 75%.
  • the molded body preferably has a modulus of elasticity according to ISO 527-2 of at least 1000 MPa, in particular at least 1500 MPa, without this being intended to impose a restriction.
  • the moldings according to the invention are generally very resistant to weathering.
  • the weather resistance according to DIN 53387 (Xenotest) is at least 4000 hours.
  • the yellow index according to DIN 6167 (D65 / 10) of preferred moldings is less than or equal to 8, preferably less than or equal to 5, without this being intended to impose a restriction.
  • the anti-graffiti effect is achieved by making the surface hydrophobic. This is reflected in a large contact angle with alpha-bromonaphthalene, which has a surface tension of 44.4 mN / m.
  • the contact angle at 20 ° C of alpha-bromonaphthalene with the Surface of the plastic body after the scratch-resistant coating has hardened, preferably at least 50 °, in particular at least 70 ° and particularly preferably at least 75 °, without any intention that this should impose a restriction.
  • the contact angle with water at 20 ° C. is preferably at least 80 °, in particular at least 90 ° and particularly preferably at least 100 °
  • the contact angle can be determined with a contact angle measuring system G40 from Krüss, Hamburg, the implementation being described in the user manual for the contact angle measuring system G40, 1993. The measurement is carried out at 20 ° C.
  • the moldings of the present invention can be used, for example, in the construction sector, in particular for the production of greenhouses or winter gardens, or as a noise barrier.
  • a coating composition was prepared comprising 16.6 parts by weight of pentarerythritol tetraacrylate, 66.4 parts by weight of 1,6-hexanediol diacrylate, 10 parts by weight of 2-hydroxyethyl methacrylate,
  • PLEX 8770 prepolymer available from Röhm GmbH
  • Tinuvin 1130 available from Ciba AG.
  • the coating agent obtained in this way is applied to a sheet of ⁇ Makrolon (available from Bayer AG) using a spiral doctor blade (12 ⁇ m wet film thickness) and cured after two minutes each time using a F 450 high-pressure mercury lamp from Fusion Systems at a feed rate of 1 m / min and a nitrogen atmosphere.
  • the coated plate is formed using a bending process in accordance with DIN 8580/9 / at a temperature of 150 ° C. using a template.
  • the bending radius in the test was 120 mm.
  • the board was subjected to a Taber test in accordance with DIN 52347 to determine the scratch resistance and a cross cut in accordance with DIN 53151.
  • the Taber test was carried out with a contact force of 5.4 N with 100 cycles and a "CS10F" friction wheel from Teledyne Taber.
  • the scratch resistance is improved by the forming.
  • the elongation at break is 5.9%.
  • the coating is sprayed with different paints to determine the dirt-repellent effect. After 24 hours, the paint coating is cleaned with a high-pressure cleaner at 80 ° C for about one minute.
  • a mixture according to EP 028 614 was prepared which contained 39 parts by weight of pentaerythritol tetraacrylate, 59 parts by weight of hexanediol diacrylate and 2 parts by weight of Darocur 1116 from Ciba and 1.6 parts by weight of 2- (N-ethylperfluorooctane-sulfamido) ethyl acrylate.
  • the mixture was applied to a Makrolon plate according to Example 1 using a spiral doctor knife. After a running time of two minutes, curing is carried out with a high-pressure mercury lamp at a feed speed of 1 m / min under a nitrogen atmosphere. By forming according to Example 1, fine cracks appeared in the paint. The maximum elongation at break (crack formation in the layer) is less than 2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Die vorliegende Erfindung betrifft Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung umfassend A) 1 bis 30 Gew.-% eines Präpolymerisats erhältlich durch radikalische Polymerisation einer Mischung umfassend A1) 1 bis 10 Gew.-Teile mindestens einer Schwefelverbindung enthaltend mindestens 3 Thiolgruppen und A2) 90 bis 99 Gew.-Teile Alkyl(meth)acrylate, B) 0,2 bis 10 Gew.-% mindestens eines Fluoralkyl(meth)acrylats mit 3 bis 30 Kohlenstoffatome im Alkoholrest, der 6 bis 61 Fluoratome umfasst, C) 20 bis 80 Gew.-% mehrfunktioneller (Meth)acrylate, D) 0,01 bis 10 Gew.-% mindestens eines Initiators, E) 5 bis 75 Gew.-% mindestens eines Verdünners und F) 0 bis 40 Gew.-% übliche Additive. Des weiteren werden kratzfeste, umformbare und schmutzabweisende Formkörper dargelegt, die ein Kunststoffsubstrat und eine Kratzfestbeschichtung umfassen.

Description

Beschichtungsmittel zur Herstellung von umformbaren
Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie
Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, mit diesen Beschichtungsmitteln beschichtete Formkörper mit einer kratzfesten, umformbaren und schmutzabweisenden Beschichtung sowie Verfahren zur Herstellung der beschichteten Formkörper.
Naturgemäß erreichen thermoplastisch verformbare Kunststoffe nicht die Kratzfestigkeit vieler Metalle oder Mineralgläser. Besonders nachteilig macht sich die Anfälligkeit gegenüber Kratzern bei transparenten Kunststoffen bemerkbar, da die betreffenden Gegenstände sehr schnell unansehnlich werden.
Kratzfestbeschichtungen für Kunststoffe sind an sich bekannt. Beispielsweise beschreibt die Druckschrift DE 195 07 174 UV-härtende, kratzfeste Überzüge für Kunststoffe, die eine besonders hohe UV-Stabilität aufweisen. Diese Beschichtungen zeigen bereits ein gutes Eigenschaftsspektrum. Allerdings werden Kunststoff-Formkörper, auch kratzfest beschichtete, vor allem in Form von Platten im Bau- Außenbereich, wie z.B. bei Lärmschutzwänden oder als Verglasungen von Fassaden, von Bushaltestellen, von Werbeflächen, Litfass-Säulen, sogenannten "mobiler urban" eingesetzt, wo sie sowohl natürlicher Verschmutzung als auch durch Vandalismus bedingte Verunreinigungen, wie z.B. der Graffiti-Beschmierungen ausgesetzt sind. Die Reinigung solcher Oberflächen ist sehr aufwendig, da häufig die Oberfläche hierdurch angegriffen wird. Zur Lösung dieser Probleme werden den Beschichtungsmitteln häufig fluorhaltige Acrylate zugesetzt. Derartige Beschichtungsmittel sind beispielsweise in DE 43 19 199 beschrieben.
Nachteilig an bekannten Beschichtungsmitteln ist jedoch, dass das hieraus erzeugte Beschichtungen auf Kunststoffkörpern beim thermischen Umformen Risse bilden, wobei die Beschichtung auf dem umgeformten Körper milchig trüb und unansehnlich wird.
Ein nachträgliches Umformen der mit einer hydro- und oleophoben Schicht versehenen Platten ist jedoch aus vielerlei Gründen wünschenswert. So sind insbesondere die Transportkosten von planaren Platten aufgrund der besseren Stapelbarkeit geringer als die von umgeformten Körpern.
Des weiteren ist zu bedenken, dass die Herstellung von beschichteten Platten und deren Verwendung, beispielsweise als Konstruktionsteil durch unterschiedliche Firmen erfolgt. Dementsprechend können beschichtete umformbare Konstruktionsteile für viel breitere Abnehmnerkreise angefertigt werden als speziell für einen Kunden hergestellte, vorgeformte Platten.
Des weiteren können viele besonders günstige Beschichtungsverfahren nicht oder nur schwer bei umgeformten Teilen, wie beispielsweise Rollenoder Walzenverfahren ausgeführt werden.
In Anbetracht des hierin angegebenen und diskutierten Standes der Technik war es mithin Aufgabe der vorliegenden Erfindung Beschichtungsmittel anzugeben, die zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung dienen können. Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung, Beschichtungsmittel zur Herstellung von Kratzfestbeschichtungen zur Verfügung zu stellen, die eine besonders hohe Haftung auf Kunststoffsubstraten aufweisen. Diese Eigenschaft sollte durch thermisches Umformen nicht beeinträchtigt werden.
Eine weitere Aufgabe der Erfindung bestand darin, dass Kunststoffkörper mit einer erfindungsgemäßen Kratzfestbeschichtung eine hohe Haltbarkeit, insbesondere eine hohe Beständigkeit gegen UV-Bestrahlung oder Verwitterung aufweisen.
Ein weiteres Ziel der vorliegenden Erfindung bestand darin Beschichtungsmittel mit Antigraffiti-Wirkung zur Verfügung zustellen, die die Eigenschaften des Substrats nicht ungünstig verändern.
So sollen die zur Herstellung von Graffiti verwendeten Spraylacke durch eine erfindungsgemäße Antigraffitiausrüstung nicht mehr oder nur sehr schwach auf dem Kunststoffkörper. haften, wobei besprühte Substrate leicht zu reinigen sein sollten, so dass z.B. Wasser, Lappen, Tensid, Hochdruckreiniger, milde Lösemittel ("Easy-to-clean") genügen.
Des weiteren lag der Erfindung die Aufgabe zugrunde, kratzfeste, schmutzabweisende Formkörper zur Verfügung zu stellen, die besonders einfach hergestellt werden können. So sollten zur Herstellung der Formkörper insbesondere Substrate verwendet werden können, die durch Extrusion, Spritzguss sowie durch Gussverfahren erhältlich sind.
Eine weitere Aufgabe der vorliegenden Erfindung bestand darin, kratzfeste, umformbare, schmutzabweisende Formkörper anzugeben, die hervorragende mechanische Eigenschaften zeigen. Diese Eigenschaft ist insbesondere für Anwendungen wichtig, bei denen der Kunststoffkörper eine hohe Stabilität gegen Schlageinwirkung aufweisen soll. Darüber hinaus sollten die Formkörper besonders gute optische Eigenschaften aufweisen.
Ein weiteres Ziel der vorliegenden Erfindung bestand darin, kratzfeste, umfombare, schmutzabweisende Formkörper bereit zu stellen, die auf einfache Weise in größerer Form den Anforderungen angepasst werden können.
Gelöst werden diese Aufgaben sowie weitere, die zwar nicht wörtlich genannt werden, sich aber aus den hierin diskutierten Zusammenhängen wie selbstverständlich ableiten lassen oder sich aus diesen zwangsläufig ergeben, durch die in Anspruch 1 beschriebenen Beschichtungsmittel. Zweckmäßige Abwandlungen der erfindungsgemäßen Beschichtungsmittel werden in den auf Anspruch 1 rückbezogenen Unteransprüchen unter Schutz gestellt.
Hinsichtlich der Formkörper liefern die Ansprüche 12 - 21 eine Lösung der zugrunde liegenden Aufgaben.
Dadurch, dass ein Beschichtungsmittel
A) 1 bis 30 Gew.-% eines Präpolymerisats erhältlich durch radikalische Polymerisation einer Mischung umfassend
A1 ) 1 bis 10 Gew.-Teile mindestens einer Schwefelverbindung enthaltend mindestens 3 Thiolgruppen und A2) 90 bis 99 Gew.-Teile Alkyl(meth)acrylate,
B) 0,2 bis 10 Gew.-% mindestens eines Fluoralkyl(meth)acrylats mit 3 bis 30 Kohlenstoffatomen im Alkoholrest, der 6 bis 61 Fluoratome umfasst,
C) 20 bis 80 Gew.-% mehrfunktioneller (Meth)acrylate,
D) 0,01 bis 10 Gew.-% mindestens eines Initiators,
E) 2 bis 75 Gew.-% mindestens eines Verdünners und
F) 0 bis 40 Gew.-% übliche Additive umfasst, gelingt es überraschend kratzfeste, schmutzabweisende Formkörper zur Verfügung zu stellen, die thermisch umgeformt werden können, ohne dass eine Trübung auftritt.
Durch die erfindungsgemäßen Maßnahmen werden u.a. insbesondere folgende Vorteile erzielt:
> Die mit den erfindungsgemäßen Beschichtungsmitteln erhaltenen kratzfesten Beschichtungen weisen eine besonders hohe Haftung auf den Kunststoffsubstraten auf, wobei diese Eigenschaft auch durch Bewitterung nicht beeinträchtigt wird.
> Die beschichteten Formkörper zeigen eine hohe Beständigkeit gegen UV-Bestrahlung.
> Die erfindungsgemäßen Beschichtungsmittel sowie hieraus erhältliche beschichtete Formkörper können kostengünstig hergestellt werden.
> Des weiteren zeigen erfindungsgemäß beschichtete Kunststoff körper eine besonders geringe Oberflächenenergie. Hierdurch können die vorliegenden Formkörper besonders leicht gereinigt werden.
> Kratzfeste Formkörper der vorliegenden Erfindung können leicht auf bestimmte Erfordernisse angepasst werden. Insbesondere kann die Größe und Form des Kunststoff körpers in weiten Bereichen variiert werden, ohne dass hierdurch die Umformbarkeit beeinträchtigt wird. Des weiteren stellt die vorliegende Erfindung auch Formkörper mit hervorragenden optischen Eigenschaften zur Verfügung. Die kratzfesten, umformbaren, schmutzabweisenden Formkörper der vorliegenden Erfindung weisen gute mechanische Eigenschaften auf.
Komponente A
Die erfindungsgemäßen Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung umfassen 1 - 30 Gew.-%, vorzugsweise 2 - 25 Gew.-%, bezogen auf das Gewicht des Beschichtungsmittels, eines Präpolymerisats, erhältlich durch radikalische Polymerisation einer Mischung umfassend
A1 ) 1 - 10 Gewichtsteile, vorzugsweise 2 - 6 Gewichtsteile mindestens einer Schwefelverbindung enthaltend mindestens drei Thiolgruppen und
A2) 90 -99 Gewichtsteile, vorzugsweise 94 - 98 Gewichtsteile Alkyl(meth)acrylate.
Schwefelverbindungen mit mehr als zwei Thiolgruppen im Molekül sind z.B. aus US 4 521 567 bekannt. Zur Ausführung der Erfindung werden Schwefelverbindungen mit mindestens drei, vorzugsweise vier Thiolgruppen im Molekül verwendet. Vorzugsweise enthalten die Schwefelregler mindestens 3, vorzugsweise mindestens 6 Kohlenstoffatome im Molekül, jedoch nicht über 40. Vorteilhaft ist die Anwesenheit eines oder vorzugsweise mehrerer α-Mercapto- carbonsäureester-Gruppen im Molekül, vorzugsweise ausgehend von Polyolen, wie Glycerin oder Pentaerythrit. Geeignete Schwefelregler mit mehr als drei Thiolgruppen sind z.B. 1 ,2,6-Hexantriol-trithioglycolat, Trimethylolethan-trithioglycolat, Pentaerythritol- tetrakis-(2- mercaptoacetat), Trimethylolethan-tri-(3-mercaptopropionat), Pentaerythritol-tetrakis-(3-mercaptopropionat), Trimethylolpropan- trithioglycolat, Trimethylolpropan-tri-(3-mercaptopropionat), Tetrakis-(3- mercaptopropionat)-Pentaerytritol, 1 ,1 ,1-Propanetriyl-tris- (mercaptoacetat), 1 ,1 ,1-Propanetriyl-tris-(3-mercaptopropionat), Dipentaerythritol-hexa-(3-mercatopropionat). Gut geeignet ist insbesondere das Pentaerythritol- tetrakis-(2-mercaptoacetat) (Pentaerythrit-tetrathioglycolat).
Die erfindungsgemäß zur Herstellung des Präpolymerisats einsetzbaren Acryl(meth)acrylate sind an sich bekannt, wobei der Ausdruck (Meth)acrylat für Acrylate, Methacrylate sowie für Mischungen aus beiden steht. Die Alkyl(meth)acrylate weisen vorzugsweise 1 - 20, insbesondere 1 - 8 Kohlenstoffatome auf.
Beispiele für die Ci- bis Cs-Alkylester der Acrylsäure bzw. der Methacrylsäure sind Methylacrylat, Ethylacrylat, Propylacrylat, Isopropylacrylat, n-Butylacrylat, Isobutylacrylat, n-Hexylacrylat und 2- Ethylhexylacrylat, Methylmethacrylat, Ethylmethacrylat, n- Propylmethacrylat und Butylmethacrylat. Bevorzugte Monomere sind Methylmethacrylat und n-Butylacrylat.
Zur Herstellung des Präpolymerisats werden vorzugsweise Mischungen von Alkyl(meth)acrylaten verwendet, die mindestens 10 Gew.-% Methyl(meth)acrylat und/oder Ethylacrylat und mindestens 2 Gew.-% Alkyl(meth)acrylate mit 3 - 8 Kohlenstoffatomen umfassen. Bevorzugt werden z.B. Methylmethacrylat-Anteile von 50 - 99 Gew.-%, Butylmethacrylatanteile von 5 bis 40 Gew.-% und Acrylatanteile von 2 bis 50 Gew.-%.
Bei der Herstellung der verdickenden Polymeren können die Verhältnisse von Regler zu Monomeren variiert werden. Die Polymerisation von Reglern und Monomeren kann in an sich bekannter Weise als Substanz-, Suspensions- oder Perl-, Lösungs- oder Emulsionspolymerisation mit Hilfe von Radikalstartern durchgeführt werden. Beispielweise kann aus DE 33 29 765 C2/ US 4 521 567 ein geeignetes Verfahren zur PerIpolymerisation (Polymerisationsschritt Stufe A) entnommen bzw. abgeleitet werden.
Als Radikalstarter kommen z.B. peroxidische oder Azoverbindungen in Frage (US-PS 2471 959). Genannt seien z.B. organische Peroxide wie Dibenzoylperoxid, Laurylperoxid oder Perester wie tert.-Butly-per-2- ethylhexanoat, ferner Azoverbindungen wie Azobisisobutyronitril.
Die erhaltenen Verdicker-Polymere können je nach Polymerisationsverfahren und Regleranteil Molekulargewichte von ca. 2000 bis 50.000 aufweisen. Das Molekulargewicht kann insbesondere über Viskosimetrie ermittelt werden, wobei das Präpolymerisat A) vorzugsweise eine Viskositätszahl gemäß DIN ISO 1628-6 im Bereich von 8 bis 15 ml/g, insbesondere 9 bis 13 ml/g und besonders bevorzugt 10 bis 12 ml/g gemessen in CHCI3 bei 20°C aufweist.
Komponente B
Die Beschichtungsmittel der vorliegenden Erfindung enthalten als wesentlichen Bestandteil 0,2 - 10 Gew.-%, vorzugsweise 0,3 - 5,0 Gew.- % und ganz besonders bevorzugt 0,5 - 2 Gew.-%, bezogen auf das Gesamtgewicht des Beschichtungsmittels, Fluoralkyl(meth)acrylate mit 3 - 30 vorzugsweise 8 bis 25 und besonders bevorzugt 10 bis 20 Kohlenstoffatome im Alkoholrest, der 6 - 61 , vorzugsweise 7 bis 51 und besonders bevorzugt 9 bis 41 Fluoratome umfasst. Der Alkoholrest des Fluoralkyl(meth)acrylats kann neben den Fluoratomen weitere Substituenten umfassen. Hierzu gehören insbesondere Estergruppen, Amidgruppen, Amingruppen, Nitrogruppen und Halogenatome, wobei dieser Alkoholrest sowohl linear als auch verzweigt sein kann. Gemäß einem besonderen Aspekt der vorliegenden Erfindung, wird eine Fluoralkyl(meth)acrylat gemäß der Formel I eingesetzt
worin der Rest Ri ein Wasserstoffatom oder eine Methylgruppe und der Rest R2 einen fluorierten Alkylrest der Formel CaHbFc darstellt, worin a eine ganze Zahl im Bereich 3 bis 30, insbesondere 8 bis 25 und besonders bevorzugt 10 bis 20, b eine ganze Zahl im Bereich 0 bis 4 und c eine ganze Zahl im Bereich 6 bis 61 , bevorzugt 9 bis 41 , mit c=2a + 1 -b bedeuten.
Gemäß einem besonders bevorzugten Aspekt der vorliegenden Erfindung wird ein Fluoralkyl(meth)acrylat gemäß der Formel II eingesetzt
CH2— CH2 — (CF2CF2)nF * ' l) '
worin der Rest Ri ein Wasserstoffatom oder einen Methylrest und n eine ganze Zahl im Bereich von 2 bis 10, vorzugsweise 3 bis 8, besonders bevorzugt 3 bis 5 bedeutet.
Zu den Fluoralkyl(meth)acrylate, die gemäß Komponente B) in den erfindungsgemäßen Beschichtungsmitteln enthalten sind, gehören unter anderem
2,2,3,4,4,4-Hexafluorbutylacrylat,
2,2,3,4,4,4-Hexafluorbutylmethacrylat, Nonadecafluorisodecylmethacrylat,
2,2,3,3,4,4,4-Heptafluorbutylacrylat,
3,3,4,4,5, 5,6, 6,6-Nonafluorhexylacrylat,
3,3,4,4,5,5,6, 6,6-Nonafluorhexylmethacrylat,
2,2,3,3,4,4,5,5,6,6,7,7,7-TridecafluorheptyIacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluoroctylacrylat,
3,3,4,4,5, 5,6,6, 7,7,8,8, 8-Tridecafluoroctylmethacrylat,
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluornonylacrylat, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluordecylacrylat
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 ,11-Eicosafluorundecylacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 ,12,12-Eicosafluordodecylacrylat
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,
10,11 ,11 ,12,12,12-Heneicosafluordodecylacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,
10,11 ,11 ,12,12,12-Heneicosafluordodecylmethacrylat
4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 ,12,12,13,13,14,15,15,
15-Tetracosafluor-2-hydroxy-14(trif1uormethyl)pentadecylacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 ,12,12,13,13,14,14,14-Pentacosaflu ortetradecylacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 ,12,12,13,13,14,14,14-Pentacosaflu ortetradecylmethacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 , 12,12,13,13,14,14„15,15,16,16,16-
Nonacosafluorhexadecylacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11 ,11 , 12,12,13,13,14,14„15,15,16,16,16-
Nonacosafluorhexadecylmethacrylat,
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,1 1 ,11 ,12,12,13,
13,14,14,15,15,16,16,17,17,18,18,19,19,20,20,20-Heptatriacontafluor- eicosylacrylat.
Die Fluoralkyl(meth)acrylate sind bekannte Verbindungen, wobei die Fluoralkyl(meth)acrylate einzeln oder als Mischung eingesetzt werden können.
Komponente C
Zur Herstellung einer kratzfesten Beschichtung werden erfindungsgemäß vernetzende Monomere dem Beschichtungsmittel zugefügt. Diese besitzen mindestens zwei polymerisationsfähige Einheiten z.B. Vinylgruppen pro Molekül (vgl. Brandrup-Immergut-Polymerhandbook). Diese werden erfindungsgemäß in Mengen von 20 - 80 Gew.-%, vorzugsweise 50 - 70 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung, eingesetzt.
Genannt seien die Diester und höheren Ester der Acryl- bzw. Methacrylsäure von mehrwertigen Alkoholen wie Glykol, Glycerin, Trimethylolethan, Trimethylolpropan, Pentaerythrit, Diglycerin, Dimethylolpropan, Ditrimethylolethan, Dipentaerythrit, Trimethylhexandiol- 1 ,6, Cyclohexandiol-1 ,4.
Beispiele für derartige vernetzende Monomere sind u.a. Ethylenglykoldiacrylat, Ethylenglykoldimethacrylat, Propylenglykoldiacrylat, Propylenglykoldimethacrylat, 1 ,3-Butandioldiacrylat, 1 ,3- Butandioldimethacrylat, Neopentylglykoldiacrylat, Neopentylglykoldimethacrylat, Diethylenglykoldiacrylat, Diethylenglykoldimethacrylat, 4-Thio-heptanol-2,6-diacrylat, 4-Thio- heptanol-2,6-dimethacrylat, Tetraethylenglykoldiacrylat, Tetraethylenglykoldimethacrylat, Pentandioldiacrylat, Pentandioldimethacrylat, Hexandioldiacrylat, Hexandioldimethacrylat, Trimethylolpropantri(meth)acrylat, Ditrimethylolpropantetraacrylat, Ditrimethylolpropantetramethacrylat, Dipentaerythrithexaacrylat und Dipentaerythrithexamethacrylat, Pentaerythrittriacrylat und Pentaerythrittetraacrylat.
Die mehrfunktionellen Acrylate bzw. Methacrylate können ebenso auch Oligomere oder Polymere sein, die ggf. noch weitere funktioneile Gruppen enthalten. Genannt seien insbesondere Urethandi- bzw. -triacrylate oder entsprechende Esteracrylate. Komponente D
Zur Polymerisation bzw. Härtung des erfindungsgemäßen Beschichtungsmittels werden bekannte Initiatoren eingesetzt, die der Beschichtungszusammensetzung in einer Menge von 0,01 - 10 Gew.-%, vorzugsweise 1-3 Gew.-%, bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung, zugegeben werden.
Zu den bevorzugten Initiatoren gehören unter anderem die in der Fachwelt weithin bekannten Azoinitiatoren, wie AIBN und 1 ,1-Azobiscyclohexancarbonitril, sowie Peroxyverbindungen, wie Methylethylketonperoxid, Acetylacetonperoxid, Dilaurylperoxyd, tert- Butylper-2-ethylhexanoat, Ketonperoxid, Methylisobutylketonperoxid, Cyclohexanonperoxid, Dibenzoylperoxid, tert.-Butylperoxybenzoat, tert.- Butylperoxyisopropylcarbonat, 2,5-Bis(2-ethylhexanoyl-peroxy)-2,5- dimethylhexan, tert.-Butylperoxy-2-ethylhexanoat, tert.-Butylperoxy-3,5,5- trimethylhexanoat, Dicumylperoxid, 1 ,1-Bis(tert.-butylperoxy)cyclohexan, 1 ,1-Bis(tert.-butylperoxy)3,3,5-trimethylcyclohexan, Cumylhydroperoxid, tert.-Butylhydroperoxid, Bis(4-tert.-butylcyclohexyl)peroxydicarbonat, Mischungen von zwei oder mehr der vorgenannten Verbindungen miteinander sowie Mischungen der vorgenannten Verbindungen mit nicht genannten Verbindungen, die ebenfalls Radikale bilden können.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden zur Härtung Photoinitiatoren, wie z.B. UV-Initiatoren eingesetzt. Es handelt sich um Verbindungen, die unter Einstrahlung von sichtbarem oder UV- Licht Radikale abspalten und so die Polymerisation des Beschichtungsmittels initiieren. Gebräuchliche UV-Initiatoren sind gemäß der DE-OS 29 28 512 z.B. Benzoin, 2-Methylbenzoin, Benzoin-methyl-, - ethyl oder -butylether, Acetoin, Benzil, Benzil-dimethylketal oder Benzophenon. Derartige UV-Initiatoren sind beispielsweise kommerziell von Ciba AG unter den Handelsbezeichnungen (DDarocur 1116, (DIrgacure 184, ®lrgacure 907 und von BASF AG unter dem Markennamen (DLucirin TPO erhältlich. Beispiele für Photoinitiatoren, die im kurzwelligen sichtbaren Bereich des Lichts absorbieren sind (DLucirin TPO und (DLucirin TPO-L der Firma BASF, Ludwigshafen.
Komponente E
Als Verdünner können sowohl organische Lösungsmittel und/oder monofunktionelle Reaktivverdünner verwendet werden. Im allgemeinen enthalten die Beschichtungsmittel 2 bis 75, vorzugsweise 6 bis 50 Gew.-%, bezogen auf das Gesamtgewicht des Beschichtungsmittels, Verdünner, die auch als Mischung eingesetzt werden können.
Mit Hilfe der Verdünner kann eine Viskosität des Beschichtungsmittels im
Bereich von ca. 10 bis ca. 250 mPa-s eingestellt wird. Für Beschichtungsmittel, die für Flut- oder Tauchbeschichtungen vorgesehen sind, sind eher niedrige Viskositäten von etwa 1 - 20 mPa-s gebräuchlich. Bei diesen Lacken können vor allem organische Lösungsmittel in Konzentrationen bis zu 75 Gew.-% eingesetzt werden. Für Rakelbeschichtungen oder Walzenauftragsbeschichtungen liegen die geeignete Viskositäten im Bereich von 20 bis 250 mPa-s. Die angegebenen Werte sind lediglich als Richtwerte zu verstehen und beziehen sich auf die Messung der Viskosität bei 20 °C mit einem Rotationsviscosimeter gemäß DIN 53 019.
Bei Lacken für Walzenauftragsverfahren werden bevorzugt monofunktionelle Reaktivverdünner eingesetzt. Übliche Konzentrationen liegen zwischen 5 und 25 Gew.-%. Alternativ oder in Kombination können jedoch auch organische Lösungsmittel als Verdünner verwendet werden.
Die monofunktionellen Reaktivverdünner tragen zu guten Verlaufseigenschaften des Lackes und damit zu einer guten Verarbeitbarkeit bei. Die monofunktionellen Reaktivverdünner besitzen eine radikalisch polymerisierbare Gruppe, in der Regel eine Vinyl- Funktion.
Hierzu gehören unter anderem 1-Alkene, wie Hexen-1 , Hepten-1 ; verzweigte Alkene, wie beispielsweise Vinylcyclohexan, 3,3-Dimethyl-1- propen, 3-Methyl-1-diisobutylen, 4-Methylpenten-1 ;
Acrylnitril; Vinylester, wie Vinylacetat;
Styrol, substituierte Styrole mit einem Alkylsubstituenten in der Seitenkette, wie z. B. α-Methylstyrol und α-Ethylstyrol, substituierte Styrole mit einem Alkylsubstituenten am Ring, wie Vinyltoluol und p-Methylstyrol, halogenierte Styrole, wie beispielsweise Monochlorstyrole, Dichlorstyrole, Tribromstyrole und Tetrabromstyrole;
Heterocyclische Vinylverbindungen, wie 2-Vinylpyridin, 3-Vinylpyridin, 2- Methyl-5-vinylpyridin, 3-Ethyl-4-vinylpyridin, 2,3-Dimethyl-5-vinylpyridin, Vinylpyrimidin, Vinylpiperidin, 9-Vinylcarbazol, 3-Vinylcarbazol, 4-Vinylcarbazol, 1-Vinylimidazol, 2-Methyl-1-vinylimidazol, N-Vinylpyrrolidon, 2-Vinylpyrrolidon, N-Vinylpyrrolidin, 3-Vinylpyrrolidin, N-Vinylcaprolactam, N-Vinylbutyrolactam, Vinyloxolan, Vinylfuran, Vinylthiophen, Vinylthiolan, Vinylthiazole und hydrierte Vinylthiazole, Vinyloxazole und hydrierte Vinyloxazole;
Vinyl- und Isoprenylether;
Maleinsäurederivate, wie beispielsweise Maleinsäureanhydrid,
Methylmaleinsäureanhydrid, Maleinimid und Methylmaleinimid;
und(Meth)acrylate, wobei (Meth)acrylate besonders bevorzugt sind. Der Ausdruck (Meth)acrylate umfasst Methacrylate und Acrylate sowie Mischungen aus beiden.
Diese Monomere sind weithin bekannt. Zu diesen gehören unter anderem (Meth)acrylate, die sich von gesättigten Alkoholen ableiten, wie beispielsweise Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n-Butyl(meth)acrylat, tert.-Butyl(meth)acrylat, Pentyl(meth)acrylat und 2-Ethylhexyl(meth)acrylat;
(Meth)acryiate, die sich von ungesättigten Alkoholen ableiten, wie z. B.
Oleyl(meth)acrylat, 2-Propinyl(meth)acrylat, Allyl(meth)acrylat,
Vinyl(meth)acrylat;
Aryl(meth)acrylate, wie Benzyl(meth)acrylat oder
Phenyl(meth)acrylat, wobei die Arylreste jeweils unsubstituiert oder bis zu vierfach substituiert sein können;
Cycloalkyl(meth)acrylate, wie 3-Vinylcyclohexyl(meth)acrylat,
Bornyl(meth)acrylat;
Hydroxylalkyl(meth)acrylate, wie
3-Hydroxypropyl(meth)acrylat,
3,4-Dihydroxybutyl(meth)acrylat,
2-Hydroxyethyl(meth)acrylat, 2-Hydroxypropyl(meth)acrylat;
Glycoldi(meth)acrylate, wie 1 ,4-Butandioldi(meth)acrylat,
(Meth)acrylate von Etheralkoholen, wie
Tetrahydrofurfuryl(meth)acrylat, Vinyloxyethoxyethyl(meth)acrylat;
Amide und Nitrile der (Meth)acrylsäure, wie
N-(3-Dimethylaminopropyl)(meth)acrylamid,
N-(Diethylphosphono)(meth)acrylamid,
1-Methacryloylamido-2-methyl-2-propanol; schwefelhaltige Methacrylate, wie
Ethylsulfinylethyl(meth)acrylat,
4-Thiocyanatobutyl(meth)acrylat,
Ethylsulfonylethyl(meth)acrylat,
Thiocyanatomethyl(meth)acrylat,
Methylsulfinylmethyl(meth)acrylat und
Bis((meth)acryloyloxyethyl)sulfid.
Besonders bevorzugte monofunktionelle Reaktivverdünner sind z.B. Butylacrylat, 2-Hydroxyethylacrylat , 2-Hydroxyethylmethacrylat, Hydroxypropylacrylat, Hydroxypropylmethacrylat, 2-Ethoxy- ethylmethacrylat oder 2,2,3, 3-Tetrafluorpropylmethacrylat, Methylmethacrylat, tert-Butylmethacrylat, Isobornylmethacrylat.
In EP 0 035 272 werden gebräuchliche organische Lösungsmittel für Beschichtungsmittel für Kratzfestlacke beschrieben, die als Verdünner verwendet werden können. Geeignet sind z.B. Alkohole wie Ethanol, Isopropanol, n-Propanol, Isobutylalkohol und n-Butylalkohol, Methoxypropanol, Methoxyethanol. Ebenso können aromatische Lösungsmittel wie z.B Benzol, Toluol oder Xylol verwendet werden. Ketone wie z.B Aceton oder Methylethylketon sind geeignet. Ebenso können Etherverbindungen wie Diethylether oder Esterverbindungen wie z.B. Ethylacetat, n-Butylacetat oder Ethylpropionat verwendet werden. Die Verbindungen können allein oder in Kombination eingesetzt werden.
Komponente F
Unter üblichen Additiven sollen für Beschichtungsmittel gebräuchliche Zusätze für Kratzfestbeschichtungen verstanden werden, die optional in Mengen von 0 - 40 Gew.-%, insbesondere 0 bis 20 Gew.-% enthalten sein können. Die Verwendung dieser Additive wird als nicht kritisch für die Erfindung angesehen.
Hier sind z.B. oberflächenaktive Substanzen zu nennen, mit deren Hilfe die Oberflächenspannung der Beschichtungsformulierung reguliert und gute Auftragseigenschaften erreicht werden können. Hierfür können gemäß der EP 0 035 272 z.B. Silikone, wie verschiedene Polymethylsiloxane-Typen in Konzentrationen von 0,0001 bis 2 Gew.-% verwendet werden.
Ein weiteres, sehr gebräuchliches Additiv sind UV-Absorber, die in Konzentrationen von z.B. 0,2 bis 20 Gew.-%, vorzugsweise von 2 bis 8 Gew.-% enthalten sein können. UV-Absorber können z.B. aus der Gruppe der Hydroxybenzotriazole, Triazine und Hydroxybenzophenone ausgewählt werden (siehe z.B. EP 247480). Das erfindungsgemäße Beschichtungsmittel ist zur Erzeugung kratzfester, witterungsbeständiger Beschichtungen auf Kunststoffsubstraten vorgesehen. Hierzu gehören insbesondere Polycarbonate, Polystyrole, Polyester, beispielsweise Polyethylenterephthalat (PET), die auch mit Glykol modifiziert sein können, und Polybutylenterephthalat (PBT), cycloolefinische Copolymere (COC), Acrylnitride/Butadien/Styrol- Copolymere und/oder Poly(meth)acrylate.
Bevorzugt sind hierbei Polycarbonate, cycloolefinische Polymere und Poly(meth)acrylate, wobei Poly(meth)acrylate besonders bevorzugt sind.
Polycarbonate sind in der Fachwelt bekannt. Polycarbonate können formal als Polyester aus Kohlensäure und aliphatischen oder aromatischen Dihydroxy-Verbindungen betrachtet werden. Sie sind leicht zugänglich durch Umsetzung von Diglykolen oder Bisphenolen mit Phosgen bzw. Kohlensäurediestern in Polykondensations- bzw. Umesterungsreaktionen.
Hierbei sind Polycarbonate bevorzugt, die sich von Bisphenolen ableiten. Zu diesen Bisphenolen gehören insbesondere 2,2-Bis-(4-hydroxyphenyl)- propan (Bisphenol A), 2,2-Bis-(4-hydroxyphenyl)-butan (Bisphenol B), 1 ,1-Bis(4-hydroxyphenyl)cyclohexan (Bisphenol C), 2,2'-Methylendiphenol (Bisphenol F), 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)propan (Tetrabrombisphenol A) und 2,2-Bis(3,5-dimethyl-4-hydroxyphenyl)propan (Tetramethylbisphenol A).
Üblich werden derartige aromatische Polycarbonate durch Grenzflächenpolykondensation oder Umesterung hergestellt, wobei Einzelheiten in Encycl. Polym. Sei. Engng. 11 , 648-718 dargestellt sind.
Bei der Grenzflächenpolykondensation werden die Bisphenole als wäßrige, alkalische Lösung in inerten organischen Lösungsmitteln, wie beispielsweise Methylenchlorid, Chlorbenzol oder Tetrahydrofuran, emulgiert und in einer Stufenreaktion mit Phosgen umgesetzt. Als Katalysatoren gelangen Amine, bei sterisch gehinderten Bisphenolen auch Phasentransferkatalysatoren zum Einsatz. Die resultierenden Polymere sind in den verwendeten organischen Lösungsmitteln löslich.
Über die Wahl der Bisphenole können die Eigenschaften der Polymere breit variiert werden. Bei gleichzeitigem Einsatz unterschiedlicher Bisphenole lassen sich in Mehrstufen-Polykondensationen auch Block- Polymere aufbauen.
Cycloolefinische Polymere sind Polymere, die unter Verwendung von cyclischen Olefinen, insbesondere von polycyclischen Olefinen erhältlich sind.
Cyclische Olefine umfassen beispielsweise monocyclische Olefine, wie Cyclopenten, Cyclopentadien, Cyclohexen, Cyclohepten, Cycloocten sowie Alkylderivate dieser monocyclischen Olefine mit 1 bis 3 Kohlenstoffatomen, wie Methyl, Ethyl oder Propyl, wie beispielsweise Methylcyclohexen oder Dimethylcyclohexen, sowie Acrylat- und/oder Methacrylatderivate dieser monocyclischen Verbindungen. Darüber hinaus können auch Cycloalkane mit olefinischen Seitenketten als cyclische Olefine verwendet werden, wie beispielsweise Cyclopentylmethacrylat.
Bevorzugt sind verbrückte, polycyclische Olefinverbindungen. Diese polycyclischen Olefinverbindungen können die Doppelbindung sowohl im Ring aufweisen, es handelt sich hierbei um verbrückte polycyclische Cycloalkene, als auch in Seitenketten. Hierbei handelt es sich um Vinylderivate, Allyloxycarboxyderivate und (Meth)acryloxyderivate von polycyclischen Cycloalkanverbindungen. Diese Verbindungen können des weiteren Alkyl-, Aryl- oder Aralkylsubstituenten aufweisen.
Beispielhafte polycyclische Verbindungen sind, ohne daß hierdurch eine Einschränkung erfolgen soll, Bicyclo[2.2.1]hept-2-en (Norbomen), Bicyclo[2.2.1]hept-2,5-dien (2,5-Norbomadien), Ethyl-bicyclo[2.2.1]hept-2- en (Ethylnorbomen), Ethylidenbicyclo[2.2.1]hept-2-en (Ethyliden- 2-norbomen), Phenylbicyclo[2.2.1]hept-2-en, Bicyclo[4.3.0]nona-3,8-dien, Tricyclo[4.3.0.12'5]-3-decen, Tricyclo[4.3.0.12,5]-3,8-decen- (3,8-dihydrodicyclopentadien), Tricyclo[4.4.0.12,5]-3-undecen, Tetracyclo[4.4.0.12,5,17'10]-3-dodecen, Ethyliden-tetracyclo[4.4.0.12,5.17'10]- 3-dodecen, Methyloxycarbonyltetracyclo[4.4.0.12,5,17,10j-3-dodecen, Ethyliden-9-ethyltetracyclo[4.4.0.12'5,17'10]-3-dodecen, Pentacyclo[4.7.0.12'5,O,O3'13,19ι12]-3-pentadecen, Pentacyclo[6.1.13'6.02'7.09'13]-4-pentadecen, Hexacyclo[6.6.1.13'6.110'13.02'7.09ι14]-4-heρtadecen, Dimethylhexacyclo[6.6.1.13'6.110'13.02'7.09>14]-4-heptadecen, Bis(allyloxycarboxy)tricyclo[4.3.0.12'5]-decan,
Bis(methacryloxy)tricyclo[4.3.0.12,5]-decan, Bis(acryloxy)tricyclo[4.3.0.12,5]- decan.
Die cycloolefinischen Polymere werden unter Verwendung von zumindest einer der zuvor beschriebenen cycloolefinischen Verbindungen, insbesondere der polycyclischen Kohlenwasserstoffverbindungen hergestellt. Darüber hinaus können bei der Herstellung der cycloolefinischen Polymere weitere Olefine verwendet werden, die mit den zuvor genannten cycloolefinischen Monomeren copolymerisiert werden können. Hierzu gehören u.a. Ethylen, Propylen, Isopren, Butadien, Methylpenten, Styrol und Vinyltoluol.
Die meisten der zuvor genannten Olefine, insbesondere auch die Cycloolefine und Polycycloolefine, können kommerziell erhalten werden. Darüber hinaus sind viele cyclische und polycyclische Olefine durch Diels- Alder-Additionsreaktionen erhältlich.
Die Herstellung der cycloolefinischen Polymere kann auf bekannte Art und Weise erfolgen, wie dies u.a. in den japanischen Patentschriften 11818/1972, 43412/1983, 1442/1986 und 19761/1987 und den japanischen Offenlegungsschriften Nr. 75700/1975, 129434/1980, 127728/1983, 168708/1985, 271308/1986, 221118/1988 und 180976/1990 und in den Europäischen Patentanmeldungen EP-A-0 6 610 851 , EP-A-0 6 485 893, EP-A-0 6 407 870 und EP-A-0 6 688 801 dargestellt ist.
Die cycloolefinischen Polymere können beispielsweise unter Verwendung von Aluminiumverbindungen, Vanadiumverbindungen, Wolframverbindungen oder Borverbindungen als Katalysator in einem Lösungsmittel polymerisiert werden.
Es wird angenommen, daß die Polymerisation je nach den Bedingungen, insbesondere dem eingesetzten Katalysator, unter Ringöffnung oder unter Öffnung der Doppelbindung erfolgen kann.
Darüber hinaus ist es möglich, cycloolefinische Polymere durch radikalische Polymerisation zu erhalten, wobei Licht oder ein Initiator als Radikalbildner verwendet wird. Dies gilt insbesondere für die Acryloylderivate der Cycloolefine und/oder Cycloalkane. Diese Art der Polymerisation kann sowohl in Lösung als auch in Substanz erfolgen.
Ein weiteres bevorzugtes Kunststoffsubstrat umfasst Poly(meth)acrylate. Diese Polymere werden im allgemeinen durch radikalische Polymerisation von Mischungen erhalten, die (Meth)acrylate enthalten. Diese wurden zuvor dargelegt, wobei, je nach Herstellung, sowohl monofunktionelle als auch polyfunktionelle (Meth)acrylate verwendet werden können, die unter Komponente C) und E) beschrieben sind.
Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung enthalten diese Mischungen mindestens 40 Gew.-%, vorzugsweise mindestens 60 Gew.-% und besonders bevorzugt mindestens 80 Gew.-%, bezogen auf das Gewicht der Monomere, Methylmethacrylat.
Neben den zuvor dargelegten (Meth)acrylaten können die zu polymerisierenden Zusammensetzungen auch weitere ungesättigte Monomere aufweisen, die mit Methylmethacrylat und den zuvor genannten (Meth)acrylaten copolymerisierbar sind. Beispiele hierfür wurden insbesondere unter Komponente E) näher ausgeführt.
Im allgemeinen werden diese Comonomere in einer Menge von 0 bis 60 Gew.-%, vorzugsweise 0 bis 40 Gew.-% und besonders bevorzugt 0 bis 20 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt, wobei die Verbindungen einzeln oder als Mischung verwendet werden können.
Die Polymerisation wird im allgemeinen mit bekannten Radikalinitiatoren gestartet, die insbesondere unter Komponente D) beschrieben sind. Diese Verbindungen werden häufig in einer Menge von 0,01 bis 3 Gew.-%, vorzugsweise von 0,05 bis 1 Gew.-%, bezogen auf das Gewicht der Monomeren, eingesetzt.
Die zuvor genannten Polymere können einzeln oder als Mischung verwendet werden. Hierbei können auch verschiedene Polycarbonate, Poly(meth)acrylate oder cycloolefinische Polymere eingesetzt werden, die sich beispielsweise im Molekulargewicht oder in der Monomerzusammensetzung unterscheiden.
Die erfindungsgemäßen Kunststoffsubstrate können beispielsweise aus Formmassen der zuvor genannten Polymere hergestellt werden. Hierbei werden im allgemeinen thermoplastische Formgebungsverfahren eingesetzt, wie Extrusion oder Spritzguss.
Das Gewichtsmittel des Molekulargewichts Mw der erfindungsgemäß als Formmasse zur Herstellung der Kunststoffsubstrate zu verwendenden Homo- und/oder Copolymere kann in weiten Bereichen schwanken, wobei das Molekulargewicht üblicherweise auf den Anwendungszweck und die Verarbeitungsweise der Formmasse abgestimmt wird. Im allgemeinen liegt es aber im Bereich zwischen 20 000 und 1 000 000 g/mol, vorzugsweise 50 000 bis 500 000 g/mol und besonders bevorzugt 80 000 bis 300 000 g/mol, ohne dass hierdurch eine Einschränkung erfolgen soll. Diese Größe kann beispielsweise mittels Gel-Permeations- Chromatographie bestimmt werden.
Des weiteren können die Kunststoffsubstrate durch Gusskammerverfahren erzeugt werden. Hierbei werden beispielsweise geeignete (Meth)acrylmischungen in einer Form gegeben und polymerisiert. Derartige (Meth)acrylmischungen weisen im allgemeinen die zuvor dargelegten (Meth)acrylate, insbesondere Methylmethacrylat auf. Des weiteren können die (Meth)acrylmischungen die zuvor dargelegten Copolymere sowie, insbesondere zur Einstellung der Viskosität, Polymere, insbesondere Poly(meth)acrylate, enthalten.
Das Gewichtsmittel des Molekulargewichts Mw der Polymere, die durch Gusskammerverfahren hergestellt werden, ist im allgemeinen höher als das Molekulargewicht von Polymeren, die in Formmassen verwendet werden. Hierdurch ergeben sich eine Reihe bekannter Vorteile. Im allgemeinen liegt das Gewichtsmittel des Molekulargewichts von Polymeren, die durch Gusskammerverfahren hergestellt werden im Bereich von 500 000 bis 10 000 000 g/mol, ohne dass hierdurch eine Beschränkung erfolgen soll.
Bevorzugte Kunststoffsubstrate, die nach dem Gusskammerverfahren hergestellt wurden, können von Degussa, BU PLEXIGLAS, Darmstadt unter dem Handelsnamen PLEXIGLAS® GS oder von Cyro Inc. USA kommerziell unter dem Handelsnamen ®Acrylite erhalten werden.
Darüber hinaus können die zur Herstellungen der Kunststoffsubstrate zu verwendenden Formmassen sowie die Acrylharze übliche Zusatzstoffe aller Art enthalten. Hierzu gehören unter anderem Antistatika, Antioxidantien, Entformungsmittel, Flammschutzmittel, Schmiermittel, Farbstoffe, Fliessverbesserungsmittel, Füllstoffe, Lichtstabilisatoren und organische Phosphorverbindungen, wie Phosphorsäureester, Phosphorsäuredieester und Phosphorsäuremonoester, Phosphite, Phosphorinane, Phospholane oder Phosphonate, Pigmente, Verwitterungsschutzmittel und Weichmacher. Die Menge an Zusatzstoffen ist jedoch auf den Anwendungszweck beschränkt.
Besonders bevorzugte Formmassen, die Poly(meth)acrylate umfassen, sind unter dem Handelsnamen PLEXIGLAS® von der Firma Degussa, BU PLEXIGLAS, Darmstadt oder unter dem Handelsnamen (DAcrylite von der Fa. Cyro Inc. USA kommerziell erhältlich. Bevorzugte Formmassen, die cycloolefinische Polymere umfassen, können unter dem Handelsnamen ® Topas von Ticona und ©Zeonex von Nippon Zeon bezogen werden. Polycarbonat-Formmassen sind beispielsweise unter dem Handelsnamen ©Makrolon von Bayer oder ®Lexan von General Electric erhältlich.
Besonders bevorzugt umfasst das Kunststoffsubstrat mindestens 80 Gew.-%, insbesondere mindestens 90 Gew.-%, bezogen auf das Gesamtgewicht des Substrats, Poly(meth)acrylate, Polycarbonate und/oder cycloolefinische Polymere. Besonders bevorzugt bestehen die Kunststoffsubstrate aus Polymethylmethacrylat, wobei das Polymethylmethacrylat übliche Additive enthalten kann.
Gemäß einer bevorzugten Ausführungsform können Kunststoffsubstrate eine Schlagzähigkeit gemäß ISO 179/1 von mindestens 10 kJ/m2, bevorzugt mindestens 15 kJ/m2 aufweisen.
Die Form sowie die Größe des Kunststoffsubstrats sind nicht wesentlich für die vorliegende Erfindung. Im allgemeinen werden häufig platten- oder tafelförmige Substrate eingesetzt, die eine Dicke im Bereich von 1 mm bis 200 mm, insbesondere 5 bis 30 mm aufweisen. Bei den Formkörpern kann es sich um vakuumgeformte Teile, blasgeformte Teile, Spritzgußteile oder extrudierte Kunststoffteile handeln, die z. B. als Bauelemente im Freien, als Teile von Automobilen, Gehäuseteile, Bestandteile von Küchen oder Sanitäreinrichtungen verwendet werden.
Besonders geeignet sind die Beschichtungsmittel für massive, plane Platten und Stegdoppel- oder Stegmehrfachplatten. Übliche Abmessungen z.B. für massive Platten liegen im Bereich von 3 x 500 bis 2000 x 2000 bis 6000 mm (Dicke x Breite x Länge). Stegplatten können ca. 16 bis 32 mm dick sein.
Bevor die Kunststoffsubstrate mit einer Beschichtung versehen werden, können diese durch geeignete Methoden aktiviert werden, um die Haftung zu verbessern. Hierzu kann beispielsweise das Kunststoffsubstrat mit einem chemischen und/oder physikalischen Verfahren behandelt werden, wobei das jeweilige Verfahren vom Kunststoffsubstrat abhängig ist.
Die zuvor dargelegten Beschichtungsmischungen können mit jeder bekannten Methode auf die Kunststoffsubstrate aufgebracht werden. Hierzu gehören unter anderem Tauchverfahren, Sprühverfahren, Rakeln, Flutbeschichtungen und Rollen- oder Walzenauftrag.
Vorzugsweise wird das Beschichtungsmittel so auf Kunststoffkörper aufgebracht werden, dass die Schichtdicke der ausgehärteten Schicht 1 bis 50 μm, bevorzugt 5 bis 30 μm beträgt. Bei Schichtdicken unter 1 μm ist der Bewitterungsschutz und die Kratzfestigkeit vielfach unzureichend, bei Schichtdicken von über 50 μm kann es zu Rissbildungen bei Biegebeanspruchung kommen.
Nach dem Auftragen des Lackfilms auf den Kunststoffkörper erfolgt die Polymerisation, die thermisch oder mittels UV-Strahlung vorgenommen werden kann. Die Polymerisation kann vorteilhaft unter inerter Atmosphäre zum Ausschluss des polymersationsinhibierenden Luftsauerstoffs, z.B. unter Stickstoffbegasung, durchgeführt werden. Dies ist jedoch keine unabdingbare Voraussetzung.
Üblicherweise wird die Polymerisation bei Temperaturen unterhalb der Glastemperatur des Kunststoffkörpers vorgenommen. Vorzugsweise wird das aufgetragene Beschichtungsmittel durch UV-Bestrahlung gehärtet. Die hierzu notwendige UV-Bestrahlungsdauer hängt von der Temperatur und der chemischen Zusammensetzung des Beschichtungsmittels, von der Art und Leistung der UV-Quelle, von deren Abstand zum Beschichtungsmittel und davon ob eine Inertatmosphäre vorliegt ab. Als Richtwert können einige Sekunden bis wenige Minuten gelten. Die entsprechende UV-Quelle soll eine Strahlung im Bereich von ca. 150 bis 400 nm, bevorzugt mit einem Maximum zwischen 250 und 280 nm abgeben. Die eingestrahlte Energie soll ca. 50 - 4000 mJ/cm2 betragen. Als Richtwert für den Abstand der UV-Quelle zur Lackschicht können ca. 100 bis 200 mm angegeben werden.
Die Formkörper der vorliegenden Erfindung lassen sich hervorragend thermisch umformen, ohne dass hierdurch deren kratzfeste, schmutzabweisende Beschichtung beschädigt werden würde. Das Umformen ist dem Fachmann bekannt. Hierbei wird der Formkörper erhitzt und über eine geeignete Schablone umgeformt. Die Temperatur, bei der die Umformung stattfindet ist abhängig von der Erweichungstemperatur des Substrats, aus dem der Kunststoffkörper hergestellt wurde. Die weiteren Parameter, wie beispielsweise die Umformgeschwindigkeit und Umformkraft sind ebenfalls vom Kunststoff abhängig, wobei diese Parameter dem Fachmann bekannt sind. Von den Umformverfahren sind insbesondere Biegeumformverfahren bevorzugt. Derartige Verfahren werden insbesondere zur Verarbeitung von Gussglas eingesetzt. Nähere Ausführungen finden sich in "Acrylglas und Polycarbonat richtig Be- und Verarbeiten" von H.Kaufmann et al. herausgegeben vom Technologie-Transfer-Ring Handwerk NRW und in VDI-Richtlinie 2008 Blatt 1 sowie DIN 8580/9/.
Die mit einer kratzfesten, schmutzabweisenden Beschichtung versehenen Formkörper der vorliegenden Erfindung zeigen eine hohe Kratzfestigkeit. Bevorzugt beträgt die Zunahme des Haze-Wertes nach einem Kratzfestigkeitstest nach DIN 52 347 E (Auflagekraft = 5,4 N, Anzahl der Zyklen = 100) höchstens 10%, besonders bevorzugt höchstens 5% und ganz besonders bevorzugt höchstens 2,5%.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung ist der Formkörper transparent, wobei die Transparenz XD65/IO gemäß DIN 5033 mindestens 70%, bevorzugt mindestens 75% beträgt.
Bevorzugt weist der Formkörper einen E-Modul nach ISO 527-2 von mindestens 1000 MPa, insbesondere mindestens 1500 MPa auf, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die erfindungsgemäßen Formkörper sind im allgemeinen sehr beständig gegenüber Bewitterung. So ist die Bewitterungsbeständigkeit gemäß DIN 53387 (Xenotest) mindestens 4000 Stunden.
Auch nach einer langen UV-Bestrahlung von mehr als 5000 Stunden ist der Gelbindex gemäß DIN 6167 (D65/10) von bevorzugten Formkörper kleiner oder gleich 8, bevorzugt kleiner oder gleich 5, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die Antigraffiti-Wirkung wird durch eine Hydrophobisierung der Oberfläche erzielt. Diese spiegelt sich in einem großen Kontaktwinkel mit alpha- Bromnaphthalin wider, das eine Oberflächenspannung von 44,4 mN/m aufweist. Gemäß einem besonderen Aspekt der vorliegenden Erfindung beträgt der Kontaktwinkel bei 20°C von alpha-Bromnaphthalin mit der Oberfläche des Kunststoffkörpers nach dem Aushärten der Kratzfestbeschichtung vorzugsweise mindestens 50°, insbesondere mindestens 70° und besonders bevorzugt mindestens 75°, ohne dass hierdurch eine Beschränkung erfolgen soll.
Der Kontaktwinkel mit Wasser beträgt bei 20°C gemäß einer besonderen Ausführungsform vorzugsweise mindestens 80°, insbesondere mindestens 90° und besonders bevorzugt mindestens 100°
Die Kontaktwinkel kann mit einem Kontaktwinkelmesssystem G40 der Fa. Krüss, Hamburg bestimmt werden, wobei die Durchführung im Benutzerhandbuch des Kontaktwinkelmesssystems G40, 1993 beschrieben ist. Die Messung wird bei 20°C durchgeführt.
Die Formkörper der vorliegenden Erfindung können beispielsweise im Baubereich, insbesondere zur Herstellung von Gewächshäusern oder Wintergärten, oder als Lärmschutzwand dienen.
Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiele eingehender erläutert, ohne dass die Erfindung auf diese Beispiele beschränkt werden soll.
Beispiel 1
Es wurde eine Beschichtungszusammensetzung hergestellt, aufweisend 16,6 Gewichtsteilen Pentarerythrittetraacrylat, 66,4 Gewichtsteilen 1 ,6-Hexandioldiacrylat, 10 Gewichtsteilen 2-Hydroxyethylmethacrylat,
5 Gewichtsteilen PLEX 8770 (Präpolymerisat erhältlich von Röhm GmbH
6 Co. KG, Copolymerisat aus Methylmethacrylat, Butylmethacrylat und Pentarerythrittetrathioglycolat),
2 Gewichtsteilen Irgacure 184, 1 Gewichtsteil Zonyl TA-N (Fluoracrylat der Zusammensetzung:
mit R2 = CH2CH2(CF2CF2)XCF2CF3 wobei x = 2 bis 4, erhältlich von der
Fa. DuPont und
3 Gewichtsteilen Tinuvin 1130, erhältlich von Ciba AG.
Das so erhaltene Beschichtungsmittel wird mit einem Spiralrakel (12 μm Nassfilmdicke) auf Platten aus ©Makrolon (erhältlich von Bayer AG) aufgetragen und nach jeweils zwei Minuten Verlaufszeit mit einem Quecksilberhochdruckstrahler F 450 der Firma Fusion Systems bei 1 m/min Vorschubgeschwindigkeit und Stickstoffatmosphäre ausgehärtet.
Die beschichtete Platte wird nach dem Biegeumformungsverfahren gemäß DIN 8580/9/ bei einer Temperatur von 150°C über eine Schablone umgeformt. Der Biegeradius im Versuch betrug 120 mm. Die Platte wurde einem Taber-Test gemäß DIN 52347 zur Bestimmung der Kratzfestigkeit sowie einem Gitterschnitt gemäß DIN 53151 unterzogen. Der Taber-Test wurde mit einer Auflagekraft von 5,4 N mit 100 Zyklen sowie einem Reibrad "CS10F" der Firma Teledyne Taber durchgeführt.
Die erhaltenen Ergebnisse sind in Tabelle 1 festgehalten. Tabelle 1
Gitterschnitt (DIN Taber-Test
53151) (DIN 52347) Delta-Haze
Vor Umformung Gt. 0 2,7 %
Nach Umformung (20 Gt: 0 2,4 %
Minuten bei 150 °C)
Überraschend wird festgestellt, dass die Kratzfestigkeit durch das Umformen verbessert wird. Die Reißdehnung liegt bei 5,9 %. Die Beschichtung wird zur Bestimmung der schmutzabweisenden Wirkung mit unterschiedlichen Lacken besprüht. Nach 24 Stunden wird die Lackbeschichtung mit einem Hochdruckreiniger mit 80 °C ca. eine Minute gereinigt.
Es zeigt sich, dass die Lacke gut von der Beschichtung entfernt werden können. Verwendet wurden die Farben gelb Prisma Color Acryl und blau Prisma Color Acryl von SchullerEh'klar GmbH, Austria sowie rot Pinture Paint Spray, Montana Colors, S.L. Berlin.
Vergleichsbeispiel 1
Eine Mischung gemäß EP 028 614 wurde hergestellt, die aus 39 Gewichtsteilen Pentaerythrit-tetraacrylat, 59 Gewichtsteilen Hexandioldiacrylat und 2 Gewichtsteilen Darocur 1116 der Fa. Ciba und 1 ,6 Gewichtsteilen 2-(N-ethylperfluorooctan-sulfamido)-ethylacrylat enthielt. Die Mischung wurde entsprechend Beispiel 1 mit einem Spiralrakel auf eine Platte aus Makrolon aufgetragen. Nach zwei Minuten Verlaufszeit wird mit einem Hg-Hochdruckstrahler bei 1 m/min Vorschubgeschwindigkeit unter Stickstoffatmosphäre ausgehärtet. Durch das Umformen gemäß Beispiel 1 traten im Lack feine Risse auf. Die maximale Reißdehnung (Rissbildung in der Schicht) liegt unter 2%.

Claims

Patentansprüche
Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung umfassend
A) 1 bis 30 Gew.-% eines Präpolymerisats erhältlich durch radikalische Polymerisation einer Mischung umfassend A1) 1 bis 10 Gew.-Teile mindestens einer
Schwefelverbindung enthaltend mindestens 3 Thiolgruppen und A2) 90 bis 99 Gew.-Teile Alkyl(meth)acrylate,
B) 0,2 bis 10 Gew.-% mindestens eines Fluoralkyl(meth)acrylats mit 3 bis 30 Kohlenstoffatomen im Alkoholrest, der 6 bis 61 Fluoratome umfasst,
C) 20 bis 80 Gew.-% mehrfunktioneller (Meth)acrylate,
D) 0,01 bis 10 Gew.-% mindestens eines Initiators,
E) 2 bis 75 Gew.-% mindestens eines Verdünners und
F) 0 bis 40 Gew.-% übliche Additive.
Beschichtungsmittel gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Präpolymerisat A) eine Viskositätszahl gemäß DIN ISO 1628-6 im Bereich von 8 bis 15 ml/g gemessen in CHCI3 bei 20°C aufweist.
Beschichtungsmittel gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zur Herstellung des Präpolymerisats A) verwendeten Alkyl(meth)acrylate 1 bis 8 Kohlenstoffatome im Alkoholrest aufweisen.
4. Beschichtungsmittel gemäß Anspruch 3, dadurch gekennzeichnet, dass zur Herstellung des Präpolymerisats A) eine Mischung von Alkyl(meth)acrylaten A2) verwendet wird, die mindestens 10 Gew.-% Methyl(meth)acrylat und/oder Ethyl(meth)acrylat und mindestens 2 Gew.-% Alkyl(meth)acrylate mit 3 bis 8 Kohlenstoffatomen umfasst.
5. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schwefelverbindung mindestens vier Thiolgruppen umfasst.
6. Beschichtungsmittel gemäß Anspruch 5, dadurch gekennzeichnet, dass die Schwefelverbindung Pentaerythrittetrathioglycolat ist.
7. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Beschichtungsmittel 0,5 bis 2 Gew.-% Fluoralkyl(meth)acrylate gemäß Komponente B) umfasst.
8. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Fluoralkyl(meth)acrylat gemäß Komponente B) durch die Formel (I)
R, O H2C=C— C-O-R2 (')> worin der Rest Ri ein Wasserstoffatom oder einen Methylrest und der Rest R2 einen fluorierten Alkylrest der Formel CaHDFc darstellt, worin a eine ganze Zahl im Bereich 3 bis 30, b eine ganze Zahl im Bereich 0 bis 4 und eine ganze Zahl im Bereich 6 bis 61 mit c=2a + 1 -b bedeuten, darstellbar ist.
9. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Initiator gemäß Komponente D) ein UV-Initiator ist.
10. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verdünner gemäß Komponente E) (Meth)acrylate mit 1 bis 10 Kohlenstoffatome, Styrole und/oder Acrylnitril umfasst.
11. Beschichtungsmittel gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komponente F) UV-Absorber und/oder UV-Stabilisatoren umfasst.
12. Kratzfester, umformbarer, schmutzabweisender Formkörper umfassend ein Kunststoffsubstrat und eine Kratzfestbeschichtung, die durch ein Beschichtungsmittel gemäß einem der Ansprüche 1 bis 11 erhältlich ist.
13. Formkörper gemäß Anspruch 12, dadurch gekennzeichnet, dass das Kunststoffsubstrat Polymethylmethacrylat, Polycarbonat, Polyvinylchlorid, Polystyrol, Polyolefine, Cycloolefincopolymere, Polyester und/oder Acrylnitril/Butadien/Styrol-Copolymere umfasst.
14. Formkörper gemäß Anspruch 12 oder 13, dadurch gekennzeichnet, dass der dass der Formkörper eine Schlagzähigkeit von mindestens 10 kJ/m2 gemäß ISO 179/1 aufweist.
15. Formkörper gemäß einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Kunststoffsubstrat eine Dicke im Bereich von 1 mm bis 200 mm aufweist.
16. Formkörper gemäß einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass die Kratzfestbeschichtung eine Schichtdicke im Bereich von 1 bis 50 μm aufweist.
17. Formkörper gemäß einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass der Haze-Wertes des Formkörper nach einem Kratzfestigkeitstest nach DIN 52 347 um höchstens 5% zunimmt.
18. Formkörper gemäß einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass das Kunststoffsubstrat einen E-Modul nach ISO 527-2 von mindestens 1500 MPa aufweist.
19. Formkörper gemäß einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass der Formkörper eine Bewitterungsbeständigkeit gemäß DIN 53 387 von mindestens 4000 Stunden aufweist.
20. Formkörper gemäß einem der Ansprüche 12 bis 19, dadurch gekennzeichnet, dass der Formkörper eine Transparenz gemäß DIN 5033 von mindestens 70% aufweist.
21. Formkörper gemäß einem der Ansprüche 12 bis 20, dadurch gekennzeichnet, dass der Kontaktwinkel bei 20°C von alpha- Bromnaphthalin mit der Oberfläches des Kunststoffkörpers mindestens 50° aufweist.
22. Verfahren zur Herstellung von kratzfesten, umformbaren, schmutzabweisenden Formkörpern gemäß einem der Ansprüche 12 bis 21 , dadurch gekennzeichnet, dass man auf ein Kunststoffsubstrat ein Beschichtungsmittel gemäß einem der Ansprüche 1 bis 11 aufbringt und härtet.
EP03758013A 2002-12-19 2003-10-18 Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herste llung Withdrawn EP1601727A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260067A DE10260067A1 (de) 2002-12-19 2002-12-19 Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahrn zu deren Herstellung
DE10260067 2002-12-19
PCT/EP2003/011546 WO2004056929A1 (de) 2002-12-19 2003-10-18 Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
EP1601727A1 true EP1601727A1 (de) 2005-12-07

Family

ID=32404067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03758013A Withdrawn EP1601727A1 (de) 2002-12-19 2003-10-18 Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herste llung

Country Status (15)

Country Link
US (1) US20060058458A1 (de)
EP (1) EP1601727A1 (de)
JP (1) JP2006510760A (de)
KR (1) KR20050084426A (de)
CN (1) CN1729257A (de)
AU (1) AU2003274035A1 (de)
BR (1) BR0317416A (de)
CA (1) CA2509713A1 (de)
DE (1) DE10260067A1 (de)
MX (1) MXPA05006564A (de)
MY (1) MY142522A (de)
RU (1) RU2337119C2 (de)
TW (1) TWI297033B (de)
WO (1) WO2004056929A1 (de)
ZA (1) ZA200504905B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155230C5 (de) * 2001-11-09 2006-07-13 Robert Bosch Gmbh Stiftheizer in einer Glühstiftkerze und Glühstiftkerze

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10321799A1 (de) * 2003-05-14 2004-12-16 Röhm GmbH & Co. KG Beschichtungsmittel und Kunststoffkörper mit Antigraffiti-Wirkung sowie Verfahren zur Herstellung
US7196133B2 (en) * 2003-07-08 2007-03-27 Kyoeisha Chemical Co., Ltd. Surface tension control agent for coating material and coating material containing same
DE10352177A1 (de) * 2003-11-05 2005-06-02 Röhm GmbH & Co. KG Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung
US20060143956A1 (en) * 2004-03-16 2006-07-06 Star Billy S Public and private road safety and advertising medium
DE102004045295A1 (de) * 2004-09-16 2006-03-23 Röhm GmbH & Co. KG Kunststoffkörper mit anorganischer Beschichtung, Verfahren zur Herstellung sowie Verwendungen
DE102004062773A1 (de) * 2004-12-21 2006-06-22 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahren zu deren Herstellung
DE102005009209A1 (de) * 2005-02-25 2006-08-31 Röhm GmbH & Co. KG Beschichtungsmittel zur Herstellung von umformbaren Kratzfestbeschichtungen mit schmutzabweisender Wirkung, kratzfeste umformbare schmutzabweisende Formkörper sowie Verfahren zu deren Herstellung
DE102005012589B4 (de) * 2005-03-18 2007-06-14 Basf Coatings Ag Mit UV-A-Strahlung härtbares, lösemittelhaltiges Gemisch, Verfahren zu seiner Herstellung und seine Verwendung
DE102005043795A1 (de) * 2005-09-13 2007-03-15 Heraeus Kulzer Gmbh Licht- und/oder thermisch härtendes Versiegelungs- und Befestigungsmaterial für natürliches Gestein und Bautenschutz
DE102006012274A1 (de) * 2006-03-15 2007-09-20 Votteler Lackfabrik Gmbh & Co. Kg Lack zur Oberflächenbeschichtung von Formteilen
DE102007007999A1 (de) * 2007-02-15 2008-08-21 Evonik Röhm Gmbh Antigraffiti Beschichtung
DE102007028601A1 (de) * 2007-06-19 2008-12-24 Evonik Röhm Gmbh Reaktivgemisch zur Beschichtung von Formkörpern mittels Reaktionsspritzguss sowie beschichteter Formkörper
WO2010042668A1 (en) 2008-10-07 2010-04-15 Ross Technology Corporation Spill resistant surfaces having hydrophobic and oleophobic borders
DE102009003221A1 (de) 2009-05-19 2010-11-25 Evonik Degussa Gmbh Transparente, witterungsbeständige Barrierefolie für die Einkapselung von Solarzellen II
DE102009003218A1 (de) 2009-05-19 2010-12-09 Evonik Degussa Gmbh Transparente. witterungsbeständige Barrierefolie für die Einkapselung von Solarzellen I
DE102009003223A1 (de) 2009-05-19 2010-12-09 Evonik Degussa Gmbh Transparente, witterungsbeständige Barrierefolie für die Einkapselung von Solarzellen III
BR112012023312A2 (pt) 2010-03-15 2019-09-24 Ross Tech Corporation desentupidor e métodos de produção de superfícies hidrofóbicas
JP2014512417A (ja) 2011-02-21 2014-05-22 ロス テクノロジー コーポレーション. 低voc結合剤系を含む超疎水性および疎油性被覆物
KR101764954B1 (ko) * 2011-06-17 2017-08-03 디아이씨 가부시끼가이샤 불소 함유 경화성 수지, 활성 에너지선 경화성 조성물 및 그 경화물
RU2458953C1 (ru) * 2011-06-30 2012-08-20 Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет инженерной экологии" (ГОУ ВПО "МГУИЭ") Фотополимеризующаяся акриловая олигомер-олигомерная композиция, износостойкое покрытие на органических стеклах для элементов остекления зданий, сооружений и транспортных средств на ее основе и способ получения износостойкого покрытия
US10000588B2 (en) * 2011-07-28 2018-06-19 Eastman Chemical Company Coating for the inner surface of plastic bottles for protection against degradation from volatile organic compounds
EP2791255B1 (de) 2011-12-15 2017-11-01 Ross Technology Corporation Zusammensetzung und beschichtung für superhydrophobe leistung
BR112014032676A2 (pt) 2012-06-25 2017-06-27 Ross Tech Corporation revestimentos elastoméricos que têm propriedades hidrofóbicas e/ou oleofóbicas
JP6409770B2 (ja) * 2013-04-18 2018-10-24 Jsr株式会社 シリコーン系樹脂用表面改質剤、表面が改質されたシリコーン系樹脂、表面が改質されたコンタクトレンズ、並びに上記樹脂およびレンズの製造方法
CN104502536A (zh) * 2014-12-17 2015-04-08 廊坊立邦涂料有限公司 一种汽车漆耐沾污性能检测方法
CN105060729B (zh) * 2015-07-31 2018-06-01 安徽和润特种玻璃有限公司 一种用于防眩玻璃的耐污耐磨防静电涂膜
CN107513127A (zh) * 2016-06-17 2017-12-26 默克专利股份有限公司 含氟聚合物
CN113631599A (zh) * 2019-03-27 2021-11-09 Agc株式会社 含氟聚合物的制造方法、水性分散液和含氟聚合物组合物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2471959A (en) * 1948-01-15 1949-05-31 Du Pont Polymerizations employing azo compounds as catalysts
US3960824A (en) * 1971-07-09 1976-06-01 Celanese Coatings & Specialties Company Mercaptan initiated polymerization process carried out in the presence of oxygen
DE2945549A1 (de) * 1979-11-10 1981-05-21 Röhm GmbH, 6100 Darmstadt Fluesiges, durch uv-strahlung haertbares ueberzugs- und bindemittel
DE3329765C2 (de) * 1983-08-18 1993-10-14 Roehm Gmbh Verfahren zur Herstellung schlagzäher Formmassen auf Acrylatbasis durch zweistufige Polymerisation
JPS61258870A (ja) * 1985-05-10 1986-11-17 Kansai Paint Co Ltd 活性エネルギ−線硬化型塗料組成物
DE4319198A1 (de) * 1993-06-09 1994-12-15 Roehm Gmbh Kratzfestbeschichtungsmittel auf Acrylatbasis
DE19501182C2 (de) * 1995-01-17 2000-02-03 Agomer Gmbh Copolymere zur Herstellung von Gußglas, Verfahren zur Herstellung wärmeformstabiler Gußglaskörper und Verwendung
DE19507174A1 (de) * 1995-03-02 1996-09-05 Roehm Gmbh UV-härtbare Kratzfestlacke mit einpolymerisierendem Verdicker
EP0883653A1 (de) * 1996-04-05 1998-12-16 Minnesota Mining And Manufacturing Company Durch sichtbares licht polymerisierbare zusammensetzungen
DE10129374A1 (de) * 2001-06-20 2003-01-02 Roehm Gmbh Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
DE10141314A1 (de) * 2001-08-09 2003-02-27 Roehm Gmbh Kunststoffkörper mit niedriger Wärmeleitfähigkeit, hoher Lichttransmission und Absorption im nahen Infrarotbereich
DE10212458A1 (de) * 2002-03-20 2003-10-02 Roehm Gmbh Hagelbeständiges Verbund-Acrylglas und Verfahren zu seiner Herstellung
DE10224895A1 (de) * 2002-06-04 2003-12-18 Roehm Gmbh Selbstreinigender Kunststoffkörper und Verfahren zu dessen Herstellung
DE10352177A1 (de) * 2003-11-05 2005-06-02 Röhm GmbH & Co. KG Antistatisch beschichteter Formkörper und Verfahren zu seiner Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004056929A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10155230C5 (de) * 2001-11-09 2006-07-13 Robert Bosch Gmbh Stiftheizer in einer Glühstiftkerze und Glühstiftkerze

Also Published As

Publication number Publication date
CA2509713A1 (en) 2004-07-08
WO2004056929A1 (de) 2004-07-08
US20060058458A1 (en) 2006-03-16
ZA200504905B (en) 2006-03-29
TWI297033B (en) 2008-05-21
KR20050084426A (ko) 2005-08-26
BR0317416A (pt) 2005-11-08
RU2337119C2 (ru) 2008-10-27
JP2006510760A (ja) 2006-03-30
RU2005122603A (ru) 2006-01-20
TW200427800A (en) 2004-12-16
MXPA05006564A (es) 2005-08-16
MY142522A (en) 2010-12-15
AU2003274035A1 (en) 2004-07-14
DE10260067A1 (de) 2004-07-01
CN1729257A (zh) 2006-02-01

Similar Documents

Publication Publication Date Title
EP1601727A1 (de) Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herste llung
WO2006089580A1 (de) Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herstellung
EP0628610B1 (de) Kratzfeste antisoiling- und antigraffity-Beschichtung für Formkörper
EP1836240A1 (de) Witterungsstabile folie zur gelbeinfärbung retroreflektierender formkörper
EP0730011B1 (de) UV-härtbare Kratzfestlacke mit einpolymerisierendem Verdicker
WO2003102056A1 (de) Selbstreinigender kunststoffkörper und verfahren zu dessen herstellung
EP0245728A2 (de) Verfahren zur Herstellung einer kratzfesten und witterungsbeständigen Beschichtung auf einem Formkörper
WO2006066653A1 (de) Beschichtungsmittel zur herstellung von umformbaren kratzfestbeschichtungen mit schmutzabweisender wirkung, kratzfeste umformbare schmutzabweisende formkörper sowie verfahren zu deren herstellung
DE10321799A1 (de) Beschichtungsmittel und Kunststoffkörper mit Antigraffiti-Wirkung sowie Verfahren zur Herstellung
EP1572787B1 (de) Wasserspreitende kunststoffkörper und verfahren zu dessen herstellung
DE10259240A1 (de) Umformbare wasserspreitende Kunststoffkörper und Verfahren zu dessen Herstellung
EP0628614B1 (de) Kratzfestbeschichtungsmittel auf Acrylatbasis
EP1572826B1 (de) Verfahren zur herstellung von wasserspreitenden kunststoffkoerpern
NZ541264A (en) Coating compositions for producing formable scratchproof coatings with dirt repellency effect, scratchproof formable dirt-repellent mouldings and processes for producing them
WO2006045400A1 (de) Beschichteter kunststoffformkörper
DE102010028186A1 (de) Fluoreszenzkonversionssolarzelle Lacke
DE10156078A1 (de) Beschichtungszusammensetzung, beschichteter Formkörper, Verfahren zur Beschichtung von Oberflächen sowie die Verwendung von Tensiden zur Herstellung von beständigen, wasserspreitenden Beschichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROEHM GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LINGELBACH, REINER

Inventor name: SEYOUM, GHIRMAY

Inventor name: NEEB, ROLF

Inventor name: BECKER, PATRICK

Inventor name: HASSKERL, THOMAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090505