EP1600515A2 - Alliage de cuivre de décolletage sans plomb - Google Patents

Alliage de cuivre de décolletage sans plomb Download PDF

Info

Publication number
EP1600515A2
EP1600515A2 EP05017189A EP05017189A EP1600515A2 EP 1600515 A2 EP1600515 A2 EP 1600515A2 EP 05017189 A EP05017189 A EP 05017189A EP 05017189 A EP05017189 A EP 05017189A EP 1600515 A2 EP1600515 A2 EP 1600515A2
Authority
EP
European Patent Office
Prior art keywords
remainder
weight
percent
alloy
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05017189A
Other languages
German (de)
English (en)
Other versions
EP1600515A3 (fr
EP1600515B8 (fr
EP1600515B1 (fr
Inventor
Keiichiro Oishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Sambo Copper Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sambo Copper Alloy Co Ltd filed Critical Sambo Copper Alloy Co Ltd
Publication of EP1600515A2 publication Critical patent/EP1600515A2/fr
Publication of EP1600515A3 publication Critical patent/EP1600515A3/fr
Application granted granted Critical
Publication of EP1600515B1 publication Critical patent/EP1600515B1/fr
Publication of EP1600515B8 publication Critical patent/EP1600515B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Definitions

  • the present invention relates to lead-free, free-cutting copper alloys.
  • bronze alloys such as the one under JIS designation H5111 BC6 and brass alloys such as the ones under JIS designations H3250-C3604 and C3771.
  • Those alloys are enhanced in machinability by the addition of 1.0 to 6.0 percent, by weight, of lead and provide an industrially satisfactory machinability. Because of their excellent machinability, those lead-contained copper alloys have been an important basic material for a variety of articles such as city water faucets, water supply/drainage metal fittings and valves.
  • lead contained therein is an environment pollutant harmful to humans. That is, the lead-containing alloys pose a threat to human health and environmental hygiene because lead is contained in metallic vapor that is generated in the steps of processing those alloys at high temperatures such as melting and casting and there is also concern that lead contained in the water system metal fittings, valves and others made of those alloys will dissolve out into drinking water.
  • the cutting works, forgings, castings and others include city water faucets, water supply/drainage metal fittings, valves, stems, hot water supply pipe fittings, shaft and heat exchanger parts.
  • the first to twelfth invention alloys contain machinability improving elements such as silicon and have an excellent machinability because of the addition of such elements.
  • the alloys with a high copper content which have great amounts of other phases, mainly kappa phase, than alpha, beta, gamma and delta phases can further improve in machinability in a heat treatment.
  • the kappa phase turns to a gamma phase.
  • the gamma phase finely disperses and precipitates to further enhance the machinability.
  • the alloys with a high content of copper are high in ductility of the matrix and low in absolute quantity of gamma phase, and therefore are excellent in cold workability.
  • the aforesaid heat treatment is very useful.
  • those which are high in copper content with gamma phase in small quantities and kappa phase in large quantities undergo a change in phase from the kappa phase to the gamma phase in a heat treatment.
  • the gamma phase is finely dispersed and precipitated, and the machinability is improved.
  • the materials are often force-air-cooled or water cooled depending on the forging conditions, productivity after hot working (hot extrusion, hot forging etc.), working environment and other factors.
  • the low copper content alloy those with a low content of copper (hereinafter called the low copper content alloy") are rather low in the content of the gamma phase and contain beta phase.
  • the beta phase changes into gamma phase, and the gamma phase is finely dispersed and precipitated, whereby the machinability is improved.
  • first invention alloys Nos. 1001 to 1008 second invention alloys Nos. 2001 to 2011, third invention alloys Nos. 3001 to 3012, fourth invention alloys Nos. 4001 to 4049, fifth invention alloys Nos. 5001 to 5020, sixth invention alloys Nos. 6001 to 6105, seventh invention alloys Nos. 7001 to 7030, eighth invention alloys Nos. 8001 to 8147, ninth invention alloys Nos. 9001 to 9005, tenth invention alloys Nos.
  • No. 13003 is an alloy test piece obtained by heat-treating an extruded test piece with the same composition as first invention alloy No. 1007 under the same conditions as for No. 13001 - for 30 minutes at 580°C.
  • No. 13004 is an alloy test piece obtained by heat-treating an extruded test piece with the same composition as No. 13007 under the same conditions as for 13002 - for two hours at 450°C.
  • No. 13005 is an alloy test piece obtained by heat-treating an extruded test piece with the same composition as first invention alloy No. 1008 under the same conditions as for No. 13001 - for 30 minutes at 580°C.
  • No. 13006 is an alloy test piece obtained by heat-treating an extruded test piece with the same composition as No. 1008 and heat-treated under the same conditions as for 13002 - for two hours at 450°C.
  • 14005 corresponds to the alloy "JIS C 6191.” This aluminum bronze is the most excellent of the expanded copper alloys under the JIS designations with regard to strength and wear resistance.
  • No. 14006 corresponds to the naval brass alloy "JIS C 4622" and is the most excellent of the expanded copper alloys under the JIS designations with regard to corrosion resistance.
  • the chips from the cutting work were examined and classified into four forms (A) to (D) as shown in Fig. 1.
  • the results are enumerated in Table 38 to Table 66.
  • the chips in the form of a spiral with three or more windings as (D) in Fig. 1 are difficult to process, that is, recover or recycle, and could cause trouble in cutting work as, for example, getting tangled with the tool and damaging the cut metal surface.
  • chips in the form of a fine needle as (A) in Fig. 1 or in the form of an arc as (B) will not present such problems as mentioned above and are not bulky as the chips in (C) and (D) and easy to process. But fine chips as (A) still could creep into the sliding surfaces of a machine tool such as a lathe and cause mechanical trouble, or could be dangerous because they could stick into the worker's finger, eye or other body parts.
  • the surface condition of the cut metal surface was checked after cutting work.
  • the results are shown in Table 38 to Table 66.
  • the commonly used basis for indication of the surface roughness is the maximum roughness (Rmax). While requirements are different depending on the application field of brass articles, the alloys with Rmax ⁇ 10 microns are generally considered excellent in machinability. The alloys with 10 microns ⁇ Rmax ⁇ 15 microns are judged as industrially acceptable, while those with Rmax ⁇ 15 microns are taken as poor in machinability.
  • the following invention alloys are all equal to the conventional lead- contained alloys Nos. 14001 to 14003 in machinability: first invention alloys Nos. 1001 to 1008, second invention alloys Nos. 2001 to 2011, third invention alloys Nos. 3001 to 3012, fourth invention alloys Nos. 4001 to 4049, fifth invention alloys Nos. 5001 to 5020, sixth invention alloys Nos. 6001 to 6105, seventh invention alloys Nos. 7001 to 7030, eighth invention alloys Nos. 8001 to 8147, ninth invention alloys Nos. 9001 to 9005, tenth invention alloys Nos. 10001 to 10008, eleventh invention alloys Nos.
  • thirteenth invention alloys Nos. 13001 to 13006 are improved over first invention alloy No. 1005, No. 1007 and No. 1008 with the same composition as the thirteenth invention alloys in machinability. It is thus confirmed that a proper heat treatment could further enhance the machinability.
  • the first to thirteenth invention alloys were examined in comparison with the conventional alloys in hot workability and mechanical properties.
  • hot compression and tensile tests were conducted the following way.
  • test pieces two test pieces, first and second test pieces, in the same shape 15 mm in outside diameter and 25 mm in length were cut out of each extruded test piece obtained as described above.
  • the first test piece was held for 30 minutes at 700°C, and then compressed 70 percent in the direction of axis to reduce the length from 25 mm to 7.5 mm.
  • the surface condition after the compression 700°C deformability
  • the results are given in Table 38 to Table 66.
  • the evaluation of deformability was made by visually checking for cracks on the side of the test piece. In Table 38 to Table 66, the test pieces with no cracks found are marked " ⁇ ", those with small cracks are indicated in " ⁇ " and those with large cracks are represented by a symbol "x".
  • the second test pieces were put to a tensile test by the commonly practised test method to determine the tensile strength, N/mm 2 and elongation, %.
  • the first to thirteenth invention alloys are equal to or superior to the conventional alloys Nos. 14001 to 14004 and No. 14006 in hot workability and mechanical properties and are suitable for industrial use.
  • the seventh and eighth invention alloys in particular have the same level of mechanical properties as the conventional alloy No. 14005, the aluminum bronze which is the most excellent in strength of the expanded copper alloys under the JIS designations, and thus have understandably a prominent high strength feature.
  • first to six and ninth to thirteenth invention alloys were put to dezincification and stress corrosion cracking tests in accordance with the test methods specified under "ISO 6509” and “JIS H 3250" respectively to examine the corrosion resistance and resistance to stress corrosion cracking in comparison with the conventional alloys.
  • the first to fourth invention alloys and the ninth to thirteenth invention alloys are excellent in corrosion resistance and favourably comparable with the conventional alloys Nos. 14001 to 14003 containing great amounts of lead. And it was confirmed that especially the fifth and sixth invention alloys which seek improvement in both machinability and corrosion resistance are very high in corrosion resistance and superior in corrosion resistance to the conventional alloy No. 14006, a naval brass which is the most resistant to corrosion of all the expanded alloys under the JIS designations.
  • test sample was cut out from each extruded test piece.
  • the sample was bent with its centre placed on an arc-shaped tester with a radius of 40 mm in such a way that one end and the other end subtend an angle of 45 degrees.
  • the test sample thus subjected to a tensile residual stress was degreased and dried, and then placed in an ammonia environment in the desiccator with a 12.5% aqueous ammonia (ammonia diluted in the equivalent of pure water).
  • the test sample was held some 80 mm above the surface of aqueous ammonia in the desiccator.
  • test sample After the test sample was left standing in the ammonia environment for two hours, 8 hours and 24 hours, the test sample was taken out from the desiccator, washed in sulfuric acid solution 10% and examined for cracks under a magnifier of 10 magnifications.
  • the results are given in Table 38 to Table 50 and Table 61 to Table 66.
  • the alloys which have developed clear cracks when held in the ammonia environment for two hours are marked "xx.”
  • the test samples which had no cracks at passage of two hours but were found to have clear cracks at 8 hours are indicated by "x.”
  • the test samples which had no cracks at 8 hours, but were found to have clear cracks at 24 hours were indicated by " ⁇ ".
  • the test samples which were found to have no cracks at all at 24 hours are given a symbol " ⁇ .”
  • test piece in the shape of a round bar with the surface cut to a outside diameter of 14 mm and the length cut to 30 mm was prepared from each of the following extruded test pieces: No. 9001 to No. 9005, No. 10001 to No. 10008, No. 11001 to No. 11007, No. 12001 to No. 12021 and No. 14001 to No. 14006.
  • Each test piece was then weighed to measure the weight before oxidation. After that, the test piece was placed in a porcelain crucible and held in an electric furnace maintained at 500°C. At passage of 100 hours, the test piece was taken out of the electric furnace and weighed to measure the weight after oxidation. From the measurements before and after oxidation was calculated the increase in weight by oxidation.
  • the weight of each test piece increased after oxidation.
  • the increase was brought about by high-temperature oxidation. Subjected to a high temperature, oxygen combines with copper, zinc and silicon to form Cu 2 O, ZnO, SiO 2 . That is, oxygen increase contributes to the weight gain. It can be said, therefore, that the alloys which are the smaller in weight increase by oxidation are the more excellent in high-temperature oxidation resistance.
  • Table 61 to Table 64 and Table 66 The results obtained are shown in Table 61 to Table 64 and Table 66.
  • the ninth to twelfth invention alloys are equal to the conventional alloy No. 14005, an aluminum bronze ranking high in resistance to high-temperature oxidation among the expanded copper alloys under the JIS designations and are far smaller than any other conventional copper alloy.
  • the ninth to twelfth invention alloys are very excellent in machinability and resistance to high-temperature oxidation as well.
  • alloys Nos. 7001a to 7030a, Nos. 8001a to 8147a and Nos. 14001a to 14006a are identical in composition with the aforesaid copper alloys Nos. 7001 to 7030, Nos. 8001 to 8147 and Nos. 14001 to No. 14006 respectively.
  • test piece thus obtained was cut on the circumferential surface, holed and cut down into a ringshaped test piece 32 mm in outside diameter and 10 mm in thickness (that is, the length in the axial direction).
  • the test piece was then fitted around a free-rotating shaft, and a roll 48 mm in outside diameter placed in parallel with the axis of the shaft was urged against the test piece under a load of 50 kg.
  • the roll was made of stainless steel under the JIS designation SUS 304.
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 7001 o ⁇ ⁇ 138 ⁇ 670 18 7002 o ⁇ ⁇ 136 ⁇ 712 20 7003 o ⁇ ⁇ 132 ⁇ 783 23 7004 o ⁇ ⁇ 138 ⁇ 736 21 7005 o ⁇ ⁇ 136 ⁇ 785 23 7006 o ⁇ ⁇ 139 ⁇ 700 24 7007 ⁇ ⁇ 138 ⁇ 707 23 7008 o ⁇ ⁇ 131 ⁇ 805 22 7009 o ⁇ ⁇ 136 ⁇ 768 19 7010 o ⁇ ⁇ 135 ⁇ 778 23 7011 ⁇ ⁇ 137 ⁇ 677 23 7012 o ⁇ ⁇ 134 ⁇ 800 21 7013 o ⁇ ⁇ 133 ⁇ 819 22 7014 ⁇ ⁇ 138 ⁇ 641 21 7015 o ⁇
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 7021 o ⁇ ⁇ 130 ⁇ 754 24 7022 o ⁇ ⁇ 134 ⁇ 780 23 7023 o ⁇ ⁇ 133 ⁇ 765 22 7024 o ⁇ ⁇ 135 ⁇ 772 23 7025 ⁇ ⁇ 138 ⁇ 687 24 7026 o ⁇ ⁇ 135 ⁇ 718 24 7027 o ⁇ ⁇ 136 ⁇ 742 18 7028 ⁇ ⁇ 138 ⁇ 785 20 7029 o ⁇ ⁇ 134 ⁇ 703 23 7030 o ⁇ ⁇ 135 ⁇ 820 18 No.
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8001 o ⁇ ⁇ 132 ⁇ 655 15 8002 o ⁇ ⁇ 129 ⁇ 708 17 8003 o ⁇ ⁇ 127 ⁇ 768 20 8004 o ⁇ ⁇ 128 ⁇ 785 18 8005 o ⁇ ⁇ 131 ⁇ 714 16 8006 o ⁇ ⁇ 134 ⁇ 680 16 8007 o ⁇ ⁇ 132 ⁇ 764 17 8008 o ⁇ ⁇ 130 ⁇ 673 16 8009 o ⁇ ⁇ 132 ⁇ 759 18 8010 o ⁇ ⁇ 132 ⁇ 751 15 8011 o ⁇ ⁇ 134 ⁇ 767 17 8012 o ⁇ ⁇ 128 ⁇ 796 18 8013 o ⁇ ⁇ 129 ⁇ 784 18 8014 o ⁇ ⁇ 129 ⁇ 802
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8021 o ⁇ ⁇ 134 ⁇ 765 16 8022 o ⁇ ⁇ 132 ⁇ 770 16 8023 o ⁇ ⁇ 131 ⁇ 746 18 8024 o ⁇ ⁇ 132 ⁇ 816 19 8025 o ⁇ ⁇ 129 ⁇ 759 18 8026 o ⁇ ⁇ 130 ⁇ 726 17 8027 o ⁇ ⁇ 133 ⁇ 703 17 8028 o ⁇ ⁇ 132 ⁇ 737 18 8029 o ⁇ ⁇ 129 ⁇ 719 20 8030 o ⁇ ⁇ 133 ⁇ 645 23 8031 o ⁇ ⁇ 129 ⁇ 764 22 8032 o ⁇ ⁇ 131 ⁇ 790 19 8033 o ⁇ ⁇ 133 ⁇ 674 20 8034 o ⁇ ⁇ 131 ⁇ 748
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8041 o ⁇ ⁇ 128 ⁇ 735 23 8042 o ⁇ ⁇ 127 ⁇ 822 18 8043 o ⁇ ⁇ 131 ⁇ 780 18 8044 o ⁇ ⁇ 126 ⁇ 726 21 8045 o ⁇ ⁇ 128 ⁇ 766 22 8046 o ⁇ ⁇ 127 ⁇ 712 23 8047 o ⁇ ⁇ 128 ⁇ 674 21 8048 o ⁇ ⁇ 129 ⁇ 753 24 8049 o ⁇ ⁇ 127 ⁇ 768 22 8050 o ⁇ ⁇ 132 ⁇ 691 17 8051 o ⁇ ⁇ 131 ⁇ 717 17 8052 o ⁇ ⁇ 128 ⁇ 739 21 8053 o ⁇ ⁇ 128 ⁇ 730 22 8054 o ⁇ ⁇ 127 ⁇ 7
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8061 o ⁇ ⁇ 129 ⁇ 705 21 8062 o ⁇ ⁇ 131 ⁇ 690 22 8063 o ⁇ ⁇ 133 ⁇ 811 18 8064 o ⁇ ⁇ 131 ⁇ 746 17 8065 o ⁇ ⁇ 133 ⁇ 652 19 8066 o ⁇ ⁇ 130 ⁇ 758 19 8067 o ⁇ ⁇ 129 ⁇ 734 19 8068 o ⁇ ⁇ 131 ⁇ 710 17 8069 o ⁇ ⁇ 131 ⁇ 767 20 8070 o ⁇ ⁇ 131 ⁇ 753 18 8071 o ⁇ ⁇ 129 ⁇ 792 19 8072 o ⁇ ⁇ 131 ⁇ 736 21 8073 o ⁇ ⁇ 130 ⁇ 767 22 8074 o ⁇ ⁇ 132 ⁇ 679 19
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8081 o ⁇ ⁇ 132 ⁇ 706 23 8082 o ⁇ ⁇ 130 ⁇ 768 23 8083 o ⁇ ⁇ 128 ⁇ 774 25 8084 o ⁇ ⁇ 129 ⁇ 765 22 8085 o ⁇ ⁇ 130 ⁇ 729 23 8086 o ⁇ ⁇ 133 ⁇ 687 24 8087 o ⁇ ⁇ 131 ⁇ 798 20 8088 o ⁇ ⁇ 132 ⁇ 699 23 8089 o ⁇ ⁇ 130 ⁇ 740 21 8090 o ⁇ ⁇ 132 ⁇ 782 18 8091 o ⁇ ⁇ 129 ⁇ 763 22 8092 o ⁇ ⁇ 130 ⁇ 680 22 8093 o ⁇ ⁇ 131 ⁇ 655 23 8094 o ⁇ ⁇ 128 ⁇ 714 21 8095
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8101 o ⁇ ⁇ 131 ⁇ 685 18 8102 o ⁇ ⁇ 132 ⁇ 690 21 8103 o ⁇ ⁇ 133 ⁇ 744 17 8104 o ⁇ ⁇ 130 ⁇ 726 17 8105 o ⁇ ⁇ 133 ⁇ 751 19 8106 o ⁇ ⁇ 130 ⁇ 752 21 8107 o ⁇ 131 ⁇ 760 21 8108 o ⁇ ⁇ 132 ⁇ 748 22 8109 o ⁇ ⁇ 130 ⁇ 807 18 8110 o ⁇ ⁇ 133 ⁇ 739 16 8111 o ⁇ ⁇ 132 ⁇ 717 17 8112 o ⁇ ⁇ 134 ⁇ 763 20 8113 o ⁇ ⁇ 129 ⁇ 745 22 8114 o ⁇ ⁇ 132 ⁇ 722 20 8
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8121 o ⁇ ⁇ 130 ⁇ 788 20 8122 o ⁇ ⁇ 131 ⁇ 755 22 8123 o ⁇ ⁇ 127 ⁇ 711 21 8124 o ⁇ ⁇ 130 ⁇ 763 20 8125 o ⁇ ⁇ 131 ⁇ 687 18 8126 o ⁇ ⁇ 134 ⁇ 706 17 8127 o ⁇ ⁇ 128 ⁇ 730 22 8128 o ⁇ ⁇ 130 ⁇ 702 23 8129 o ⁇ ⁇ 132 ⁇ 727 21 8130 o ⁇ ⁇ 130 ⁇ 701 24 8131 o ⁇ ⁇ 129 ⁇ 745 22 8132 o ⁇ ⁇ 132 ⁇ 749 21 8133 o ⁇ ⁇ 130 ⁇ 826 18 8134 o ⁇ ⁇ 128 ⁇ 770 20 81
  • machinability hot workability mechanical properties form of chippings condition of cut surface cutting force (N) 700°C deformability tensile strength (N/mm 2 ) elongation (%) 8141 o ⁇ ⁇ 131 ⁇ 687 22 8142 o ⁇ ⁇ 130 ⁇ 635 20 8143 o ⁇ ⁇ 129 ⁇ 710 23 8144 o ⁇ ⁇ 130 ⁇ 662 24 8145 o ⁇ ⁇ 128 ⁇ 728 23 8146 o ⁇ ⁇ 129 ⁇ 753 21 8147 o ⁇ ⁇ 130 ⁇ 709 24 No.
  • wear resistance weight loss by wear 7001a 1.3 7002a 0.8 7003a 0.9 7004a 1.4 7005a 1.3 7006a 1.7 7007a 1.8 7008a 1.2 7009a 0.8 7010a 2.4 7011a 1.9 7012a 1.2 7013a 1.1 7014a 2.7 7015a 1.4 7016a 1.3 7017a 1.6 7018a 1.4 7019a 1.9 7020a 1.5 No. wear resistance weight loss by wear (mg/100000rot.) 7021a 1.3 7022a 0.9 7023a 1.2 7024a 1.0 7025a 2.3 7026a 1.7 7027a 1.8 7028a 1.1 7029a 1.5 7030a 1.4 No.
  • wear resistance weight loss by wear 8001a 1.4 8002a 1.1 8003a 0.9 8004a 1.2 8005a 1.8 8006a 1.3 8007a 1.5 8008a 1.0 8009a 1.2 8010a 0.7 8011a 1.0 8012a 1.3 8013a 1.4 8014a 1.3 8015a 1.5 8016a 0.9 8017a 1.4 8018a 0.9 8019a 1.0 8020a 1.5 No.
  • wear resistance weight loss by wear 8021a 1.0 8022a 1.4 8023a 1.4 8024a 0.8 8025a 1.2 8026a 1.4 8027a 1.9 8028a 0.9 8029a 1.4 8130a 2.2 8131a 2.1 8132a 1.0 8133a 2.4 8134a 1.4 8135a 1.2 8136a 1.5 8137a 1.3 8138a 0.8 8139a 1.4 8140a 1.5 No.
  • wear resistance weight loss by wear 8041a 1.5 8042a 1.3 8043a 1.6 8044a 1.2 8045a 1.0 8046a 2.0 8047a 1.6 8048a 1.7 8049a 1.3 8050a 1.5 8051a 1.0 8052a 1.5 8053a 1.3 8054a 1.2 8055a 0.7 8056a 0.9 8057a 1.6 8058a 2.4 8059a 1.6 8060a 1.9 No.
  • wear resistance weight loss by wear 8061a 1.6 8062a 1.9 8063a 1.2 8064a 1.7 8065a 2.0 8066a 1.4 8067a 1.5 8068a 1.2 8069a 0.9 8070a 1.0 8071a 1.7 8072a 1.9 8073a 1.6 8074a 1.6 8075a 1.8 8076a 0.8 8077a 1.3 8078a 1.2 8079a 1.4 8080a 1.3 No.
  • wear resistance weight loss by wear 8081a 1.6 8082a 1.3 8083a 1.0 8084a 1.2 8085a 1.5 8086a 1.6 8087a 1.1 8088a 2.0 8089a 1.4 8090a 1.2 8091a 1.5 8092a 1.6 8093a 2.1 8094a 1.5 8095a 1.9 8096a 1.5 8097a 1.5 8098a 1.4 8099a 1.1 8100a 0.9 No.
  • wear resistance weight loss by wear 8101 1.4 8102 1.3 8103 0.8 8104 0.8 8105 0.7 8106 0.9 8107 1.2 8108 1.1 8109 1.0 8110 0.7 8111 0.8 8112 1.2 8113 0.9 8114 1.2 8115 1.1 8116 1.4 8117 1.1 8118 0.9 8119 1.1 8120 0.9 No.
  • wear resistance weight loss by wear 8121a 1.0 8122a 1.0 8123a 1.2 8124a 0.8 8125a 1.1 8126a 0.9 8127a 1.3 8128a 1.4 8129a 1.3 8130a 1.5 8131a 1.2 8132a 1.3 8133a 0.8 8134a 1.0 8135a 0.8 8136a 1.3 8137a 1.1 8138a 0.9 8139a 1.2 8140a 1.0 No. wear resistance weight loss by wear (mg/100000rot.) 8141a 1.4 8142a 1.8 8143a 1.6 8144a 1.9 8145a 1.1 8146a 1.2 8147a 1.4 No. wear resistance weight loss by wear (mg/100000rot.) 14001a 500 14002a 620 14003a 520 14004a 450 14005a 25 14006a 600

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Adornments (AREA)
EP05017189A 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb Expired - Lifetime EP1600515B8 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28859098A JP3734372B2 (ja) 1998-10-12 1998-10-12 無鉛快削性銅合金
JP28859098 1998-10-12
EP98953071A EP1045041B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de decolletage sans plomb

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP98953071A Division EP1045041B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de decolletage sans plomb

Publications (4)

Publication Number Publication Date
EP1600515A2 true EP1600515A2 (fr) 2005-11-30
EP1600515A3 EP1600515A3 (fr) 2005-12-14
EP1600515B1 EP1600515B1 (fr) 2008-07-30
EP1600515B8 EP1600515B8 (fr) 2008-10-15

Family

ID=17732235

Family Applications (5)

Application Number Title Priority Date Filing Date
EP05017191A Expired - Lifetime EP1600517B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb
EP05017190A Expired - Lifetime EP1600516B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb
EP05017189A Expired - Lifetime EP1600515B8 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb
EP98953071A Expired - Lifetime EP1045041B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de decolletage sans plomb
EP05075421.7A Expired - Lifetime EP1559802B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP05017191A Expired - Lifetime EP1600517B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb
EP05017190A Expired - Lifetime EP1600516B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP98953071A Expired - Lifetime EP1045041B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de decolletage sans plomb
EP05075421.7A Expired - Lifetime EP1559802B1 (fr) 1998-10-12 1998-11-16 Alliage de cuivre de décolletage sans plomb

Country Status (8)

Country Link
EP (5) EP1600517B1 (fr)
JP (1) JP3734372B2 (fr)
KR (1) KR100352213B1 (fr)
AU (1) AU744335B2 (fr)
CA (1) CA2314144C (fr)
DE (4) DE69840585D1 (fr)
TW (1) TW421674B (fr)
WO (1) WO2000022182A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047991A1 (fr) 2011-09-30 2013-04-04 Poongsan Corporation Alliage de décolletage en cuivre sans plomb et son procédé de production
EP3985136A1 (fr) 2020-10-16 2022-04-20 Diehl Metall Stiftung & Co. KG Alliage de cuivre sans plomb et utilisage de l'alliage de cuivre sans plomb

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US7056396B2 (en) 1998-10-09 2006-06-06 Sambo Copper Alloy Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
JP3459623B2 (ja) * 2000-08-08 2003-10-20 京和ブロンズ株式会社 無鉛青銅合金
JP4496662B2 (ja) 2001-04-20 2010-07-07 株式会社豊田自動織機 斜板式圧縮機における斜板
AU2003236001A1 (en) * 2002-09-09 2004-03-29 Sambo Copper Alloy Co., Ltd. High-strength copper alloy
JP4522736B2 (ja) * 2004-03-30 2010-08-11 株式会社キッツ 金型鋳造用銅基合金とこの合金を用いた鋳塊・製品
DK1777305T3 (da) 2004-08-10 2011-01-03 Mitsubishi Shindo Kk Støbning af kobberbaselegering med raffinerede krystalkorn
DE502005009545D1 (de) * 2004-10-11 2010-06-17 Diehl Metall Stiftung & Co Kg Kupfer-zink-silizium-legierung, deren verwendung und deren herstellung
KR100631041B1 (ko) 2005-03-04 2006-10-04 주식회사 풍산 절삭성 및 가공성이 우수한 쾌삭황동합금
EP1749897B1 (fr) 2005-07-28 2007-10-17 Gebr. Kemper GmbH + Co. KG Metallwerke Procédé de fabrication de pièces coulées en cuivre, dont la tendance de migration est réduite par recuit
EP1918389A4 (fr) * 2005-07-28 2010-06-23 San Etsu Metals Co Ltd Matériau extrudé en alliage de cuivre et son procédé de fabrication
CA2619357C (fr) 2005-09-22 2012-05-01 Sanbo Shindo Kogyo Kabushiki Kaisha Alliage de cuivre de decolletage presentant une tres faible teneur en plomb
ATE498699T1 (de) 2005-09-30 2011-03-15 Mitsubishi Shindo Kk Aufgeschmolzene und erstarrte kupferlegierung die phosphor und zirkon enthält
EP1798298B2 (fr) 2005-12-14 2016-05-04 Gebr. Kemper GmbH + Co. KG Metallwerke Utilisation d'un alliage de cuivre à faible migration et pièces en cet alliage
ES2651345T3 (es) 2005-12-22 2018-01-25 Viega Technology Gmbh & Co. Kg Componentes constructivos de escasa migración hechos de una aleación de cobre para conductos que transportan fluidos o agua potable
JP2008095918A (ja) * 2006-10-16 2008-04-24 Yamaha Marine Co Ltd サーモエレメント及びこのサーモエレメントを用いたサーモスタット装置
EP2014964B1 (fr) 2007-06-05 2011-11-23 R. Nussbaum AG Armature
JP2009007657A (ja) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp 無鉛快削性銅合金並びに連続鋳造用無鉛快削性銅合金
JP5320638B2 (ja) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ 圧延銅箔およびその製造方法
CN101235448B (zh) * 2008-02-22 2010-10-13 中南大学 一种无铅易切削硅石墨黄铜
CN101440444B (zh) * 2008-12-02 2010-05-12 路达(厦门)工业有限公司 无铅易切削高锌硅黄铜合金及其制造方法
DE102009015186A1 (de) 2009-03-31 2010-10-14 Viega Gmbh & Co. Kg Fitting zum Anschluss eines Rohres
US20120027638A1 (en) 2009-04-24 2012-02-02 San-Etsu Metals Co., Ltd. High-strength copper alloy
EP2290114A1 (fr) 2009-08-04 2011-03-02 Gebr. Kemper GmbH + Co. KG Metallwerke Composant pour conduite d'eau
TWI398532B (zh) 2010-01-22 2013-06-11 Modern Islands Co Ltd Lead-free brass alloy
CN101787461B (zh) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 一种环保型锰黄铜合金及其制造方法
JP2011214095A (ja) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp 鋳造用無鉛快削黄銅合金
JP2011214094A (ja) * 2010-03-31 2011-10-27 Joetsu Bronz1 Corp 無鉛快削黄銅合金
CN103261458A (zh) * 2010-09-10 2013-08-21 赖于福斯水及气有限公司 改进的黄铜合金及其制造方法
CN102321827B (zh) * 2011-09-25 2013-01-09 宁波市鄞州锡青铜带制品有限公司 一种高导电率低锡青铜带的制备方法
JP5763504B2 (ja) * 2011-11-11 2015-08-12 三菱伸銅株式会社 銅合金製の転造加工用素材及び転造加工品
DE102012013817A1 (de) 2012-07-12 2014-01-16 Wieland-Werke Ag Formteile aus korrosionsbeständigen Kupferlegierungen
US8991787B2 (en) 2012-10-02 2015-03-31 Nibco Inc. Lead-free high temperature/pressure piping components and methods of use
EP2913414B1 (fr) 2012-10-31 2018-10-10 Kitz Corporation Alliage laiton présentant d'excellentes possibilités de recyclage et de résistance à la corrosion
JP5778736B2 (ja) 2013-10-04 2015-09-16 ファナック株式会社 モータ冷却用の冷却管継手、および冷却管継手を備えるモータ冷却装置
EP2960350B1 (fr) 2014-06-27 2017-11-29 Gebr. Kemper GmbH + Co. KG Metallwerke Alliage de fonte au cuivre
JP6868761B2 (ja) * 2015-12-17 2021-05-12 パナソニックIpマネジメント株式会社 流体用開閉弁及びそれを用いた空気調和機
TWI598452B (zh) 2016-01-21 2017-09-11 慶堂工業股份有限公司 具優異熔鑄性之無鉛快削黃銅合金及其製造方法和用途
US11421301B2 (en) 2016-08-15 2022-08-23 Mitsubishi Materials Corporation Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting
JP2018156771A (ja) * 2017-03-16 2018-10-04 住友電装株式会社 雌端子
US11155909B2 (en) 2017-08-15 2021-10-26 Mitsubishi Materials Corporation High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
KR101969010B1 (ko) * 2018-12-19 2019-04-15 주식회사 풍산 납과 비스무트가 첨가되지 않은 쾌삭성 무연 구리합금
CN109930025A (zh) * 2019-03-22 2019-06-25 广东出入境检验检疫局检验检疫技术中心 一种无铅环保易切削黄铜材料
JP7180488B2 (ja) * 2019-03-25 2022-11-30 三菱マテリアル株式会社 銅合金丸棒材
WO2020261666A1 (fr) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Alliage de cuivre à décolletage et procédé de production d'alliage de cuivre à décolletage
US11512370B2 (en) 2019-06-25 2022-11-29 Mitsubishi Materials Corporation Free-cutting copper alloy and method for producing free-cutting copper alloy
WO2020261636A1 (fr) 2019-06-25 2020-12-30 三菱マテリアル株式会社 Pièce coulée en alliage de cuivre pour décolletage, et procédé de production de pièce coulée en alliage de cuivre pour décolletage
KR20220059528A (ko) 2019-12-11 2022-05-10 미쓰비시 마테리알 가부시키가이샤 쾌삭성 구리 합금, 및 쾌삭성 구리 합금의 제조 방법
GB2614752A (en) 2022-01-18 2023-07-19 Conex Ipr Ltd Components for drinking water pipes, and method for manufacturing same
KR20240063124A (ko) 2022-10-28 2024-05-09 엔지케이 인슐레이터 엘티디 납프리 쾌삭 베릴륨 동합금

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2237774A (en) * 1940-07-23 1941-04-08 Chase Brass & Copper Co Treating silicon copper-base alloys
FR1031211A (fr) * 1951-01-19 1953-06-22 Alliage utilisable dans l'art dentaire
JPH0368731A (ja) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd ラジエータープレート用銅合金および銅合金材の製造法
JPH09143598A (ja) * 1995-11-22 1997-06-03 Chuetsu Gokin Chuko Kk 加熱装置用黄銅合金材料
JPH09316570A (ja) * 1996-05-30 1997-12-09 Chuetsu Gokin Chuko Kk ワンウェイクラッチ用エンドベアリング及び その他の摺動部品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB352639A (en) * 1930-02-13 1931-07-16 Hirsch Kupfer & Messingwerke Improvements in and relating to copper-silicon-zinc alloys
US1954003A (en) * 1930-03-31 1934-04-10 Vaders Eugen Copper alloy for chill and die casting
CH148824A (de) * 1930-03-31 1931-08-15 Hirsch Kupfer & Messingwerke Verfahren zur Herstellung von Kokillengruss- und Spritzgussteilen.
GB354966A (en) * 1930-05-24 1931-08-20 Hirsch Kupfer & Messingwerke The method of manufacturing bells
DE1558470A1 (de) * 1967-02-02 1970-03-19 Dies Dr Ing Kurt Fliesspressteil
US3736131A (en) * 1970-12-23 1973-05-29 Armco Steel Corp Ferritic-austenitic stainless steel
US3900349A (en) * 1974-01-18 1975-08-19 Anaconda Co Silicon brass resistant to parting corrosion
GB1443090A (en) * 1974-03-25 1976-07-21 Anaconda Co Silicon brass resistant to partin corrosion-
JPS5696040A (en) * 1979-12-28 1981-08-03 Seiko Epson Corp Exterior decorative part material for casting
JPS61133357A (ja) * 1984-12-03 1986-06-20 Showa Alum Ind Kk 加工性および耐焼付性にすぐれた軸受用Cu合金
JPS62297429A (ja) * 1986-06-17 1987-12-24 Nippon Mining Co Ltd 耐食性に優れた銅合金
FR2765243B1 (fr) * 1997-06-30 1999-07-30 Usinor Acier inoxydable austenoferritique a tres bas nickel et presentant un fort allongement en traction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2237774A (en) * 1940-07-23 1941-04-08 Chase Brass & Copper Co Treating silicon copper-base alloys
FR1031211A (fr) * 1951-01-19 1953-06-22 Alliage utilisable dans l'art dentaire
JPH0368731A (ja) * 1989-08-08 1991-03-25 Nippon Mining Co Ltd ラジエータープレート用銅合金および銅合金材の製造法
JPH09143598A (ja) * 1995-11-22 1997-06-03 Chuetsu Gokin Chuko Kk 加熱装置用黄銅合金材料
JPH09316570A (ja) * 1996-05-30 1997-12-09 Chuetsu Gokin Chuko Kk ワンウェイクラッチ用エンドベアリング及び その他の摺動部品

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 227 (C-0839), 10 June 1991 (1991-06-10) -& JP 03 068731 A (NIPPON MINING CO LTD), 25 March 1991 (1991-03-25) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10, 31 October 1997 (1997-10-31) -& JP 09 143598 A (CHUETSU GOKIN CHUKO KK), 3 June 1997 (1997-06-03) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04, 31 March 1998 (1998-03-31) -& JP 09 316570 A (CHUETSU GOKIN CHUKO KK), 9 December 1997 (1997-12-09) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047991A1 (fr) 2011-09-30 2013-04-04 Poongsan Corporation Alliage de décolletage en cuivre sans plomb et son procédé de production
CN103930576A (zh) * 2011-09-30 2014-07-16 株式会社豊山 无铅易切削铜合金及其生产方法
EP2761042A1 (fr) * 2011-09-30 2014-08-06 Poongsan Corporation Alliage de décolletage en cuivre sans plomb et son procédé de production
AU2012317099B2 (en) * 2011-09-30 2016-01-14 Poongsan Corporation Leadless free-cutting copper alloy and method for producing the same
EP2761042A4 (fr) * 2011-09-30 2016-04-06 Poongsan Corp Alliage de décolletage en cuivre sans plomb et son procédé de production
CN103930576B (zh) * 2011-09-30 2016-04-20 株式会社豊山 无铅易切削铜合金及其生产方法
US9840758B2 (en) 2011-09-30 2017-12-12 Poongsan Corporation Leadless free-cutting copper alloy and method for producing the same
EP2761042B1 (fr) 2011-09-30 2018-10-10 Poongsan Corporation Alliage de décolletage en cuivre sans plomb
EP3985136A1 (fr) 2020-10-16 2022-04-20 Diehl Metall Stiftung & Co. KG Alliage de cuivre sans plomb et utilisage de l'alliage de cuivre sans plomb
DE102020127317A1 (de) 2020-10-16 2022-04-21 Diehl Metall Stiftung & Co. Kg Bleifreie Kupferlegierung sowie Verwendung der bleifreien Kupferlegierung

Also Published As

Publication number Publication date
EP1045041A1 (fr) 2000-10-18
CA2314144C (fr) 2006-08-22
AU1054199A (en) 2000-05-01
EP1045041B1 (fr) 2005-10-26
JP2000119775A (ja) 2000-04-25
JP3734372B2 (ja) 2006-01-11
EP1600517A3 (fr) 2005-12-14
EP1600516A3 (fr) 2005-12-14
EP1045041A4 (fr) 2003-05-07
CA2314144A1 (fr) 2000-04-20
WO2000022182A1 (fr) 2000-04-20
EP1600517B1 (fr) 2009-02-18
DE69832097T2 (de) 2006-07-06
EP1600515A3 (fr) 2005-12-14
KR20010033073A (ko) 2001-04-25
AU744335B2 (en) 2002-02-21
KR100352213B1 (ko) 2002-09-12
EP1600517A2 (fr) 2005-11-30
EP1559802B1 (fr) 2014-01-15
EP1559802A1 (fr) 2005-08-03
EP1600515B8 (fr) 2008-10-15
DE69838115D1 (de) 2007-08-30
DE69839830D1 (de) 2008-09-11
DE69840585D1 (de) 2009-04-02
TW421674B (en) 2001-02-11
EP1600516A2 (fr) 2005-11-30
EP1600516B1 (fr) 2007-07-18
EP1600515B1 (fr) 2008-07-30
DE69832097D1 (de) 2005-12-01
DE69838115T2 (de) 2008-04-10

Similar Documents

Publication Publication Date Title
EP1045041B1 (fr) Alliage de cuivre de decolletage sans plomb
US6413330B1 (en) Lead-free free-cutting copper alloys
EP1038981B1 (fr) Alliage de decolletage a base de cuivre
US8506730B2 (en) Copper/zinc alloys having low levels of lead and good machinability
CA2619357C (fr) Alliage de cuivre de decolletage presentant une tres faible teneur en plomb
US7056396B2 (en) Copper/zinc alloys having low levels of lead and good machinability
JPWO2006016442A1 (ja) 結晶粒が微細化された銅基合金鋳物
JP2002012927A (ja) 耐脱亜鉛性銅基合金
CN111655878B (zh) 不含有铅和铋的易切割无铅铜合金
KR100834201B1 (ko) 결정립이 미세화된 구리기합금주물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 20050808

AC Divisional application: reference to earlier application

Ref document number: 1045041

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FI FR GB IT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FI FR GB IT SE

AKX Designation fees paid

Designated state(s): BE DE FI FR GB IT SE

17Q First examination report despatched

Effective date: 20070125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1045041

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FI FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MITSUBISHI SHINDOH CO., LTD.

REF Corresponds to:

Ref document number: 69839830

Country of ref document: DE

Date of ref document: 20080911

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69839830

Country of ref document: DE

Representative=s name: BISCHOF & PARTNER RECHTSANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171127

Year of fee payment: 20

Ref country code: DE

Payment date: 20171205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69839830

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20181115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181115