EP1599930A2 - Machine electrique tournante comportant un stator et deux rotors - Google Patents

Machine electrique tournante comportant un stator et deux rotors

Info

Publication number
EP1599930A2
EP1599930A2 EP04717671A EP04717671A EP1599930A2 EP 1599930 A2 EP1599930 A2 EP 1599930A2 EP 04717671 A EP04717671 A EP 04717671A EP 04717671 A EP04717671 A EP 04717671A EP 1599930 A2 EP1599930 A2 EP 1599930A2
Authority
EP
European Patent Office
Prior art keywords
stator
machine according
teeth
rotors
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04717671A
Other languages
German (de)
English (en)
Inventor
Atef Abou Akar
Eric Coupart
Jacques Saint-Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moteurs Leroy Somer SAS
Original Assignee
Moteurs Leroy Somer SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moteurs Leroy Somer SAS filed Critical Moteurs Leroy Somer SAS
Publication of EP1599930A2 publication Critical patent/EP1599930A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to electrical machines and more particularly those comprising a stator, an outer rotor and an inner rotor integral with the outer rotor.
  • a machine with two concentric rotors is described in international application WO 91/06147.
  • the stator has teeth provided at their ends with pole shoes.
  • the coils have heads on which a heat transfer fluid such as oil is sprayed in order to dissipate the heat from the coils.
  • a heat transfer fluid such as oil is sprayed in order to dissipate the heat from the coils.
  • Such a machine is relatively complex to manufacture.
  • the electric motor described in application WO 91/06147 also has a relatively large size in the axial direction, due in particular to the presence of the coil heads and the means for cooling them.
  • the subject of the invention is, according to one of its aspects, an electric machine comprising: a stator comprising a plurality of teeth each supporting at least one individual coil, an external rotor disposed radially outside the stator and comprising magnets permanent, and - an inner rotor disposed radially inside the stator, comprising permanent magnets, and integral with the outer rotor.
  • stator teeth minimise to the use of individual coils associated with the stator teeth, rather than distributed coils, the construction of the machine is simplified and its reliability is increased.
  • stator is devoid of a fixed yoke which only serves electrically to re-engage the magnetic flux and which is a source of significant iron losses. Its elimination therefore entails the elimination of these losses and the considerable improvement in efficiency, in particular at high speed.
  • At least one of the outer rotor and the inner rotor is in flux concentration, and preferably the two rotors are in flux concentration, that is to say that two consecutive magnets of a rotor have faces of the same polarity arranged opposite a common adjacent pole piece, disposed between said magnets.
  • This can reduce the amount of magnets used without degrading the performance of the machine.
  • This can also allow the machine to operate at a high speed of rotation, the magnets of the inner rotor being able to be retained by the pole pieces, if necessary.
  • the two rotors have the same number of poles and the two rotors may or may not be offset angularly.
  • the two rotors are advantageously offset by an angle substantially equal to ⁇ / S, for example to within 10%
  • S mp
  • S being the number of stator teeth
  • p being the number of pairs of poles of a rotor
  • the two rotors are advantageously offset by an angle substantially equal to ⁇ / 2S, for example to within 10%.
  • the outer rotor may include pole pieces each having at least one recess on a radially outer side. This can make it possible to lighten the rotor without unduly reducing the efficiency of the machine, the magnetic flux lines being especially concentrated on the radially inner side of the pole pieces of the outer rotor.
  • the pole pieces of the outer rotor can for example pass through a minimum of mid-length section in the circumferential direction.
  • the magnets of at least one of the inner rotor and the outer rotor may have a wedge shape when viewed along the axis of rotation of the machine, of width increasing in distance from the stator. Such a shape of the magnets can allow the pole pieces to hold at a high speed of rotation of the rotor, without it being necessary to glue the magnets for example.
  • the inner rotor comprises pole pieces linked to a machine shaft by complementarity of shapes.
  • the pole pieces of the inner rotor may have grooves and may be engaged by these grooves on ribs of the shaft.
  • Such an arrangement can facilitate the construction of the rotor and in particular make it possible to avoid having to produce the pole pieces with openings making it possible to engage bars independent of the shaft of the machine, for example.
  • At least one of the rotors may include pole pieces disposed between the permanent magnets and each having, on their side facing the stator, a convex convex face towards the stator.
  • pole pieces disposed between the permanent magnets and each having, on their side facing the stator, a convex convex face towards the stator.
  • the stator can have 6n teeth and each of the rotors 6n ⁇ 2 poles, n being greater than or equal to 2. This can make it possible to have a high winding factor, reflecting the efficiency of use of the windings. , and thus a higher efficiency and / or a smaller footprint of the machine.
  • stator teeth may each have a first free end situated opposite one of the rotors.
  • the teeth can be fixed by a second end, opposite the first, on a non-magnetic support.
  • the support may for example be made of non-magnetic steel or aluminum or also of an insulating material.
  • stator teeth may each have two opposite free ends facing the inner and outer rotors, respectively.
  • the teeth can be held for example substantially at mid-length by a non-magnetic support. This support can be generally tabular.
  • Such an arrangement is particularly suitable when each of the stator teeth has two individual coils, which may not be electrically connected to each other, so as to have a stator comprising two independent electrical circuits, if necessary.
  • the stator may alternatively include a cylinder head made in one piece with the teeth.
  • the cylinder head can be made of a magnetic material.
  • stator teeth are devoid of pole shoes, which allows the individual coils to be fixed by engaging them on the teeth, the coils being produced separately.
  • the teeth of the stator may include pole shoes.
  • the stator teeth may have notches near their free end facing one of the rotors.
  • the coils can be held on the teeth by non-magnetic wedges engaged in these notches.
  • the outer rotor can be surrounded by a casing, for example of non-magnetic steel or aluminum, which can be fixed on the shaft of the machine, which is for example of aluminum.
  • a casing for example of non-magnetic steel or aluminum, which can be fixed on the shaft of the machine, which is for example of aluminum.
  • the stator can thus have a double structure, as can the inner rotor or the outer rotor.
  • the machine can constitute a synchronous motor or a generator, or even both successively, and be used for example in an electric vehicle to drive the wheels and recover energy during braking.
  • FIG. 1 is a schematic view in cross section of an example of a machine according to the invention
  • FIG. 2 is a partial and schematic view in axial section of the machine of FIG. 1,
  • FIGS. 11 and 12 represent two examples of variant implementation of the invention
  • - FIGS. 13 and 14 are views similar to FIG. 7 of alternative embodiments of the stator.
  • the electric machine 1 shown in Figures 1 and 2 comprises a stator 10, an inner rotor 20 and an outer rotor 30 integral with each other by means of a mechanical connection 2 between them.
  • the stator 10 comprises a plurality of teeth 11 formed by a stack of magnetic sheets electrically insulated from each other, these teeth being fixed to a support piece 12 made of a non-magnetic material, for example a non-magnetic steel or aluminum, or in an insulating material.
  • the support piece 12 is fixed, in the example described, to a frame 3 of the machine, as shown diagrammatically in FIG. 2.
  • the teeth 11 are fixed by their radially innermost end to the support piece 12, which has a generally tabular shape.
  • the teeth 11 can be fixed by any means to the support piece 12, being for example welded thereto.
  • Each tooth 11 carries an individual coil 13 which comprises one or more electrical conductors wound around the axis of the corresponding tooth.
  • the coils 13 are connected to non-visible electrical conductors.
  • a conventional device makes it possible, in the case where the machine is used as a motor, to generate a rotating magnetic field, and, in the case where the machine is used as a generator, to collect the induced current.
  • the coils 13 can for example be connected to partially stripped cables, as described in patent application EP-A-1 251 623.
  • the teeth 11 are devoid, as can be seen, of pole shoes at their radially outer end, in order to allow the positioning of the coils 13 previously produced.
  • the teeth 11 may have parallel or non-parallel lateral faces, in particular diverging faces away from the external rotor 30, in order for example to allow a certain jamming of the coils 13 on the teeth, as described in patent application EP-A-1 251 623 cited above.
  • the teeth may each have, in the vicinity of their free end, two small notches 14 intended to allow the fixing on the teeth of shims 15 for holding the coils.
  • These shims 15 can be made of insulating material, for example plastic.
  • the inner rotor 20 includes a non-magnetic shaft 21, for example made of aluminum or an alloy of this metal, non-magnetic steel, or a composite material.
  • the shaft 21 has ribs 22 used for the attachment of pole pieces
  • Each rib 22 has in cross section a general shape of T.
  • the pole pieces 23 are not magnetically connected to each other, given the use of a non-magnetic material to make the tree.
  • the pole pieces 23 have a convex and convex face 24 in the direction of the stator 10.
  • Permanent magnets 25 are arranged radially between the pole pieces 23. Each magnet 25 has, when observed along the axis of rotation X of the machine, a slightly wedge-shaped shape, of width decreasing in the direction of the stator 10.
  • Each magnet 25 has transverse magnetization and can be in one piece or consist of several elementary magnets placed end to end.
  • the magnetic poles of the same polarity of two adjacent magnets 25 are directed towards the pole piece 23 situated between these two magnets, as illustrated in FIG. 1.
  • the magnets 25 extend over practically the entire radial dimension of the sides of the pole pieces 23 and in contact with them.
  • the housings formed between the pole pieces 23, and in which the magnets 25 are placed tend to widen under the effect of centrifugal force when the inner rotor 20 rotates at a speed greater than a predetermined speed, taking into account the elasticity of the materials used, this enlargement tending to decrease when the speed of rotation decreases.
  • the inner rotor 20 can be similar to the rotor described in patent application EP-A-1 249 919.
  • the outer rotor 30 comprises permanent magnets 31 placed between pole pieces 32, surrounded by a non-magnetic envelope 33, for example as described in patent application EP-A-1 251 023.
  • the magnets 31 have in the example described a wedge shape when observed along the axis of rotation X of the machine, of width increasing away from the stator.
  • the poles of the two rotors are not angularly offset.
  • Two consecutive magnets 25, 31 of the exterior 30 and interior 20 rotors have faces of the same polarity arranged opposite a common adjacent pole piece 23, 32, disposed between said magnets.
  • Two pole pieces 23, 32 of each of the inner 20 and outer 30 rotors located on the same radius are of opposite N, S polarity.
  • the stator 10 has twelve teeth 11 and twelve coils 13, and each of the rotors has eight poles, but the numbers of teeth or of poles can be different without leaving the framework of the present invention.
  • the pole pieces 32 of the outer rotor 30 have radially inner 32a and outer 32b cylindrical faces. It is not beyond the scope of the present invention if the pole pieces have a different shape.
  • the pole pieces of the outer rotor 30 may for example have a radially inner curved face, convex in the direction of the stator, as shown in FIG. 3.
  • the outer rotor 30 may comprise pole pieces each comprising at least one recess on their radially outer side.
  • FIG. 3 shows an external rotor comprising recesses 34 between each of the pole pieces 32 and the non-magnetic envelope 33.
  • the pole pieces 32 of the outside rotor 30 each pass through a minimum. mid-length in the circumferential direction.
  • the outer rotor 30 could also not have recesses 34 and the pole pieces 32 of the convex convex faces 32a in the direction of the stator, without departing from the scope of the present invention.
  • the permanent magnets 25 and 31 of the inner 20 and outer 30 rotors are generally trapezoidal. It is not beyond the scope of the present invention when the shape of the magnets is different.
  • FIG. 4 there is partially shown in FIG. 4 a machine comprising permanent magnets, of generally parallelepiped shape. It is not beyond the scope of the present invention when the magnets of only one of the two rotors are trapezoidal and the magnets of the other rotor are parallelepiped.
  • the pole pieces 23 of the inner rotor 20 can then include recesses 26 allowing the magnets to be retained between two successive pole pieces.
  • the inner rotor 20 which has just been described with reference to Figures 1 to 3 comprises pole pieces 23 fixed by complementary shapes on ribs 22 of the shaft 21. It is not beyond the scope of the present invention when the pieces poles 23 are fixed in another way to the shaft 21.
  • the pole pieces 23 shown in FIG. 4 are fixed by bars 27 passing through the pole pieces and connected at each of their ends to holding flanges, not shown.
  • the shaft 21 is in this example of generally cylindrical shape.
  • the poles of the inner and outer rotors are not angularly offset.
  • the poles of the two rotors are angularly offset, as shown by way of example in FIG. 5.
  • the poles are offset by an angle ⁇ which may have been deliberately exaggerated for the sake of clarity of the drawing.
  • Such an offset makes it possible to reduce, or even eliminate, the torque pulsations.
  • the number of teeth n teeth of the stator is equal to 12
  • the number of poles of each of the rotors is equal to 8
  • the number of pairs of poles n pa i res being equal to 4
  • FIG. 6 shows a machine comprising twelve teeth and ten poles at each of the rotors.
  • the stator thus has 6n teeth and each of the rotors 6n ⁇ 2 poles, n being equal to 2 in this example, but it is not beyond the scope of the present invention when n is greater than 2.
  • each of the stator teeth carries a single individual coil, but it is not beyond the scope of the present invention when each of the stator teeth carries more than one, and in particular two, individual coils .
  • a stator 40 comprising teeth 41 held substantially at mid-length of their radial edges 42 by a support 43 non-magnetic or made of insulating material or even the combination of both, of closed ring shape on one or both sides.
  • the support 43 can be magnetic.
  • the teeth 41 have free ends 44 and 45 respectively facing the inner rotor 20 and the outer rotor 30, each devoid of pole shoes.
  • Coils 46 and 47 are respectively placed on either side of the support 43 on each tooth 41 to create a magnetic field rotating respectively in the interior and exterior rotors or to recover the current induced by the interior and exterior rotors.
  • the edges 42 of each tooth 41 are parallel but the teeth 41 could, if necessary, have edges 42 which are not parallel, the teeth 41 widening for example in the direction of the support 43 so that the coils 46 and 47 can be engaged on the teeth 41 with a certain clamping effect.
  • the teeth 41 could also have at each of their free ends 44, 45 two small notches intended to allow the fixing on the teeth of shims for holding the coils on the teeth, in a similar manner to what has been described with reference to FIGS. 1 and 2.
  • the teeth are devoid of pole shoes, but it is not going beyond the ambit of the invention if the teeth comprise pole shoes 70 allowing, for example, the fixing of support wedges 71 coils, as shown schematically in Figure 13.
  • the support 43 is shown diagrammatically in FIG. 8. Of generally annular shape, it has openings 48 intended to receive the teeth 41. These can be fixed by any means to the support 43, for example by force, by welding or again by gluing.
  • stator is produced differently.
  • the stator can for example comprise coils 46, 47 placed on a yoke 73 produced integrally with the teeth 41, for example in a magnetic material, as illustrated diagrammatically in FIG. 14.
  • the stator of Figure 14 can be achieved by molding for example, or by stacking sheets. The stator can still be produced differently.
  • stator having teeth 41 having in the middle of their edges 42 notches 50 adapted to receive ends 52 of elements 53 connecting the teeth together.
  • Each of the elements 53 has a generally curved shape, being provided at its ends with reliefs intended to cooperate with the notches 50 to securely hold two successive teeth 41.
  • the elements 53 can be non-magnetic or, alternatively, magnetic.
  • the coils carried by the same tooth can be electrically connected to each other, but it is not beyond the scope of the present invention when the two coils of the same tooth are not electrically connected to each other.
  • the internal and external coils of the stator can form two independent three-phase electric circuits 61 and
  • the two electrical circuits 61 and 62 may or may not have a common neutral point 69 shown in dotted lines, which may or may not be connected to the neutral point 67 of the two step-up or step-down choppers 65 and 66.
  • FIGS. 11 and 12 show other possible configurations.
  • the internal rotor 20 can be connected to the external rotor 30 by a mechanical connection 2 'which extends radially between two parts 10a and 10b of the stator 10, the latter having a double structure.
  • Each part 10a or 10b has teeth each carrying one or two individual coils like what has been described above and the inner and outer rotors each have a double structure also, with respective first parts 20a and 30a intended to cooperate with the part 10a of the stator and of the respective second parts 20b and 30b intended to cooperate with the part 10b of the stator.
  • the stator 10 also has a double structure with two parts 10a and 10b, as do the inner and outer rotors.
  • the parts 10a and 10b of the stator are connected to the frame 3 by means of a mechanical connection 70 connecting to the opposite ends of the parts 10a and 10b of the stator.
  • the part 20a of the inner rotor is connected, by a mechanical connection 2 "similar to that shown in FIG. 2, to the part 30a of the outer rotor and it is the same for the other part 20b of the inner rotor, which is connected by a mechanical connection 2 "to the other part 30b of the outer rotor 30.
  • stator and the interior and exterior rotors are generally symmetrical with respect to a median plane M perpendicular to the axis of rotation X, but this is not compulsory and it is possible without going out of the framework of the present invention to realize double structures with asymmetrical parts.
  • the invention is not limited to the examples which have just been described. One can in particular combine together the characteristics of the various embodiments described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

La présente invention concerne une machine électrique comportant, un stator (10; 40) comportant une pluralité de dents (11; 41) supportant chacune au moins une bobine (13; 46; 47) individuelle, un rotor extérieur (30) disposé radialement à l'extérieur du stator et comportant des aimants permanents, un rotor intérieur (20) disposé radialement à l'intérieur du stator, comportant des aimants permanents, et solidaire du rotor extérieur (30), l'un au moins du rotor extérieur (30) et du rotor intérieur (20) étant à concentration de flux.

Description

Machine électrique tournante comportant un stator et deux rotors La présente invention concerne les machines électriques et plus particulièrement celles comportant un stator, un rotor extérieur et un rotor intérieur solidaire du rotor extérieur. Une machine à deux rotors concentriques est décrite dans la demande internationale WO 91/06147. Le stator comporte des dents pourvues à leur extrémité d'épanouissements polaires. Les bobines présentent des têtes sur lesquelles un fluide caloporteur tel que de l'huile est projeté afin d'évacuer la chaleur des bobinages. Une telle machine est de fabrication relativement complexe. Le moteur électrique décrit dans la demande WO 91/06147 présente en outre un encombrement dans le sens axial relativement important, en raison notamment de la présence des têtes de bobines et des moyens de refroidissement de celles-ci.
Il existe un besoin pour bénéficier d'une machine de construction simplifiée et de fonctionnement fiable sans nécessiter un refroidissement par projection d'un liquide caloporteur sur les bobines.
Il existe également un besoin pour disposer d'une machine sous un encombrement assez faible capable de fonctionner avec un couple élevé et/ou une vitesse élevée.
L'invention a pour objet, selon l'un de ses aspects, une machine électrique comportant : un stator comportant une pluralité de dents supportant chacune au moins une bobine individuelle, un rotor extérieur disposé radialement à l'extérieur du stator et comportant des aimants permanents, et - un rotor intérieur disposé radialement à l'intérieur du stator, comportant des aimants permanents, et solidaire du rotor extérieur.
Grâce à l'utilisation de bobines individuelles associées aux dents du stator, plutôt que des bobinages distribués, la construction de la machine est simplifiée et sa fiabilité en est augmentée. La présence des rotors extérieur et intérieur permet pratiquement de doubler le couple dans le même volume, par comparaison à un moteur à rotor unique. De même, le stator se trouve dépourvu de culasse fixe qui ne sert électriquement qu'à refemier le flux magnétique et qui est une source de pertes fer importantes. Sa suppression entraîne donc la suppression de ces pertes et l'amélioration considérable du rendement, en particulier à grande vitesse. De préférence, l'un au moins du rotor extérieur et du rotor intérieur est à concentration de flux, et de préférence les deux rotors sont à concentration de flux, c'est-à- dire que deux aimants consécutifs d'un rotor ont des faces de même polarité disposées en regard d'une pièce polaire adjacente commune, disposée entre lesdits aimants. Cela peut permettre de diminuer la quantité d'aimants utilisés sans pour autant dégrader les performances de la machine. Cela peut permettre également un fonctionnement de la machine à une vitesse de rotation élevée, les aimants du rotor intérieur pouvant être retenus par les pièces polaires, le cas échéant.
Les deux rotors comportent le même nombre de pôles et les deux rotors peuvent être ou ne pas être décalés angulairement. Dans les réalisations où les rotors sont décalés angulairement, lorsque le nombre de phases m est pair, les deux rotors sont avantageusement décalés d'un angle sensiblement égal à π/S, par exemple à 10 % près, où S = m.p, S étant le nombre de dents du stator, p étant le nombre de paires de pôles d'un rotor, et lorsque m est impair, les deux rotors sont avantageusement décalés d'un angle sensiblement égal à π/2S, par exemple à 10 % près.
Le rotor extérieur peut comporter des pièces polaires comportant chacune au moins un évidement sur un côté radialement extérieur. Cela peut permettre d'alléger le rotor sans pour autant diminuer outre mesure le rendement de la machine, les lignes de flux magnétiques étant surtout concentrées du côté radialement intérieur des pièces polaires du rotor extérieur. Les pièces polaires du rotor extérieur peuvent par exemple passer par un minimum de section à mi-longueur dans le sens circonférentiel.
Les aimants de l'un au moins du rotor intérieur et du rotor extérieur peuvent présenter une forme de coin lorsqu' observés selon l'axe de rotation de la machine, de largeur augmentant en éloignement du stator. Une telle forme des aimants peut permettre un maintien par les pièces polaires à une vitesse de rotation élevée du rotor, sans qu'il soit nécessaire de coller les aimants par exemple. Dans une réalisation particulière, le rotor intérieur comporte des pièces polaires liées à un arbre de la machine par complémentarité de formes. Par exemple, les pièces polaires du rotor intérieur peuvent présenter des rainures et peuvent être engagées par ces rainures sur des nervures de l'arbre. Une telle disposition peut faciliter la construction du rotor et notamment permettre d'éviter d'avoir à réaliser les pièces polaires avec des ouvertures permettant d'y engager des barreaux indépendants de l'arbre de la machine, par exemple.
Toujours dans une réalisation particulière, l'un au moins des rotors peut comporter des pièces polaires disposées entre les aimants permanents et présentant chacune, sur leur côté tourné vers le stator, une face bombée convexe vers le stator. Une telle forme des pièces polaires peut permettre de minimiser la différence Ld - Lq, donc de ne pas utiliser la réluctance pour générer la force motrice, et de diminuer les ondulations de couple.
Dans une réalisation particulière, le stator comportant naents dents, chacun des rotors comportant npaires paires de pôles et le courant étant à nPhases phases, le nombre de dents ndents du stator peut être choisi de manière à avoir la relation nd.nts = npaires * nprιases- Le respect de cette relation peut permettre de ne pas soumettre le stator à des contraintes tendant à l'ovaliser.
Dans une autre réalisation particulière, le stator peut comporter 6n dents et chacun des rotors 6n ± 2 pôles, n étant supérieur ou égal à 2. Cela peut permettre d'avoir un facteur de bobinage élevé, traduisant l'efficacité d'utilisation des enroulements, et ainsi un rendement plus élevé et/ou un encombrement de la machine plus faible.
Dans une réalisation particulière, les dents du stator peuvent comporter chacune une première extrémité libre située face à l'un des rotors. Les dents peuvent être fixées par une deuxième extrémité, opposée à la première, sur un support amagnétique. Le support peut être par exemple en acier amagnétique ou en aluminium ou encore en matériau isolant.
Une telle configuration convient tout particulièrement lorsque chaque dent du stator sert de noyau à un enroulement en supportant une seule bobine individuelle. On parle de bobinage concentré ou en anglais « concentrated winding ».
En variante, les dents du stator peuvent comporter chacune deux extrémités libres opposées faisant respectivement face aux rotors intérieur et extérieur. Les dents peuvent être maintenues par exemple sensiblement à mi-longueur par un support amagnétique. Ce support peut être de forme générale tabulaire. Une telle disposition convient tout particulièrement lorsque chacune des dents du stator comporte deux bobines individuelles, lesquelles peuvent ne pas être reliées électriquement entre elles, de façon à avoir un stator comportant deux circuits électriques indépendants, le cas échéant.
Le stator peut en variante comporter une culasse réalisée d'un seul tenant avec les dents. La culasse peut être réalisée dans un matériau magnétique.
De préférence, les dents du stator sont dépourvues d'épanouissements polaires, ce qui permet la fixation des bobines individuelles en les engageant sur les dents, les bobines étant réalisées à part.
En variante, les dents du stator peuvent comporter des épanouissements polaires.
Les dents du stator peuvent comporter des encoches à proximité de leur extrémité libre faisant face à l'un des rotors. Les bobines peuvent être maintenues sur les dents par des cales amagnétiques engagées dans ces encoches.
Le rotor extérieur peut être entouré d'une enveloppe, par exemple en acier amagnétique ou en aluminium, qui peut venir se fixer sur l'arbre de la machine, lequel est par exemple en aluminium. Pour des machines présentant une dimension axiale relativement importante, il peut s'avérer souhaitable de dédoubler la structure afin de réduire la longueur en porte-à- faux du stator et des rotors.
Le stator peut ainsi présenter une structure double, de même que le rotor intérieur ou le rotor extérieur. La machine peut constituer un moteur synchrone ou un générateur, voire les deux successivement, et être utilisée par exemple dans un véhicule électrique pour entraîner les roues et récupérer de l'énergie lors du freinage.
L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mises en œuvre non limitatifs de celle-ci, et à l'examen du dessin annexé, sur lequel :
- la figure 1 est une vue schématique en coupe transversale d'un exemple de machine conforme à l'invention, - la figure 2 est une vue partielle et schématique en coupe axiale de la machine de la figure 1,
- les figures 3 à 6 sont des vues partielles similaires à la figure 1, de variantes de réalisation de l'invention, - la figure 7 est une vue schématique et partielle en coupe transversale d'une variante de réalisation du stator, la figure 8 représente isolément une pièce de support des dents du stator de la figure 7, la figure 9 est une vue analogue à la figure 7 d'une variante de réalisation du stator, la figure 10 est un schéma électrique illustrant la possibilité d'avoir au stator deux circuits électriques indépendants afin de constituer facilement un point neutre, les figures 11 et 12 représentent deux exemples de variante de mise en œuvre de l'invention, et - les figures 13 et 14 sont des vues analogues à la figure 7 de variantes de réalisation du stator.
La machine électrique 1 représentée aux figures 1 et 2 comporte un stator 10, un rotor intérieur 20 et un rotor extérieur 30 solidaires l'un de l'autre grâce à une liaison mécanique 2 entre eux. Le stator 10 comporte une pluralité de dents 11 formée par un empilage de tôles magnétiques isolées électriquement entre elles, ces dents étant fixées à une pièce de support 12 réalisée dans un matériau amagnétique, par exemple un acier amagnétique ou de l'aluminium, ou dans un matériau isolant.
La pièce de support 12 est fixée, dans l'exemple décrit, à un bâti 3 de la machine, comme on l'a représenté schématiquement à la figure 2.
Dans l'exemple considéré, les dents 11 sont fixées par leur extrémité radialement la plus intérieure sur la pièce de support 12, laquelle présente une forme généralement tabulaire. Les dents 11 peuvent être fixées par tous moyens sur la pièce de support 12, étant par exemple soudées sur celle-ci. Chaque dent 11 porte une bobine individuelle 13 qui comporte un ou plusieurs conducteurs électriques enroulés autour de l'axe de la dent correspondante. Les bobines 13 sont reliées à des conducteurs électriques non apparents. Un dispositif conventionnel permet, dans le cas où la machine est utilisée en moteur, de générer un champ magnétique tournant, et, dans le cas où la machine est utilisée en générateur, de collecter le courant induit. Les bobines 13 peuvent par exemple être reliées à des câbles partiellement dénudés, comme décrit dans la demande de brevet EP-A-1 251 623.
Les dents 11 sont dépourvues, comme on peut le constater, d'épanouissements polaires à leur extrémité radialement extérieure, afin de permettre la mise en place des bobines 13 fabriquées préalablement. Les dents 11 peuvent présenter des faces latérales parallèles ou non, notamment des faces divergeant en éloignement du rotor extérieur 30, afin par exemple de permettre un certain coincement des bobines 13 sur les dents, comme décrit dans la demande de brevet EP-A-1 251 623 précitée.
Les dents peuvent présenter chacune, au voisinage de leur extrémité libre, deux petites encoches 14 destinées à permettre la fixation sur les dents de cales 15 de maintien des bobines. Ces cales 15 peuvent être en matériau isolant, par exemple en matière plastique.
Le rotor intérieur 20 comporte un arbre 21 amagnétique, par exemple fabriqué en aluminium ou en alliage de ce métal, en acier amagnétique, ou en matériau composite. L'arbre 21 comporte des nervures 22 servant à l'accrochage de pièces polaires
23 constituées chacune par un paquet de tôles magnétiques identiques superposées. L'utilisation de tôles magnétiques superposées permet de réduire les pertes par courants induits. Chaque nervure 22 présente en section transversale une forme générale de T. Les pièces polaires 23 ne sont pas reliées magnétiquement entre elles, compte tenu de l'utilisation d'un matériau amagnétique pour réaliser l'arbre.
Dans l'exemple considéré, les pièces polaires 23 présentent une face 24 bombée et convexe en direction du stator 10.
Des aimants permanents 25 sont disposés radialement entre les pièces polaires 23. Chaque aimant 25 présente, lorsqu'observé selon l'axe de rotation X de la machine, une forme légèrement en coin, de largeur diminuant en direction du stator 10.
Chaque aimant 25 présente une aimantation transverse et peut être monobloc ou être constitué par plusieurs aimants élémentaires mis bout à bout. Les pôles magnétiques de même polarité de deux aimants 25 adjacents sont dirigés vers la pièce polaire 23 située entre ces deux aimants, comme illustré sur la figure 1. Dans l'exemple représenté, les aimants 25 s'étendent sur pratiquement toute la dimension radiale des côtés des pièces polaires 23 et à leur contact. Les logements formés entre les pièces polaires 23, et dans lesquels sont placés les aimants 25, tendent à s'élargir sous l'effet de la force centrifuge lorsque le rotor 20 intérieur tourne à une vitesse supérieure à une vitesse prédéterminée, compte tenu de l'élasticité des matériaux utilisés, cet élargissement tendant à diminuer lorsque la vitesse de rotation diminue. D'une manière générale, le rotor intérieur 20 peut être semblable au rotor décrit dans la demande de brevet EP-A-1 249 919.
Le rotor extérieur 30 comporte des aimants permanents 31 placés entre des pièces polaires 32, entouré d'une enveloppe amagnétique 33, par exemple comme décrit dans la demande de brevet EP-A-1 251 023. Les aimants 31 présentent dans l'exemple décrit une forme de coin lorsqu' observés selon l'axe de rotation X de la machine, de largeur augmentant en éloignement du stator.
Dans l'exemple considéré, les pôles des deux rotors ne sont pas décalés angulairement. Deux aimants consécutifs 25, 31 des rotors extérieur 30 et intérieur 20 ont des faces de même polarité disposés en regard d'une pièce polaire 23, 32 adjacente commune, disposée entre lesdits aimants. Deux pièces polaires 23, 32 de chacun des rotors intérieur 20 et extérieur 30 situées sur un même rayon sont de polarité N, S opposée.
Dans l'exemple des figures 1 et 2, le stator 10 comporte douze dents 11 et douze bobines 13, et chacun des rotors comporte huit pôles, mais les nombres de dents ou de pôles peuvent être différents sans que l'on sorte du cadre de la présente invention.
Toujours dans l'exemple de ces figures, les pièces polaires 32 du rotor extérieur 30 présentent des faces radialement intérieure 32a et extérieure 32b cylindriques. On ne sort pas du cadre de la présente invention si les pièces polaires ont une forme différente. Les pièces polaires du rotor extérieur 30 peuvent par exemple comporter une face radialement intérieure bombée, convexe en direction du stator, comme on l'a représenté à la figure 3. Le rotor extérieur 30 peut comporter des pièces polaires comportant chacune au moins un évidement sur leur côté radialement extérieur.
A titre d'exemple, on a représenté à la figure 3 un rotor extérieur comportant des évidements 34 entre chacune des pièces polaires 32 et l'enveloppe amagnétique 33. Dans cet exemple, les pièces polaires 32 du rotor extérieur 30 passent chacune par un minimum de section à mi-longueur dans le sens circonférentiel.
Bien entendu, le rotor extérieur 30 pourrait encore ne pas comporter d'évidements 34 et les pièces polaires 32 des faces 32a bombées convexes en direction du stator, sans que l'on sorte du cadre de la présente invention. Dans les exemples des figures 1 à 3, les aimants permanents 25 et 31 des rotors intérieur 20 et extérieur 30 sont de forme générale trapézoïdale. On ne sort pas du cadre de la présente invention lorsque la forme des aimants est différente.
A titre d'exemple, on a représenté partiellement à la figure 4 une machine comportant des aimants permanents, de forme générale parallélépipédique. On ne sort pas du cadre de la présente invention lorsque les aimants d'un seul des deux rotors sont trapézoïdaux et les aimants de l'autre rotor sont parallélépipédiques. Les pièces polaires 23 du rotor intérieur 20 peuvent comporter alors des décrochements 26 permettant de retenir les aimants entre deux pièces polaires successives.
Le rotor intérieur 20 qui vient d'être décrit en référence aux figures 1 à 3 comporte des pièces polaires 23 fixées par complémentarité de formes sur des nervures 22 de l'arbre 21. On ne sort pas du cadre de la présente invention lorsque les pièces polaires 23 sont fixées d'une autre manière sur l'arbre 21.
Les pièces polaires 23 représentées à la figure 4 sont fixées par des barreaux 27 traversant les pièces polaires et reliées à chacune de leurs extrémités à des flasques de maintien non représentés. L'arbre 21 est dans cet exemple de forme générale cylindrique.
Dans les exemples qui viennent d'être décrits, les pôles des rotors intérieur et extérieur ne sont pas décalés angulairement.
On ne sort pas du cadre de la présente invention lorsque les pôles des deux rotors sont décalés angulairement, comme on l'a représenté à titre d'exemple à la figure 5. Sur cette figure, les pôles sont décalés d'un angle α qui a pu être volontairement exagéré dans un souci de clarté du dessin. Lorsque le nombre de phases m est pair, les deux rotors peuvent être décalés d'un angle α sensiblement égal à π/S, où S = m.p, S étant le nombre de dents du stator, P étant le nombre de paires de pôles d'un rotor, et lorsque m est impair, les deux rotors peuvent être décalés d'un angle α sensiblement égal à π/2S. Un tel décalage permet de réduire, voire d'éliminer les pulsations de couple.
Dans les exemples qui viennent d'être décrits, le nombre de dents ndents du stator est égal à 12, le nombre de pôles de chacun des rotors est égal à 8, le nombre de paires de pôles npaires étant égal à 4, le nombre de phases étant égal à 3, vérifiant ainsi la relation ndents = nphases * nPaires. On ne sort pas du cadre de la présente invention lorsque le nombre de dents du stator ou le nombre de pôles de chacun des rotors est différent.
A titre d'exemple, on a représenté à la figure 6 une machine comportant douze dents et dix pôles à chacun des rotors. Le stator comporte ainsi 6n dents et chacun des rotors 6n ± 2 pôles, n étant égal à 2 dans cet exemple, mais on ne sort pas du cadre de la présente invention lorsque n est supérieur à 2.
Dans les exemples qui viennent d'être décrits, chacune des dents du stator porte une seule bobine individuelle, mais on ne sort pas du cadre de la présente invention lorsque chacune des dents du stator porte plus d'une, et notamment deux, bobines individuelles. A titre d'exemple, on a représenté à la figure 7, de façon schématique et partielle, un stator 40 comportant des dents 41 maintenues sensiblement à mi-longueur de leurs bords radiaux 42 par un support 43 amagnétique ou en matériau isolant ou encore la combinaison des deux, de fomie annulaire fermé d'un ou des deux côtés. En variante, le support 43 peut être magnétique. Les dents 41 comportent des extrémités libres 44 et 45 faisant respectivement face au rotor intérieur 20 et au rotor extérieur 30, dépourvue chacune d'épanouissement polaire.
Des bobines 46 et 47 sont respectivement placées de part et d'autre du support 43 sur chaque dent 41 pour créer un champ magnétique tournant respectivement dans les rotors intérieur et extérieur ou récupérer le courant induit par les rotors intérieur et extérieur. Dans l'exemple de la figure 7, les bords 42 de chaque dent 41 sont parallèles mais les dents 41 pourraient, le cas échéant, comporter des bords 42 non parallèles, les dents 41 s 'élargissant par exemple en direction du support 43 de manière à ce que les bobines 46 et 47 puissent être engagées sur les dents 41 avec un certain effet de serrage. Les dents 41 pourraient également comporter à chacune de leurs extrémités libres 44, 45 deux petites encoches destinées à permettre la fixation sur les dents de cales de maintien des bobines sur les dents, de manière similaire à ce qui a été décrit en référence aux figures 1 et 2.
Dans ce qui vient d'être décrit, les dents sont dépourvues d'épanouissement polaire, mais on ne sort pas du cadre de l'invention si les dents comportent des épanouissements polaires 70 permettant par exemple la fixation sur les dents de cales de maintien 71 des bobines, comme on l'a illustré de manière schématique à la figure 13.
Le support 43 est représenté schématiquement à la figure 8. De forme générale annulaire, il comporte des ouvertures 48 destinées à recevoir les dents 41. Celles-ci peuvent être fixées par tous moyens sur le support 43, par exemple à force, par soudage ou encore par collage.
On ne sort pas du cadre de la présente invention lorsque le stator est réalisé différemment.
Le stator peut par exemple comporter des bobines 46, 47 placées sur une culasse 73 réalisée d'un seul tenant avec les dents 41, par exemple dans un matériau magnétique, comme on l'a illustré de manière schématique à la figure 14. Le stator de la figure 14 peut être réalisé par moulage par exemple, ou encore par empilage de tôles. Le stator peut encore être réalisé différemment.
A titre d'exemple, on a représenté à la figure 9 un stator comportant des dents 41 comportant au milieu de leurs bords 42 des encoches 50 aptes à recevoir des extrémités 52 d'éléments 53 reliant les dents entre elles.
Chacun des éléments 53 présente une forme générale incurvée, étant pourvu à ses extrémités de reliefs destinés à coopérer avec les encoches 50 pour maintenir solidairement deux dents 41 successives. Les éléments 53 peuvent être amagnétiques ou, en variante, magnétiques. Les bobines portées par une même dent peuvent être reliées électriquement entre elles, mais on ne sort pas du cadre de la présente invention lorsque les deux bobines d'une même dent ne sont pas reliées électriquement entre elles.
Dans ce cas, comme on l'a représenté à la figure 10, les bobines intérieure et extérieure du stator peuvent former deux circuits électriques indépendants triphasés 61 et
62 reliés, à la sortie de la machine 1, à des circuits redresseurs respectifs 63, 64 puis à des hacheurs élévateurs ou abaisseurs de tensions 65, 66, avec constitution d'un point neutre
67.
Les deux circuits électriques 61 et 62 peuvent ou non avoir un point neutre commun 69 représenté en pointillés, qui peut être relié ou non au point neutre 67 des deux hacheurs élévateurs ou abaisseurs de tension 65 et 66.
On a représenté sur les figures 11 et 12 d'autres configurations possibles. En particulier, comme illustré sur la figure 11, le rotor intérieur 20 peut être relié au rotor extérieur 30 par une liaison mécanique 2' qui s'étend radialement entre deux parties 10a et 10b du stator 10, ce dernier ayant une structure double.
Chaque partie 10a ou 10b comporte des dents portant chacune une ou deux bobines individuelles à l'instar de ce qui a été décrit précédemment et les rotors intérieur et extérieur présentent chacun une structure double également, avec des premières parties respectives 20a et 30a destinées à coopérer avec la partie 10a du stator et des deuxièmes parties respectives 20b et 30b destinées à coopérer avec la partie 10b du stator.
Dans la variante de réalisation de la figure 12, le stator 10 présente encore une structure double avec deux parties 10a et 10b, de même que les rotors intérieur et extérieur. Les parties 10a et 10b du stator sont reliées au bâti 3 par l'intermédiaire d'une liaison mécanique 70 se raccordant aux extrémités en regard des parties 10a et 10b du stator. La partie 20a du rotor intérieur se raccorde, par une liaison mécanique 2" similaire à celle représentée sur la figure 2, à la partie 30a du rotor extérieur et il en est de même pour l'autre partie 20b du rotor intérieur, qui est relié par une liaison mécanique 2" à l'autre partie 30b du rotor extérieur 30.
Dans les exemples des figures 11 et 12, le stator et les rotors intérieur et extérieur sont globalement symétriques par rapport à un plan médian M perpendiculaire à l'axe de rotation X, mais cela n'est pas obligatoire et l'on peut sans sortir du cadre de la présente invention réaliser des structures doubles avec des parties dissymétriques. Bien entendu, l'invention n'est pas limitée aux exemples qui viennent d'être décrits. On peut notamment combiner entre elles les caractéristiques des différents modes de réalisation décrits.
Dans toute la description, y compris les revendications, l'expression « comportant un » doit être comprise comme étant synonyme de « comportant au moins un », sauf si le contraire est spécifié.

Claims

REVENDICATIONS
1. Machine électrique comportant :
- un stator (10 ; 40) comportant une pluralité de dents (11 ; 41) supportant chacune au moins une bobine (13 ; 46 ; 47) individuelle,
- un rotor extérieur (30) disposé radialement à l'extérieur du stator et comportant des aimants permanents,
- un rotor intérieur (20) disposé radialement à l'intérieur du stator, comportant des aimants permanents, et solidaire du rotor extérieur (30), l'un au moins du rotor extérieur (30) et du rotor intérieur (20) étant à concentration de flux.
2. Machine selon la revendication précédente, caractérisée par le fait que les dents (11 ; 41) du stator (10 ; 40) sont dépourvues d'épanouissements polaires.
3. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que deux aimants (25 ; 31) consécutifs de l'un au moins du rotor extérieur (30) et du rotor intérieur (20) ont des faces de même polarité disposées en regard d'une pièce polaire (23 ; 32) adjacente commune, disposée entre lesdits aimants.
4. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que les deux rotors (20 ; 30) comportent le même nombre de pôles
(25 ; 31).
5. Machine selon la revendication précédente, caractérisée par le fait que les pôles (25 ; 31) des deux rotors (20 ; 30) ne sont pas décalés angulairement.
6. Machine selon la revendication 4, caractérisée par le fait que les pôles (25 ; 31) des deux rotors (20 ; 30) sont décalés angulairement.
7. Machine selon la revendication précédente, caractérisée par le fait que lorsque le nombre de phases m est pair, les deux rotors (20 ; 30) sont décalés d'un angle sensiblement égal à π/S où S = m.p, S étant le nombre de dents (11 ; 41) du stator (10 ; 40), p étant le nombre de paires de pôles d'un rotor, et lorsque m est impair, les deux rotors (20 ; 30) sont décalés d'un angle α sensiblement égal à π/2S.
8. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que le rotor extérieur (30) comporte des pièces polaires (32) comportant chacune au moins un évidement (34) sur un côté radialement extérieur.
9. Machine selon la revendication précédente, caractérisée par le fait que les pièces polaires (32) du rotor extérieur (30) passent chacune par un minimum de section à mi-longueur dans le sens circonférentiel.
10. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que les aimants (25 ; 31) de l'un au moins du rotor intérieur (20) et du rotor extérieur (30) présente une forme de coin lorsqu' observés selon l'axe de rotation de la machine, de largeur augmentant en éloignement du stator.
11. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que le rotor intérieur (20) comporte des pièces polaires (25) liées à un arbre (21) de la machine par complémentarités de formes.
12. Machine selon la revendication précédente, caractérisée par le fait que les pièces polaires (25) du rotor intérieur (20) présentent des rainures et sont engagées par ces rainures sur des nervures (22) de l'arbre (21).
13. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que l'un au moins des rotors (20 ; 30) comporte des pièces polaires (23 ; 32) disposées entre les aimants permanents (25 ; 31) et présentant, sur leur côté tourné vers le stator, chacune une face (24) bombée convexe vers le stator.
14. Machine selon l'une quelconque des revendications précédentes, le stator comportant n ents dents (11 ; 41), chacun des rotors npaires paires de pôles (25 ; 31) et le courant étant à npnases phases, caractérisée par le fait que le nombre de dents (11) ndents du stator (10 ; 40) est choisi de manière à avoir la relation ndents = npaires * phases-
15. Machine selon l'une quelconque des revendications 1 à 13, caractérisée par le fait que le stator (10) comporte 6n dents (11 ; 41) et chacun des rotors (20 ; 30) 6n ± 2 pôles (25 ; 31), n étant supérieur ou égal à 2.
16. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que les dents (11) du stator (10) comportent chacune une première extrémité libre située face à l'un des rotors (20 ; 30).
17. Machine selon la revendication précédente, caractérisée par le fait que les dents (11) sont fixées par une deuxième extrémité, opposée à la première, sur un support (12) amagnétique.
18. Machine selon la revendication précédente, caractérisée par le fait que chaque dent (11) du stator (10) supporte une seule bobine individuelle (13).
19. Machine selon l'une quelconque des revendications 1 à 15, caractérisée par le fait que les dents (41) du stator (40) comportent chacune deux extrémités (44 ; 45) libres opposées faisant respectivement face aux rotors intérieur et extérieur.
20. Machine selon la revendication précédente, caractérisée par le fait que les dents (41) sont maintenues sensiblement à mi-longueur par un support amagnétique (43 ;
53).
21. Machine selon l'une des deux revendications précédentes, caractérisée par le fait que chacune des dents (41) du stator (40) comporte deux bobines individuelles (46 ; 47).
22. Machine selon la revendication précédente, caractérisée par le fait que les deux bobines (46 ; 47) portées par une même dent (41) ne sont pas reliées électriquement entre elles.
23. Machine selon l'une quelconque des revendications 1 à 15, caractérisée par le fait que le stator comporte une culasse (73) réalisée d'un seul tenant avec les dents (41).
24. Machine selon la revendication précédente, caractérisée par le fait que la culasse (73) est réalisée dans un matériau magnétique.
25. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait que les dents (11 ; 41) comportent des encoches (14) à proximité de leur extrémité libre faisant face à l'un des rotors (20, 30).
26. Machine selon la revendication 1, caractérisée par le fait que les dents du stator comportent des épanouissements polaires (70).
27. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle présente une structure double (10a, 10b ; 20a, 20b ; 30a, 30b).
28. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle constitue un moteur synchrone.
29. Machine selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle constitue un générateur.
30. Machine électrique comportant : un stator (10 ; 40) comportant une pluralité de dents (11 ; 41) dépourvues d'épanouissements polaires et supportant chacune au moins une bobine (13 ; 46 ; 47) individuelle, un rotor extérieur (30) disposé radialement à l'extérieur du stator et comportant des aimants permanents, un rotor intérieur (20) disposé radialement à l'intérieur du stator, comportant des aimants permanents, et solidaire du rotor extérieur (30).
EP04717671A 2003-03-06 2004-03-05 Machine electrique tournante comportant un stator et deux rotors Withdrawn EP1599930A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0302776A FR2852162B1 (fr) 2003-03-06 2003-03-06 Machine electrique tournante comportant un stator et deux rotors
FR0302776 2003-03-06
PCT/FR2004/000530 WO2004082100A2 (fr) 2003-03-06 2004-03-05 Machine electrique tournante comportant un stator et deux rotors

Publications (1)

Publication Number Publication Date
EP1599930A2 true EP1599930A2 (fr) 2005-11-30

Family

ID=32865290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04717671A Withdrawn EP1599930A2 (fr) 2003-03-06 2004-03-05 Machine electrique tournante comportant un stator et deux rotors

Country Status (6)

Country Link
US (1) US7250702B2 (fr)
EP (1) EP1599930A2 (fr)
JP (1) JP2006520178A (fr)
CN (1) CN100559685C (fr)
FR (1) FR2852162B1 (fr)
WO (1) WO2004082100A2 (fr)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7081696B2 (en) * 2004-08-12 2006-07-25 Exro Technologies Inc. Polyphasic multi-coil generator
JP4461078B2 (ja) * 2005-07-27 2010-05-12 三菱重工業株式会社 風力発電装置
CN102647058A (zh) 2006-06-08 2012-08-22 Exro技术公司 电力设备
FR2903824A1 (fr) * 2006-07-13 2008-01-18 Leroy Somer Moteurs Rotor de machine tournante electrique et procede de fabrication
US7592736B2 (en) * 2007-01-03 2009-09-22 Terry Scott Permanent magnet electric generator with rotor circumferentially encircling stator
US7642684B2 (en) * 2007-02-15 2010-01-05 Hamilton Sunstrand Corporation Nested variable field dynamoelectric machine
US8288916B2 (en) * 2007-09-13 2012-10-16 Eric Stephane Quere Composite electromechanical machines with uniform magnets
GB0800463D0 (en) * 2008-01-11 2008-02-20 Magnomatics Ltd Magnetic drive systems
US7994674B2 (en) * 2008-01-25 2011-08-09 Mcclellan W Thomas Flux-focused shaped permanent magnet, magnetic unit having the magnets, device having the magnetic units and method for asymmetrically focusing flux fields of permanent magnets
JP5241329B2 (ja) * 2008-05-30 2013-07-17 タカタ株式会社 電動機の巻線方法、電動機及びそれを備えたシートベルト装置
GB0814399D0 (en) * 2008-08-08 2008-09-10 Rolls Royce Plc Variable gear ratio magnetic gearbox
FR2935204B1 (fr) * 2008-08-20 2016-01-01 Michelin Soc Tech Rotor interieur a arbre rainure pour machine electrique tournante
FR2935205B1 (fr) 2008-08-20 2010-10-08 Michelin Soc Tech Rotor interieur pour machine electrique tournante et son procede d'assemblage
FR2935206B1 (fr) * 2008-08-20 2010-10-08 Michelin Soc Tech Rotor interieur pour machine electrique a cales d'aimants en forme de "t"
GB0900022D0 (en) * 2009-01-05 2009-02-11 Rolls Royce Plc Management gear arrangement
JP5299679B2 (ja) * 2009-02-06 2013-09-25 株式会社デンソー モータジェネレータ
GB0904434D0 (en) * 2009-03-13 2009-04-29 Switched Reluctance Drives Ltd An electrical machine with dual radial airgaps
GB0905343D0 (en) 2009-03-27 2009-05-13 Ricardo Uk Ltd A flywheel
US8375695B2 (en) * 2009-06-30 2013-02-19 General Electric Company Aircraft gas turbine engine counter-rotatable generator
US8063528B2 (en) * 2009-12-18 2011-11-22 General Electric Company Counter-rotatable generator
US20120299430A1 (en) * 2009-12-22 2012-11-29 Hoganas Ab (Publ) Rotor for modulated pole machine
FR2957729B1 (fr) * 2010-03-19 2013-01-25 Astrium Sas Moteur electrique a aimants permanents comportant un stator fractionne
DE102010027875A1 (de) 2010-04-16 2011-10-20 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
CN101841280B (zh) * 2010-05-04 2012-06-20 江苏大学 一种应用鼠笼式调磁装置的同心磁力齿轮
GB2483076A (en) * 2010-08-25 2012-02-29 Stored Energy Technology Ltd Electric machine with enhanced tolerance to phase failure
FR2967310B1 (fr) * 2010-11-04 2013-08-02 Xap Moteur electromagnetique sans balai
DE102010050545A1 (de) * 2010-11-09 2012-05-10 Agentur Zweitakter Gmbh Wechselstrom-Generator
GB201019473D0 (en) * 2010-11-17 2010-12-29 Ricardo Uk Ltd An improved coupler
US20120169169A1 (en) * 2011-01-05 2012-07-05 Sung-Tsai Wu Kinetic energy supplementary device
JP5722690B2 (ja) * 2011-04-19 2015-05-27 T.K Leverage株式会社 発電装置
GB201106768D0 (en) 2011-04-20 2011-06-01 Ricardo Uk Ltd An energy storage system
US8796895B2 (en) * 2011-05-26 2014-08-05 Lg Electronics Inc. Electric motor and electric vehicle having the same
JP2013062889A (ja) * 2011-09-10 2013-04-04 Nidec Servo Corp ブラシレスdcモータ
CN103296789A (zh) * 2012-03-05 2013-09-11 德昌电机(深圳)有限公司 永磁电机及应用该永磁电机的无叶风扇
US9343931B2 (en) * 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
CN104285363A (zh) * 2012-06-06 2015-01-14 尼得科电机有限公司 具有采用间隔开的极片的辐条式外转子的电机
US10326322B2 (en) * 2012-08-20 2019-06-18 Rensselaer Polytechnic Institute Double-rotor flux-switching machine
CN110350713B (zh) * 2012-11-30 2021-06-29 雅马哈发动机株式会社 发动机单元和车辆
KR101497502B1 (ko) * 2013-02-19 2015-03-03 (주) 코모텍 전동기 및 전동기 제조방법
JP5647307B1 (ja) * 2013-06-04 2014-12-24 成田 憲治 直流励磁界磁型同期電動機
ES2543690B1 (es) * 2014-02-21 2016-03-17 José María DEL PINO PÉREZ Turbina de generación magnética
JP6257114B2 (ja) * 2014-05-20 2018-01-10 株式会社Ihi 磁気波動歯車装置
EP3007336B1 (fr) * 2014-10-07 2016-11-30 C.R.F. Società Consortile per Azioni Machine électrique synchrone à deux rotors
US20160329789A1 (en) * 2015-05-08 2016-11-10 Johnson Electric S.A. Single-phase Outer-rotor Motor And Rotor Thereof
KR102595183B1 (ko) * 2015-07-21 2023-10-30 삼성전자주식회사 세탁기용 모터, 및 이를 구비한 세탁기
JP6820090B2 (ja) * 2015-07-21 2021-01-27 三星電子株式会社Samsung Electronics Co.,Ltd. 洗濯機、および、そのモータ
CN106100268A (zh) * 2016-08-23 2016-11-09 江西韵动新能源研究院有限公司 一种内外双转子永磁电机
JP2020521418A (ja) 2017-05-23 2020-07-16 ディーピーエム テクノロジーズ インク. 可変コイル結線システム
CN107317445A (zh) * 2017-06-23 2017-11-03 贵州宝文电机科技有限公司 多层轮毂电机及轮毂
CN107551848B (zh) * 2017-10-16 2023-05-19 上海弗鲁克科技发展有限公司 高粘度组合式工作头
US11251007B2 (en) 2017-10-30 2022-02-15 Wepower Technologies Llc Magnetic momentum transfer generator
US10826365B2 (en) * 2017-12-20 2020-11-03 Samsung Electronics Co., Ltd. Motor
UA124412C2 (uk) 2017-12-22 2021-09-15 Євгеній Віталійович Мушинський Контрроторний синхронний електромеханічний перетворювач
US10944302B2 (en) * 2018-04-09 2021-03-09 Williams International Co., L.L.C. Permanent-magnet generator incorporating a variable-reluctance stator system
FR3083386B1 (fr) * 2018-06-28 2021-05-14 Telma Ensemble ralentisseur electromagnetique et generatrice et vehicule comportant un tel ensemble
US11539281B2 (en) 2019-01-09 2022-12-27 Green Wave Power Systems Llc Magnetically-coupled torque-assist apparatus
MX2021008333A (es) 2019-01-09 2021-08-11 Green Wave Power Systems Llc Sistema y metodo para perturbar un campo asimetrico magnetico permanente para mover un cuerpo.
US11732769B2 (en) 2019-01-09 2023-08-22 Green Wave Power Systems Llc Magnetically-coupled torque-assist apparatus
CA3137550C (fr) 2019-04-23 2024-05-21 Dpm Technologies Inc. Machine electrique rotative tolerante aux defaillances
WO2021102316A1 (fr) 2019-11-21 2021-05-27 Wepower Technologies Llc Générateur de transfert de moment magnétique à actionnement tangentiel
CN112311174A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型四定子四转子的组合节能电机
CN112311175A (zh) * 2020-05-29 2021-02-02 深圳市一吉制造有限公司 一种新型两定子四转子的组合节能电机
CA3217299A1 (fr) 2021-05-04 2022-11-10 Tung Nguyen Systemes et procedes de commande de batterie
CA3159864A1 (fr) 2021-05-13 2022-11-13 Exro Technologies Inc. Methode et appareil d'entrainement des bobines d'une machine electrique multiphasee
WO2023055911A1 (fr) 2021-09-30 2023-04-06 Green Wave Power Systems Llc Système et procédé de mise en rotation d'un corps pour générer de l'énergie et atténuer le changement climatique
WO2023123639A1 (fr) * 2021-12-29 2023-07-06 大富科技(安徽)股份有限公司 Structure de moteur, moteur de moyeu et véhicule

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341757A (ja) * 1998-05-21 1999-12-10 Toyota Motor Corp 電動機および動力伝達装置並びにハイブリッド車両

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914859A (en) * 1974-01-17 1975-10-28 Ray T Pierson Method of fabricating closed slot stator construction particularly adapted for stepper motors
DE2727827C2 (de) * 1976-06-21 1982-02-25 Shokichi Tokyo Kumakura Ringmagnetanordnung
JPS60156231A (ja) * 1984-01-25 1985-08-16 Japan Servo Co Ltd 回転電機の固定子
FR2653274B1 (fr) * 1989-10-16 1995-04-28 Auxilec Perfectionnement au moteur electrique du type moteur a courant continu sans balai.
RU2074761C1 (ru) * 1995-06-29 1997-03-10 Научно-производственное предприятие "Эксин" Приводное устройство для передвижных средств
JP2000134848A (ja) * 1998-10-26 2000-05-12 Aisin Seiki Co Ltd 電動機
JP2000156947A (ja) * 1998-11-17 2000-06-06 Yukio Kinoshita 磁石式電動機及び発電機
DE60027840T2 (de) * 1999-11-18 2006-12-28 Denso Corp., Kariya Rotierende elektrische Maschine für Fahrzeuge
JP2001145209A (ja) * 1999-11-18 2001-05-25 Denso Corp 車両用回転電機
JP4000746B2 (ja) * 2000-03-29 2007-10-31 株式会社デンソー 車両用回転電機
JP2001268866A (ja) * 2000-03-15 2001-09-28 Denso Corp 車両用回転電機
JP2001211582A (ja) * 2000-01-26 2001-08-03 Fujitsu General Ltd 永久磁石電動機
DE60100046T2 (de) 2000-05-03 2003-08-21 Leroy Somer Moteurs Elektrische rotierende Maschine mit Flusskonzentrationsrotor und um Zähne gewickelter Stator
US6891299B2 (en) * 2000-05-03 2005-05-10 Moteurs Leroy-Somer Rotary electric machine having a flux-concentrating rotor and a stator with windings on teeth
JP4269544B2 (ja) * 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
US6611076B2 (en) * 2000-12-20 2003-08-26 Solar Turbines Inc. Tooth tip for a high speed generator
JP2002315243A (ja) * 2001-04-13 2002-10-25 Hitachi Ltd 永久磁石式回転電機
EP1251023B1 (fr) 2001-04-17 2004-11-17 Moteurs Leroy-Somer Machine électrique à rotor extérieur
US20020171305A1 (en) * 2001-04-17 2002-11-21 Moteurs Leroy-Somer Electric machine having an outer rotor
US6700288B2 (en) * 2001-08-15 2004-03-02 Drs Power & Control Technologies, Inc. High speed rotor
JP3671884B2 (ja) * 2001-08-30 2005-07-13 日産自動車株式会社 回転電機
US6727632B2 (en) * 2001-11-27 2004-04-27 Denso Corporation Flat rotary electric machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341757A (ja) * 1998-05-21 1999-12-10 Toyota Motor Corp 電動機および動力伝達装置並びにハイブリッド車両

Also Published As

Publication number Publication date
WO2004082100A3 (fr) 2004-10-28
CN100559685C (zh) 2009-11-11
US20060175923A1 (en) 2006-08-10
WO2004082100A2 (fr) 2004-09-23
US7250702B2 (en) 2007-07-31
CN1757151A (zh) 2006-04-05
FR2852162B1 (fr) 2005-09-23
FR2852162A1 (fr) 2004-09-10
JP2006520178A (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2004082100A2 (fr) Machine electrique tournante comportant un stator et deux rotors
EP1251629B1 (fr) Machine électrique comportant au moins un détecteur de champ magnétique
EP2715917B1 (fr) Rotor a aimants permanents et machine tournante comportant un tel rotor
FR3019948A1 (fr) Rotor de machine electrique tournante.
EP3130061B1 (fr) Stator de machine electrique tournante
FR2932618A1 (fr) Rotor a aimants permanents et machine tournante comportant un tel rotor
FR3046888A1 (fr) Stator pour machine electromagnetique a flux axial avec des portions unitaires formant une couronne du stator
EP1249919B1 (fr) Rotor de machine electrique tournante
EP3130060A2 (fr) Rotor de machine electrique tournante
WO2018153738A1 (fr) Machine electrique tournante a flux axial
EP2817868A1 (fr) Rotor de machine tournante a concentration de flux
EP2209192A1 (fr) Machine électrique tournante, en particulier pour un démarreur de véhicule automobile
EP1251023B1 (fr) Machine électrique à rotor extérieur
WO2010133796A1 (fr) Machine vernier a aimants insérés
WO2013072892A2 (fr) Rotor de machine éléctrique tournante a aimants permanents
FR2906942A1 (fr) Rotor a griffes muni d'elements ferromagnetiques interpolaires de largeur optimisee et machine tournante equipe d'un tel rotor
FR2802726A1 (fr) Rotor a aimants permanents a concentration de flux
EP3580834A1 (fr) Rotor de machine électrique tournante a configuration améliorée
EP2541735B1 (fr) Rotor d'une machine électrique synchrone multipolaire à pôles saillants
FR3067880A1 (fr) Machine electrique tournante
FR2802724A1 (fr) Stator a dents convexes
EP4113796A1 (fr) Machine electrique tournante
WO2015193563A1 (fr) Moteur synchrone électromagnétique à flux magnétiques combinés axial et radial avec double excitation
FR2861226A1 (fr) Machine electrique tournante a aimants permanents
FR3025059A1 (fr) Moteur ou generatrice synchrone electromagnetique a plusieurs entrefers et flux magnetique diagonal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050824

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20071030

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100907