EP1599610B1 - Gasspülelement und zugehörige gasspüleinrichtung - Google Patents

Gasspülelement und zugehörige gasspüleinrichtung Download PDF

Info

Publication number
EP1599610B1
EP1599610B1 EP04717036A EP04717036A EP1599610B1 EP 1599610 B1 EP1599610 B1 EP 1599610B1 EP 04717036 A EP04717036 A EP 04717036A EP 04717036 A EP04717036 A EP 04717036A EP 1599610 B1 EP1599610 B1 EP 1599610B1
Authority
EP
European Patent Office
Prior art keywords
gas
element according
cross
rinsing element
distribution chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04717036A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1599610A2 (de
Inventor
Ewald Schumacher
Viktor Kchloponin
Edgar Schumacher
Hubert Brenner
Othmar MITLÖHNER
Vladimir Turovskij
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techcom Import Export GmbH
Original Assignee
Techcom Import Export GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techcom Import Export GmbH filed Critical Techcom Import Export GmbH
Priority to SI200430346T priority Critical patent/SI1599610T1/sl
Priority to PL04717036T priority patent/PL1599610T3/pl
Publication of EP1599610A2 publication Critical patent/EP1599610A2/de
Application granted granted Critical
Publication of EP1599610B1 publication Critical patent/EP1599610B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Definitions

  • the invention relates to a refractory ceramic Gas Crowelement for a metallurgical melting vessel and an associated gas purging with such a Gas Crowelement.
  • Gas flushing elements of the type mentioned have been known for many years. They serve to inject gas, for example argon or nitrogen, into a metallurgical melt.
  • the gas has different purposes: With the gas, the molten metal can be homogenized. In addition, oxidation processes can be accelerated.
  • a goal of the gas treatment may also be the removal of non-metallic inclusions in the melt or a desulphurization or, for example, a molten steel.
  • Metallurgical melting vessels in which such gas purging elements are used are, for example, pans or ladle furnaces. Gas flushing elements of the type mentioned are also used for the vacuum treatment of a steel.
  • the gas is guided in each case between a first end, at which gas is supplied, and a second end, at which the gas is discharged into the melt, along the Gas Whyriis.
  • the passage of the gas through corresponding channels As a rule, the passage of the gas through corresponding channels.
  • channels can z. B. be formed by burnable materials directly in the ceramic material.
  • the channels can also be formed by tubes (tubes) that run in the ceramic material. These channels have different cross-sectional shapes.
  • the flow cross section is, for example, round or slit-like.
  • the channels can run directly, ie axially, but also like a labyrinth from one end to the other end.
  • Known Gas Getiga have, for example, a continuous circular cross-section.
  • truncated cone-like gas purging elements are known, which are used as so-called exchange rinse.
  • the gas purging elements can be used in a refractory framing block. This frame is part of the melting unit, such as an electric arc furnace or a Siemens Martin furnace.
  • These flushing elements are installed in particular in the bottom or the wall of the metallurgical melting vessel. Flushing elements in the bottom can be arranged so that the gas is injected more or less perpendicular to the surface of the soil in the melt.
  • the purge gas supply may be continuous or discontinuous. In any case, make sure that the gas flushing device is always functional when needed. This requires appropriate safeguards to z. B. blockages of gas-conducting channels by molten metal or slag to prevent.
  • US Pat. No. 4,539,043 A shows a gas purging element which consists of two separate purging units arranged on top of each other, each purging unit having, in the flow direction of the gas, a gas distribution chamber and adjoining gas passages.
  • the gas channels either all have the same diameter with values between 0.5 and 3 mm or the radially outer gas channels have a smaller diameter than the radially inner gas channels.
  • the invention has for its object to offer a gas purging element and an associated gas purging device, which have a high safety standard, allow a safe and regular gas supply into the molten metal and can fulfill the desired metallurgical functions unrestricted.
  • the invention proposes a refractory ceramic gas purging element for a metallurgical melting vessel having the features of claim 1.
  • the gas purging element is subdivided into several axially adjoining sections, continuous gas delivery is ensured from the first (so-called cold) end to the second (so-called hot) end.
  • the gas can be introduced via the gas supply pipe in the flushing element. It passes from there into the first gas distribution chamber, from where the gas subsequently flows through a plurality of capillary-like channels in the direction of the second end, before it enters a second gas distribution chamber. From there, the gas is passed through the mentioned larger channels to the second end of the gas purging element and out of this.
  • Such a gas flushing element has several security features:
  • the second gas distribution chamber serves as a "barrier" to prevent the further penetration of molten metal.
  • the gas distribution chamber has a larger cross-section than the sum of the gas channels, the infiltrating molten metal can spread, cool and solidify. Further advancement in the direction of the cold (first) end of the gas purging device is also prevented by connecting capillary channels at the other end of the second gas distribution chamber.
  • Each of these capillary channels is formed with a flow cross-section which is less than half the flow cross-section of the at least one gas channel in the region of the second end, so that in this respect the penetration of molten metal into the capillary channels is made even more difficult.
  • the gas channels in the region of the second end have an inner diameter> 2 mm or> 3 mm, while the inner diameter of the capillary channels ⁇ 1.0 mm is selected.
  • the gas purging element according to the invention offers a further securing device through the first gas distribution chamber, in which a similar effect is achieved as already described with reference to the second gas distribution chamber.
  • the invention provides a fourth safeguard.
  • This safety measure is to form the gas supply pipe opening into the first gas distribution chamber with a length greater than the axial distance between the first end of the gas purging element and the first gas distribution chamber.
  • the gas supply pipe should not run in a straight line, but at least one, preferably a plurality of curved (angled) portions to extend the flow path.
  • the gas supply pipe may be bent, for example helically, helically and / or meandering.
  • several "branches" of the flow path of the gas is extended on the one hand, which in principle does not bother, but also extends the way for any penetrating molten metal, which is thereby forced to cool and solidify.
  • the Gaszu Semi-Field may consist of a material which melts at a temperature below the temperature of a metallurgical melt to be treated. Should molten metal penetrate into this area, the gas feed tube would melt. If the gas feed tube, as provided according to a further embodiment, is packaged in a bulk material, then the molten metal can diffuse into this section of the gas purging element, ie branch, whereby the solidification behavior is once more accelerated. It goes without saying that the bulk material must be assembled in a corresponding outer receptacle (for example made of metal or dense ceramic), so that the melt does not diffuse radially in an uncontrolled manner. The receptacle is again surrounded by refractory material.
  • a corresponding outer receptacle for example made of metal or dense ceramic
  • the individual sections may have the same cross-sectional shape, for example be formed with a circular cross-section, so that a total for the gas purging element outer cylindrical shape results.
  • the individual sections can be connected to each other. However, all sections can also be assembled in a common refractory matrix.
  • the gas purging element can have a constant cross section over its entire length, for example a circular cross section. It is also possible to vary the cross section from the first to the second end, for example to reduce, so that a kind of truncated cone shape is formed. In this way, the gas purging element can be used in particular as an exchangeable fluid.
  • the associated gas purging device moves and / or rotate the gas purging element in the axial direction.
  • the gas purging device is designed with a corresponding drive.
  • This drive can be designed for alternating axial and / or rotating movement of the gas purging element.
  • the flushing element may be alternately moved axially back and forth by a few millimeters (for example +/- 3 mm) or rotated a few degrees in one direction or the other.
  • the drive can also be used to nachzuschieben the purging element in the axial direction, d. H. to advance in the direction of the melt, for example, when the flushing element is partially worn in the region of the first end.
  • the cross-section of the first and second gas distribution chamber should be larger than the sum of the cross-sectional areas of the subsequent capillary channels to a diffusion space for possibly To form penetrating melt and ensure gas supply into the capillaries or from the capillaries.
  • the flow cross-section (ie, the flow-effective cross section) of a capillary channel is at least 70%, 80% or 90% smaller than the flow cross-section of a gas supply tube at the first end or the flow cross-section of a gas channel at the second end.
  • the gas channels are slit-like at the second end, i. h., For example, they have a rectangular cross-section.
  • the gas channels may be formed with a triangular or drop-shaped flow cross-section. It has proven to be advantageous if the channels (tubes) are arranged with drop-like cross-sectional geometry so that the narrower end of the central longitudinal axis of the Gas Kunststoffiatas facing, as shown in the following description of the figures.
  • the gas distribution chambers can be formed in-situ in the ceramic matrix material of the gas purging element.
  • the gas distribution chambers can also be formed by metallic hollow chambers into which the associated gas channels or capillary channels open.
  • the capillary channels can be arranged essentially axially, that is to say in parallel and at a distance from one another, the gas passages can be arranged in different ways in the region of the second end of the flushing element:
  • an embodiment provides to arrange the channels distributed "symmetrically" across the cross section.
  • the individual channels can be arranged at the 6 o'clock, 10 o'clock and 14 o'clock positions as compared to a clock.
  • gas channels with circular cross-section or slit-like channels are selected, they can run along an imaginary line and at a distance from each other, this line z. B. in a dishwasher, which is installed in a wall of the vessel, runs horizontally.
  • the channels and chambers are always surrounded by refractory ceramic material (matrix material). This material can be cast or pressed. An outer covering is not necessary.
  • the ceramic flushing element can be installed in this way.
  • FIG. 1 shows a gas purging element according to the invention.
  • the structure of the gas purging element (from right to left) is as follows:
  • a gas supply pipe 5 opens at E1 in a first section 3, the end face of a steel plate 30 and the periphery of a steel tube 14 is limited.
  • the Gaszu Gen 29 5 continues behind the steel plate 30 helically, the helix through the Reference numeral 13 is shown.
  • the coil 13 extends in a space which is filled with a bulk material 15, for example based on expanded perlite, and is delimited at a distance from the steel plate 30 by a further steel plate 31, through which the coil 13 is passed.
  • the steel plate 31 is adjoined by a first gas distribution chamber 32, which is peripherally delimited by the elongated steel tube 14.
  • FIG. 1 In the flow direction of the gas follows a section 2, the cross section of Figure 4 shows.
  • a cylindrical frame 12 made of steel in extension of the tube 14 is a refractory ceramic material in which a plurality of capillary channels 10 extend in the axial direction of the flushing element.
  • the capillary channels (formed by steel tubes) have a circular cross section with an inner diameter of 0.5 mm.
  • Tubular body 13 and sheath 17 may be made of metal or refractory ceramic.
  • the gas which was passed through the second gas distribution chamber 16, then passes into gas channels 6, which in a ceramic matrix material 8 ( Figures 2, 3) axially and at a distance from each other extend, to the end face of the second end E2 of Gasteilettis.
  • FIG. 2 shows an alternative embodiment in which three gas channels 6 each have a teardrop shape, the gas channels 6 being arranged at 6 o'clock, 10 o'clock and 14 o'clock, as compared to a clock.
  • the orientation of the gas channels 6 is such that the narrower, more or less triangular-shaped end lies on the inside.
  • This section 1 of the flushing element is in turn limited by a metal tube 9 circumferentially.
  • the outer frames (pipe segments) of the individual sections, each consisting of ceramic or metal parts are mechanically connected to each other, wherein the end portions are designed step-like and have corresponding threads.
  • the flushing element shown in Fig. 1 is completely covered with refractory material. It is also possible to assemble the entire gas purging element within a continuous tubular casing or to dispense with the casing entirely. In this case, the gas distribution chambers 16, 32 and the various channels are formed within a ceramic matrix material.
  • Both the Gaszu Silicon Vietnamese Sea 5, and the capillary channels 10 and the gas channels 6 are formed by metal tubes, but can also in situ be formed, for example, in the production characterized in that in their place ausbrennbare materials are inserted with corresponding cross-sections, which are burned out later. This applies analogously to form cavities (Gasverteilhuntn) in the ceramic body.
  • the gas flows from the first end E1 through the adjoining portions to the gas outlet end, which is marked in Figure 1 with E2.
  • the filament 13 here consists of copper, ie a relatively low-melting metal.
  • the flushing element is guided in the axial direction by a plurality of bearings 18, 19. These are rolling bearings. Via a motor M and a gear 20, the tubular flushing element can be rotated, alternately to the left and right.
  • the drive is located on the outside of the melting vessel.
  • a gear 22 is shown, with the current oscillating movements (eg., Sinusoidal movements) can be transferred to the flushing element to move it in the axial direction, for example, by a few millimeters back and forth.
  • the current oscillating movements eg., Sinusoidal movements
  • gas purging element in a corresponding refractory frame in the bottom or the wall of a associated metallurgical vessel must be arranged, in the embodiments according to Figure 7 and 8 so that the rotational movement or axial movement of the flushing element can be ensured.
  • the refractory material of the wall or the bottom of the metallurgical vessel is symbolized in FIGS. 7 and 8 by the reference numeral 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
EP04717036A 2003-03-06 2004-03-04 Gasspülelement und zugehörige gasspüleinrichtung Expired - Lifetime EP1599610B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200430346T SI1599610T1 (sl) 2003-03-06 2004-03-04 Plinski splakovalni element in pripadajoča plinska splakovalna naprava
PL04717036T PL1599610T3 (pl) 2003-03-06 2004-03-04 Gazowa dysza przedmuchowa i przynależne urządzenie do przedmuchiwania wytopu gazem

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2003106304/02A RU2230796C1 (ru) 2003-03-06 2003-03-06 Продувочный элемент агрегата для получения или доводки стали
RU2003106304 2003-03-06
PCT/EP2004/002153 WO2004079019A2 (de) 2003-03-06 2004-03-04 Gasspülelement und zugehörige gasspüleinrichtung

Publications (2)

Publication Number Publication Date
EP1599610A2 EP1599610A2 (de) 2005-11-30
EP1599610B1 true EP1599610B1 (de) 2007-05-16

Family

ID=32846840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04717036A Expired - Lifetime EP1599610B1 (de) 2003-03-06 2004-03-04 Gasspülelement und zugehörige gasspüleinrichtung

Country Status (18)

Country Link
US (1) US20080136070A1 (pl)
EP (1) EP1599610B1 (pl)
JP (1) JP2006519930A (pl)
CN (1) CN1784500B (pl)
AT (1) ATE362551T1 (pl)
BR (1) BRPI0408138A (pl)
DE (1) DE502004003839D1 (pl)
EA (1) EA007214B1 (pl)
ES (1) ES2286614T3 (pl)
LV (1) LV13402B (pl)
MX (1) MXPA05009482A (pl)
NO (1) NO20054181L (pl)
PL (1) PL1599610T3 (pl)
PT (1) PT1599610E (pl)
RU (1) RU2230796C1 (pl)
UA (1) UA83213C2 (pl)
WO (1) WO2004079019A2 (pl)
ZA (1) ZA200507094B (pl)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371463C (zh) * 2005-07-22 2008-02-27 钢铁研究总院 复吹转炉底吹供气元件吹堵复通装置及方法
CN102041346B (zh) * 2010-12-28 2012-06-06 北京建龙重工集团有限公司 一种转炉自动底吹控制的方法
CN102274958B (zh) * 2011-08-16 2013-08-21 东北大学 棱台缝隙式防堵钢包底吹喷粉装置
CN105087870B (zh) * 2015-08-31 2017-03-08 濮阳濮耐高温材料(集团)股份有限公司 吹气元件、复合吹气砖及复合吹气砖的制备方法
CN109182655A (zh) * 2018-10-23 2019-01-11 王子晨 一种用于液低偏吹的吹气棒
RU2720413C1 (ru) * 2019-08-05 2020-04-29 Закрытое акционерное общество "Ферро Балт Плюс" Способ донной продувки жидкого металла газом в ковше
RU2766401C1 (ru) * 2021-07-09 2022-03-15 Акционерное общество "Ферро Балт Плюс" Устройство для донной продувки жидкого металла газом в ковше

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960004U (pl) * 1973-08-29 1974-05-27
EP0105380B1 (en) * 1982-03-29 1988-05-11 Nippon Kokan Kabushiki Kaisha Bottom blowing gas nozzle in molten metal refining furnace and method of melting steel using the same nozzle
JPS58167716A (ja) * 1982-03-29 1983-10-04 Nippon Kokan Kk <Nkk> ガス吹込用ノズル及びその製造法
DE3441223A1 (de) * 1984-11-10 1986-05-15 Lichtenberg Feuerfest GmbH, 5200 Siegburg Spueleinsatz
DE3527793A1 (de) * 1985-08-02 1987-02-12 Esb Schweissbetrieb Burbach & Verfahren zur montage eines fuer metallurgische gefaesse vorgesehenen gasspuelsteins
JPS62250112A (ja) * 1986-04-23 1987-10-31 Nippon Kokan Kk <Nkk> ガス吹込みプラグ
JPS6393814A (ja) * 1986-10-06 1988-04-25 Nkk Corp 底吹ノズル
GB8703717D0 (en) * 1987-02-18 1987-03-25 Injectall Ltd Injecting gas into metal melts
IN168760B (pl) * 1987-04-10 1991-06-01 Injectall Ltd
DE3833504A1 (de) * 1988-10-01 1990-04-05 Didier Werke Ag Gasspueleinrichtung
DE4012952C2 (de) * 1990-04-24 1995-03-23 Didier Werke Ag Gasspüleinrichtung an einem metallurgischen Gefäß
JP3645588B2 (ja) * 1994-06-30 2005-05-11 黒崎播磨株式会社 貫通孔を有するガス吹込み用耐火物

Also Published As

Publication number Publication date
CN1784500B (zh) 2010-07-21
PL1599610T3 (pl) 2007-08-31
ZA200507094B (en) 2006-06-28
DE502004003839D1 (de) 2007-06-28
JP2006519930A (ja) 2006-08-31
EA200501351A1 (ru) 2006-02-24
EP1599610A2 (de) 2005-11-30
MXPA05009482A (es) 2006-03-10
PT1599610E (pt) 2007-06-21
BRPI0408138A (pt) 2006-03-01
WO2004079019A3 (de) 2004-11-11
EA007214B1 (ru) 2006-08-25
RU2230796C1 (ru) 2004-06-20
WO2004079019A2 (de) 2004-09-16
ATE362551T1 (de) 2007-06-15
CN1784500A (zh) 2006-06-07
NO20054181D0 (no) 2005-09-08
NO20054181L (no) 2005-09-08
ES2286614T3 (es) 2007-12-01
US20080136070A1 (en) 2008-06-12
UA83213C2 (ru) 2008-06-25
LV13402B (en) 2006-04-20

Similar Documents

Publication Publication Date Title
DE3718286C2 (de) Rolle für Fördergut
DD149944A5 (de) Vorrichtung zur raffination von geschmolzenem aluminium
EP1599610B1 (de) Gasspülelement und zugehörige gasspüleinrichtung
DE2532619B2 (de) Ofen zum aufschmelzen von glas und anderen hochschmelzenden stoffen
EP0558808A1 (de) Vorrichtung zur Messung der Temperatur von Metallschmelzen
EP0181853B1 (de) Gasspülstein für metallurgische Öfen und Gefässe
EP0560834B1 (de) Boden- oder wandausbildung für ein metallurgisches gefäss
EP1673481B1 (de) Industrieofen und zugehöriges düsenelement
EP1572398B1 (de) Gasspüleinrichtung für metallurgische schmelzgefässe
EP0527363B1 (de) Gasspülstein für Elektro-Lichtbogenöfen und zugehöriger Elektro-Lichtbogenofen
DE602004005346T2 (de) Düsenvorrichtung zum eintragen von gasförmigen medien unter einer schicht von flüssigem metall
DE4207881C1 (en) Gas flushing brick for melting vessels - has gas channels slightly inclined to vertical to ensure that gas flow is towards centre of vessel despite non-vertical fitting of brick inside vessel bottom
DE3606322A1 (de) Gasspuelstein fuer metallurgische gefaesse
DE19604413C1 (de) Gasspüleinrichtung für metallurgische Gefäße
WO2004069450A1 (de) Feuerfester keramischer gasspülstein
DE10328420B3 (de) Düseneinrichtung und deren Verwendung in einem metallurgischen Schmelzgefäß
AT501486B1 (de) Metallurgisches schmelzgefäss mit düseneinrichtung und verfahren zur sekundärmetallurgischen behandlung
DE102004054026B4 (de) Lanze zum Einleiten eines insbesondere gasförmigen Mediums in ein flüssiges Metall und Verfahren zur Herstellung
DE3341447C2 (pl)
DE102006018931B3 (de) Gaszuführeinrichtung für ein Spülelement
WO2021127714A1 (de) Sinterofen
DE202017100964U1 (de) Spüllanze zur Spülentgasung von Metallschmelzen
DE19930538C1 (de) Vorrichtung und Verfahren zum Betreiben eines einen Innenschacht aufweisenden Lichtbogenofens
WO2002068889A1 (de) Feuerfester keramischer körper und zugehöriges metallurgisches schmelzgefäss mit einer kanal zur aufnahme einer einrichtung zur zuführung eines behandlungsmediums in eine schmelze
DE29602813U1 (de) Keramischer Spülblock für metallurgische Gefäße

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050827

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHCOM IMPORT-EXPORT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070611

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070605

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004003839

Country of ref document: DE

Date of ref document: 20070628

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001893

Country of ref document: HU

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286614

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090323

Year of fee payment: 6

Ref country code: ES

Payment date: 20090325

Year of fee payment: 6

Ref country code: HU

Payment date: 20090226

Year of fee payment: 6

Ref country code: LU

Payment date: 20090325

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20090326

Year of fee payment: 6

Ref country code: CZ

Payment date: 20090223

Year of fee payment: 6

Ref country code: FI

Payment date: 20090325

Year of fee payment: 6

Ref country code: NL

Payment date: 20090324

Year of fee payment: 6

Ref country code: PL

Payment date: 20090224

Year of fee payment: 6

Ref country code: PT

Payment date: 20090227

Year of fee payment: 6

Ref country code: RO

Payment date: 20090302

Year of fee payment: 6

Ref country code: SI

Payment date: 20090219

Year of fee payment: 6

Ref country code: SK

Payment date: 20090225

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090325

Year of fee payment: 6

Ref country code: GB

Payment date: 20090324

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090330

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090328

Year of fee payment: 6

Ref country code: SE

Payment date: 20090325

Year of fee payment: 6

Ref country code: TR

Payment date: 20090224

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090318

Year of fee payment: 6

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20100906

BERE Be: lapsed

Owner name: TECHCOM IMPORT-EXPORT G.M.B.H.

Effective date: 20100331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2285

Country of ref document: SK

Effective date: 20100304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20101104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100906

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100305

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100305

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100305

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150331

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004003839

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001