EP1594943B1 - Lubricating oil compositions - Google Patents

Lubricating oil compositions Download PDF

Info

Publication number
EP1594943B1
EP1594943B1 EP04712057.1A EP04712057A EP1594943B1 EP 1594943 B1 EP1594943 B1 EP 1594943B1 EP 04712057 A EP04712057 A EP 04712057A EP 1594943 B1 EP1594943 B1 EP 1594943B1
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
oil
composition
base oil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04712057.1A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1594943A2 (en
Inventor
Yoshiharu Baba
Keiichi Moriki
Mitsuhiro Nagakari
Minoru Saitou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32905201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1594943(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP1594943A2 publication Critical patent/EP1594943A2/en
Application granted granted Critical
Publication of EP1594943B1 publication Critical patent/EP1594943B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/10Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers
    • C10M2205/103Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/017Specific gravity or density
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/12Gas-turbines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to lubricating oil compositions which suppress the formation of sludge and which have excellent storage stability, low friction properties, small pressure transmission loss, low supply pressure loss in pipe-work, and low flammability.
  • Hydraulic systems are distinguished in that the "oil" which is the motive power transmitting medium has low compressibility and so it is possible to use higher pressures and to increase the output with respect to the weight of a machine, and for many reasons such as the fact that the division, concentration and speed control of the motive power can be achieved easily, such oils are widely used in industrial applications.
  • the Hydraulic Fluid Handbook page 31, published in 1985 by the Lubrication News Agency Co. Ltd. , describes that the feed pressure loss in hydraulic pipe-work based on the Bernoulli's theorem is proportional to the density of the oil both in a vacuum pipe and in a vented pipe, elbow, branch pipe or linked pipe. That is to say, the supply pressure loss can be reduced by reducing the density if the kinematic viscosity and the pipe-work are the same, and it is also shown that at the same time an improvement in flow-rate efficiency can be devised by reducing the density. Moreover, since the supply pressure loss in hydraulic pipe-work is converted to heat and sound etc., it is suggested that the generation of heat and noise are also suppressed by reducing the density. Since reduced friction also contributes to improving energy conservation, low friction properties to an extent where stick-slip does not arise in steel-steel situations is required.
  • the present invention now surprisingly enables energy conservation to be achieved by improving the performance of monograde hydraulic oils as the hydraulic media for increasing the efficiency of hydraulic energy transmission.
  • the present invention provides a lubricating oil composition
  • a lubricating oil composition comprising lubricating oil base oil and a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19, wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm 2 /s, a viscosity index of from 130 to 150 and a density at 15°C of from 0.80 to 0.84 g.cm -3 .
  • a lubricating oil composition in which not only has the density been reduced by about 10% when compared with the commercial industrial lubricating oil products of the same viscosity and which surprisingly has an energy conserving effect, but which also has a flash point of at least 250°C as measured by JIS K 2265 by using a narrow-cut base oil.
  • the narrow-cut base oils having a high flash point for industrial lubricating oil products are very different in terms of their molecular weight distribution from the usual base oils used by those in the industry and the proportion of high molecular weight hydrocarbon components is very small. Consequently, the solubilities of lubricating oil additives which control various aspects of performance are very low and there is a disadvantage in that turbidity and precipitates are produced, and these materials cannot be used as industrial lubricating oils.
  • the high molecular weight ashless dispersants used in the automobile lubricating oils cannot be used in hydraulic applications even at treat rates of less than 1 %wt., e.g. 0.1 %wt., due to emulsification in the presence of water, which is an undesirable property therefor.
  • the solubility, the low friction properties and anti-rust properties when using a specified narrow-cut base oil in industrial lubricating oils with a view to increasing energy conservation and having a high flash point may be surprisingly improved by the use of a specific amine compound.
  • Japanese Unexamined Patent Application Laid Open 2002-338 983 there is disclosed a lubricating oil composition where an alkylamine has been added to a lubricating oil base oil, but the amount of anti-rust agent is greatly reduced by combining the alkylamines with the anti-rust agent and, as a result, the extreme pressure performance by the anti-rust agent is suppressed to the lowest level.
  • the primary amine having a tertiary alkyl group in the present invention as the primary amine.
  • the lubricating oil base oil used is preferably a base oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s. It is also disclosed that from the viewpoint of minimising as far as possible the change in the damping force the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the lubricating oil base oil of the present invention.
  • the lubricating oil base oil used is preferably a base oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s. It is further disclosed that from the viewpoint of minimising as far as possible the change in the damping force the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the lubricating oil base oil of the present invention.
  • the use of an oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s is desirable.
  • the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the fact that the viscosity index is at least 130 and the density is not more than 0.84 g.cm -3 as in the case of the lubricating oil base oil of the present invention.
  • the present invention surprisingly provides a lubricating oil composition with which the formation of sludge is suppressed even when the usual lubricating oil additives are compounded, which has excellent storage stability, which has low friction properties, with which the pressure transmission loss is small, with which the supply pressure loss in pipe-work is small, and which has low flammability.
  • the present invention provides a lubricating oil composition
  • a lubricating oil composition comprising lubricating oil base oil, wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm 2 /s, a viscosity index of from 130 to 150, a density at 15°C of from 0.80 to 0.84 g.cm -3 and a flash point of at least 250°C as measured by JIS K 2265.
  • the lubricating oil base oil is narrow cut base oil or mixtures of narrow cut base oils, wherein the composition of the narrow-cut base oils is such that with the method of measurement laid down in ASTM D 3238, the aromatic content (%CA) is not more than 0.1 wt% and the paraffin content (%Cp) is at least 85 wt%, the iso-paraffin content is at least 80 wt%, the elemental sulphur content is not more than 50 ppm, the elemental nitrogen content is not more than 5 ppm, the total polar material is not more than 1% and the properties are: refractive index at least 1.45, aniline point at least 120°C and they are colourless and transparent, being classified as L0.5 using the colour test method laid down in ASTM D 1500.
  • the lubricating oil composition further comprises a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19.
  • a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19.
  • the lubricating oil composition of the present invention contains from 0.001 to 5.0 parts by weight of the primary amine represented by general formula (1) is compounded per 100 parts by weight of the lubricating oil composition.
  • the present invention further provides a hydraulic oil, a machine tool oil, a gear oil, a compressor oil, a turbine oil, a bearing oil and a heat transfer fluid
  • a high viscosity index signifies that the temperature dependence of the lubricating oil viscosity is small and, for example, the temperature of the hydraulic oil when hydraulic equipment is first started is low and, while a hydraulic oil which has a low viscosity index will have a high viscosity, a hydraulic oil which has a high viscosity index will have a low viscosity at low temperature and it is possible to reduce the power consumption on start-up.
  • the viscosity index as defined in JIS K 2283 is from 130 to 150, preferably from 132 to 150 and most desirably from 135 to 150.
  • the kinematic viscosity at 10°C is 283.06 mm 2 /s, while if the viscosity index is 130 the kinematic viscosity at 10°C is 250.1 mm 2 /s and if the viscosity index is 135 then it is 242.98 mm 2 /s and the room temperature viscosity changes markedly according to the viscosity index, and since the electrical power consumption also increases in accordance with the kinematic viscosity, a high viscosity index is also desirable for reducing the power consumption on start-up.
  • the density at 15°C of the lubricating oil base oil measured by the method for measuring the density of lubricating oil defined in JIS K 2249 is from 0.80 to 0.84 g.cm -3 , preferably from 0.81 to 0.84 g.cm -3 , more desirably from 0.815 to 0.835 g.cm -3 and most desirably from 0.820 to 0.830 g.cm -3 .
  • hydraulic equipment generally operates at an oil temperature of from 40 to 60°C, but in the case of a density at 15°C of 0.84 g.cm -3 , the density, when calculated using the density calculation method indicated in JIS K 2249, at 40°C is 0.8233 g.cm -3 , at 50°C is 0.8167 g.cm -3 and at 60°C is 0.8100 g.cm -3 , and so the density at 40°C is preferably not more than 0.8167 g.cm -3 , the density at 50°C is preferably not more than 0.8167 g.cm -3 and the density at 60°C is preferably not more than 0.8100 g.cm -3 .
  • a lubricating oil composition which has low friction properties contributes to energy conservation, it is preferred that there are low friction properties such that stick-slip does not occur in steel-steel situations.
  • the flash point of the lubricating oil base oil as measured using the Cleveland formula defined in JIS K 2265 is at least 250°C, preferably at least 252°C, more preferably at least 256°C.
  • Storage stability of a lubricating oil composition is essential for providing useful performance as an industrial lubricating oil.
  • troubles may arise in precision hydraulic systems, for example, in the case of lubricating oil compositions where turbidity or precipitation occurs.
  • the narrow-cut base oils wherein the molecular weight distribution of the hydrocarbons in the base oil is very narrow can be cited as base oils which do satisfy these conditions.
  • the Fischer-Tropsch derived base oil may any Fischer-Tropsch derived base oil as disclosed in for example EP-A-776959 , EP-A-668342 , WO-A-9721788 , WO-0015736 , WO-0014188 , WO-0014187 , WO-0014183 , WO-0014179 , WO-0008115 , WO-9941332 , EP-1029029 , WO-0118156 and WO-0157166 .
  • these three types of narrow-cut base oil are used individually or in the form of mixtures so as to provide the prescribed viscosity.
  • Such narrow-cut oils also exhibit especially good volatilisation resistance.
  • an ISO VG 32 grade in the viscosity classification for industrial lubricating oils is prepared by combining these base oils, the result in a volatile loss test (NOACK) as defined in ASTM D 5800 is suppressed to 8% or less.
  • the volatile loss test (NOACK) result in the case of an ISO VG 46 grade oil prepared in the same way is less than 5%.
  • these narrow-cut base oils can also be said to be suitable for lubricating oils where involatility is required as in the case of a compressor lubricating oils for example.
  • the amount of the primary amine compound represented by general formula (1) compounded in the lubricating oil composition of the present invention is preferably from 0.001 to 1.0 part by weight, preferably from 0.001 to 0.5 part by weight, and most desirably from 0.001 to 0.05 part by weight, per 100 parts by weight of the lubricating oil composition.
  • Examples of the aliphatic hydrocarbyl groups represented by C x H 2x + 1 , C y H 2y +1 and C z H 2z + 1 in the above-mentioned general formula (1) include the methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, the linear chain and branched pentyl groups, the linear chain and branched hexyl groups, the linear chain and branched heptyl groups, the linear chain and branched octyl groups, the linear chain and branched nonyl groups, the linear chain and branched decyl groups, the linear chain and branched undecyl groups, the linear chain and branched dodecyl groups, the linear chain and branched tridecyl groups, the linear chain and branched tetradecyl groups, the linear chain and
  • lubricating oil additives such as antioxidants, metal deactivators, extreme pressure additives, oil-improving agents, antifoaming agents, viscosity index improving agents, pour point depressants, cleaning dispersants, anti-rust agents and anti-emulsification agents can be added.
  • amine-based antioxidants include dialkyldiphenylamines such as p,p'-dioctyl-diphenylamine (such as that produced under the trade designation "Sonoflex OD-3" by the Seiko Kagaku Co.), p,p'-di- ⁇ -methylbenzyl-diphenylamine and N-p-butylphenyl-N-p'-octylphenylamine, monoalkyldiphenylamines such as mono-t-butyldiphenylamine and mono-octyldiphenylamine, bis(dialkylphenyl)amines such as di-(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine, alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and n-t-dodecylphenyl-1
  • sulphur-based anti-oxidants examples include dialkylsulphites such as didodecylsulphite and dioctylsulphite, thiodipropionic acid esters such as didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate and dodecyloctadecylthiodipropionate, and 2-mercaptobenzimidazole.
  • dialkylsulphites such as didodecylsulphite and dioctylsulphite
  • thiodipropionic acid esters such as didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate and dodecyloctadecylthiodipropionate
  • 2-mercaptobenzimidazole examples include dialky
  • phenol-based antioxidants examples include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butylhydroquinone (such as that produced under the trade designation "Anteeji DBH" by the Kawaguchi Kagaku Co.,), 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl-4-methoxyphenol and 2,6-di-t
  • phosphorus-based antioxidants include triaryl phosphites such as triphenyl phosphite and tricresyl phosphite, trialkyl phosphites such as trioctadecyl phosphite and tridecyl phosphite, and tridodecyl trithiophosphite.
  • antioxidants can be conveniently used individually or in the form of a combination of number of types in an amount within the range of from 0.01 to 2.0 parts by weight, per 100 parts by weight of lubricating oil composition.
  • metal de-activating agents can be conveniently used individually or in the form of a combination of a number of types in an amount within the range of from 0.01 to 0.5 parts by weight, per 100 parts by weight of lubricating oil composition.
  • antifoaming agents examples include organosilicates such as dimethylpolysiloxane, diethylsilicate and fluorosilicone, and non-silicone antifoaming agents such as polyalkylacrylates. These can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.0001 to 0.1 part by weight, per 100 parts by weight of lubricating composition.
  • viscosity index improving agents examples include non-dispersing type viscosity improving agents such as polymethacrylates and olefin copolymers such as ethylene-propylene copolymers and styrene-diene copolymers, and dispersing type viscosity improving agents where nitrogen-containing monomers have been copolymerized in these materials.
  • the amount added can be conveniently within the range of from 0 to 20 parts by weight, per 100 parts by weight of lubricating oil composition.
  • the amount of viscosity index improving agent compounded is preferably from 0 to 5 parts by weight and more desirably from 0 to 2 parts by weight, while most desirably no viscosity index improving agent is compounded at all.
  • pour point depressants examples include polymethacrylate-based polymers. These can be conveniently used in amounts within the range of from 0.01 to 5 parts by weight, per 100 parts of lubricating oil composition.
  • cleaning dispersing agents examples include metal-based detergents such as neutral or basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates, and ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
  • metal-based detergents such as neutral or basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates
  • ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
  • ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
  • extreme pressure agents and oil-improving agents examples include the sulphur-based extreme pressure additives such as dialkysulphides, dibenzylsulphide, dialkylpolysulphides, dibenzylpolysulphide, alkylmercaptans, benzothiophene and 2,2'-dithiobis(benzothiazole), and aliphatic oil-improving agents such as fatty acid amides and fatty acid esters.
  • sulphur-based extreme pressure additives such as dialkysulphides, dibenzylsulphide, dialkylpolysulphides, dibenzylpolysulphide, alkylmercaptans, benzothiophene and 2,2'-dithiobis(benzothiazole)
  • aliphatic oil-improving agents such as fatty acid amides and fatty acid esters.
  • These anti-rust agents can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.01 to 2 parts by weight per 100 parts by weight, of lubricating oil composition
  • anti-emulsification agents used generally as lubricating oil additives can be conveniently used as anti-emulsification agents in the lubricating oil compositions of the present invention. They can be conveniently used in amounts within the range of from 0.0005 to 0.5 part by weight, per 100 parts by weight of lubricating oil composition.
  • the lubricating oil compositions of the present invention can be used as industrial lubricating oils and, in particular, as hydraulic oils. Moreover, they are also useful as heat transfer fluids, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils and greases in view of their surprising ability to eliminate the pressure loss in hydraulic pipe-work.
  • the sample oil was coated between steel test pieces moved at a slip rate of 12.7 mm/minute with a loading of 22.4 kgf using a stick-slip tester produced by the Cincinnati Milacron Co. (formerly ASTM D 2877) and whether or not sticking occurred was assessed in order to evaluate the low-friction - energy conserving properties of the sample oil.
  • Lubricating oils where stick-slip occurred had a high coefficient of friction and were unsatisfactory in terms of energy conservation and therefore assessed a failure.
  • the sample oil was introduced into a clear gloss bottle and left to stand in the dark in the open air in winter with a view to evaluating solubility, and those where there was no turbidity or precipitate formation were adjudged to have passed the test. Moreover, the open air temperature varied gradually between 5 and -5°C.
  • the lubricating oil compositions of the present invention have excellent thermal oxidation stability, lubricating properties and filtration characteristics from the viewpoint of both the safety aspects and the actual performance of the compositions.
  • Example 11 Comp. Ex. 16 Comp. Ex. 17 Comp. Ex. 18 Formulation Type Formulation according to the present invention containing 98.97 %wt. of Base Oil 4, 0.03 %wt. of Amine 2.
  • the balance was made up of standard additive components.
  • Anti-wear hydraulic oil according to WO-A-00/63325 .
  • Synthetic biodegradable lubricant Synthetic biodegradable lubricant.
  • Viscosity Modifier improved multigrade hydraulic conventional anti-wear hydraulic fluid.
  • Mineral-oil based (HVI). A commercially available ISO VG 46 environmentally acceptable hydraulic fluid consisting of synthetic esters (HEES) and ashless additives. ISO VG 46. Mineral-oil based (HVI). Ester-based.
  • the first test assessed the effects (predicted as no effect) that the relationship between altering swash plate angle or drive speed have on pump efficiency.
  • the swash plate was set at different angles and then given running conditions achieved, set flow rate, speed, temperature and pressure so that the displacement of the pump was the only variable. Efficiency calculations were then performed on the data gathered and any effect was found to be below the scope of the measuring equipment, hence the relationship is assumed to be negligible.
  • Denison hydraulic piston pump rig used to assess hydraulic fluids and pump efficiency, including electrical fault-finding and calibration of the torque transducer.
  • a contact box with an over-current switch controls the rig, and a dial linked to an electronic control box allows the drive shaft speed to be adjusted.
  • Fluid temperature is varied between room temperature and 80°C.
  • Pressure is varied between 0 Bar and 130 Bar under normal test conditions, using a manual screw-in valve.
  • Periodically maintenance and cleaning may be required, such as fluid changes and adjustments to the swash plate.
  • Example 11 has not only a higher VI than the conventional anti-wear hydraulic oil of Comparative Example 16, but also has a significantly lower density.
  • Example 11 surprisingly has the highest relative efficiency as the pump requires less energy per unit of fluid pumped. It would be expected in real systems where a much higher proportion of pipework exists that the benefit would be of the order of 5% or more, which could be determined by monitoring electricity consumption.
  • the present invention makes it possible to make use of narrow-cut base oils in industrial lubricating oils to increase energy conservation and raise the flash point where necessary and to provide lubricating oil compositions which, when compared with commercial industrial lubricating oils of the same viscosity, have a density reduced by some 10% and which surprisingly have an energy conserving effect.
  • lubricating oil compositions of the present invention may be used in a wide range of industrial lubricating oils, such as hydraulic oils, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils, heat transfer fluids and greases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
EP04712057.1A 2003-02-18 2004-02-18 Lubricating oil compositions Expired - Lifetime EP1594943B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003040127 2003-02-18
JP2003040127A JP5057630B2 (ja) 2003-02-18 2003-02-18 工業用潤滑油組成物
PCT/EP2004/050150 WO2004074412A2 (en) 2003-02-18 2004-02-18 Lubricating oil compositions

Publications (2)

Publication Number Publication Date
EP1594943A2 EP1594943A2 (en) 2005-11-16
EP1594943B1 true EP1594943B1 (en) 2019-01-16

Family

ID=32905201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04712057.1A Expired - Lifetime EP1594943B1 (en) 2003-02-18 2004-02-18 Lubricating oil compositions

Country Status (11)

Country Link
US (1) US20040224860A1 (es)
EP (1) EP1594943B1 (es)
JP (1) JP5057630B2 (es)
KR (1) KR20050098951A (es)
CN (1) CN100587048C (es)
BR (1) BRPI0407521B8 (es)
CA (1) CA2516271A1 (es)
MX (1) MXPA05008671A (es)
RU (1) RU2352621C2 (es)
WO (1) WO2004074412A2 (es)
ZA (1) ZA200506194B (es)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030490A1 (ja) * 2004-09-14 2006-03-23 Idemitsu Kosan Co., Ltd. 冷凍機油組成物
US20060063685A1 (en) * 2004-09-22 2006-03-23 Pieter Purmer Lubricant for manual or automated manual transmissions
CN101321852B (zh) * 2005-02-11 2012-02-22 R.T.范德比尔特公司 含有二硫代氨基甲酸锑的润滑脂
CN101198682B (zh) * 2005-06-23 2012-02-22 国际壳牌研究有限公司 电气绝缘用油配制物
US20100144571A1 (en) * 2005-06-29 2010-06-10 Shinichi Shirahama Base oil for hydraulic oil and composition using the same
CN101278036B (zh) * 2005-09-29 2011-04-20 出光兴产株式会社 润滑组合物
JP5301078B2 (ja) 2005-11-15 2013-09-25 出光興産株式会社 圧力媒体油
US20070197410A1 (en) * 2006-02-21 2007-08-23 Rohmax Additives Gmbh Energy efficiency in hydraulic systems
JP5255243B2 (ja) * 2006-09-11 2013-08-07 昭和シェル石油株式会社 潤滑油組成物
JP5180466B2 (ja) * 2006-12-19 2013-04-10 昭和シェル石油株式会社 潤滑油組成物
JP5426829B2 (ja) * 2007-02-07 2014-02-26 昭和シェル石油株式会社 油圧シリンダーのビビリ、振動、鳴き防止用潤滑油組成物
US20080302422A1 (en) * 2007-06-07 2008-12-11 Rohmax Additives Gmbh Power output in hydraulic systems
JP5623276B2 (ja) * 2007-08-23 2014-11-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap 潤滑油組成物の使用法
JP5483662B2 (ja) 2008-01-15 2014-05-07 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5806794B2 (ja) * 2008-03-25 2015-11-10 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
JP5800449B2 (ja) * 2008-03-25 2015-10-28 Jx日鉱日石エネルギー株式会社 潤滑油基油及びその製造方法並びに潤滑油組成物
US20110021394A1 (en) * 2008-03-27 2011-01-27 Jx Nippon Oil & Energy Corporation Lubricant composition
EP2341122B2 (en) 2008-10-07 2019-04-03 JX Nippon Oil & Energy Corporation Lubricant base oil
JP2010090251A (ja) 2008-10-07 2010-04-22 Nippon Oil Corp 潤滑油基油及びその製造方法、潤滑油組成物
EP2343357B1 (en) 2008-10-07 2019-12-04 JX Nippon Oil & Energy Corporation Method for producing a lubricant composition
WO2010075046A2 (en) * 2008-12-23 2010-07-01 Shrieve Chemical Products, Inc. Refrigerant lubricant composition
WO2010140562A1 (ja) 2009-06-04 2010-12-09 新日本石油株式会社 潤滑油組成物
EP2573155B1 (en) 2009-06-04 2016-07-13 JX Nippon Oil & Energy Corporation Lubricating oil composition
JP5829374B2 (ja) 2009-06-04 2015-12-09 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US8999904B2 (en) 2009-06-04 2015-04-07 Jx Nippon Oil & Energy Corporation Lubricant oil composition and method for making the same
JP5689592B2 (ja) 2009-09-01 2015-03-25 Jx日鉱日石エネルギー株式会社 潤滑油組成物
CN102134524B (zh) * 2011-01-21 2013-06-19 长安大学 非公路运输自卸汽车齿轮油组合物
RU2505590C1 (ru) * 2012-09-06 2014-01-27 Общество с ограниченной ответственностью "ЛЛК-Интернешнл" Смазочное масло для газовых турбин
JP5947713B2 (ja) * 2012-12-28 2016-07-06 昭和シェル石油株式会社 真空ポンプ油
RU2548917C2 (ru) * 2013-02-26 2015-04-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Смазочная композиция синтетического компрессорного масла для применения в компрессорах высокого давления
US10689593B2 (en) * 2014-08-15 2020-06-23 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
JP6476738B2 (ja) * 2014-10-22 2019-03-06 協同油脂株式会社 転がり軸受用グリース組成物及び転がり軸受
FR3039835B1 (fr) 2015-08-03 2019-07-05 Total Marketing Services Utilisation d'une amine grasse pour prevenir et/ou reduire les pertes metalliques des pieces dans un moteur
WO2018125956A1 (en) * 2016-12-30 2018-07-05 Exxonmobil Research And Engineering Company Low viscosity lubricating oil compositions for turbomachines
JP7037282B2 (ja) * 2017-04-05 2022-03-16 Eneos株式会社 油圧作動油組成物及び油圧装置
JP6810657B2 (ja) 2017-05-30 2021-01-06 シェルルブリカンツジャパン株式会社 自動変速機用潤滑油組成物
RU2738608C1 (ru) * 2020-05-28 2020-12-14 Акционерное общество "НПЦ Спецнефтьпродукт" Способ получения синтетического компрессорного масла и основы этого масла
CN114250101A (zh) * 2021-12-29 2022-03-29 安美科技股份有限公司 一种cnc加工中心的防抖动立式导轨油及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758086A (en) * 1952-06-28 1956-08-07 California Research Corp Lubricant composition
US3290245A (en) * 1959-06-05 1966-12-06 Castrol Ltd Lubricating compositions containing amine tungstates
US4101427A (en) * 1977-02-09 1978-07-18 Exxon Research & Engineering Co. Lubricant composition
US4917809A (en) * 1986-11-11 1990-04-17 Ciba-Geigy Corporation High-temperature lubricants
US5552068A (en) * 1993-08-27 1996-09-03 Exxon Research And Engineering Company Lubricant composition containing amine phosphate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1595701A (en) * 1977-06-24 1981-08-19 Castrol Ltd Fluids suitable for use as hydraulic fluids electrical oils heat transfer fluids and refrigerant oils
US4392968A (en) * 1980-08-13 1983-07-12 Nippon Oil Company, Limited Metal deactivator and composition containing same
US4975177A (en) * 1985-11-01 1990-12-04 Mobil Oil Corporation High viscosity index lubricants
US5275749A (en) * 1992-11-06 1994-01-04 King Industries, Inc. N-acyl-N-hydrocarbonoxyalkyl aspartic acid esters as corrosion inhibitors
EP0684298A3 (en) * 1994-05-23 1996-04-03 Lubrizol Corp Compositions for increasing the shelf life of seals and the lubricants and functional fluids containing them.
US5737469A (en) * 1996-06-03 1998-04-07 Witco Corporation Filling compound for fiber optical cables
US6180575B1 (en) * 1998-08-04 2001-01-30 Mobil Oil Corporation High performance lubricating oils
US6627779B2 (en) * 2001-10-19 2003-09-30 Chevron U.S.A. Inc. Lube base oils with improved yield
US6646174B2 (en) * 2002-03-04 2003-11-11 Bp Corporation North America Inc. Co-oligomerization of 1-dodecene and 1-decene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758086A (en) * 1952-06-28 1956-08-07 California Research Corp Lubricant composition
US3290245A (en) * 1959-06-05 1966-12-06 Castrol Ltd Lubricating compositions containing amine tungstates
US4101427A (en) * 1977-02-09 1978-07-18 Exxon Research & Engineering Co. Lubricant composition
US4917809A (en) * 1986-11-11 1990-04-17 Ciba-Geigy Corporation High-temperature lubricants
US5552068A (en) * 1993-08-27 1996-09-03 Exxon Research And Engineering Company Lubricant composition containing amine phosphate

Also Published As

Publication number Publication date
EP1594943A2 (en) 2005-11-16
BRPI0407521A (pt) 2006-02-14
MXPA05008671A (es) 2005-10-18
CN100587048C (zh) 2010-02-03
WO2004074412A2 (en) 2004-09-02
ZA200506194B (en) 2006-09-27
JP5057630B2 (ja) 2012-10-24
CA2516271A1 (en) 2004-09-02
CN1751115A (zh) 2006-03-22
WO2004074412A3 (en) 2004-10-28
BRPI0407521B8 (pt) 2020-04-07
AU2004213598A1 (en) 2004-09-02
RU2005129121A (ru) 2006-01-27
KR20050098951A (ko) 2005-10-12
US20040224860A1 (en) 2004-11-11
RU2352621C2 (ru) 2009-04-20
JP2004250504A (ja) 2004-09-09
BRPI0407521B1 (pt) 2020-03-17

Similar Documents

Publication Publication Date Title
EP1594943B1 (en) Lubricating oil compositions
EP2126014B1 (en) Lubricating oil composition comprising an epoxidised ester and an aspartic acid derivative
JP4789335B2 (ja) 耐摩耗性潤滑油組成物
JP4608129B2 (ja) 潤滑油組成物
JP4836298B2 (ja) 潤滑油組成物
JP5426829B2 (ja) 油圧シリンダーのビビリ、振動、鳴き防止用潤滑油組成物
JP2019532151A (ja) 電動車両およびハイブリッド車両のための低伝導率潤滑油
BRPI0712555A2 (pt) àleo lubrificante, e, mÉtodo para misturar um àleo lubrificante
EP2334771A1 (en) Low sulfur and low metal additive formulations for high performance industrial oils
JP2008195952A (ja) 耐摩耗性潤滑油組成物
WO2011070141A2 (en) Lubricating oil composition
WO2011070140A2 (en) Lubricating oil composition
MX2013005269A (es) Lubricante para equipo de percusion.
AU2004213598B2 (en) Lubricating oil compositions
JP5225343B2 (ja) 潤滑油組成物
CN107001972B (zh) 用于内燃发动机的润滑油组合物
EP2457985B1 (en) Lubricating oil composition for lubricating automotive engines
EP3797145B1 (en) A lubricant comprising 2,5-(bishydroxymethyl) tetrahydrofuran dialkanoates
US20180355270A1 (en) Lubricants leading to better equipment cleanliness

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050909

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090615

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180828

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004053637

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1089702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1089702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004053637

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20191017

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190416

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190316

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221229

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004053637

Country of ref document: DE