EP1594943B1 - Lubricating oil compositions - Google Patents
Lubricating oil compositions Download PDFInfo
- Publication number
- EP1594943B1 EP1594943B1 EP04712057.1A EP04712057A EP1594943B1 EP 1594943 B1 EP1594943 B1 EP 1594943B1 EP 04712057 A EP04712057 A EP 04712057A EP 1594943 B1 EP1594943 B1 EP 1594943B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricating oil
- oil
- composition
- base oil
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010687 lubricating oil Substances 0.000 title claims description 99
- 239000000203 mixture Substances 0.000 title claims description 72
- 239000002199 base oil Substances 0.000 claims description 103
- 239000003921 oil Substances 0.000 claims description 31
- 239000000654 additive Substances 0.000 claims description 24
- 239000012530 fluid Substances 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 239000010720 hydraulic oil Substances 0.000 claims description 14
- 150000003141 primary amines Chemical class 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 239000004129 EU approved improving agent Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000013556 antirust agent Substances 0.000 claims description 8
- 239000002270 dispersing agent Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 238000004945 emulsification Methods 0.000 claims description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000005864 Sulphur Substances 0.000 claims description 4
- 239000002518 antifoaming agent Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000010725 compressor oil Substances 0.000 claims description 4
- 239000012208 gear oil Substances 0.000 claims description 4
- 239000012188 paraffin wax Substances 0.000 claims description 4
- 239000010723 turbine oil Substances 0.000 claims description 4
- 239000005069 Extreme pressure additive Substances 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 239000006078 metal deactivator Substances 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- -1 amine compound Chemical class 0.000 description 52
- 150000003956 methylamines Chemical group 0.000 description 33
- BAVYZALUXZFZLV-UHFFFAOYSA-N mono-methylamine Natural products NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 33
- 235000019198 oils Nutrition 0.000 description 29
- 150000001412 amines Chemical class 0.000 description 24
- 238000012360 testing method Methods 0.000 description 15
- 239000002904 solvent Substances 0.000 description 13
- 230000000996 additive effect Effects 0.000 description 12
- 235000006708 antioxidants Nutrition 0.000 description 10
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000004134 energy conservation Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229920013639 polyalphaolefin Polymers 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 229940042472 mineral oil Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 2
- DIOYAVUHUXAUPX-ZHACJKMWSA-N 2-[methyl-[(e)-octadec-9-enoyl]amino]acetic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)N(C)CC(O)=O DIOYAVUHUXAUPX-ZHACJKMWSA-N 0.000 description 2
- FZZMTSNZRBFGGU-UHFFFAOYSA-N 2-chloro-7-fluoroquinazolin-4-amine Chemical compound FC1=CC=C2C(N)=NC(Cl)=NC2=C1 FZZMTSNZRBFGGU-UHFFFAOYSA-N 0.000 description 2
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 2
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 2
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- CGRTZESQZZGAAU-UHFFFAOYSA-N [2-[3-[1-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]-2-methylpropan-2-yl]-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]-2-methylpropyl] 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCC(C)(C)C2OCC3(CO2)COC(OC3)C(C)(C)COC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 CGRTZESQZZGAAU-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000001556 benzimidazoles Chemical class 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- LUFPJJNWMYZRQE-UHFFFAOYSA-N benzylsulfanylmethylbenzene Chemical compound C=1C=CC=CC=1CSCC1=CC=CC=C1 LUFPJJNWMYZRQE-UHFFFAOYSA-N 0.000 description 2
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000000183 1,3-benzoxazoles Chemical class 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- PWNBRRGFUVBTQG-UHFFFAOYSA-N 1-n,4-n-di(propan-2-yl)benzene-1,4-diamine Chemical compound CC(C)NC1=CC=C(NC(C)C)C=C1 PWNBRRGFUVBTQG-UHFFFAOYSA-N 0.000 description 1
- ZBRNSXOKGALPHF-UHFFFAOYSA-N 10-[(3,5-ditert-butyl-4-hydroxyphenyl)methylsulfanyl]decanoic acid Chemical compound CC(C)(C)C1=CC(CSCCCCCCCCCC(O)=O)=CC(C(C)(C)C)=C1O ZBRNSXOKGALPHF-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical compound N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 description 1
- OPLCSTZDXXUYDU-UHFFFAOYSA-N 2,4-dimethyl-6-tert-butylphenol Chemical compound CC1=CC(C)=C(O)C(C(C)(C)C)=C1 OPLCSTZDXXUYDU-UHFFFAOYSA-N 0.000 description 1
- ZBADMMCYTSORHN-UHFFFAOYSA-N 2,5-bis(dodecyldisulfanyl)-1,3,4-thiadiazole Chemical compound CCCCCCCCCCCCSSC1=NN=C(SSCCCCCCCCCCCC)S1 ZBADMMCYTSORHN-UHFFFAOYSA-N 0.000 description 1
- ZGWOXISFZXPTGJ-UHFFFAOYSA-N 2,5-bis(heptyldisulfanyl)-1,3,4-thiadiazole Chemical compound CCCCCCCSSC1=NN=C(SSCCCCCCC)S1 ZGWOXISFZXPTGJ-UHFFFAOYSA-N 0.000 description 1
- MGEQSWVPSCZGEK-UHFFFAOYSA-N 2,5-bis(nonyldisulfanyl)-1,3,4-thiadiazole Chemical compound CCCCCCCCCSSC1=NN=C(SSCCCCCCCCC)S1 MGEQSWVPSCZGEK-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- LKALLEFLBKHPTQ-UHFFFAOYSA-N 2,6-bis[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound OC=1C(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=CC(C)=CC=1CC1=CC(C)=CC(C(C)(C)C)=C1O LKALLEFLBKHPTQ-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- SLUKQUGVTITNSY-UHFFFAOYSA-N 2,6-di-tert-butyl-4-methoxyphenol Chemical compound COC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SLUKQUGVTITNSY-UHFFFAOYSA-N 0.000 description 1
- QHPKIUDQDCWRKO-UHFFFAOYSA-N 2,6-ditert-butyl-4-[2-(3,5-ditert-butyl-4-hydroxyphenyl)propan-2-yl]phenol Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C(C)(C)C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 QHPKIUDQDCWRKO-UHFFFAOYSA-N 0.000 description 1
- YQQQXXUABFURLN-UHFFFAOYSA-N 2,6-ditert-butyl-4-ethoxyphenol Chemical compound CCOC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 YQQQXXUABFURLN-UHFFFAOYSA-N 0.000 description 1
- HYXVEQIONZKDIA-UHFFFAOYSA-N 2-(decyldisulfanyl)-1,3-benzoxazole Chemical compound C1=CC=C2OC(SSCCCCCCCCCC)=NC2=C1 HYXVEQIONZKDIA-UHFFFAOYSA-N 0.000 description 1
- XTYDQWTYBIZARF-UHFFFAOYSA-N 2-(decyldisulfanyl)-1h-benzimidazole Chemical compound C1=CC=C2NC(SSCCCCCCCCCC)=NC2=C1 XTYDQWTYBIZARF-UHFFFAOYSA-N 0.000 description 1
- ITJODUNSZXNTOI-UHFFFAOYSA-N 2-(dodecyldisulfanyl)-1h-benzimidazole Chemical compound C1=CC=C2NC(SSCCCCCCCCCCCC)=NC2=C1 ITJODUNSZXNTOI-UHFFFAOYSA-N 0.000 description 1
- HVHWMYUBPWXAIK-UHFFFAOYSA-N 2-(hexyldisulfanyl)-1,3-benzothiazole Chemical compound C1=CC=C2SC(SSCCCCCC)=NC2=C1 HVHWMYUBPWXAIK-UHFFFAOYSA-N 0.000 description 1
- CYXWNSBYVBWROX-UHFFFAOYSA-N 2-(octyldisulfanyl)-1,3-benzothiazole Chemical compound C1=CC=C2SC(SSCCCCCCCC)=NC2=C1 CYXWNSBYVBWROX-UHFFFAOYSA-N 0.000 description 1
- LFAMMXHEBNTRPL-UHFFFAOYSA-N 2-(octyldisulfanyl)-1,3-benzoxazole Chemical compound C1=CC=C2OC(SSCCCCCCCC)=NC2=C1 LFAMMXHEBNTRPL-UHFFFAOYSA-N 0.000 description 1
- ZYLBDGBVCLZOII-UHFFFAOYSA-N 2-(octyldisulfanyl)-1h-benzimidazole Chemical compound C1=CC=C2NC(SSCCCCCCCC)=NC2=C1 ZYLBDGBVCLZOII-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- XXQHMEUBVSZQON-UHFFFAOYSA-N 2-[(3-dodecoxy-3-oxopropyl)sulfanylmethyl]icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCC(CSCCC(=O)OCCCCCCCCCCCC)C(=O)O XXQHMEUBVSZQON-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- XVEYHYHXRYVWJW-UHFFFAOYSA-N 2-ethyl-n-(2-ethyl-4-nonylphenyl)-4-nonylaniline Chemical compound CCC1=CC(CCCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCCC)C=C1CC XVEYHYHXRYVWJW-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- IMOYOUMVYICGCA-UHFFFAOYSA-N 2-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C=C1C(C)(C)C IMOYOUMVYICGCA-UHFFFAOYSA-N 0.000 description 1
- GPNYZBKIGXGYNU-UHFFFAOYSA-N 2-tert-butyl-6-[(3-tert-butyl-5-ethyl-2-hydroxyphenyl)methyl]-4-ethylphenol Chemical compound CC(C)(C)C1=CC(CC)=CC(CC=2C(=C(C=C(CC)C=2)C(C)(C)C)O)=C1O GPNYZBKIGXGYNU-UHFFFAOYSA-N 0.000 description 1
- ODJQKYXPKWQWNK-UHFFFAOYSA-N 3,3'-Thiobispropanoic acid Chemical class OC(=O)CCSCCC(O)=O ODJQKYXPKWQWNK-UHFFFAOYSA-N 0.000 description 1
- STGFANHLXUILNY-UHFFFAOYSA-N 3,7-dioctyl-10h-phenothiazine Chemical compound C1=C(CCCCCCCC)C=C2SC3=CC(CCCCCCCC)=CC=C3NC2=C1 STGFANHLXUILNY-UHFFFAOYSA-N 0.000 description 1
- MRBKEAMVRSLQPH-UHFFFAOYSA-N 3-tert-butyl-4-hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1 MRBKEAMVRSLQPH-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- JHCCIUPVUCVKIJ-UHFFFAOYSA-N 4,6-ditert-butyl-2-(3,5-ditert-butyl-2,6-dihydroxyphenyl)sulfanylbenzene-1,3-diol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(O)C(SC=2C(=C(C=C(C=2O)C(C)(C)C)C(C)(C)C)O)=C1O JHCCIUPVUCVKIJ-UHFFFAOYSA-N 0.000 description 1
- PRWJPWSKLXYEPD-UHFFFAOYSA-N 4-[4,4-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan-2-yl]-2-tert-butyl-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(C)CC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C PRWJPWSKLXYEPD-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 1
- LZDOYVMSNJBLIM-UHFFFAOYSA-N 4-tert-butylphenol;formaldehyde Chemical compound O=C.CC(C)(C)C1=CC=C(O)C=C1 LZDOYVMSNJBLIM-UHFFFAOYSA-N 0.000 description 1
- ZWTWLIOPZJFEOO-UHFFFAOYSA-N 5-ethyl-2h-benzotriazole Chemical compound C1=C(CC)C=CC2=NNN=C21 ZWTWLIOPZJFEOO-UHFFFAOYSA-N 0.000 description 1
- LRUDIIUSNGCQKF-UHFFFAOYSA-N 5-methyl-1H-benzotriazole Chemical compound C1=C(C)C=CC2=NNN=C21 LRUDIIUSNGCQKF-UHFFFAOYSA-N 0.000 description 1
- ZVVFVKJZNVSANF-UHFFFAOYSA-N 6-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]hexyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCCCCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 ZVVFVKJZNVSANF-UHFFFAOYSA-N 0.000 description 1
- AAIUWVOMXTVLRG-UHFFFAOYSA-N 8,8-dimethylnonan-1-amine Chemical compound CC(C)(C)CCCCCCCN AAIUWVOMXTVLRG-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Natural products CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- LZPQSESJMMGOCC-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCCSSC1=NN=C[S+]1SSCCCCCCCCCCCCCCCCCC Chemical compound CCCCCCCCCCCCCCCCCCSSC1=NN=C[S+]1SSCCCCCCCCCCCCCCCCCC LZPQSESJMMGOCC-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
- QAPVYZRWKDXNDK-UHFFFAOYSA-N P,P-Dioctyldiphenylamine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCC)C=C1 QAPVYZRWKDXNDK-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- DFMYXZSEXKBYDI-UHFFFAOYSA-N butyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 DFMYXZSEXKBYDI-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- WOEJTGAIIAPHAM-UHFFFAOYSA-N didodecyl sulfite Chemical compound CCCCCCCCCCCCOS(=O)OCCCCCCCCCCCC WOEJTGAIIAPHAM-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- RHXIYCXNOQKKMZ-UHFFFAOYSA-N diethoxy(dihydroxy)silane Chemical compound CCO[Si](O)(O)OCC RHXIYCXNOQKKMZ-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- KTSKBTNGZJPRPD-UHFFFAOYSA-N dioctyl sulfite Chemical compound CCCCCCCCOS(=O)OCCCCCCCC KTSKBTNGZJPRPD-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002473 indoazoles Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LCHMEXFHRGKPAB-UHFFFAOYSA-N n-(2,4-diethylphenyl)-2,4-diethylaniline Chemical compound CCC1=CC(CC)=CC=C1NC1=CC=C(CC)C=C1CC LCHMEXFHRGKPAB-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SRWPBFLLYKIZTL-UHFFFAOYSA-N n-hexyl-n-phenylnaphthalen-2-amine Chemical compound C=1C=C2C=CC=CC2=CC=1N(CCCCCC)C1=CC=CC=C1 SRWPBFLLYKIZTL-UHFFFAOYSA-N 0.000 description 1
- RQVGZVZFVNMBGS-UHFFFAOYSA-N n-octyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(CCCCCCCC)C1=CC=CC=C1 RQVGZVZFVNMBGS-UHFFFAOYSA-N 0.000 description 1
- XZAOWUQONUDABE-UHFFFAOYSA-N n-octyl-n-phenylnaphthalen-2-amine Chemical compound C=1C=C2C=CC=CC2=CC=1N(CCCCCCCC)C1=CC=CC=C1 XZAOWUQONUDABE-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MHJCZOMOUCUAOI-UHFFFAOYSA-N n-tert-butyl-n-phenylaniline Chemical compound C=1C=CC=CC=1N(C(C)(C)C)C1=CC=CC=C1 MHJCZOMOUCUAOI-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JKBYAWVSVVSRIX-UHFFFAOYSA-N octadecyl 2-(1-octadecoxy-1-oxopropan-2-yl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)SC(C)C(=O)OCCCCCCCCCCCCCCCCCC JKBYAWVSVVSRIX-UHFFFAOYSA-N 0.000 description 1
- SSDSCDGVMJFTEQ-UHFFFAOYSA-N octadecyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SSDSCDGVMJFTEQ-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical class [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- JDVPQXZIJDEHAN-UHFFFAOYSA-N succinamic acid Chemical compound NC(=O)CCC(O)=O JDVPQXZIJDEHAN-UHFFFAOYSA-N 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LVEOKSIILWWVEO-UHFFFAOYSA-N tetradecyl 3-(3-oxo-3-tetradecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCC LVEOKSIILWWVEO-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CNUJLMSKURPSHE-UHFFFAOYSA-N trioctadecyl phosphite Chemical compound CCCCCCCCCCCCCCCCCCOP(OCCCCCCCCCCCCCCCCCC)OCCCCCCCCCCCCCCCCCC CNUJLMSKURPSHE-UHFFFAOYSA-N 0.000 description 1
- JZNDMMGBXUYFNQ-UHFFFAOYSA-N tris(dodecylsulfanyl)phosphane Chemical compound CCCCCCCCCCCCSP(SCCCCCCCCCCCC)SCCCCCCCCCCCC JZNDMMGBXUYFNQ-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004018 waxing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M171/00—Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
- C10M171/02—Specified values of viscosity or viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/0206—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/10—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers
- C10M2205/103—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/017—Specific gravity or density
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/02—Bearings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
Definitions
- the present invention relates to lubricating oil compositions which suppress the formation of sludge and which have excellent storage stability, low friction properties, small pressure transmission loss, low supply pressure loss in pipe-work, and low flammability.
- Hydraulic systems are distinguished in that the "oil" which is the motive power transmitting medium has low compressibility and so it is possible to use higher pressures and to increase the output with respect to the weight of a machine, and for many reasons such as the fact that the division, concentration and speed control of the motive power can be achieved easily, such oils are widely used in industrial applications.
- the Hydraulic Fluid Handbook page 31, published in 1985 by the Lubrication News Agency Co. Ltd. , describes that the feed pressure loss in hydraulic pipe-work based on the Bernoulli's theorem is proportional to the density of the oil both in a vacuum pipe and in a vented pipe, elbow, branch pipe or linked pipe. That is to say, the supply pressure loss can be reduced by reducing the density if the kinematic viscosity and the pipe-work are the same, and it is also shown that at the same time an improvement in flow-rate efficiency can be devised by reducing the density. Moreover, since the supply pressure loss in hydraulic pipe-work is converted to heat and sound etc., it is suggested that the generation of heat and noise are also suppressed by reducing the density. Since reduced friction also contributes to improving energy conservation, low friction properties to an extent where stick-slip does not arise in steel-steel situations is required.
- the present invention now surprisingly enables energy conservation to be achieved by improving the performance of monograde hydraulic oils as the hydraulic media for increasing the efficiency of hydraulic energy transmission.
- the present invention provides a lubricating oil composition
- a lubricating oil composition comprising lubricating oil base oil and a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19, wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm 2 /s, a viscosity index of from 130 to 150 and a density at 15°C of from 0.80 to 0.84 g.cm -3 .
- a lubricating oil composition in which not only has the density been reduced by about 10% when compared with the commercial industrial lubricating oil products of the same viscosity and which surprisingly has an energy conserving effect, but which also has a flash point of at least 250°C as measured by JIS K 2265 by using a narrow-cut base oil.
- the narrow-cut base oils having a high flash point for industrial lubricating oil products are very different in terms of their molecular weight distribution from the usual base oils used by those in the industry and the proportion of high molecular weight hydrocarbon components is very small. Consequently, the solubilities of lubricating oil additives which control various aspects of performance are very low and there is a disadvantage in that turbidity and precipitates are produced, and these materials cannot be used as industrial lubricating oils.
- the high molecular weight ashless dispersants used in the automobile lubricating oils cannot be used in hydraulic applications even at treat rates of less than 1 %wt., e.g. 0.1 %wt., due to emulsification in the presence of water, which is an undesirable property therefor.
- the solubility, the low friction properties and anti-rust properties when using a specified narrow-cut base oil in industrial lubricating oils with a view to increasing energy conservation and having a high flash point may be surprisingly improved by the use of a specific amine compound.
- Japanese Unexamined Patent Application Laid Open 2002-338 983 there is disclosed a lubricating oil composition where an alkylamine has been added to a lubricating oil base oil, but the amount of anti-rust agent is greatly reduced by combining the alkylamines with the anti-rust agent and, as a result, the extreme pressure performance by the anti-rust agent is suppressed to the lowest level.
- the primary amine having a tertiary alkyl group in the present invention as the primary amine.
- the lubricating oil base oil used is preferably a base oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s. It is also disclosed that from the viewpoint of minimising as far as possible the change in the damping force the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the lubricating oil base oil of the present invention.
- the lubricating oil base oil used is preferably a base oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s. It is further disclosed that from the viewpoint of minimising as far as possible the change in the damping force the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the lubricating oil base oil of the present invention.
- the use of an oil of which the minimum value of the kinematic viscosity at 40°C is preferably 8 mm 2 /s and more desirably 10 mm 2 /s, and the maximum value of the kinematic viscosity at 40°C is preferably 60 mm 2 /s and more desirably 40 mm 2 /s is desirable.
- the viscosity index is preferably at least 80 and more desirably at least 95, but there is no disclosure of the fact that the viscosity index is at least 130 and the density is not more than 0.84 g.cm -3 as in the case of the lubricating oil base oil of the present invention.
- the present invention surprisingly provides a lubricating oil composition with which the formation of sludge is suppressed even when the usual lubricating oil additives are compounded, which has excellent storage stability, which has low friction properties, with which the pressure transmission loss is small, with which the supply pressure loss in pipe-work is small, and which has low flammability.
- the present invention provides a lubricating oil composition
- a lubricating oil composition comprising lubricating oil base oil, wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm 2 /s, a viscosity index of from 130 to 150, a density at 15°C of from 0.80 to 0.84 g.cm -3 and a flash point of at least 250°C as measured by JIS K 2265.
- the lubricating oil base oil is narrow cut base oil or mixtures of narrow cut base oils, wherein the composition of the narrow-cut base oils is such that with the method of measurement laid down in ASTM D 3238, the aromatic content (%CA) is not more than 0.1 wt% and the paraffin content (%Cp) is at least 85 wt%, the iso-paraffin content is at least 80 wt%, the elemental sulphur content is not more than 50 ppm, the elemental nitrogen content is not more than 5 ppm, the total polar material is not more than 1% and the properties are: refractive index at least 1.45, aniline point at least 120°C and they are colourless and transparent, being classified as L0.5 using the colour test method laid down in ASTM D 1500.
- the lubricating oil composition further comprises a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19.
- a primary amine which has a C 8 to C 20 tertiary alkyl group which can be represented by general formula (1) below wherein x is an integer of value from 1 to 17, y is an integer of value from 1 to 17, z is an integer of value from 1 to 17, and x + y + z is an integer of value from 7 to 19.
- the lubricating oil composition of the present invention contains from 0.001 to 5.0 parts by weight of the primary amine represented by general formula (1) is compounded per 100 parts by weight of the lubricating oil composition.
- the present invention further provides a hydraulic oil, a machine tool oil, a gear oil, a compressor oil, a turbine oil, a bearing oil and a heat transfer fluid
- a high viscosity index signifies that the temperature dependence of the lubricating oil viscosity is small and, for example, the temperature of the hydraulic oil when hydraulic equipment is first started is low and, while a hydraulic oil which has a low viscosity index will have a high viscosity, a hydraulic oil which has a high viscosity index will have a low viscosity at low temperature and it is possible to reduce the power consumption on start-up.
- the viscosity index as defined in JIS K 2283 is from 130 to 150, preferably from 132 to 150 and most desirably from 135 to 150.
- the kinematic viscosity at 10°C is 283.06 mm 2 /s, while if the viscosity index is 130 the kinematic viscosity at 10°C is 250.1 mm 2 /s and if the viscosity index is 135 then it is 242.98 mm 2 /s and the room temperature viscosity changes markedly according to the viscosity index, and since the electrical power consumption also increases in accordance with the kinematic viscosity, a high viscosity index is also desirable for reducing the power consumption on start-up.
- the density at 15°C of the lubricating oil base oil measured by the method for measuring the density of lubricating oil defined in JIS K 2249 is from 0.80 to 0.84 g.cm -3 , preferably from 0.81 to 0.84 g.cm -3 , more desirably from 0.815 to 0.835 g.cm -3 and most desirably from 0.820 to 0.830 g.cm -3 .
- hydraulic equipment generally operates at an oil temperature of from 40 to 60°C, but in the case of a density at 15°C of 0.84 g.cm -3 , the density, when calculated using the density calculation method indicated in JIS K 2249, at 40°C is 0.8233 g.cm -3 , at 50°C is 0.8167 g.cm -3 and at 60°C is 0.8100 g.cm -3 , and so the density at 40°C is preferably not more than 0.8167 g.cm -3 , the density at 50°C is preferably not more than 0.8167 g.cm -3 and the density at 60°C is preferably not more than 0.8100 g.cm -3 .
- a lubricating oil composition which has low friction properties contributes to energy conservation, it is preferred that there are low friction properties such that stick-slip does not occur in steel-steel situations.
- the flash point of the lubricating oil base oil as measured using the Cleveland formula defined in JIS K 2265 is at least 250°C, preferably at least 252°C, more preferably at least 256°C.
- Storage stability of a lubricating oil composition is essential for providing useful performance as an industrial lubricating oil.
- troubles may arise in precision hydraulic systems, for example, in the case of lubricating oil compositions where turbidity or precipitation occurs.
- the narrow-cut base oils wherein the molecular weight distribution of the hydrocarbons in the base oil is very narrow can be cited as base oils which do satisfy these conditions.
- the Fischer-Tropsch derived base oil may any Fischer-Tropsch derived base oil as disclosed in for example EP-A-776959 , EP-A-668342 , WO-A-9721788 , WO-0015736 , WO-0014188 , WO-0014187 , WO-0014183 , WO-0014179 , WO-0008115 , WO-9941332 , EP-1029029 , WO-0118156 and WO-0157166 .
- these three types of narrow-cut base oil are used individually or in the form of mixtures so as to provide the prescribed viscosity.
- Such narrow-cut oils also exhibit especially good volatilisation resistance.
- an ISO VG 32 grade in the viscosity classification for industrial lubricating oils is prepared by combining these base oils, the result in a volatile loss test (NOACK) as defined in ASTM D 5800 is suppressed to 8% or less.
- the volatile loss test (NOACK) result in the case of an ISO VG 46 grade oil prepared in the same way is less than 5%.
- these narrow-cut base oils can also be said to be suitable for lubricating oils where involatility is required as in the case of a compressor lubricating oils for example.
- the amount of the primary amine compound represented by general formula (1) compounded in the lubricating oil composition of the present invention is preferably from 0.001 to 1.0 part by weight, preferably from 0.001 to 0.5 part by weight, and most desirably from 0.001 to 0.05 part by weight, per 100 parts by weight of the lubricating oil composition.
- Examples of the aliphatic hydrocarbyl groups represented by C x H 2x + 1 , C y H 2y +1 and C z H 2z + 1 in the above-mentioned general formula (1) include the methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, the linear chain and branched pentyl groups, the linear chain and branched hexyl groups, the linear chain and branched heptyl groups, the linear chain and branched octyl groups, the linear chain and branched nonyl groups, the linear chain and branched decyl groups, the linear chain and branched undecyl groups, the linear chain and branched dodecyl groups, the linear chain and branched tridecyl groups, the linear chain and branched tetradecyl groups, the linear chain and
- lubricating oil additives such as antioxidants, metal deactivators, extreme pressure additives, oil-improving agents, antifoaming agents, viscosity index improving agents, pour point depressants, cleaning dispersants, anti-rust agents and anti-emulsification agents can be added.
- amine-based antioxidants include dialkyldiphenylamines such as p,p'-dioctyl-diphenylamine (such as that produced under the trade designation "Sonoflex OD-3" by the Seiko Kagaku Co.), p,p'-di- ⁇ -methylbenzyl-diphenylamine and N-p-butylphenyl-N-p'-octylphenylamine, monoalkyldiphenylamines such as mono-t-butyldiphenylamine and mono-octyldiphenylamine, bis(dialkylphenyl)amines such as di-(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine, alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and n-t-dodecylphenyl-1
- sulphur-based anti-oxidants examples include dialkylsulphites such as didodecylsulphite and dioctylsulphite, thiodipropionic acid esters such as didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate and dodecyloctadecylthiodipropionate, and 2-mercaptobenzimidazole.
- dialkylsulphites such as didodecylsulphite and dioctylsulphite
- thiodipropionic acid esters such as didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate and dodecyloctadecylthiodipropionate
- 2-mercaptobenzimidazole examples include dialky
- phenol-based antioxidants examples include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butylhydroquinone (such as that produced under the trade designation "Anteeji DBH" by the Kawaguchi Kagaku Co.,), 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl-4-methoxyphenol and 2,6-di-t
- phosphorus-based antioxidants include triaryl phosphites such as triphenyl phosphite and tricresyl phosphite, trialkyl phosphites such as trioctadecyl phosphite and tridecyl phosphite, and tridodecyl trithiophosphite.
- antioxidants can be conveniently used individually or in the form of a combination of number of types in an amount within the range of from 0.01 to 2.0 parts by weight, per 100 parts by weight of lubricating oil composition.
- metal de-activating agents can be conveniently used individually or in the form of a combination of a number of types in an amount within the range of from 0.01 to 0.5 parts by weight, per 100 parts by weight of lubricating oil composition.
- antifoaming agents examples include organosilicates such as dimethylpolysiloxane, diethylsilicate and fluorosilicone, and non-silicone antifoaming agents such as polyalkylacrylates. These can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.0001 to 0.1 part by weight, per 100 parts by weight of lubricating composition.
- viscosity index improving agents examples include non-dispersing type viscosity improving agents such as polymethacrylates and olefin copolymers such as ethylene-propylene copolymers and styrene-diene copolymers, and dispersing type viscosity improving agents where nitrogen-containing monomers have been copolymerized in these materials.
- the amount added can be conveniently within the range of from 0 to 20 parts by weight, per 100 parts by weight of lubricating oil composition.
- the amount of viscosity index improving agent compounded is preferably from 0 to 5 parts by weight and more desirably from 0 to 2 parts by weight, while most desirably no viscosity index improving agent is compounded at all.
- pour point depressants examples include polymethacrylate-based polymers. These can be conveniently used in amounts within the range of from 0.01 to 5 parts by weight, per 100 parts of lubricating oil composition.
- cleaning dispersing agents examples include metal-based detergents such as neutral or basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates, and ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
- metal-based detergents such as neutral or basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates
- ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
- ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example.
- extreme pressure agents and oil-improving agents examples include the sulphur-based extreme pressure additives such as dialkysulphides, dibenzylsulphide, dialkylpolysulphides, dibenzylpolysulphide, alkylmercaptans, benzothiophene and 2,2'-dithiobis(benzothiazole), and aliphatic oil-improving agents such as fatty acid amides and fatty acid esters.
- sulphur-based extreme pressure additives such as dialkysulphides, dibenzylsulphide, dialkylpolysulphides, dibenzylpolysulphide, alkylmercaptans, benzothiophene and 2,2'-dithiobis(benzothiazole)
- aliphatic oil-improving agents such as fatty acid amides and fatty acid esters.
- These anti-rust agents can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.01 to 2 parts by weight per 100 parts by weight, of lubricating oil composition
- anti-emulsification agents used generally as lubricating oil additives can be conveniently used as anti-emulsification agents in the lubricating oil compositions of the present invention. They can be conveniently used in amounts within the range of from 0.0005 to 0.5 part by weight, per 100 parts by weight of lubricating oil composition.
- the lubricating oil compositions of the present invention can be used as industrial lubricating oils and, in particular, as hydraulic oils. Moreover, they are also useful as heat transfer fluids, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils and greases in view of their surprising ability to eliminate the pressure loss in hydraulic pipe-work.
- the sample oil was coated between steel test pieces moved at a slip rate of 12.7 mm/minute with a loading of 22.4 kgf using a stick-slip tester produced by the Cincinnati Milacron Co. (formerly ASTM D 2877) and whether or not sticking occurred was assessed in order to evaluate the low-friction - energy conserving properties of the sample oil.
- Lubricating oils where stick-slip occurred had a high coefficient of friction and were unsatisfactory in terms of energy conservation and therefore assessed a failure.
- the sample oil was introduced into a clear gloss bottle and left to stand in the dark in the open air in winter with a view to evaluating solubility, and those where there was no turbidity or precipitate formation were adjudged to have passed the test. Moreover, the open air temperature varied gradually between 5 and -5°C.
- the lubricating oil compositions of the present invention have excellent thermal oxidation stability, lubricating properties and filtration characteristics from the viewpoint of both the safety aspects and the actual performance of the compositions.
- Example 11 Comp. Ex. 16 Comp. Ex. 17 Comp. Ex. 18 Formulation Type Formulation according to the present invention containing 98.97 %wt. of Base Oil 4, 0.03 %wt. of Amine 2.
- the balance was made up of standard additive components.
- Anti-wear hydraulic oil according to WO-A-00/63325 .
- Synthetic biodegradable lubricant Synthetic biodegradable lubricant.
- Viscosity Modifier improved multigrade hydraulic conventional anti-wear hydraulic fluid.
- Mineral-oil based (HVI). A commercially available ISO VG 46 environmentally acceptable hydraulic fluid consisting of synthetic esters (HEES) and ashless additives. ISO VG 46. Mineral-oil based (HVI). Ester-based.
- the first test assessed the effects (predicted as no effect) that the relationship between altering swash plate angle or drive speed have on pump efficiency.
- the swash plate was set at different angles and then given running conditions achieved, set flow rate, speed, temperature and pressure so that the displacement of the pump was the only variable. Efficiency calculations were then performed on the data gathered and any effect was found to be below the scope of the measuring equipment, hence the relationship is assumed to be negligible.
- Denison hydraulic piston pump rig used to assess hydraulic fluids and pump efficiency, including electrical fault-finding and calibration of the torque transducer.
- a contact box with an over-current switch controls the rig, and a dial linked to an electronic control box allows the drive shaft speed to be adjusted.
- Fluid temperature is varied between room temperature and 80°C.
- Pressure is varied between 0 Bar and 130 Bar under normal test conditions, using a manual screw-in valve.
- Periodically maintenance and cleaning may be required, such as fluid changes and adjustments to the swash plate.
- Example 11 has not only a higher VI than the conventional anti-wear hydraulic oil of Comparative Example 16, but also has a significantly lower density.
- Example 11 surprisingly has the highest relative efficiency as the pump requires less energy per unit of fluid pumped. It would be expected in real systems where a much higher proportion of pipework exists that the benefit would be of the order of 5% or more, which could be determined by monitoring electricity consumption.
- the present invention makes it possible to make use of narrow-cut base oils in industrial lubricating oils to increase energy conservation and raise the flash point where necessary and to provide lubricating oil compositions which, when compared with commercial industrial lubricating oils of the same viscosity, have a density reduced by some 10% and which surprisingly have an energy conserving effect.
- lubricating oil compositions of the present invention may be used in a wide range of industrial lubricating oils, such as hydraulic oils, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils, heat transfer fluids and greases.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
- The present invention relates to lubricating oil compositions which suppress the formation of sludge and which have excellent storage stability, low friction properties, small pressure transmission loss, low supply pressure loss in pipe-work, and low flammability.
- The "Law Concerning the Rationalisation of the Use of Energy" was enacted as a result of the Kyoto Conference on the Prevention of Global Warming (COP3). Thus, for example, some 3,500 factories world-wide have been designated "Class 1 Energy Control Designated Factories" and energy conservation in factories and businesses has proceeded. Since energy conservation also signifies a reduction of costs the problem is being tackled positively at the present time.
- In Japan, it is thought that about 56% of all electrical power consumption is accounted for by the use of electric motors. Hence, considerable energy conservation in the hydraulic systems which are used to convert the electric motor output to oil pressure is required.
- Hydraulic systems are distinguished in that the "oil" which is the motive power transmitting medium has low compressibility and so it is possible to use higher pressures and to increase the output with respect to the weight of a machine, and for many reasons such as the fact that the division, concentration and speed control of the motive power can be achieved easily, such oils are widely used in industrial applications.
- The Hydraulic Fluid Handbook, page 31, published in 1985 by the Lubrication News Agency Co. Ltd., describes that the feed pressure loss in hydraulic pipe-work based on the Bernoulli's theorem is proportional to the density of the oil both in a vacuum pipe and in a vented pipe, elbow, branch pipe or linked pipe. That is to say, the supply pressure loss can be reduced by reducing the density if the kinematic viscosity and the pipe-work are the same, and it is also shown that at the same time an improvement in flow-rate efficiency can be devised by reducing the density. Moreover, since the supply pressure loss in hydraulic pipe-work is converted to heat and sound etc., it is suggested that the generation of heat and noise are also suppressed by reducing the density. Since reduced friction also contributes to improving energy conservation, low friction properties to an extent where stick-slip does not arise in steel-steel situations is required.
- Pump design and size greatly affect the efficiency of a hydraulic system. Therefore, efforts in industry have concentrated upon improving pump efficiency. Moreover, in recent years progress toward even higher pressures has been made with a view to increasing the efficiency of hydraulic energy transmission and reducing the supply pressure loss.
- Hitherto, research has not focussed on fluid properties, other than those that affect the pump, for example the introduction of friction modifiers into multigrade hydraulic fluids. Indeed, in this regard industry has not developed any standard methodologies to measure the energy efficiency of a hydraulic system.
- According to a scientific paper released by Degussa-Rohmax Oil Additives (Placek, Herzog, Neveu 23/01/2003)
fluids with a high viscosity index (multigrade or HVI oils) have been shown to be more energy efficient than lower VI oils. Savings occur during start-up conditions due to operating viscosity being achievable at lower temperatures. At higher temperatures (80-100°C) HVI oils again contribute to energy savings, of up to 20%, due to improved flow rate, compared with standard fluids. - The present invention now surprisingly enables energy conservation to be achieved by improving the performance of monograde hydraulic oils as the hydraulic media for increasing the efficiency of hydraulic energy transmission.
- Accordingly, the present invention provides a lubricating oil composition comprising lubricating oil base oil and a primary amine which has a C8 to C20 tertiary alkyl group which can be represented by general formula (1) below
wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm2/s, a viscosity index of from 130 to 150 and a density at 15°C of from 0.80 to 0.84 g.cm-3. - Japanese fire regulations were revised in June 2002 and some lubricating oil products of flash point 250°C or above were re-designated in the "Designated Flammable Material Flammable Liquid Class" and the regulations concerning their storage and management greatly relaxed. On this basis the handling costs of lubricating oil products of flash point 250°C or above has been greatly reduced and furthermore, since they have superior fire management properties as well, there is a great demand by the end users for high flash point lubricating oil products.
- In a preferred embodiment of the present invention there is provided a lubricating oil composition in which not only has the density been reduced by about 10% when compared with the commercial industrial lubricating oil products of the same viscosity and which surprisingly has an energy conserving effect, but which also has a flash point of at least 250°C as measured by JIS K 2265 by using a narrow-cut base oil.
- However, the narrow-cut base oils having a high flash point for industrial lubricating oil products are very different in terms of their molecular weight distribution from the usual base oils used by those in the industry and the proportion of high molecular weight hydrocarbon components is very small. Consequently, the solubilities of lubricating oil additives which control various aspects of performance are very low and there is a disadvantage in that turbidity and precipitates are produced, and these materials cannot be used as industrial lubricating oils.
- Whilst, such narrow-cut base oils have been used in recent years in automobile lubricating oils such as engine oils and automatic gear box lubricating oils, these lubricating oil products have high molecular weight ashless dispersants such as succinic acid amide-based dispersants compounded therein amounts of from 1 to 10% per 100 parts by weight and, since the various lubricating oil additives are therefore dispersed in the narrow-cut base oil, there is no particular problem with solubility.
- However, the high molecular weight ashless dispersants used in the automobile lubricating oils, cannot be used in hydraulic applications even at treat rates of less than 1 %wt., e.g. 0.1 %wt., due to emulsification in the presence of water, which is an undesirable property therefor.
- In the present invention, the solubility, the low friction properties and anti-rust properties when using a specified narrow-cut base oil in industrial lubricating oils with a view to increasing energy conservation and having a high flash point may be surprisingly improved by the use of a specific amine compound.
- In Japanese Unexamined Patent Application Laid Open
2002-338 983 - In Japanese Unexamined Patent Application Laid Open
H8-134488 - In Japanese Unexamined Patent Application Laid Open
H11-71330 - In Japanese Unexamined Patent Application Laid Open
2001-172659 - In Japanese Unexamined Patent Application Laid Open
2001-172660 - In Japanese Unexamined Patent Application Laid Open
2002-194376 - The present invention surprisingly provides a lubricating oil composition with which the formation of sludge is suppressed even when the usual lubricating oil additives are compounded, which has excellent storage stability, which has low friction properties, with which the pressure transmission loss is small, with which the supply pressure loss in pipe-work is small, and which has low flammability.
- The present invention provides a lubricating oil composition comprising lubricating oil base oil, wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm2/s, a viscosity index of from 130 to 150, a density at 15°C of from 0.80 to 0.84 g.cm-3 and a flash point of at least 250°C as measured by JIS K 2265.
- The lubricating oil base oil is narrow cut base oil or mixtures of narrow cut base oils, wherein the composition of the narrow-cut base oils is such that with the method of measurement laid down in ASTM D 3238, the aromatic content (%CA) is not more than 0.1 wt% and the paraffin content (%Cp) is at least 85 wt%, the iso-paraffin content is at least 80 wt%, the elemental sulphur content is not more than 50 ppm, the elemental nitrogen content is not more than 5 ppm, the total polar material is not more than 1% and the properties are: refractive index at least 1.45, aniline point at least 120°C and they are colourless and transparent, being classified as L0.5 using the colour test method laid down in ASTM D 1500.
- The lubricating oil composition further comprises a primary amine which has a C8 to C20 tertiary alkyl group which can be represented by general formula (1) below
- The lubricating oil composition of the present invention contains from 0.001 to 5.0 parts by weight of the primary amine represented by general formula (1) is compounded per 100 parts by weight of the lubricating oil composition.
- The present invention further provides a hydraulic oil, a machine tool oil, a gear oil, a compressor oil, a turbine oil, a bearing oil and a heat transfer fluid
- In terms of the viscosity index, a high viscosity index signifies that the temperature dependence of the lubricating oil viscosity is small and, for example, the temperature of the hydraulic oil when hydraulic equipment is first started is low and, while a hydraulic oil which has a low viscosity index will have a high viscosity, a hydraulic oil which has a high viscosity index will have a low viscosity at low temperature and it is possible to reduce the power consumption on start-up.
- Here, in terms of the properties of the lubricating base oil used in the present invention, the viscosity index as defined in JIS K 2283 is from 130 to 150, preferably from 132 to 150 and most desirably from 135 to 150.
- For example, in a case where the kinematic viscosity at 40°C is 46 mm2/s and the viscosity index is 110, the kinematic viscosity at 10°C is 283.06 mm2/s, while if the viscosity index is 130 the kinematic viscosity at 10°C is 250.1 mm2/s and if the viscosity index is 135 then it is 242.98 mm2/s and the room temperature viscosity changes markedly according to the viscosity index, and since the electrical power consumption also increases in accordance with the kinematic viscosity, a high viscosity index is also desirable for reducing the power consumption on start-up.
- In the present invention, the density at 15°C of the lubricating oil base oil measured by the method for measuring the density of lubricating oil defined in JIS K 2249 is from 0.80 to 0.84 g.cm-3, preferably from 0.81 to 0.84 g.cm-3, more desirably from 0.815 to 0.835 g.cm-3 and most desirably from 0.820 to 0.830 g.cm-3.
- Moreover, hydraulic equipment generally operates at an oil temperature of from 40 to 60°C, but in the case of a density at 15°C of 0.84 g.cm-3, the density, when calculated using the density calculation method indicated in JIS K 2249, at 40°C is 0.8233 g.cm-3, at 50°C is 0.8167 g.cm-3 and at 60°C is 0.8100 g.cm-3, and so the density at 40°C is preferably not more than 0.8167 g.cm-3, the density at 50°C is preferably not more than 0.8167 g.cm-3 and the density at 60°C is preferably not more than 0.8100 g.cm-3.
- Furthermore, since a lubricating oil composition which has low friction properties contributes to energy conservation, it is preferred that there are low friction properties such that stick-slip does not occur in steel-steel situations.
- In terms of the flash point, the flash point of the lubricating oil base oil as measured using the Cleveland formula defined in JIS K 2265 is at least 250°C, preferably at least 252°C, more preferably at least 256°C.
- Since the indoor parallel tolerance as laid down in JIS K 2265 is 8°C, a value of at least 258°C is most desirable for ensuring an actual flash point of at least 250°C. It is highly desirable that the flash point is 258 to 272°C, as measured by JIS K 2265.
- In the Japanese fire regulations revised in June 2002, some of the conventional class 4 petroleum products with a flash point of 250°C and above were classified as designated flammable materials or flammable liquids and the dangerous material management regulations for these material were greatly relaxed and so a flash point of 250°C or above is desirable.
- On the other hand, material with a flash point of 278°C or above is said to be above the dangerous material classification.
- Storage stability of a lubricating oil composition is essential for providing useful performance as an industrial lubricating oil. On the other hand, troubles may arise in precision hydraulic systems, for example, in the case of lubricating oil compositions where turbidity or precipitation occurs.
- The properties outlined above cannot be realised with solvent refined base oils and ordinary hydrogenation refined base oils.
- The narrow-cut base oils wherein the molecular weight distribution of the hydrocarbons in the base oil is very narrow can be cited as base oils which do satisfy these conditions.
- The three types of narrow-cut base oil that may be conveniently employed in the present invention are namely:
- (1) the highly hydrogenated cracked base oils which have a viscosity index of at least 130 (typically from 145 to 155) obtained by hydro-cracking (catalytic cracking) the slack wax which is separated by solvent de-waxing as raw material in the presence of a catalyst in which the linear chain paraffins are isomerized to branched paraffins;
- (2) lubricating oil base oils which have a viscosity index is at least 130 (typically 145 to 155) obtained by producing heavy linear chain paraffins in the Fischer-Tropsch process where hydrogen and carbon monoxide obtained by the gasification process (partial oxidation) of natural gas (methane etc.) are used and then subjecting this material to a catalytic cracking and isomerization process in the same way as described above; and
- (3) the olefin oligomer synthetic hydrocarbon base oils (viscosity index at least 130) obtained by the homopolymerization or copolymerization of monomers selected from among the linear chain or branched olefin-based hydrocarbons which have from 5 to 15, and preferably from 8 to 12, carbon atoms, can be procured from the Esso Mobil Co., the BP Amoco Co., the Chevron Texaco Co and the Fortam Co. for example.
- The Fischer-Tropsch derived base oil may any Fischer-Tropsch derived base oil as disclosed in for example
EP-A-776959 EP-A-668342 WO-A-9721788 WO-0015736 WO-0014188 WO-0014187 WO-0014183 WO-0014179 WO-0008115 WO-9941332 EP-1029029 ,WO-0118156 WO-0157166 - In the present invention, these three types of narrow-cut base oil are used individually or in the form of mixtures so as to provide the prescribed viscosity.
- Such narrow-cut oils also exhibit especially good volatilisation resistance. For example, when an ISO VG 32 grade in the viscosity classification for industrial lubricating oils is prepared by combining these base oils, the result in a volatile loss test (NOACK) as defined in ASTM D 5800 is suppressed to 8% or less. Furthermore, the volatile loss test (NOACK) result in the case of an ISO VG 46 grade oil prepared in the same way is less than 5%. Hence, these narrow-cut base oils can also be said to be suitable for lubricating oils where involatility is required as in the case of a compressor lubricating oils for example.
- The formation of sludge even on admixing the usual lubricating oil additives can be surprisingly suppressed while maintaining the excellent properties indicated above as a lubricating oil base oil by adding a primary amine compound which can be represented by general formula (1) as herein before described.
- The amount of the primary amine compound represented by general formula (1) compounded in the lubricating oil composition of the present invention is preferably from 0.001 to 1.0 part by weight, preferably from 0.001 to 0.5 part by weight, and most desirably from 0.001 to 0.05 part by weight, per 100 parts by weight of the lubricating oil composition.
- Examples of the aliphatic hydrocarbyl groups represented by CxH2x+1, CyH2y+1 and CzH2z+1 in the above-mentioned general formula (1) include the methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, the linear chain and branched pentyl groups, the linear chain and branched hexyl groups, the linear chain and branched heptyl groups, the linear chain and branched octyl groups, the linear chain and branched nonyl groups, the linear chain and branched decyl groups, the linear chain and branched undecyl groups, the linear chain and branched dodecyl groups, the linear chain and branched tridecyl groups, the linear chain and branched tetradecyl groups, the linear chain and branched pentadecyl groups, the linear chain and branched hexadecyl groups and the linear chain and branched heptadecyl groups.
- Actual examples of the preferred primary amine compounds which have a tertiary C8 to C20 alkyl group which can be used in the lubricating oil compositions of this invention include dimethylpentyl substituted methylamine, dimethyl hexyl substituted methylamine, dimethyl heptyl substituted methylamine, dimethyl octyl substituted methylamine, dimethyl nonyl substituted methylamine, dimethyl decyl substituted methylamine, dimethyl dodecyl substituted methylamine, dimethyl tetradecyl substituted methylamine, dimethyl hexadecyl substituted methylamine, methyl ethyl hexyl substituted methylamine, methyl ethyl pentyl substituted methylamine, methyl ethyl nonyl substituted methylamine, methyl ethyl undecyl substituted methylamine, diethyl hexyl substituted methylamine, diethyl butyl substituted methylamine, diethyl hexyl substituted methylamine, diethyl octyl substituted methylamine, diethyl tetradecyl substituted methylamine, dipropyl butyl substituted methylamine, dipropyl hexyl substituted methylamine, dipropyl octyl substituted methylamine, dipropyl decyl substituted methylamine, propyl dibutyl substituted methylamine, propyl butyl pentyl substituted methylamine, propyl butyl hexyl substituted methylamine, propyl butyl octyl substituted methylamine, tributyl substituted methylamine, dibutyl pentyl substituted methylamine, dibutyl hexyl substituted methylamine, dibutyl octyl substituted methylamine, tripentyl substituted methylamine, dipentyl octyl substituted methylamine, and trihexyl substituted methylamine.
- Various additives which are generally used in lubricating oil compositions can be used appropriately in the present invention.
- Thus, known lubricating oil additives such as antioxidants, metal deactivators, extreme pressure additives, oil-improving agents, antifoaming agents, viscosity index improving agents, pour point depressants, cleaning dispersants, anti-rust agents and anti-emulsification agents can be added.
- Examples of amine-based antioxidants include dialkyldiphenylamines such as p,p'-dioctyl-diphenylamine (such as that produced under the trade designation "Sonoflex OD-3" by the Seiko Kagaku Co.), p,p'-di-α-methylbenzyl-diphenylamine and N-p-butylphenyl-N-p'-octylphenylamine, monoalkyldiphenylamines such as mono-t-butyldiphenylamine and mono-octyldiphenylamine, bis(dialkylphenyl)amines such as di-(2,4-diethylphenyl)amine and di(2-ethyl-4-nonylphenyl)amine, alkylphenyl-1-naphthylamines such as octylphenyl-1-naphthylamine and n-t-dodecylphenyl-1-naphthylamine, 1-naphthylamine, arylnaphthylamines such as phenyl-1-naphthylamine, phenyl-2-naphthylamine, N-hexylphenyl-2-naphthylamine and N-octylphenyl-2-naphthylamine, phenylenediamines such as N,N'-diisopropyl-p-phenylenediamine and N,N'-diphenyl-p-phenylenediamine, and phenothiazines such as phenothiazine (e.g. phenothiazine, produced by the Hodogaya Kagaku Co.) and 3,7-dioctylphenothiazine.
- Examples of sulphur-based anti-oxidants include dialkylsulphites such as didodecylsulphite and dioctylsulphite, thiodipropionic acid esters such as didodecylthiodipropionate, dioctadecylthiodipropionate, dimyristylthiodipropionate and dodecyloctadecylthiodipropionate, and 2-mercaptobenzimidazole.
- Examples of phenol-based antioxidants include 2-t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5-methylphenol, 2,4-di-t-butylphenol, 2,4-dimethyl-6-t-butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2,5-di-t-butylhydroquinone (such as that produced under the trade designation "Anteeji DBH" by the Kawaguchi Kagaku Co.,), 2,6-di-t-butyl-4-alkylphenols such as 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol and 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butyl-4-alkoxyphenols such as 2,6-di-t-butyl-4-methoxyphenol and 2,6-di-t-butyl-4-ethoxyphenol, 3,5-dit-butyl-4-hydroxybenzylmercaptooctylacetate, alkyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionates such as n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (such as that produced under the trade designation "Yoshinox SS" by the Yoshitomi Seiyaku Co.), n-butyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate and 2'-ethylhexyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,6-d-t-butyl-α-dimethylamino-p-cresol, 2,2'-methylene-bis(4-alkyl-6-t-butylphenol) such as 2,2'-methylenebis(4-methyl-6-t-butylphenol (such as that produced under the trade designation "Antage W-400" by the Kawaguchi Kagaku Co.) and 2,2-methylenebis(4-ethyl-6-t-butylphenol) (such as that produced under the trade designation "Antage W-500" by the Kawaguchi Kagaku Co.), bisphenols such as 4,4'-butylidenebis(3-methyl-6-t-butylphenol (such as that produced under the trade designation "Antage W-300" by the Kawaguchi Kagaku Co.), 4,4'-methylenebis(2,6-di-t-butylphenol) (such as that produced under the trade designation "Ionox 220AH" by the Shell Japan Co.), 4,4'-bis(2,6-di-t-butylphenol), 2,2-(di-p-hydroxyphenyl)propane (bisphenol A, produced by the Shell Japan Co.), 2,2-bis(3,5-di-t-butyl-4-hydroxyphenyl)propane, 4,4'-cyclohexylidenebis(2,6-t-butylphenol), hexamethyleneglycol-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (such as that produced under the trade designation "Irganox L109" by the Ciba Speciality Chemicals Co.), triethyleneglycolbis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate] (such as that produced under the trade designation "Tominox 917" by the Yoshitomi Seiyaku Co.), 2,2'-thio-[diethyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (such as that produced under the trade designation "Irganox L115" by the Ciba Speciality Chemicals Co.), 3,9-bis{1,1-dimethyl-2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)-propionyloxy]ethyl)2,4,8,10-tetraoxaspiro[5,5]undecane (such as that produced under the trade designation "Sumilizer GA80" by Sumitomo Kagaku), 4,4'-thiobis(3-methyl-6-t-butylphenol) (such as that produced under the trade designation "Antage RC" by the Kawaguchi Kagaku Co.) and 2,2'-thiobis(4,6-di-t-butylresorcinol), polyphenols such as tetrakis[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane (such as that produced under trade designation "Irganox L101" by the Ciba Speciality Chemicals Co.), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane (such as that produced under trade designation "Yoshinox 930" by the Yoshitomi Seiyaku Co.), 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene (such as that produced under trade designation "Ionox 330" by the Shell Japan Co.), bis-[3,3'-bis(4'-hydroxy-3'-t-butylphenyl)butyric acid]glycol ester, 2-(3',5'-di-t-butyl-4-hydroxyphenyl)methyl-4-(2",4"-di-t-butyl-3"-hydroxyphenyl)methyl-6-t-butylphenol and 2,6-bis(2'-hydroxy-3'-t-butyl-5'-methylbenzyl)-4-methylphenol, and p-t-butylphenol - formaldehyde condensates and p-t-butylphenol - acetaldehyde condensates.
- Examples of phosphorus-based antioxidants include triaryl phosphites such as triphenyl phosphite and tricresyl phosphite, trialkyl phosphites such as trioctadecyl phosphite and tridecyl phosphite, and tridodecyl trithiophosphite.
- These antioxidants can be conveniently used individually or in the form of a combination of number of types in an amount within the range of from 0.01 to 2.0 parts by weight, per 100 parts by weight of lubricating oil composition.
- Examples of metal de-activating agents which can be conveniently used in the lubricating oil composition of the present invention include benzotriazole and benzotriazole derivatives including the 4-alkylbenzotriazoles such as 4-methylbenzotriazole, 5-alkylbenzotriazoles such as 5-methylbenzotriazole and 5-ethylbenzotriazole, 1-alkylbenzotriazoles such as 1-dioctylaminomethyl-2,3-benzotriazole, and the 1-alkyltolutriazoles such as 1-dioctylaminomethyl-2,3-tolutriazole, benzimidazole and benzimidazole derivatives including 2-(alkyldithio)benzimidazoles such as 2-(octyldithio)benzimidazole, 2-(decyldithio)benzimidazole and 2-(dodecyldithio)benzimidazole and 2-(alkyldithio)-toluimidazoles such as 2-(octyldithio)toluimidazole, 2-(decyldithio)toluimidazole and 2-(dodecyldithio)toluimidazole, indazole and indazole derivatives including 4-alkylindazoles, 5-alkylindazoles and toluindazoles, benzothiazole and benzothiazole derivatives including 2-mercaptobenzothiazole (such as that produced under the trade designation "Thiolite B-3100" by the Chiyoda Kagaku Co.), 2-(alkyldithio)benzotriazoles such as 2-(hexyldithio)benzothiazole and 2-(octyldithio)benzothiazole, 2-(alkyldithio)toluthiazoles such as 2-(hexyldithio)toluthiazole and 2-octyldithio)toluazole, 2-(N,N-dialkyldithiocarbamyl)benzothiazoles such as 2-(N,N-diethyldithiocarbamyl)benzothiazole, 2-(N,N-dibutyldithiocarbamyl)benzothiazole and 2-(N,N-dihexyldithiocarbamyl)benzothiazole, and benzothiazole derivatives including 2-(N,N-dialkyldithiocarbamyl)toluthiazoles such as 2-(N,N-diethyldithiocarbamyl)toluthiazole and 2(N,N-dihexyl-dithiocarbamyl)toluthiazole, benzoxazole derivatives including 2-(alkyldithio)benzoxazoles such as 2-(octyldithio)benzoxazole, 2-(decyldithio)benzoxazole and 2-dodecyldithio)benzoxazole and 2-(alkyldithio)toluoxazoles such as 2-(octyldithio)toluoxazole, 2-(decyldithio)toluoxazole and 2-(dodecyldithio)toluoxazole, thiadiazole derivatives including 2,5-bis(alkyldithio)-1,3-4-thiadiazoles such as 2,5-bis(heptyldithio)-1,3,4-thiadiazole, 2,5-bis(nonyldithio)-1,3,4-thiadiazole, 2,5-bis(dodecyldithio)-1,3,4-thiadiazole and 1,2-bis(octadecyldithio)-1,3,4-thiadiazole, 2,5-bis(N,N-dialkyldithiocarbamyl)-1,3,4-thiadiazoles such as 2,5-bis(N,N-diethyldithiocarbamyl)-1,3,4-thiadiazole, 2,5-bis(N,N-dibutyldithiocarbamyl)-1,3,4-thiadiazole and 2,5-bis(N,N-dioctyldithiocarbamyl)-1,3,4-thiadiazole, and 2-N,N-dialkyldithiocarbamyl-5-mercapto-1,3,4-thiadiazoles such as 2-N,N-dibutyldithiocarbamyl-5-mercapto-1,3,4-thiadiazole and 2-N,N-dioctyldithiocarbamyl-5-mercapto-1,3,4-thiadiazole, and triazole derivatives including 1-alkyl-2,4-triazoles such as 1-dioctylaminomethyl-2,4-triazole.
- These metal de-activating agents can be conveniently used individually or in the form of a combination of a number of types in an amount within the range of from 0.01 to 0.5 parts by weight, per 100 parts by weight of lubricating oil composition.
- Examples of the antifoaming agents which can be conveniently used include organosilicates such as dimethylpolysiloxane, diethylsilicate and fluorosilicone, and non-silicone antifoaming agents such as polyalkylacrylates. These can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.0001 to 0.1 part by weight, per 100 parts by weight of lubricating composition.
- Examples of viscosity index improving agents which can be conveniently used include non-dispersing type viscosity improving agents such as polymethacrylates and olefin copolymers such as ethylene-propylene copolymers and styrene-diene copolymers, and dispersing type viscosity improving agents where nitrogen-containing monomers have been copolymerized in these materials. The amount added can be conveniently within the range of from 0 to 20 parts by weight, per 100 parts by weight of lubricating oil composition. However, when the viscosity of the lubricating oil composition is adjusted by adding a viscosity index improving agent, the flash point is inevitably lowered and so the amount of viscosity index improving agent compounded is preferably from 0 to 5 parts by weight and more desirably from 0 to 2 parts by weight, while most desirably no viscosity index improving agent is compounded at all.
- Examples of the pour point depressants that may be conveniently used include polymethacrylate-based polymers. These can be conveniently used in amounts within the range of from 0.01 to 5 parts by weight, per 100 parts of lubricating oil composition.
- Examples of the cleaning dispersing agents that may be conveniently used include metal-based detergents such as neutral or basic alkaline earth metal sulphonates, alkaline earth metal phenates and alkaline earth metal salicylates, and ash-less dispersants such as alkenylsuccinimides, alkenyl succinic acid esters, and modified products derived therefrom with boron compounds and sulphur compounds for example. These can be conveniently added individually or in the form of a combination of a number of types in an amount within the range of from 0.01 to 1 part by weight, per 100 parts by weight of lubricating oil composition.
- Examples of extreme pressure agents and oil-improving agents that may be conveniently used include the sulphur-based extreme pressure additives such as dialkysulphides, dibenzylsulphide, dialkylpolysulphides, dibenzylpolysulphide, alkylmercaptans, benzothiophene and 2,2'-dithiobis(benzothiazole), and aliphatic oil-improving agents such as fatty acid amides and fatty acid esters. These extreme pressure agents and oil-improving agents can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.1 to 2 parts by weight, per 100 parts by weight of lubricating oil composition.
- In most cases, adequate anti-rusting performance can be realised by the addition of a lubricating oil composition of the present invention, but when a higher-level of anti-rust performance is required in accordance with the use environment, then N-alkylsarcosines, phenoxyacetic acid alkylates, imidazolines, compound produced under the trade designation "K-Corr100" by the King Industries Co., and their alkali metal salts or amine salts, the N-acyl-N-alkoxyalkylasparaginic acid esters disclosed in Japanese Unexamined Patent Application Laid Open
H6-200268 EP-A-0801116 can be conveniently used without affecting the filtration characteristics when alkaline earth metal salts are admixed. These anti-rust agents can be conveniently used individually or in the form of a combination of a number of types in amounts within the range of from 0.01 to 2 parts by weight per 100 parts by weight, of lubricating oil composition. - The known anti-emulsification agents used generally as lubricating oil additives can be conveniently used as anti-emulsification agents in the lubricating oil compositions of the present invention. They can be conveniently used in amounts within the range of from 0.0005 to 0.5 part by weight, per 100 parts by weight of lubricating oil composition.
- The lubricating oil compositions of the present invention can be used as industrial lubricating oils and, in particular, as hydraulic oils. Moreover, they are also useful as heat transfer fluids, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils and greases in view of their surprising ability to eliminate the pressure loss in hydraulic pipe-work.
- The present invention will now be described with reference to the following examples relating to hydraulic oils which are not intended to limit the scope of the present invention in any way.
- The base oils and additives compounded in Examples 1 to 10 and Comparative Examples 1 to 15 were as described below.
- Base Oil 1:
- Shell XHVI™ 5.2 and Shell XHVI™ 8.2 were mixed together in proportions by weight of 56 : 44 to prepare a base oil of kinematic viscosity at 40°C of about 32 mm2/s. Shell XHVI 5.2 is the product of solvent dewaxing a Shell MDS Waxy Reffinate as obtained from Shell MDS (Malaysia) Sdn. Bld. Shell XHVI 8.2 is a mineral oil.
- Base Oil 2:
- Shell XHVI™ 5.2 and Shell XHVI™ 8.2, as hereinbefore described, were mixed together in proportions by weight of 5 : 95 to prepare a base oil of kinematic viscosity at 40°C of about 46 mm2/s.
- Base Oil 3:
- Poly-α-olefin (kinematic viscosity at 100°C of 6 mm2/s) procured from the BP Amoco Co. and a poly-α-olefin (kinematic viscosity at 100°C of 8 mm2/s) from the same company were mixed together in proportions by weight of 94 : 6 to prepare a base oil of kinematic viscosity at 40°C of about 32 mm2/s.
- Base Oil 4:
- Poly-α-olefin (kinematic viscosity at 100°C of 6 mm2/s) procured from the BP Amoco Co. and a poly-α-olefin (kinematic viscosity at 100°C of 8 mm2/s) from the same company were mixed together in proportions by weight of 3 : 97 to prepare a base oil of kinematic viscosity at 40°C of about 46 mm2/s.
- Base Oil 5:
- Solvent refined base oil (500N) and solvent refined oil (150N) classified as Group 1 as specified in Appendix E of API 1509 laid down by the American Petroleum Society were mixed together in proportions by weight of 20 : 80 to prepare a base oil of kinematic viscosity at 40°C of about 32 mm2/s.
- Base Oil 6:
- Solvent refined base oil (500N) and solvent refined oil (150N) classified similarly as Group 1 were mixed together in proportions by weight of 48 : 52 to prepare a base oil of kinematic viscosity at 40°C of about 46 mm2/s.
- Base Oil 7:
- Solvent refined base oil (500N) and hydrogenation refined oil (150N) classified similarly as Group 2 were mixed together in proportions by weight of 2 : 98 to prepare a base oil of kinematic viscosity at 40°C of about 32 mm2/s.
- Base Oil 8:
- Solvent refined base oil (500N) and solvent refined oil (150N) classified similarly as Group 2 were mixed together in proportions by weight of 39 : 61 to prepare a base oil of kinematic viscosity at 40°C of about 46 mm2/s.
- Base Oil 9:
- Solvent refined base oil (150N) and hydrogenation refined oil (100N) classified similarly as Group 3 were mixed together in proportions by weight of 75 : 25 to prepare a base oil of kinematic viscosity at 40°C of about 32 mm2/s.
- Base Oil 10:
- Solvent refined base oil (500N) and solvent refined oil (150N) classified similarly as Group 3 were mixed together in proportions by weight of 92 : 8 to prepare a base oil of kinematic viscosity at 40°C of about 46 mm2/s.
- Amine 1:
- Primary amine sold under the trade designation "Primene JMT" which has C16 to C22 branched tertiary alkyl groups obtained from the Rohm and Haas Co.
- Amine 2:
- Primary amine sold under the trade designation "Primene 81R" which has C12 to C14 branched tertiary alkyl groups obtained from the Rohm and Haas Co.
- Amine 3:
- Primary amine sold under the trade designation "Primene TOA" which has C8 t-octyl groups obtained from the Rohm and Haas Co.
- Amine 4:
- Primary amine sold under the trade designation "Amine T" in which a tallow component forms the alkyl group obtained from the Lion Co.
- Amine 5:
- Primary amine sold under the trade designation "Amine CD" with a palm oil component as the alkyl group obtained from the Lion Co.
- Amine 6:
- Primary amine sold under the trade designation "Amine OD" with a linear C8 alkyl group obtained from the Lion Co.
- Other Additives
- Additive 1:
- A mixture of 35 wt% amine-based antioxidant sold under the trade designation "Irganox L57" by the Ciba-Geigy Co., 50 wt% phenol-based antioxidant sold under the trade designation "Irganox L135" by the same company, 10 wt% anti-rust agent sold under the trade designation "Lubrizol 859" by Lubrizol Co. and 5 wt% corrosion inhibitor sold under the trade designation "Sarkosyl O" by the Ciba-Geigy Co.
- Additive 2:
- A mixture of 90 wt% anti-wear agent sold under the trade designation "Lubrizol 1375" by Lubrizol Co. and 10 wt% friction-controlling agent sold under the trade designation "Emasol MO-50" by Kao Co.
- Additive 3:
- A mixture of 50 wt% anti-wear agent sold under the trade designation "Reofos 65" by Kao Co., 5 wt% anti-rust agent sold under the trade designation "Hitec 536" by Ethyl Co., 3 wt% of corrosion inhibitor sold under the trade designation "Sarkosyl O" by Ciba-Geigy Co., 17 wt% amine-based antioxidant sold under the trade designation "Irganox L57" by the same company and 25 wt% phenol-based antioxidant sold under the trade designation "Irganox L135" also by the same company.
-
Table 1 Example No. 1 2 3 4 5 Base Oil 1 98.97% Base Oil 2 98.97% 98.97% Base Oil 3 98.90% 98.97% Base Oil 4 Amine 1 0.03% 0.1% 0.03% Amine 2 0.03% 0.03% Additive 1 1.00% 1.00% 1.00% 1.00% 1.00% Kinematic Viscosity at 40°C (mm2/s) 31.7 46.1 46.1 31.9 31.9 Viscosity Index 150 145 145 135 135 Density at 15°C (g.cm-3) 0.826 0.833 0.833 0.831 0.831 Flash Point (°C) 252 258 258 258 258 Storage Stability Pass Pass Pass Pass Pass Stick-slip resistance Pass Pass Pass Pass Pass Table 2 Example No. 6 7 8 9 10 Base Oil 3 98.97% 98.97% 98.90% 98.10% Base Oil 4 98.97% Amine 1 0.10% 0.10% Amine 2 0.03% 0.03% Amine 3 0.03% Additive 1 1.00% 1.00% 1.00% Additive 2 1.00% Additive 3 1.00% Kinematic Viscosity at 40°C (mm2 / s) 31.9 31.9 46.1 31.9 32.1 Viscosity Index 135 135 137 135 135 Density at 15°C (g. cm-3) 0.831 0.831 0.834 0.831 0.833 Flash Point (°C) 258 258 262 258 258 Storage Stability Pass Pass Pass Pass Pass Stick-slip resistance Pass Pass Pass Pass Pass -
Table 3 Comparative Example No. 1 2 3 4 Base Oil 1 98.97% Base Oil 2 Base Oil 3 98.97% 99.00% 98.97% Base Oil 4 Amine 4 0.03% Amine 5 0.03% 0.03% Additive 1 1.00% 1.00% 1.00% 1.00% Kinematic Viscosity at 40°C (mm2/s) 31.7 31.9 31.9 31.9 Viscosity Index 150 135 135 135 Density at 15°C (g.cm-3) 0.826 0.831 0.831 0.831 Flash Point (°C) 252 258 258 258 Storage Stability Fail Fail Pass Fail Stick-slip resistance Pass Pass Fail Pass Table 4 Comparative Example No. 5 6. 7 8 9 Base Oil 4 98.97% Base Oil 5 98.97% 98.97% Base Oil 6 98.97% Base Oil 7 98.97% Amine 1 0.03% 0.03% 0.03% Amine 4 0.03% Amine 5 0.03% Additive 1 1.00% 1.00% 1.00% 1.00% 1.00% Kinematic Viscosity at 40°C (mm2/s) 46.1 31.5 31.5 45.6 32.0 Viscosity Index 137 106 106 108 102 Density at 15°C (g.cm-3) 0.834 0.870 0.870 0.875 0.864 Flash Point (°C) 262 231 231 245 220 Storage Stability Fail Pass Pass Pass Pass Stick-slip resistance Pass Pass Pass Pass Pass Table 5 Comparative Example No. 10 11 12 13 14 15 Base Oil 3 98.97% 99.00% Base Oil 7 98.97% Base Oil 8 98.97% Base Oil 9 98.97% Base Oil 10 98.97% Amine 1 0.03% 0.03% Amine 4 0.03% Amine 5 0.03% 0.03% Additive 1 1.00% 1.00% 1.00% 1.00% Additive 2 1.00% 1.00% Kinematic Viscosity at 40°C (mm2/s) 32.0 45.9 31.9 46.0 31.9 31.9 Viscosity Index 102 107 128 127 135 135 Density at 15°C (g.cm-3) 0.864 0.867 0.841 0.847 0.831 0.831 Flash Point (°C) 220 232 242 252 258 258 Storage Stability Pass Pass Pass Pass Fail Fail Stick-slip resistance Pass Pass Pass Pass Pass Pass - The various performance test methods used in the Examples and Comparative Examples above are outlined below.
- The sample oil was coated between steel test pieces moved at a slip rate of 12.7 mm/minute with a loading of 22.4 kgf using a stick-slip tester produced by the Cincinnati Milacron Co. (formerly ASTM D 2877) and whether or not sticking occurred was assessed in order to evaluate the low-friction - energy conserving properties of the sample oil. Lubricating oils where stick-slip occurred had a high coefficient of friction and were unsatisfactory in terms of energy conservation and therefore assessed a failure.
- The sample oil was introduced into a clear gloss bottle and left to stand in the dark in the open air in winter with a view to evaluating solubility, and those where there was no turbidity or precipitate formation were adjudged to have passed the test. Moreover, the open air temperature varied gradually between 5 and -5°C.
- By means of the present invention it is surprisingly possible to provide a technique for improving solubility, reducing friction and improving anti-rust properties by using a specified amine compound conjointly when using a specified narrow-cut base oil in an industrial lubricating oil.
- The lubricating oil compositions of the present invention have excellent thermal oxidation stability, lubricating properties and filtration characteristics from the viewpoint of both the safety aspects and the actual performance of the compositions.
- It will be appreciated that the kinematic viscosity at 40°C, viscosity index and density of the fluids in the above tables are resultant from the base oil used therein.
- The formulations tested in Example 11 and Comparative Examples 16-18 were as described in Table 6:
Table 6 Example 11 Comp. Ex. 16 Comp. Ex. 17 Comp. Ex. 18 Formulation Type Formulation according to the present invention containing 98.97 %wt. of Base Oil 4, 0.03 %wt. of Amine 2. The balance was made up of standard additive components. Anti-wear hydraulic oil, according to WO-A-00/63325 Synthetic biodegradable lubricant. Viscosity Modifier improved multigrade hydraulic conventional anti-wear hydraulic fluid. Mineral-oil based (HVI). A commercially available ISO VG 46 environmentally acceptable hydraulic fluid consisting of synthetic esters (HEES) and ashless additives. ISO VG 46. Mineral-oil based (HVI). Ester-based. ISO VG 68. ISO VG 68. ISO VG 68 VI 136 100 180 150 Kinematic Viscosity at 40 °C (mm2/s) 46.6 64.8 63.6 67.6 Density (g.cm-3) 0.8340 0.8567 0.9044 0.8598 - A suite of tests was run with a Denison PVH 57 variable displacement piston pump, at different temperatures, pressures and oil flow.
- The test conditions were designed to mimic industrial applications where possible.
• Maximum 120 Bar pressure, 2500 revs min-1, 49 L min-1;
• Temperature range between 35 °C and 75 °C Maximum 120 Bar pressure;
• 2500 revs min-1, 49 L min-1;
• Vks available between 17 cSt and 100 cSt.
• Measurements of case drain (leakage) taken to calculate volumetric efficiency;
• These are at specific temperatures to simulate the use of a VG 46 fluid.Temperature (°C) ISO 46 ISO 68 68 80 59 70 50 60 42 50 32 40 23 30 12 20
• A HBM torque transducer was used to take measurements of torque, along with calibrated speed and input power readings and the mechanical efficiency was calculated. - The first test assessed the effects (predicted as no effect) that the relationship between altering swash plate angle or drive speed have on pump efficiency. The swash plate was set at different angles and then given running conditions achieved, set flow rate, speed, temperature and pressure so that the displacement of the pump was the only variable. Efficiency calculations were then performed on the data gathered and any effect was found to be below the scope of the measuring equipment, hence the relationship is assumed to be negligible.
- All other tests were run by differing the drive speed, with a constant swash plate angle to maintain a constant flow.
- A series of constant flow and pressure tests were be run at varied temperatures; to assess the effect of temperature on volumetric efficiency (and to a lesser extent mechanical efficiency).
- Operation of a Denison hydraulic piston pump rig used to assess hydraulic fluids and pump efficiency, including electrical fault-finding and calibration of the torque transducer. A contact box with an over-current switch controls the rig, and a dial linked to an electronic control box allows the drive shaft speed to be adjusted. Fluid temperature is varied between room temperature and 80°C. Pressure is varied between 0 Bar and 130 Bar under normal test conditions, using a manual screw-in valve.
- Periodically maintenance and cleaning may be required, such as fluid changes and adjustments to the swash plate.
- Filter changes were performed between fluid changes.
- 1-litre samples of fluid were taken before and after each test.
- Vks at 40°C and 100°C, water content and cleanliness measurements were taken before and after each test.
- (N.B. The dynamic viscosity and density were measured using at Stabinger Automated viscometer at 40°C, while the other measurements are derived from Denison efficiency rig tests).
Table 7 Example 11 Comp. Ex. 16 Comp. Ex. 18 Comp. Ex. 17 Viscosity Index 136 100 180 150 Density 0.8340 0.8567 0.9044 0.8598 Temperature (°C) Fluid Relative Efficiency (%) Fluid Relative Efficiency (%) Fluid Relative Efficiency (%) Fluid Relative Efficiency (%) 45 92.1 50 92.3 55 92.5 91.9 91.9 91.8 60 92.7 92.1 92 65 92.9 92.2 92.1 91.7 70 92.3 92.2 75 92.5 92.3 91.6 - It is apparent from Tables 6 and 7 that the formulation of Example 11 has not only a higher VI than the conventional anti-wear hydraulic oil of Comparative Example 16, but also has a significantly lower density.
- The above results in Table 7 show that the formulation of Example 11 surprisingly has the highest relative efficiency as the pump requires less energy per unit of fluid pumped. It would be expected in real systems where a much higher proportion of pipework exists that the benefit would be of the order of 5% or more, which could be determined by monitoring electricity consumption.
- Thus, it is also surprising that in the test rig, a system dominated by the pump, the density does make a significant contribution to energy efficiency, this would not be expected according to conventional theory based on viscosity index, and may be attributed to the effect of dynamic viscosity, whereas VI is calculated from kinematic viscosity.
- The present invention makes it possible to make use of narrow-cut base oils in industrial lubricating oils to increase energy conservation and raise the flash point where necessary and to provide lubricating oil compositions which, when compared with commercial industrial lubricating oils of the same viscosity, have a density reduced by some 10% and which surprisingly have an energy conserving effect.
- Furthermore, the lubricating oil compositions of the present invention may be used in a wide range of industrial lubricating oils, such as hydraulic oils, machine tool oils, gear oils, compressor oils, turbine oils, bearing oils, heat transfer fluids and greases.
Claims (8)
- A lubricating oil composition comprising lubricating oil base oil and a primary amine which has a C8 to C20 tertiary alkyl group which can be represented by general formula (1) below
wherein the base oil is narrow cut base oil or mixtures of narrow cut base oils, wherein the composition of the narrow-cut base oils is such that with the method of measurement laid down in ASTM D 3238, the aromatic content (%CA) is not more than 0.1 wt% and the paraffin content (%Cp) is at least 85 wt%, the iso-paraffin content is at least 80 wt%, the elemental sulphur content is not more than 50 ppm, the elemental nitrogen content is not more than 5 ppm, the total polar material is not more than 1% and the properties are: refractive index at least 1.45, aniline point at least 120°C and they are colourless and transparent, being classified as L0.5 using the colour test method laid down in ASTM D 1500; wherein said composition has a kinematic viscosity at 40°C of from 18 to 60 mm2/s, a viscosity index of from 130 to 150 and a density at 15°C of from 0.80 to 0.84 g.cm-3;
wherein the composition has a flash point of at least 250°C as measured by JIS K2265; and
wherein from 0.001 to 5.0 parts by weight of the primary amine represented by general formula (1) is compounded per 100 parts by weight of the lubricating oil composition. - A lubricating oil composition according to Claim 1, wherein from 0.001 to 0.05 parts by weight of the primary amine represented by general formula (1) is compounded per 100 parts by weight of the lubricating oil composition.
- A lubricating oil composition according to any one of Claims 1 to 2, wherein the lubricating oil base oil is a Fischer-Tropsch derived base oil.
- A lubricating oil composition according to any one of Claims 1 to 3, wherein said composition has a viscosity index of from 135 to 150.
- A lubricating oil composition according to any one of Claims 1 to 4, wherein said composition has a kinematic viscosity at 40°C of from 25 to 53 mm2/s.
- A lubricating oil composition according to any one of Claims 1 to 5, wherein said composition has a density of from 0.81 to 0.84 g.cm-3.
- A lubricating oil composition according to any one of Claims 1 to 6, wherein said composition further comprises one or more lubricating oil additives selected from antioxidants, metal deactivators, extreme pressure additives, oil-improving agents, antifoaming agents, viscosity index improving agents, pour point depressants, cleaning dispersants, anti-rust agents and anti-emulsification agents.
- Use of a lubricating oil composition according to any one of Claims 1 to 7 as a hydraulic oil, a machine tool oil, a gear oil, a compressor oil, a heat tranfer fluid, a turbine oil, and/or a bearing oil.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003040127A JP5057630B2 (en) | 2003-02-18 | 2003-02-18 | Industrial lubricating oil composition |
JP2003040127 | 2003-02-18 | ||
PCT/EP2004/050150 WO2004074412A2 (en) | 2003-02-18 | 2004-02-18 | Lubricating oil compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1594943A2 EP1594943A2 (en) | 2005-11-16 |
EP1594943B1 true EP1594943B1 (en) | 2019-01-16 |
Family
ID=32905201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04712057.1A Expired - Lifetime EP1594943B1 (en) | 2003-02-18 | 2004-02-18 | Lubricating oil compositions |
Country Status (11)
Country | Link |
---|---|
US (1) | US20040224860A1 (en) |
EP (1) | EP1594943B1 (en) |
JP (1) | JP5057630B2 (en) |
KR (1) | KR20050098951A (en) |
CN (1) | CN100587048C (en) |
BR (1) | BRPI0407521B8 (en) |
CA (1) | CA2516271A1 (en) |
MX (1) | MXPA05008671A (en) |
RU (1) | RU2352621C2 (en) |
WO (1) | WO2004074412A2 (en) |
ZA (1) | ZA200506194B (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101018844A (en) * | 2004-09-14 | 2007-08-15 | 出光兴产株式会社 | Refrigerating machine oil composition |
US20060063685A1 (en) * | 2004-09-22 | 2006-03-23 | Pieter Purmer | Lubricant for manual or automated manual transmissions |
EP1846543B1 (en) * | 2005-02-11 | 2015-01-21 | Vanderbilt Chemicals, LLC | Lubricating greases containing antimony dithiocarbamates |
CA2611652A1 (en) * | 2005-06-23 | 2006-12-28 | Shell Internationale Research Maatschappij B.V. | Electrical oil formulation |
ES2540911T3 (en) | 2005-06-29 | 2015-07-14 | Nippon Oil Corporation | Base oil for hydraulic oil and hydraulic oil compositions |
EP1930400B1 (en) * | 2005-09-29 | 2011-08-03 | Idemitsu Kosan Co., Ltd. | Lubricant composition |
JP5301078B2 (en) * | 2005-11-15 | 2013-09-25 | 出光興産株式会社 | Pressure medium oil |
US20070197410A1 (en) * | 2006-02-21 | 2007-08-23 | Rohmax Additives Gmbh | Energy efficiency in hydraulic systems |
JP5255243B2 (en) * | 2006-09-11 | 2013-08-07 | 昭和シェル石油株式会社 | Lubricating oil composition |
JP5180466B2 (en) * | 2006-12-19 | 2013-04-10 | 昭和シェル石油株式会社 | Lubricating oil composition |
JP5426829B2 (en) * | 2007-02-07 | 2014-02-26 | 昭和シェル石油株式会社 | Lubricating oil composition for chattering, vibration and squealing of hydraulic cylinders |
US20080302422A1 (en) * | 2007-06-07 | 2008-12-11 | Rohmax Additives Gmbh | Power output in hydraulic systems |
WO2009024610A1 (en) * | 2007-08-23 | 2009-02-26 | Shell Internationale Research Maatschappij B.V. | Use of a lubricating oil composition |
JP5483662B2 (en) | 2008-01-15 | 2014-05-07 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
JP5806794B2 (en) | 2008-03-25 | 2015-11-10 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition for internal combustion engines |
JP5800449B2 (en) | 2008-03-25 | 2015-10-28 | Jx日鉱日石エネルギー株式会社 | Lubricating oil base oil, method for producing the same, and lubricating oil composition |
WO2009119332A1 (en) | 2008-03-27 | 2009-10-01 | 新日本石油株式会社 | Lubricant composition |
SG194403A1 (en) | 2008-10-07 | 2013-11-29 | Jx Nippon Oil & Energy Corp | Lubricant base oil and a process for producing the same,and lubricating oil composition |
JP2010090251A (en) | 2008-10-07 | 2010-04-22 | Nippon Oil Corp | Lubricant base oil, method for producing the same, and lubricating oil composition |
US8563486B2 (en) * | 2008-10-07 | 2013-10-22 | Jx Nippon Oil & Energy Corporation | Lubricant composition and method for producing same |
WO2010075046A2 (en) * | 2008-12-23 | 2010-07-01 | Shrieve Chemical Products, Inc. | Refrigerant lubricant composition |
JP5829374B2 (en) | 2009-06-04 | 2015-12-09 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
EP2712911A3 (en) | 2009-06-04 | 2014-08-06 | JX Nippon Oil & Energy Corporation | Lubricant oil composition |
EP2439257A4 (en) | 2009-06-04 | 2012-11-28 | Jx Nippon Oil & Energy Corp | A lubricating oil composition and a method for making the same |
CN102459546B (en) | 2009-06-04 | 2016-05-25 | 吉坤日矿日石能源株式会社 | Lubricant oil composite |
JP5689592B2 (en) | 2009-09-01 | 2015-03-25 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
CN102134524B (en) * | 2011-01-21 | 2013-06-19 | 长安大学 | Gear oil composition for non-road transportation dump truck |
RU2505590C1 (en) * | 2012-09-06 | 2014-01-27 | Общество с ограниченной ответственностью "ЛЛК-Интернешнл" | Lubricating oil for gas turbines |
JP5947713B2 (en) * | 2012-12-28 | 2016-07-06 | 昭和シェル石油株式会社 | Vacuum pump oil |
RU2548917C2 (en) * | 2013-02-26 | 2015-04-20 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Lubricating composition of synthetic compressor oil for use in high-pressure compressors |
US10689593B2 (en) * | 2014-08-15 | 2020-06-23 | Exxonmobil Research And Engineering Company | Low viscosity lubricating oil compositions for turbomachines |
JP6476738B2 (en) * | 2014-10-22 | 2019-03-06 | 協同油脂株式会社 | GREASE COMPOSITION FOR ROLLING BEARING AND ROLLING BEARING |
FR3039835B1 (en) | 2015-08-03 | 2019-07-05 | Total Marketing Services | USE OF A FATTY AMINE FOR PREVENTING AND / OR REDUCING METALLIC LOSS OF PARTS IN AN ENGINE |
JP2020503412A (en) | 2016-12-30 | 2020-01-30 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Low viscosity lubricating oil composition for turbomachinery |
JP7037282B2 (en) * | 2017-04-05 | 2022-03-16 | Eneos株式会社 | Hydraulic fluid composition and hydraulic system |
JP6810657B2 (en) | 2017-05-30 | 2021-01-06 | シェルルブリカンツジャパン株式会社 | Lubricating oil composition for automatic transmission |
RU2738608C1 (en) * | 2020-05-28 | 2020-12-14 | Акционерное общество "НПЦ Спецнефтьпродукт" | Method of producing synthetic compressor oil and base of said oil |
CN114250101A (en) * | 2021-12-29 | 2022-03-29 | 安美科技股份有限公司 | Anti-shaking vertical guide rail oil for CNC (computer numerical control) machining center and preparation method thereof |
US20240199973A1 (en) * | 2022-12-14 | 2024-06-20 | Metss Corp. | Lubricating compositions comprising a non-silicone anti-foaming agent |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2758086A (en) * | 1952-06-28 | 1956-08-07 | California Research Corp | Lubricant composition |
US3290245A (en) * | 1959-06-05 | 1966-12-06 | Castrol Ltd | Lubricating compositions containing amine tungstates |
US4101427A (en) * | 1977-02-09 | 1978-07-18 | Exxon Research & Engineering Co. | Lubricant composition |
US4917809A (en) * | 1986-11-11 | 1990-04-17 | Ciba-Geigy Corporation | High-temperature lubricants |
US5552068A (en) * | 1993-08-27 | 1996-09-03 | Exxon Research And Engineering Company | Lubricant composition containing amine phosphate |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1595701A (en) * | 1977-06-24 | 1981-08-19 | Castrol Ltd | Fluids suitable for use as hydraulic fluids electrical oils heat transfer fluids and refrigerant oils |
US4392968A (en) * | 1980-08-13 | 1983-07-12 | Nippon Oil Company, Limited | Metal deactivator and composition containing same |
US4975177A (en) * | 1985-11-01 | 1990-12-04 | Mobil Oil Corporation | High viscosity index lubricants |
US5275749A (en) * | 1992-11-06 | 1994-01-04 | King Industries, Inc. | N-acyl-N-hydrocarbonoxyalkyl aspartic acid esters as corrosion inhibitors |
EP0684298A3 (en) * | 1994-05-23 | 1996-04-03 | Lubrizol Corp | Compositions for extending seal life, and lubricants and functional fluids containing the same. |
US5737469A (en) * | 1996-06-03 | 1998-04-07 | Witco Corporation | Filling compound for fiber optical cables |
US6180575B1 (en) * | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
US6627779B2 (en) * | 2001-10-19 | 2003-09-30 | Chevron U.S.A. Inc. | Lube base oils with improved yield |
US6646174B2 (en) * | 2002-03-04 | 2003-11-11 | Bp Corporation North America Inc. | Co-oligomerization of 1-dodecene and 1-decene |
-
2003
- 2003-02-18 JP JP2003040127A patent/JP5057630B2/en not_active Expired - Lifetime
-
2004
- 2004-02-18 KR KR1020057015233A patent/KR20050098951A/en not_active Application Discontinuation
- 2004-02-18 CA CA002516271A patent/CA2516271A1/en not_active Abandoned
- 2004-02-18 MX MXPA05008671A patent/MXPA05008671A/en unknown
- 2004-02-18 CN CN200480004455A patent/CN100587048C/en not_active Expired - Lifetime
- 2004-02-18 WO PCT/EP2004/050150 patent/WO2004074412A2/en active Search and Examination
- 2004-02-18 US US10/781,028 patent/US20040224860A1/en not_active Abandoned
- 2004-02-18 EP EP04712057.1A patent/EP1594943B1/en not_active Expired - Lifetime
- 2004-02-18 BR BRPI0407521A patent/BRPI0407521B8/en active IP Right Grant
- 2004-02-18 RU RU2005129121/04A patent/RU2352621C2/en active
-
2005
- 2005-08-03 ZA ZA200506194A patent/ZA200506194B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2758086A (en) * | 1952-06-28 | 1956-08-07 | California Research Corp | Lubricant composition |
US3290245A (en) * | 1959-06-05 | 1966-12-06 | Castrol Ltd | Lubricating compositions containing amine tungstates |
US4101427A (en) * | 1977-02-09 | 1978-07-18 | Exxon Research & Engineering Co. | Lubricant composition |
US4917809A (en) * | 1986-11-11 | 1990-04-17 | Ciba-Geigy Corporation | High-temperature lubricants |
US5552068A (en) * | 1993-08-27 | 1996-09-03 | Exxon Research And Engineering Company | Lubricant composition containing amine phosphate |
Also Published As
Publication number | Publication date |
---|---|
BRPI0407521B8 (en) | 2020-04-07 |
JP2004250504A (en) | 2004-09-09 |
RU2005129121A (en) | 2006-01-27 |
JP5057630B2 (en) | 2012-10-24 |
WO2004074412A2 (en) | 2004-09-02 |
US20040224860A1 (en) | 2004-11-11 |
BRPI0407521A (en) | 2006-02-14 |
CN1751115A (en) | 2006-03-22 |
WO2004074412A3 (en) | 2004-10-28 |
RU2352621C2 (en) | 2009-04-20 |
EP1594943A2 (en) | 2005-11-16 |
BRPI0407521B1 (en) | 2020-03-17 |
AU2004213598A1 (en) | 2004-09-02 |
ZA200506194B (en) | 2006-09-27 |
MXPA05008671A (en) | 2005-10-18 |
CN100587048C (en) | 2010-02-03 |
KR20050098951A (en) | 2005-10-12 |
CA2516271A1 (en) | 2004-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1594943B1 (en) | Lubricating oil compositions | |
EP2126014B1 (en) | Lubricating oil composition comprising an epoxidised ester and an aspartic acid derivative | |
JP4789335B2 (en) | Abrasion resistant lubricating oil composition | |
JP4608129B2 (en) | Lubricating oil composition | |
JP4836298B2 (en) | Lubricating oil composition | |
JP5426829B2 (en) | Lubricating oil composition for chattering, vibration and squealing of hydraulic cylinders | |
JP2019532151A (en) | Low conductivity lubricants for electric and hybrid vehicles | |
BRPI0712555A2 (en) | lubricating oil, and method for mixing a lubricating oil | |
WO2010021751A1 (en) | Low sulfur and low metal additive formulations for high performance industrial oils | |
JP2008195952A (en) | Wear-resistant lubricating oil composition | |
WO2011070141A2 (en) | Lubricating oil composition | |
WO2011070140A2 (en) | Lubricating oil composition | |
MX2013005269A (en) | Lubricant for percussion equipment. | |
AU2004213598B2 (en) | Lubricating oil compositions | |
JP5225343B2 (en) | Lubricating oil composition | |
CN107001972B (en) | Lubricating oil composition for internal combustion engine | |
EP2457985B1 (en) | Lubricating oil composition for lubricating automotive engines | |
EP3797145B1 (en) | A lubricant comprising 2,5-(bishydroxymethyl) tetrahydrofuran dialkanoates | |
US20180355270A1 (en) | Lubricants leading to better equipment cleanliness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20050909 |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20090615 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180828 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004053637 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1089702 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1089702 Country of ref document: AT Kind code of ref document: T Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190516 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190417 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190416 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004053637 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190218 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
26N | No opposition filed |
Effective date: 20191017 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190416 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190416 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190316 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040218 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221229 Year of fee payment: 20 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230425 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004053637 Country of ref document: DE |