EP1593888A1 - Ventil für vakuumentladungssystem - Google Patents
Ventil für vakuumentladungssystem Download PDFInfo
- Publication number
- EP1593888A1 EP1593888A1 EP04709363A EP04709363A EP1593888A1 EP 1593888 A1 EP1593888 A1 EP 1593888A1 EP 04709363 A EP04709363 A EP 04709363A EP 04709363 A EP04709363 A EP 04709363A EP 1593888 A1 EP1593888 A1 EP 1593888A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- aluminum
- vacuum exhaustion
- exhaustion system
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 49
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 49
- 238000002161 passivation Methods 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 229910052593 corundum Inorganic materials 0.000 claims description 9
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 9
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 abstract description 32
- 238000005260 corrosion Methods 0.000 abstract description 16
- 230000007797 corrosion Effects 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 16
- 238000009825 accumulation Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 47
- 238000010494 dissociation reaction Methods 0.000 description 24
- 230000005593 dissociations Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 11
- 230000003197 catalytic effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K7/00—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
- F16K7/12—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
- F16K7/14—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K25/00—Details relating to contact between valve members and seats
- F16K25/005—Particular materials for seats or closure elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K25/00—Details relating to contact between valve members and seats
- F16K25/04—Arrangements for preventing erosion, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K27/00—Construction of housing; Use of materials therefor
- F16K27/003—Housing formed from a plurality of the same valve elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K51/00—Other details not peculiar to particular types of valves or cut-off apparatus
- F16K51/02—Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
Definitions
- the present invention is concerned with a valve to be used in the fluid control device and the like in the semiconductor manufacturing equipment. More particularly, the present invention is concerned with a valve to be used in the system for the exhaustion from the process chamber employed in the semiconductor manufacturing.
- a gas having high chemical reactivity is supplied to the process chamber used in the semiconductor manufacturing facilities, the chemicals manufacturing facilities and the like. Accordingly, the exhaustion system for the process chamber is required to exhaust high reactivity gases in safety and with a high degree of efficiency.
- the fluid flow is classified into two regions, a viscous flow region and a molecular flow region in regard to the relationship between the pressure and the inside diameter of the flow passage.
- a viscous flow region To conduct an efficient exhaustion, it is required that the exhaustion be conducted in the viscous flow region.
- the conventional pump since the conventional pump has a comparatively small compression ration (approx. 10), it is not possible to raise the pressure on the discharge outlet side.
- the pressure on the chamber side is 10 -3 Torr
- the discharge outlet side pressure becomes as low as approx. 10 -2 Torr. This means that the pipings having the inside diameter of 5cm or larger is required to attain the viscous flow region with more certainty.
- the dissociation (decomposition) of gases retained inside the pipings occurs when the vacuum pump is out of operation for a long time, thus causing the corrosions of the pipings resulting from the precipitation of substances produced by the decomposition inside the pipings.
- the substances, water and moisture produced by the dissociation of gases inside the pipings accumulate and adhere on the inside walls of the pipings and the piping parts of the valves, not only the afore-mentioned corrosion problem but also the cloggings and valve seat leakages occur.
- the dissociation (decomposition) of gases is caused such that the substances produced by the decomposition deposit and accumulate inside the pipings, causing the corrosions, cloggings and valve seat leakages.
- a gas having high chemical reactivity is supplied to the process chamber used in the semiconductor manufacturing facilities, chemical products manufacturing facilities and the like. Accordingly, the exhaustion system for the process chamber is required to exhaust the high reactivity gases in safety and with a high degree of efficiency.
- the piping system in the semiconductor manufacturing facilities normally comprises a system to supply a gas to the process chamber, the process chamber, the vacuum exhaustion system, the vacuum pump, the valves and the like.
- a plurality of pumps are employed for the exhaustion: i.e., a primary pump (the high vacuum type pump) installed immediately after the chamber, and a secondary pump (the low vacuum type pump) installed on the secondary side of the afore-mentioned primary pump.
- a turbo molecular pump (TMP) is used for the high vacuum type pump, while a scroll type pump is used for the low vacuum pump.
- TMP turbo molecular pump
- the pipings having a diameter of 5cm or more is employed for the pipings in the exhaustion system.
- the pump having a high performance capability or specifically the one which achieves a high compression ratio of approx. 10 3 - 10 4 has been developed.
- the inside diameter of the pipings can be made small such that it is possible to sufficiently secure the viscous flow region with the pipings having a small inside diameter, for instance, an inside diameter of approx. 0.5cm.
- the heating is normally effected for such purpose.
- the saturated vapor pressure is 17.53Torr at 20°C.
- the saturated vapor pressure rises when the temperature rises by heating, making it difficult for the condensation and adherence of water, moisture and gases to occur with the result that the risk of occurrence of the corrosions and the like is reduced.
- the inventors of the present invention have, therefore, looked into the materials (metal materials) of the pipings, the gas temperature and the dissociation (decomposition) of gases with regard to various kinds of gases commonly used in the semiconductor manufacturing field as shown in Figure 1.
- FIG 1 illustrates the relation between the temperature and the dissociation (decomposition) of various gases in the case of Ni. It is shown that the gases which are 100ppm at the room temperature are decomposed and reduced in the concentration as the temperature rises.
- Figure 2 illustrates the case of SUS316L.
- the dissociation (decomposition) of nearly all gases occurs at the temperature lower than 150°C.
- the valve has more curvatures and areas where the gas remains or is trapped than the pipings such that the valve has parts where the pressure and temperature are changed locally and partially.
- a large inside volume results in a large volume of the trapped gas.
- large inside surface areas might give the valve a lot of chances of having the corrosions, cloggings and valve seat leakages caused by the deposition and adherence of the substances produced by the dissociation of the gas.
- the inventors of the present invention have found a way of inhibiting the gas dissociation (decomposition) and preventing the corrosions, cloggings, and valve seat leakages caused by the deposition and adherence of the substances produced by the dissociation where the metal parts such as the inner walls of the pipings which contact the fluid are passivated so that the catalytic action is not exerted, thus inhibiting the dissociation and decomposition of the gas.
- the aluminum passivation does not allow the decomposition of gases to occur up to approx. 150°C.
- the aluminum passivation in this case was one with mainly Al 2 O 3 (alumina).
- the aluminum passivation can be formed by the method in which the oxidation, heating or a combination of the both is applied on the surface of aluminum-made parts; or similarly by the method in which the oxidation, heating or a combination of the both is applied on the surface of suitable aluminum-containing alloys such as aluminum alloys and the like; or by the method in which the layer of suitable aluminum-containing alloys such as aluminum alloys and the like is formed by plating or coating on the parts where the passivation is needed, and then, the passivation is applied by oxidation, heating or a combination of the both.
- Metal materials which constitute a base material of the valve are not limited to aluminum or aluminum alloys containing mainly alminum.
- austenitic stainless steel containing some weight percent (3 ⁇ 8%) of aluminum can be used because it is confirmed that the aluminum passivaion film containing mainly Al 2 O 3 can be formed on the outer surface of the base material by applying the heat treatment.
- the dissociation (decomposition) of gases caused by the temperature rise at the time of baking can be inhibited by forming the aluminum passivation on the fluid-contacting inner surfaces of the piping parts of the valve or the like used in the vacuum exhaustion system, thus making it possible to provide the parts which allow the diameter of the pipings in the vacuum exhaustion system to be small, more particularly to provide the valve which prevent the corrosions, cloggings, valve seat leakages and the likes caused by the substances produced by the decomposition.
- the aluminum passivation containing Al 2 O 3 or containing mainly Al 2 O 3 is a preferred aluminum passivity in order to prevent the catalytic action of the metal surface and improve the durability.
- the present invention has been created through the afore-mentioned process.
- the present invention in Claim 1 relates to a valve which comprises a body having a valve seat formed on the bottom face of a valve chamber being in communication with a flow-in passage and a flow-out passage, a valve body allowed to rest on and move away from the afore-mentioned valve seat, and a driving means operating to allow the afore-mentioned valve body to rest on or move away from the valve seat for closing or opening the flow passage so that fluid flow is controlled wherein the aluminum passivation is applied at least on the surfaces of the body which come in contact with fluids.
- the present invention in Claim 2 relates to a valve as claimed Claim 1 wherein materials of the members on which the aluminum passivation is applied are aluminum, aluminum alloys or austenitic stainless steel which contains some weight percent of aluminum.
- the present invention Claim 3 relates to a valve as claimed in Claim 1 wherein the aluminum passivation is applied on the entire parts of the valve body which come in contact with fluids.
- the present invention in Claim 4 relates to a valve as claimed in Claim1 wherein the thickness of the aluminum passivation is not less than 20nm.
- the present invention in Claim 5 relates to a valve as claimed in Claims 1 to 4 inclusive wherein the aluminum passivation is the aluminum passivity containing mainly Al 2 O 3 .
- the present invention in Claim 6 relates to a valve as claimed in Claim 1 wherein the valve body is a metal diaphragm valve body whose fluids-contacting parts are coated with a fluorine-contained resin film.
- the present invention in Claim 7 relates to a valve as claimed in Claim 1 wherein the flow passage in the valve has the inside diameter which permits the fluids in the flow passage to form a viscous flow.
- the present invention in Claim 8 relates to a valve as claimed in Claim 1 wherein the inside diameter of the flow passage in the valve is not more than 12mm.
- the present invention in Claim 9 relates to a valve as claimed in Claim 1 wherein it is possible to heat the flow passage part to 150°C.
- the present invention in Claim 10 relates to a valve as claimed in Claim 6 wherein the fluorine-contained resin film for coating the valve body is made of polytetrafluoroethylene resin (PTFE), fluorinated ethylene-propylene copolymer (FEP), or tetrafluoroethylelne-perfluoroalkylevinyl ether copolymer (PFA).
- PTFE polytetrafluoroethylene resin
- FEP fluorinated ethylene-propylene copolymer
- PFA tetrafluoroethylelne-perfluoroalkylevinyl ether copolymer
- Figure 5 is a vertical sectional view of the valve in accordance with the present invention, which is a type of valve called a metal diaphragm valve.
- a major part of the metal diaphragm valve 1 comprises a body 2, a metal diaphragm 3 and a driving means 4.
- the body 2 is provided with a valve seat 8 which is formed on the bottom face of a valve chamber 7 in communication with a flow-in passage 5 and a flow-out passage 6.
- the body 2 is made of aluminum, aluminum alloys and the like.
- the body 2 is further provided with a concave-shaped valve chamber 7 opened in the upward direction, a flow-in passage 5 opening downward and being in communication with the valve chamber 7, a flow-out passage 6 opening downward and being in communication with the valve chamber 7, a valve seat 8 made of synthetic resin and the like and fitted into and secured to the center of the bottom face of the valve chamber 7, and a step part 9 formed in the periphery of the bottom face of the valve chamber 7.
- Both the flow-in passage 5 and flow-out passage 6 are shaped circular in its cross section.
- the metal diaphragm 3 is mounted in the body 2 to make the valve chamber 7 air-tight.
- the metal diaphragm 3 with its center part expanding upward is formed in the dish shape of an elastically deformable, thin metal plate such as stainless steel.
- Its peripheral part is mounted on the step part 9 of the body 2 and is pressed against the step part 9 by a lower end part of a bonnet 10 inserted into the valve chamber 7 and a bonnet nut 11 screwed on the body 2 such that the metal diaphragm 3 is secured air-tightly.
- the center part of the metal diaphragm 3 is allowed to rest on and move away from the valve seat 8 to close and open the valve.
- the bonnet 10 cylindrically shaped and inserted into the valve chamber 7 of the body 2 is pressed against the body 2 and secured by tightening the bonnet nut 11.
- the driving means 4 which is of the pneumatic type allows the metal diaphragm 3 to rest on the valve seat 8 and to return of itself to the original shape for moving away from the valve seat 8.
- the inside diameters of the flow-in passage 5 and the flow-out passage 6 are 8mm, and both passages are connected to the pipings having the outside diameter of 9.52mm.
- the aluminum-made or aluminum alloy-made diaphragm can be used.
- the passivation can be applied on the aluminum or aluminum alloy layer which is formed by plating or coating on the surface of stainless steel or other special metals.
- the pneumatic type driving means 4 is employed in the above example, the driving means 4 need not be of the pneumatic type.
- a manual type one, an electromagnetic type one, an electric type one or a hydraulic type one can be employed instead.
- the diaphragm valve is employed in the above example, other types of valve will do too.
- the explanation was given assuming that the body 2 is made of aluminum or an alloy containing mainly aluminum.
- austenitic stainless steel containing some weight percent (3 ⁇ 8 weight percent) of aluminum can be used for the body.
- any aluminum oxide such as alumite or anodized aluminum, for example, can be employed, not limited to the afore-mentioned Al 2 O 3 .
- the most suitable thickness of the aluminum passivation is approx. 20 ⁇ 200nm.
- the durability is feared if the thickness is less than 20nm while the high costs for forming the passivation may be a drawback and the mechanical strength of the aluminum passivation may cause a problem if the thickness is more than 200nm.
- the aluminum passivation is directly formed on the diaphragm 3 which is a part of the metal diaphragm valve 1.
- the metal diaphragm is repeatedly bent to rest on and move away from the valve seat 8, the aluminum passivation may be mechanically damaged.
- a film of the fluorine-contained resin i.e., Teflon, (a registered trade mark) such as FEP ⁇ fluorinated ethylene-propylene copolymer, PTFE ⁇ polytetrafluoroethylene resin, PFA ⁇ tetrafluoroethylene-perfluoroalkylevinylether copolymer and the like
- the fluorine-contained resin film is elastic enough to withstand the repeated bending of the diaphragm 3, and can completely prevent the catalytic action of metals which causes the dissociation and decomposition of gases, and also can withstand high temperature of approx. 150°C adequately.
- the afore-mentioned diaphragm valve of the embodiment is employed in the vacuum exhaustion system between the process chamber and the primary pump and between the primary pump and the secondary pump.
- FIG. 6 illustrates four of the afore-mentioned diaphragm valve coupled together, which is called a 4-gang valve 12. Each valve has its respective inlet flow passage 13, 14, 15 and 16 and is connected to an outlet flow passage 17.
- the afore-mentioned 4-gang valve can be used when the vacuum exhaustion systems for four process chambers are assembled for the exhaustion. Any number of valves as connected can be freely for chosen for couplement.
- the temperature rise by baking causes a problem that the decomposition of gases is promoted because the temperature rise enhances the catalytic effects exerted by the metal part in the vacuum exhaustion system.
- the present invention using the aluminum passivation which is formed in a relatively simple way and at a low cost, can inhibit the catalytic effects which can enhance the dissociation (decomposition) of various gases used for the semiconductor manufacturing even at the temperature of approx. 150°C.
- a part or component, in particular a valve suitable for reducing the diameter of the vacuum exhaustion system at a low cost which is free from the corrosions, cloggings, leakages and the likes caused by the accumulation of the substance produced the dissociation of gases, thereby reducing the diameter of the pipings for making the vacuum exhaustion system small-sized and lowering the costs.
- the aluminum passivation more than 20nm in thickness, excellent barrier effects against the underlying metal can be expected.
- austenitic stainless steel containing some percent of aluminum, aluminum, aluminum alloys and the like for the base metal, which further lowers the costs for manufacturing the valve.
- the inside diameter of the flow passage of the valve is less than 12mm such that a compact-sized valve can be provided.
- the flow passage part of the valve can be heated to 150°C, it is possible to provide the valve which can be put to operation even if the vacuum exhaust system is subjected to the baking. Further, in case of the metal diaphragm valve, the heat-resistance and durability of the diaphragm are remarkably improved by coating only the diaphragm with fluorine-contained resin, thus resulting in the extended life of the valve.
- the present invention achieves excellent, practical effects.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Valve Housings (AREA)
- Details Of Valves (AREA)
- Lift Valve (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034762 | 2003-02-13 | ||
JP2003034762A JP4085012B2 (ja) | 2003-02-13 | 2003-02-13 | 真空排気系用バルブ |
PCT/JP2004/001352 WO2004072519A1 (ja) | 2003-02-13 | 2004-02-09 | 真空排気系用バルブ |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1593888A1 true EP1593888A1 (de) | 2005-11-09 |
EP1593888A4 EP1593888A4 (de) | 2006-02-01 |
EP1593888B1 EP1593888B1 (de) | 2007-04-11 |
Family
ID=32866279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04709363A Expired - Lifetime EP1593888B1 (de) | 2003-02-13 | 2004-02-09 | Ventil für vakuumentladungssystem |
Country Status (9)
Country | Link |
---|---|
US (2) | US7472887B2 (de) |
EP (1) | EP1593888B1 (de) |
JP (1) | JP4085012B2 (de) |
KR (1) | KR101210342B1 (de) |
CN (1) | CN100357642C (de) |
DE (1) | DE602004005829T2 (de) |
IL (1) | IL169611A (de) |
TW (1) | TWI243881B (de) |
WO (1) | WO2004072519A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2878869A1 (de) * | 2013-11-21 | 2015-06-03 | Jtekt Corporation | Ventilhaupteinheit und Verfahren zur Herstellung davon |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8628055B2 (en) * | 2005-07-27 | 2014-01-14 | The Board Of Trustees Of The University Of Illinois | Bi-direction rapid action electrostatically actuated microvalve |
WO2009012479A1 (en) * | 2007-07-19 | 2009-01-22 | Swagelok Company | Coated seals |
US8123841B2 (en) * | 2008-01-16 | 2012-02-28 | The Board Of Trustees Of The University Of Illinois | Column design for micro gas chromatograph |
US8269029B2 (en) * | 2008-04-08 | 2012-09-18 | The Board Of Trustees Of The University Of Illinois | Water repellent metal-organic frameworks, process for making and uses regarding same |
US8387822B2 (en) | 2010-07-08 | 2013-03-05 | Sonoco Development, Inc. | Sealing lid for a container |
DE102010061271A1 (de) * | 2010-12-15 | 2012-06-21 | Contitech Schlauch Gmbh | Beheizbare Anschlussvorrichtung für medienführende, elektrisch beheizbare Schläuche |
KR101940325B1 (ko) | 2011-10-05 | 2019-01-18 | 가부시키가이샤 호리바 에스텍 | 유체 기구 및 상기 유체 기구를 구성하는 지지 부재 및 유체 제어 시스템 |
CN104024708B (zh) | 2011-12-14 | 2017-06-23 | 纽曼蒂克公司 | 能调节压力控制阀 |
JP5837869B2 (ja) | 2012-12-06 | 2015-12-24 | 株式会社フジキン | 原料気化供給装置 |
US9454158B2 (en) | 2013-03-15 | 2016-09-27 | Bhushan Somani | Real time diagnostics for flow controller systems and methods |
JP6218470B2 (ja) * | 2013-07-18 | 2017-10-25 | 株式会社フジキン | ダイヤフラム弁 |
JP6193679B2 (ja) * | 2013-08-30 | 2017-09-06 | 株式会社フジキン | ガス分流供給装置及びガス分流供給方法 |
WO2015112109A1 (en) | 2014-01-21 | 2015-07-30 | Numatics, Incorporated | Pressure controlled and pressure control valve for an inflatable object |
JP6336345B2 (ja) * | 2014-06-30 | 2018-06-06 | 株式会社フジキン | ダイヤフラム弁、流体制御装置、半導体製造装置および半導体製造方法 |
WO2016114266A1 (ja) * | 2015-01-16 | 2016-07-21 | 株式会社キッツエスシーティー | ブロック弁と原料容器用ブロック弁 |
CN106151672A (zh) * | 2015-03-30 | 2016-11-23 | 安徽春辉仪表线缆集团有限公司 | 一种保温型调节阀 |
US10983537B2 (en) | 2017-02-27 | 2021-04-20 | Flow Devices And Systems Inc. | Systems and methods for flow sensor back pressure adjustment for mass flow controller |
JPWO2021039027A1 (de) | 2019-08-30 | 2021-03-04 | ||
KR20230145432A (ko) * | 2021-04-01 | 2023-10-17 | 가부시키가이샤 후지킨 | 제어기 및 기화 공급 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58184729A (ja) * | 1982-04-22 | 1983-10-28 | Tdk Corp | 半導体素子とその製造法 |
JPS63272042A (ja) * | 1987-04-30 | 1988-11-09 | Nec Corp | 半導体装置 |
US5413311A (en) * | 1994-03-01 | 1995-05-09 | Tescom Corporation | Gas valve |
US5520001A (en) * | 1994-02-20 | 1996-05-28 | Stec, Inc. | Vapor controller |
US5989722A (en) * | 1989-01-11 | 1999-11-23 | Ohmi; Tadahiro | Reduced pressure device and method of making |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3750698A (en) * | 1970-07-16 | 1973-08-07 | Xerox Corp | Coated valving member |
FR2181156A5 (en) * | 1972-04-19 | 1973-11-30 | Duriron Co | Diaphragm pumps - with anti-wear coatings of eg PTFE to increase diaphragm life and working pressures |
US4317713A (en) * | 1980-05-19 | 1982-03-02 | Atlantic Richfield Company | In situ aluminum passivation process |
US4337144A (en) * | 1980-05-19 | 1982-06-29 | Atlantic Richfield Company | Aluminum passivation process |
US4686155A (en) * | 1985-06-04 | 1987-08-11 | Armco Inc. | Oxidation resistant ferrous base foil and method therefor |
JPS62191078A (ja) | 1986-02-19 | 1987-08-21 | Nissan Motor Co Ltd | 塗装方法 |
JPS642452A (en) * | 1987-06-25 | 1989-01-06 | Canon Inc | Dialing equipment |
US5127430A (en) * | 1990-02-01 | 1992-07-07 | Industrial Ceramics Engineering | Ceramic weir for valve body |
US5165655A (en) * | 1991-07-12 | 1992-11-24 | Dxl Usa | Flow control valve assembly minimizing generation and entrapment of contaminants |
DE4231343A1 (de) | 1992-09-18 | 1994-03-24 | Mueller Apparatebau Gmbh & Co | Kunststoffkörper |
JPH0771628A (ja) * | 1993-09-02 | 1995-03-17 | Hitachi Metals Ltd | オールメタルダイアフラム弁 |
EP0653812A1 (de) * | 1993-10-01 | 1995-05-17 | Siemens Aktiengesellschaft | Elektrischer Steckverbinder |
US5658452A (en) * | 1994-01-04 | 1997-08-19 | Chevron Chemical Company | Increasing production in hydrocarbon conversion processes |
JP3343313B2 (ja) * | 1995-06-30 | 2002-11-11 | 株式会社フジキン | ダイヤフラム弁 |
JPH102452A (ja) | 1996-06-14 | 1998-01-06 | Smc Corp | 高真空バルブ |
JP3403294B2 (ja) * | 1996-09-10 | 2003-05-06 | 忠弘 大見 | 圧力検出器 |
JP4146535B2 (ja) | 1997-10-20 | 2008-09-10 | 忠弘 大見 | 定容積型流体制御器 |
DE59905071D1 (de) * | 1998-02-20 | 2003-05-22 | Bucher Hydraulics Ag Neuheim | Hochdruck-hydraulikventil |
JP3522535B2 (ja) * | 1998-05-29 | 2004-04-26 | 忠弘 大見 | 圧力式流量制御装置を備えたガス供給設備 |
CA2292279A1 (en) | 1998-12-18 | 2000-06-18 | Fluoroware, Inc. | Creep resistant valve |
JP2000208431A (ja) * | 1999-01-13 | 2000-07-28 | Tadahiro Omi | 酸化クロム不働態膜が形成された金属材料及びその製造方法並びに接流体部品及び流体供給・排気システム |
CN1080771C (zh) * | 1999-07-19 | 2002-03-13 | 张国平 | 铝质防腐隔膜阀和旋塞阀 |
JP2001295946A (ja) | 2000-04-12 | 2001-10-26 | Honda Motor Co Ltd | 油圧制御バルブの摺動部材及び油圧制御バルブの被摺動部材 |
US6409149B1 (en) * | 2000-06-28 | 2002-06-25 | Mks Instruments, Inc. | Dual pendulum valve assembly with valve seat cover |
JP3686007B2 (ja) * | 2001-04-23 | 2005-08-24 | 株式会社巴技術研究所 | バタフライバルブの弁体の製造方法 |
JP3995543B2 (ja) * | 2002-07-03 | 2007-10-24 | 旭有機材工業株式会社 | 流体制御弁 |
US6904935B2 (en) * | 2002-12-18 | 2005-06-14 | Masco Corporation Of Indiana | Valve component with multiple surface layers |
US6941963B2 (en) * | 2003-06-26 | 2005-09-13 | Planar Systems, Inc. | High-speed diaphragm valve for atomic layer deposition |
US7021330B2 (en) * | 2003-06-26 | 2006-04-04 | Planar Systems, Inc. | Diaphragm valve with reliability enhancements for atomic layer deposition |
US20050048409A1 (en) * | 2003-08-29 | 2005-03-03 | Elqaq Deirdre H. | Method of making an optical device in silicon |
-
2003
- 2003-02-13 JP JP2003034762A patent/JP4085012B2/ja not_active Expired - Fee Related
-
2004
- 2004-02-04 TW TW093102547A patent/TWI243881B/zh not_active IP Right Cessation
- 2004-02-09 EP EP04709363A patent/EP1593888B1/de not_active Expired - Lifetime
- 2004-02-09 WO PCT/JP2004/001352 patent/WO2004072519A1/ja active IP Right Grant
- 2004-02-09 KR KR1020057014487A patent/KR101210342B1/ko active IP Right Grant
- 2004-02-09 CN CNB2004800040840A patent/CN100357642C/zh not_active Expired - Fee Related
- 2004-02-09 US US10/545,672 patent/US7472887B2/en not_active Expired - Lifetime
- 2004-02-09 DE DE602004005829T patent/DE602004005829T2/de not_active Expired - Fee Related
-
2005
- 2005-07-10 IL IL169611A patent/IL169611A/en not_active IP Right Cessation
-
2008
- 2008-09-11 US US12/208,949 patent/US7988130B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58184729A (ja) * | 1982-04-22 | 1983-10-28 | Tdk Corp | 半導体素子とその製造法 |
JPS63272042A (ja) * | 1987-04-30 | 1988-11-09 | Nec Corp | 半導体装置 |
US5989722A (en) * | 1989-01-11 | 1999-11-23 | Ohmi; Tadahiro | Reduced pressure device and method of making |
US5520001A (en) * | 1994-02-20 | 1996-05-28 | Stec, Inc. | Vapor controller |
US5413311A (en) * | 1994-03-01 | 1995-05-09 | Tescom Corporation | Gas valve |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 008, no. 021 (E-224), 28 January 1984 (1984-01-28) & JP 58 184729 A (TOKYO DENKI KAGAKU KOGYO KK), 28 October 1983 (1983-10-28) * |
PATENT ABSTRACTS OF JAPAN vol. 013, no. 097 (E-723), 7 March 1989 (1989-03-07) & JP 63 272042 A (NEC CORP), 9 November 1988 (1988-11-09) * |
See also references of WO2004072519A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2878869A1 (de) * | 2013-11-21 | 2015-06-03 | Jtekt Corporation | Ventilhaupteinheit und Verfahren zur Herstellung davon |
US9874289B2 (en) | 2013-11-21 | 2018-01-23 | Jtekt Corporation | Valve main unit and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
EP1593888A4 (de) | 2006-02-01 |
US7472887B2 (en) | 2009-01-06 |
TW200424464A (en) | 2004-11-16 |
DE602004005829D1 (de) | 2007-05-24 |
JP4085012B2 (ja) | 2008-04-30 |
KR20050101322A (ko) | 2005-10-21 |
US7988130B2 (en) | 2011-08-02 |
IL169611A (en) | 2009-09-22 |
EP1593888B1 (de) | 2007-04-11 |
TWI243881B (en) | 2005-11-21 |
CN100357642C (zh) | 2007-12-26 |
US20090020721A1 (en) | 2009-01-22 |
WO2004072519A1 (ja) | 2004-08-26 |
DE602004005829T2 (de) | 2007-08-02 |
KR101210342B1 (ko) | 2012-12-10 |
US20060071192A1 (en) | 2006-04-06 |
CN1748102A (zh) | 2006-03-15 |
JP2004265928A (ja) | 2004-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7988130B2 (en) | Valve for vacuum exhaustion system | |
EP1596107B1 (de) | Membranventil für vakuumevakuierungssystem | |
US8960644B2 (en) | Valve seat structure of fluid control valve | |
US5462080A (en) | Heated removable throttle valve | |
TW201000789A (en) | Isolation valve with corrosion protected and heat transfer enhanced valve actuator and closure apparatus and method | |
US6655412B2 (en) | Single flanged end ball valve of unitary construction | |
EP1400690A2 (de) | Rückschlagventil für Vakuumpumpen | |
JP4644242B2 (ja) | 真空排気系用バルブの使用方法 | |
JP4237032B2 (ja) | 開閉弁及びこれを用いた半導体製造設備用排気装置 | |
US20230296183A1 (en) | Non-return check valve and check valve apparatus for vacuum system | |
CN217056542U (zh) | 一种减压阀 | |
CN213479212U (zh) | 一种通风蝶阀 | |
JP2916732B2 (ja) | 液体用逆止弁 | |
WO2003036146A1 (en) | Valve having corrosion resistant polymeric coating | |
JPH06213323A (ja) | 密封ガスケット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050705 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20051215 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004005829 Country of ref document: DE Date of ref document: 20070524 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080114 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090216 Year of fee payment: 6 Ref country code: NL Payment date: 20090227 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090226 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090212 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090218 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100209 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100209 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100209 |