EP1590126A2 - Verfahren zum kalibrieren einer schleifmaschine - Google Patents

Verfahren zum kalibrieren einer schleifmaschine

Info

Publication number
EP1590126A2
EP1590126A2 EP04706628A EP04706628A EP1590126A2 EP 1590126 A2 EP1590126 A2 EP 1590126A2 EP 04706628 A EP04706628 A EP 04706628A EP 04706628 A EP04706628 A EP 04706628A EP 1590126 A2 EP1590126 A2 EP 1590126A2
Authority
EP
European Patent Office
Prior art keywords
knife
grinding
calibration
bar
calibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04706628A
Other languages
English (en)
French (fr)
Other versions
EP1590126B1 (de
Inventor
Gaetano Campisi
Manfred Knaden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klingelnberg AG
Original Assignee
Klingelnberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klingelnberg AG filed Critical Klingelnberg AG
Publication of EP1590126A2 publication Critical patent/EP1590126A2/de
Application granted granted Critical
Publication of EP1590126B1 publication Critical patent/EP1590126B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/02Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B3/00Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools
    • B24B3/34Sharpening cutting edges, e.g. of tools; Accessories therefor, e.g. for holding the tools of turning or planing tools or tool bits, e.g. gear cutters

Definitions

  • the invention relates to a method for calibrating a grinding machine for sharpening bar knives by grinding at least two flanks and a head surface of the bar knives, comprising the steps
  • the calibration method mentioned at the outset has been developed for a grinding machine with 5 + 1 NC axes, as shown in the BA, page 9, and, for the sake of easier reference, in the attached FIG. 1.
  • cutting tools such as a bar knife 10 shown in the attached FIGS. 2 and 3 are sharpened with the aid of a grinding wheel 12.
  • the grinding machine has a table 17 on which a carriage 18 can be moved back and forth along an X axis.
  • a column 19 can be moved back and forth along a Z axis at right angles to the X axis.
  • a carriage 20 can also be moved back and forth along a Y axis at right angles to the X axis and to the Z axis.
  • the X-axis, the Y-axis and the Z-axis form a rectangular coordinate system.
  • the grinding wheel 12 is rotatably attached to the carriage 20.
  • a clamping device 21 for clamping the knife 10 is attached to the carriage 18.
  • the tensioning device 21 is supported relative to the slide 18 by a positioning axis CC and a positioning axis AA perpendicular to the positioning axis CC.
  • the X axis, the Y axis, the Z- The axis, the positioning axis AA and the positioning axis CC can not only position, but also drive CNC-controlled path curves.
  • the bar knife 10 has a shank 2 which is rectangular in cross section and an end 3 which is essentially trapezoidal in longitudinal section.
  • a rake face C on a left flank 5 in FIG Backward-extending secondary free surface B, on a right-hand flank 6 in FIG. 2 a main free surface A extending backwards from the rake surface C and a top surface K extending backwards from the rake surface C on the front side.
  • a peripheral cutting edge 4 is formed between the secondary free surface B, the top surface K, the main free surface A and the rake surface C.
  • shoulder surfaces A s and B s can be formed, as shown here.
  • a curved shoulder face C as shown here s be formed.
  • the main free surface A, the secondary free surface B and the rake surface C each have a facet A F , B F and C F.
  • the facet angles are approximately 1 ° and are designated in the attached FIG. 3 with ⁇ AF * Y BF or ⁇ CF (wherein ⁇ BF is not visible in FIG. 3).
  • a grinding wheel 12 is shown with which the bar knife 10 can be ground.
  • the grinding wheel 12 has an axis of rotation S to which the grinding wheel is rotationally symmetrical.
  • the grinding wheel 12 On one end side, the grinding wheel 12 has a circular clamping surface 13 that is perpendicular to the axis of rotation S.
  • a conical grinding surface Pp with a small diameter d1 and a large diameter d2 extends from the outer circumference of the clamping surface 13, the small diameter d1 becoming larger the clamping surface 13 is located.
  • a curved grinding surface 14 having a radius Rs adjoins tangentially, which in turn merges tangentially into a cylindrical grinding surface Ps.
  • the cylindrical grinding surface Ps is tangentially connected to a toroidal grinding surface G which has an arcuate cross section with a radius of curvature Rg.
  • the toroidal grinding surface G extends radially inward and merges tangentially into a second conical surface 15 which is undercut to the toroidal grinding surface G.
  • the grinding wheel 12 is a diamond wheel with galvanic bonding of the grinding grains made of diamond.
  • the position of the grinding wheel 12 (more precisely: its finishing edge) in the direction of the Y and Z axes is indicated in FIG. 4 by pY and by pZ.
  • FIGS. 5 and 6 show the clamping device 21 in front view and in plan view.
  • the clamping device 21 can be rotated about the positioning axis CC and can be pivoted about the positioning axis AA.
  • a left bar knife 10 can be clamped into the tensioning device 21, as shown, or a right bar knife.
  • the clamping device 21 has two stop surfaces 23, 24 for left and right bar knives.
  • the grinding wheel 12 described also enables form grinding (roughing) and subsequent production grinding (finishing) of the surfaces of the bar knife 10 without this having to be reclamped.
  • the grinding wheel 12 expediently rotates about the fixed axis of rotation S, and the bar knife to be sharpened is guided along the grinding wheel 12 while being set to corresponding angles.
  • the dual grinding method for bar knives and a grinding wheel for carrying out the method are described in WO 02/058888 A1, to which reference is hereby made to avoid repetitions.
  • the purpose of the calibration method mentioned at the outset is to determine deviations occurring after a change in the clamping device 21 or the grinding wheel 12 due to manufacturing and assembly inaccuracies, and when sharpening bar knives both the nominal data used for the calculation and the current actual state of the Grinding machine to be taken into account by calibrating. Calibration is also recommended after long use of the grinding wheel to compensate for wear-related misalignments (due to increased grinding forces).
  • a calibration gauge with a fixed geometry is produced on three surfaces for the grinding machine and delivered with the grinding machine.
  • the three surfaces are the main free surface A, the secondary free surface B and the top surface K.
  • a calibration knife is ground in three steps or grinding phases in the machine, coordinated with the calibration gauge.
  • the knife is clamped in the clamping device 21 with the help of a gauge block. Then the clamping height is measured in the machine (BA, page 100, section 6).
  • the head surface K is ground and measured in the machine when the knife is clamped (page 103).
  • the measured value is entered into the control. It causes a correction in the Y axis (BA, page 104, section 11).
  • the bar knife 10 is ground in a horizontal position (BA, page 104, section 14).
  • the knife height is measured again in the machine (BA, page 105, section 17). Again, the measured value is entered into the control system (BA, page 105, section 19). 3rd grinding phase
  • the machine grinds the main free surface A or flank 6 and the secondary free surface B or flank 5 (BA, page 106, section 21).
  • the two open areas A and B are then measured outside the machine (BA, page 106, section 1) and compared with a calibration gauge (a so-called master calibration knife). The measured values, i.e. the deviations are again entered into the control. The machine is now calibrated and set up.
  • the process is time consuming. Measuring in the machine is difficult and requires a lot of practice.
  • the grinding wheel swings over the top surface, which is a grinding process that takes place in the production process, i.e. does not occur when sharpening bar knives on the grinding machine.
  • the known method requires three steps or grinding phases, namely the first and the second grinding phase, in which the head surface is ground twice in order to be able to determine the Y and Z components of an error, and a third grinding phase, in which the two flanks be ground once in order to be able to determine the clamping device position to the CC axis.
  • the knife cannot be removed from the machine in the first two steps for measuring, since these steps measure relative to the machine.
  • a clamping device error can therefore only be determined in the known calibration method in the third grinding phase. This means that the first and second grinding phases can subsequently turn out to be superfluous, because their results cannot be used at all due to an initially undetected clamping device error. After all, the previous calibration procedure for the dual procedure is either too imprecise or requires additional machine equipment.
  • the object of the invention is to design a method of the type mentioned in the introduction in such a way that it is easier to carry out and produces better results.
  • This object is achieved according to the invention in a method of the type mentioned at the outset in that, in order to produce a calibration knife, the bar knife is completely ground at least twice on the flanks and the head surface and in that the geometry of the calibration knife is measured on a measuring device outside the grinding machine becomes.
  • the method according to the invention for calibrating a grinding machine is carried out using a calibration knife which, in a departure from the known method, is ground in fixed positions and then measured outside the machine. The measured deviations from the nominal dimensions are entered into the NC control of the grinding machine and taken into account there in a suitable manner.
  • a production knife is sharpened, it is also measured outside the machine, but a correction is only made for one axis arrangement (by moving the knife). One could not calibrate the grinding machine itself with such an individual correction.
  • the calibration knife which is produced according to the invention, consists of a rectangular rod on which a head surface K and two free surfaces A, B are ground. They form the knife edges with the front bar surface, the intersection of the head edge with the flanks form the knife tips.
  • the normal grinding process for making a production knife involves grinding a bar knife on the flanks and the head surface once. To produce a calibration knife, a bar knife is completely ground at least twice and measured outside of the machine after each of these two calibration cuts. Deviations are entered into the machine control, as in the known method.
  • the grinding process of the calibration knife is the same in the method according to the invention as in a production knife. That is why technological peculiarities in the machine are included in the grinding result.
  • the calibration method according to the invention is the most important advantage of the calibration method according to the invention over the known calibration method.
  • the production process is reproduced with a geometrically exact arrangement during calibration.
  • the measurement method also corresponds to that used in production.
  • an existing clamping device error is determined in the first grinding phase, in the known method, however, only in the third grinding phase.
  • Further important advantages of the method according to the invention are that no measurement is carried out at all in the machine and that the method according to the invention comprises a total of only two calibration cuts, in contrast to the known method which comprises three calibration cuts.
  • the measuring process can be more like a production process of bar knives, in which measurements are also carried out on a measuring device outside the grinding machine.
  • Advantageous embodiments of the method according to the invention form the subjects of the subclaims.
  • each calibration cut contains two finishing passes, the calibration knife is completely ground after two complete calibration cuts.
  • the bar knife is aligned in two axial directions, which form an angle of 70 ° -90 ° and preferably 90 ° with one another, about the position of a working surface of a grinding wheel of the grinding machine with respect to these two.
  • the bar knife is rotated through 180 ° about the positioning axis and then in the second finishing pass the top surface, a second transition radius to the second flank and the second flank are ground, the bar knife is advantageously given a different arrangement in the grinding machine when each flank is ground, so that a clear conclusion can be drawn from the measured values on the calibration values, and for the calibration there is a symmetrical geometry of the calibration knife. Since you can switch from the first to the second calibration between the right and left stop, a total of four errors can be eliminated in two steps.
  • the bar knife is arranged on the front side of the grinding wheel for the first calibration grinding, an error in the direction of the Y axis can be determined in a simple manner if in this configuration the knife is arranged on the front side of the grinding wheel, that the AA axis is as parallel as possible to the Y axis and that the stop surface of the clamping device is exactly parallel to the X axis.
  • the head surface, transition radius and the first flank are ground in one go. If, for the second finishing pass, the knife is rotated 180 ° around the C-C axis with the clamping device and the same grinding process is repeated, the head surface, transition radius and the second flank are now ground.
  • the grinding wheel is guided in a straight line along the edges so that the head surface is vertical, both flanks are opposite at a predetermined angle (preferably 20 °) to the CC axis and the knife tips receive the distances to be checked (mA and mB) to the stop surface.
  • the bar knife is pivoted by 90 ° for the second calibration grinding and is arranged on the cylinder side of the grinding wheel by the device being pivoted 90 ° about the AA axis, so that the CC axis is now parallel to the Z -Axis, an error can be determined in the direction of the Z-axis, otherwise the procedure is exactly the same as for the first calibration grinding.
  • the positioning axis of the bar knife is inclined by the flank angle and the bar knife is completely ground on the flanks and the top surface in a third calibration grinding, the measured deviation results in a third Circle point from which a deviation in the rounding radius Rg can be calculated using a program.
  • a further step is used to grind one of the two flanks of the bar knife only with one roughing surface of the grinding wheel, the position of which is to be determined, the distance to the roughing surface Ps can be achieved by the further step determine by just roughing the second flank, without facet angle.
  • the first edge is used for control.
  • the evaluation is again carried out via a program.
  • an absolute measuring device is used for measuring the geometry of the calibration knife
  • the measurement can be carried out tactilely or optically in order to measure the deviations of the flanks or tip distances (fmA and fmB) after each grinding.
  • the evaluation can again be carried out using a program in the computer of the grinding machine.
  • a comparative measuring device is used for measuring the geometry of the calibration knife, which compares the measured geometry of the calibration knife with the dimensions of a calibration gauge
  • the method can be accelerated because the comparison measurement is usually faster and more accurate than is an absolute measurement,
  • a calibration gauge is required, which was previously measured precisely using an absolute measurement.
  • the calibration knife can be carried out using the same method as grind a production knife so that process-related influences, in particular displacements associated with the grinding forces, are also taken into account.
  • the calibration on three axes (Y, Z, C) not only adjusts the position and symmetry of the flanks on the knife, but also the grinding abrasion. This makes the knife insensitive to changes in direction of the C-C axis. This also avoids shape errors in the tip radius (due to offset of the head edges) and differences in facet removal
  • Fig. 1 is a perspective view of a known grinding machine for
  • Sharpening bar knives which can be calibrated by the method according to the invention
  • Fig. 2 is a partial perspective view of a bar knife, which is by means of
  • FIG. 3 shows a partial cross-sectional view of the head-side end of the bar knife according to FIG. 2 to illustrate facet and clearance angles in the region of a cutting edge
  • Fig. 4 is a sectional view of a grinding wheel of the grinding machine
  • FIG. 5 is a front view of a tensioning device, which is shown with a clamped bar knife,
  • FIG. 6 is a top view of the tensioning device according to FIG. 5, Fig. 7 shows the effect of a position error of the grinding wheel on
  • the master knife in the measuring device is shifted from the target position against the stop (by fh), so that the measured thickness deviation (fm) results as a superposition of all errors. This measurement value has so far been used to correct the knives.
  • the knife For the second position component, the knife must be sharpened again. You can also switch to the second stop surface. Although the knife has to be ground and measured twice, there is a very simple and effective calibration method.
  • the bar knives 10 are completely ground at least twice. Each calibration cut contains two finishing passes, which is described in more detail below with reference to FIGS. 10 and 11.
  • First calibration grinding (Y alignment, Fig. 10):
  • the bar knife 10 is arranged on the end face of the grinding wheel 12 in such a way that the A-A axis is as parallel as possible to the Y axis and that the stop surface 23 of the clamping device 21 is exactly parallel to the X axis.
  • the top surface K, a transition radius and the first flank are ground in one go.
  • the bar knife is rotated by 180 ° about the C-C axis by means of the clamping device 21, and the same grinding process is repeated, so that the head surface K, another transition radius and the second flank are ground again.
  • the grinding wheel 12 is guided along the edges such that the head surface K is vertical, that both flanks 5, 6 are opposite at a predetermined angle, preferably 20 ° to the CC axis, and that the knife tips provide the distances mA and mB to be checked Get stop surface 23 or 24.
  • the C-C axis When using a dual grinding wheel, the C-C axis must be inclined by a small angle in the method according to the invention for design reasons. Together with the removal deviation of the facet, a feedback occurs between the Y and the Z component in the first calibration step, which can lead to a residual error (between 5% and 20% of the second component). In the event of larger deviations, a control sanding with possible recalibration should therefore be carried out. An offset of the head edges is avoided by grinding both flanks with the same axis arrangement.
  • the edges are preferably given the same facet as the production knives. It is geometrically irrelevant, but technologically necessary, that the top surface is sanded twice with every complete sanding. During the first finishing pass, a large oversize must be sanded down, which can lead to a shape error in the edge of the head. This error is eliminated in the second finishing pass.
  • the procedure is exactly the same as for the first grinding, but the knife is arranged on the cylinder side of the grinding wheel 12 by the clamping device by 90 ° is pivoted about the AA axis so that the CC axis is now parallel to the Z axis. You can switch between the right and left stop from the first to the second calibration.
  • the bar knife 10 is ground a third time, the C-C axis being inclined by the flank angle, so that the flank is now vertical.
  • the measured deviation results in a 3rd circle point, from which the radius deviation can be calculated using a program.
  • the second flank is only roughed, without a facet angle.
  • the first edge is used for control.
  • the evaluation is again carried out via a program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Disintegrating Or Milling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

VERFAHREN ZUM KALIBRIEREN EINER SCHLEIFMASCHINE
Beschreibung
Die Erfindung betrifft ein Verfahren zum Kalibrieren einer Schleifmaschine zum Schärfen von Stabmessern durch Schleifen von wenigstens zwei Flanken und einer Kopffläche der Stabmesser, beinhaltend die Schritte
- Herstellen eines Kalibriermessers durch Schärfen eines Stabmessers entsprechend einer vorgegebenen Geometrie,
- Messen der Geometrie des Kalibriermessers, und
- Kalibrieren der Maschine mit Hilfe des Messergebnisses.
Ein solches Kalibrierverfahren ist aus der BEDIENUNGSANLEITUNG OERLIKON B24 MESSERSCHLEIFMASCHINE, Ausgabedatum 03.09.1999/B, Oerlikon Geartec AG, Zürich, bekannt, die mit der Maschine Nr. 289839 an VW Kassel geliefert worden ist. Der Inhalt dieser Bedienungsanleitung (im Folgenden abgekürzt BA genannt) und insbesondere die im Folgenden zitierten Teile derselben werden hiermit vollinhaltlich in die vorliegende Beschreibung einbezogen.
Das eingangs genannte Kalibrierverfahren ist für eine Schleifmaschine mit 5+1 NC- Achsen entwickelt worden, wie sie in der BA, Seite 9, sowie, der einfacheren Bezugnahme halber, in der beigefügten Fig. 1 dargestellt ist. Mit einer solchen Schleifmaschine werden Zerspanwerkzeuge wie ein in den beigefügten Fig. 2 und 3 dargestelltes Stabmesser 10 mit Hilfe einer Schleifscheibe 12 geschärft. Die Schleifmaschine hat einen Tisch 17, auf dem ein Schlitten 18 längs einer X-Achse hin und her beweglich ist. Eine Säule 19 ist längs einer Z-Achse rechtwinkelig zur X-Achse hin und her beweglich. Auf der Säule 19 ist weiter ein Schlitten 20 entlang einer Y-Achse rechtwinkelig zur X-Achse und zur Z-Achse hin und her beweglich. Die X-Achse, die Y-Achse und die Z-Achse bilden ein rechtwinkeliges Koordinatensystem. An dem Schlitten 20 ist die Schleifscheibe 12 drehbar befestigt. An dem Schlitten 18 ist eine Spannvorrichtung 21 zum Spannen des Messers 10 angebracht. Die Spannvorrichtung 21 ist gegenüber dem Schlitten 18 durch eine Positionierachse C-C und eine auf der Positionierachse C- C senkrecht stehende Positionierachse A-A gelagert. Die X-Achse, die Y-Achse, die Z- Achse, die Positionierachse A-A und die Positionsachse C-C können nicht nur positionieren, sondern auch CNC-gesteuerte Bahnkurven fahren.
Nach der beigefügten Fig. 2 hat das Stabmesser 10 einen im Querschnitt rechteckigen Schaft 2 und ein im Längsschnitt im Wesentlichen trapezförmiges Ende 3. An dem Ende 3 sind eine Spanfläche C, an einer in Fig. 2 linken Flanke 5 eine sich von der Spanfläche C nach hinten erstreckende Nebenfreifläche B, an einer in Fig. 2 rechten Flanke 6 eine sich von der Spanfläche C nach hinten erstreckende Hauptfreifläche A und oben an der Stirnseite eine sich von der Spanfläche C nach hinten erstreckende Kopffläche K ausgebildet. Zwischen der Nebenfreifläche B, der Kopffläche K, der Hauptfreifläche A und der Spanfläche C ist eine umlaufende Schneidkante 4 ausgebildet. Im Übergang von der Hauptfreifläche A und der Nebenfreifläche B zu dem Schaft 2 können, wie hier gezeigt, Schulterflächen As bzw. Bs ausgebildet sein. Ebenso kann im Übergangsbereich der Spanfläche C zu dem Schaft 2, wie hier gezeigt, eine gekrümmte Schulterfläche Cs ausgebildet sein. Die Hauptfreifläche A, die Nebenfreifläche B und die Spanfläche C haben jeweils eine Facette AF, BF bzw. CF. Die Facettenwinkel betragen etwa 1 ° und sind in der beigefügten Fig. 3 mit γAF* YBF bzw. γCF bezeichnet (wobei γBF in Fig. 3 nicht sichtbar ist).
In Fig. 4 ist eine Schleifscheibe 12 dargestellt, mit der das Stabmesser 10 geschliffen werden kann. Die Schleifscheibe 12 hat eine Drehachse S, zu der die Schleifscheibe rotationssymmetrisch aufgebaut ist. Die Schleifscheibe 12 hat an einer Endseite eine zu der Drehachse S rechtwinkelige, kreisrunde Aufspannfläche 13. Von dem äußeren Umfang der Aufspannfläche 13 aus erstreckt sich eine kegelige Schleiffläche Pp mit einem kleinen Durchmesser d1 und einem großen Durchmesser d2, wobei sich der kleine Durchmesser d1 an der Aufspannfläche 13 befindet. An der Seite mit dem großen Durchmesser d2 der kegeligen Schleiffläche Pp schließt sich tangential eine einen Radius Rs aufweisende gekrümmte Schleiffläche 14 an, die wiederum tangential in eine zylindrische Schleiffläche Ps übergeht. An die zylindrische Schleiffläche Ps schließt sich tangential eine torusförmige Schleiffläche G an, die einen kreisbogenförmigen Querschnitt mit einem Rundungsradius Rg hat. Die torusförmige Schleiffläche G erstreckt sich radial nach innen und geht tangential in eine zweite, zu der torusförmigen Schleiffläche G hinterschnittene kegelförmige Fläche 15 über. Die Schleifscheibe 12 ist eine Diamantscheibe mit galvanischer Bindung der aus Diamant bestehenden Schleifkörner. Die Position der Schleifscheibe 12 (genauer: deren Schlichtkante) in Richtung der Y- und der Z-Achse sind in Fig. 4 mit pY bzw. mit pZ angegeben. Die beigefügten Fig. 5 und 6 zeigen die Spannvorrichtung 21 in Vorderansicht bzw. in Draufsicht. Die Spannvorrichtung 21 ist um die Positionierachse C-C drehbar und um die Positionierachse A-A schwenkbar. In die Spannvorrichtung 21 ist ein linkes Stabmesser 10 einspannbar, wie dargestellt, oder ein rechtes Stabmesser. Die Spannvorrichtung 21 hat zwei Anschlagflächen 23, 24 für linke bzw. rechte Stabmesser.
Für das Schärfen von Stabmessern auf der Schleifmaschine werden das Erzeugungsschleifen und das Dualschleifverfahren eingesetzt. Die beschriebene Schleifscheibe 12 ermöglicht auch Formschleifen (Schruppen) und anschließendes Erzeugungsschleifen (Schlichten) der Flächen des Stabmessers 10, ohne dass dieses umgespannt werden müsste. Zweckmäßig rotiert dabei die Schleifscheibe 12 um die feststehende Drehachse S, und das zu schärfende Stabmesser wird unter Einstellung auf entsprechende Winkel an der Schleifscheibe 12 entlang geführt. Das Dualschleifverfahren für Stabmesser und eine Schleifscheibe zur Durchführung des Verfahrens sind in der WO 02/058888 A1 beschrieben, auf die zur Vermeidung von Wiederholungen hiermit verwiesen wird.
Aus der DE 29 46 648 C2 ist ein Verfahren zum Profilieren und Scharfschleifen von Stabmessern bekannt, bei dem nur ein Arbeitsgang für einen vollständigen Schliff erforderlich ist.
Zweck des eingangs genannten Kalibrierverfahrens ist es, nach einem Wechsel der Spannvorrichtung 21 oder der Schleifscheibe 12 auftretende Abweichungen durch Fer- tigungs- und Montageungenauigkeiten zu ermitteln und bei dem Schärfen von Stabmessern sowohl die für die Berechnung zu Grunde gelegten Nenndaten als auch den momentanen Istzustand der Schleifmaschine durch das Kalibrieren zu berücksichtigen. Ein Kalibrieren empfiehlt sich auch nach einem längeren Einsatz der Schleifscheibe, um verschleißbedingte Verlagerungen (durch erhöhte Schleifkräfte) zu kompensieren.
Dabei sind für die Berechnung der Schleifbahn von Bedeutung:
- Abstand der beiden Anschlagflächen 23, 24 zur Positionierachse C-C der Spannvorrichtung 21 (Fig. 5 und 6):
- Anschlag für linke Messer (aL)
- Anschlag für rechte Messer (aR) - Position der Schleifscheibe 12 (Schlichtkante) in zwei Achsrichtungen (Fig. 4):
- Y-Achse , (pY)
- Z-Achse (pZ)
- zusätzlich: Abmessungen der (Dual-)Schleifscheibe (Fig. 4):
- Rundungsradius der Schlichtkante (Rg) -Abstand zur Schruppfläche (Ps)
Das bekannte Kalibrierverfahren ist in der BA, Seite 97 - 108, ausführlich beschrieben, worauf zur Vermeidung von Wiederholungen hiermit verwiesen wird.
Bei diesem bekannten Kalibrierverfahren wird eine Kalibrierlehre mit fester Geometrie an drei Flächen für die Schleifmaschine hergestellt und mit der Schleifmaschine ausgeliefert. Die drei Flächen sind die Hauptfreifläche A, die Nebenfreifläche B und die Kopffläche K. Ein Kalibriermesser wird in drei Schritten oder Schleifphasen in der Maschine geschliffen, abgestimmt mit der Kalibrierlehre.
1. Schleifphase
Das Messer wird mit Hilfe eines Endmaßes in der Spannvorrichtung 21 eingespannt. Dann wird die Einspannhöhe in der Maschine vermessen (BA, Seite 100, Ziff. 6).
Die Kopffläche K wird geschliffen und im eingespannten Zustand des Messers in der Maschine vermessen (Seite 103).
Der gemessene Wert wird in die Steuerung eingegeben. Er bewirkt eine Korrektur in der Y-Achse (BA, Seite 104, Ziff. 11).
2. Schleifphase
Das Stabmesser 10 wird in horizontaler Position geschliffen (BA, Seite 104, Ziff. 14). Erneut wird die Messerhöhe in der Maschine gemessen (BA, Seite 105, Ziff. 17). Wiederum wird der gemessene Wert in die Steuerung eingegeben (BA, Seite 105, Ziff. 19). 3. Schleifphase
Die Maschine schleift die Hauptfreifläche A oder Flanke 6 und die Nebenfreifläche B oder Flanke 5 (BA, Seite 106, Ziff. 21).
Anschließend werden außerhalb der Maschine die beiden Freiflächen A und B gemessen (BA, Seite 106, Ziff. 1) und mit einer Kalibrierlehre (einem sogenannten Meister- Eichmesser) verglichen. Die Messwerte, d.h. die Abweichungen werden wiederum in die Steuerung eingegeben. Damit ist die Maschine geeicht und eingerichtet.
Das Verfahren ist zeitaufwendig. Das Messen in der Maschine ist schwierig und erfordert viel Übung. Bei den ersten beiden Schritten (1. und 2. Schleifphase) pendelt die Schleifscheibe über die Kopffläche, was einen Schleifvorgang darstellt, der bei dem Produktionsprozess, d.h. bei dem Schärfen von Stabmessern auf der Schleifmaschine nicht auftritt. Weiter erfordert das bekannte Verfahren drei Schritte oder Schleifphasen, nämlich die erste und die zweite Schleifphase, in denen zweimal die Kopffläche geschliffen wird, um die Y- und Z-Komponente eines Fehlers ermitteln zu können, und eine dritte Schleifphase, in der die beiden Flanken einmal geschliffen werden, um die Spannvorrichtungsposition zur C-C Achse ermitteln zu können. Das Messer kann bei den ersten beiden Schritten zum Messen nicht aus der Maschine entnommen werden, da in diesen Schritten relativ zur Maschine gemessen wird. Ein Spannvorrichtungsfehler lässt sich bei dem bekannten Kalibrierverfahren daher erst in der dritten Schleifphase ermitteln. Das heißt nachträglich können sich die erste und die zweite Schleifphase als überflüssig herausstellen, weil ihre Ergebnisse aufgrund eines zunächst unerkannt vorhandenen Spannvorrichtungsfehlers überhaupt nicht verwendbar sind. Schließlich ist das bisherige Kalibrierverfahren für das Dualverfahren entweder zu ungenau oder benötigt zusätzliche Maschineneinrichtungen.
Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art so auszubilden, dass es einfacher durchführbar ist und bessere Ergebnisse erbringt.
Diese Aufgabe ist erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass zu dem Herstellen eines Kalibriermessers das Stabmesser wenigstens zwei Mal jeweils an den Flanken und der Kopffläche vollständig geschliffen wird und dass das Messen der Geometrie des Kalibriermessers auf einer Messvorrichtung außerhalb der Schleifmaschine durchgeführt wird. Das erfindungsgemäße Verfahren zum Kalibrieren einer Schleifmaschine wird über ein Kalibriermesser durchgeführt, das abweichend von dem bekannten Verfahren in festgelegten Positionen geschliffen und anschließend außerhalb der Maschine vermessen wird. Die gemessenen Abweichungen von den Nennmaßen werden in die NC- Steuerung der Schleifmaschine eingegeben und dort in geeigneter Weise berücksichtigt. Bei dem Schleifen eines Produktionsmessers wird dieses zwar auch vermessen, und zwar außerhalb der Maschine, aber eine Korrektur wird nur für eine Achsanordnung vorgenommen (durch Verschieben des Messers). Die Schleifmaschine selbst könnte man durch eine solche Einzelkorrektur nicht kalibrieren.
Das Kalibriermesser, das erfindungsgemäß hergestellt wird, besteht wie bei dem bekannten Verfahren aus einem rechteckigen Stab, an dem eine Kopffläche K und zwei Freiflächen A, B angeschliffen werden. Sie bilden mit der vorderen Stabfläche die Messerkanten, die Schnittpunkte der Kopfkante mit den Flanken die Messerspitzen. Der normale Schleifprozess zum Herstellen eines Produktionsmessers beinhaltet, dass ein Stabmesser an den Flanken und der Kopffläche ein Mal vollständig geschliffen wird. Zu dem Herstellen eines Kalibriermessers wird erfindungsgemäß ein Stabmesser wenigstens zwei Mal vollständig geschliffen und nach jedem dieser beiden Kalibrierschliffe außerhalb der Maschine vermessen. Abweichungen werden in die Maschinensteuerung eingegeben, wie bei dem bekannten Verfahren auch. Der Schleifprozess des Kalibriermessers ist bei dem erfindungsgemäßen Verfahren derselbe wie bei einem Produktionsmesser. Deshalb gehen technologische Besonderheiten in der Maschine in das Schleifergebnis ein. Das ist der wesentlichste Vorteil des erfindungsgemäßen Kalibrierverfahrens gegenüber dem bekannten Kalibrierverfahren. Erfindungsgemäß wird mit geometrisch exakter Anordnung bei dem Kalibrieren der Produktionsprozess nachvollzogen. Aber auch die Messmethode stimmt mit der bei der Produktion benutzten überein. Allerdings wird bei dem Verfahren nach der Erfindung ein etwa vorhandener Spannvorrichtungsfehler schon in der ersten Schleifphase ermittelt, bei dem bekannten Verfahren hingegen erst in der dritten Schleifphase. Weitere wichtige Vorteils des erfindungsgemäßen Verfahrens sind, dass in der Maschine überhaupt keine Messung durchgeführt wird und dass das erfindungsgemäße Verfahren insgesamt nur zwei Kalibrierschliffe umfasst, im Gegensatz zu dem bekannten Verfahren, das drei Kalibrierschliffe umfasst. Da bei dem Verfahren nach der Erfindung das Messen der Geometrie des Kalibriermessers auf einer Messvorrichtung außerhalb der Schleifmaschine durchgeführt wird, lässt sich der Messvorgang eher an einen Produktionsvorgang von Stabmessern angleichen, bei dem auch auf einer Messvorrichtung außerhalb der Schleifmaschine gemessen wird. Vorteilhafte Ausgestaltungen des Verfahrens nach der Erfindung bilden die Gegenstände der Unteransprüche.
Wenn in einer Ausgestaltung des Verfahrens nach der Erfindung jeder Kalibrierschliff zwei Schlichtdurchgänge beinhaltet, ist das Kalibriermesser nach zwei vollständigen Kalibrierschliffen fertig geschliffen.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung bei den beiden Kalibrierschliffen das Stabmesser in zwei Achsrichtungen ausgerichtet wird, die einen Winkel von 70° - 90° und vorzugsweise um 90° miteinander bilden, um die Position einer Arbeitsfläche einer Schleifscheibe der Schleifmaschine bezüglich dieser beiden Achsrichtungen und die Ausrichtung des Stabmessers zu einer Positionierachse zu ermitteln, so lassen sich auf einfache Weise drei Fehler in zwei Schritten beseitigen.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung in dem ersten Schlichtdurchgang in einem Zuge die Kopffläche, ein erster Übergangsradius zu der ersten Flanke und die erste Flanke geschliffen werden, dann das Stabmesser um 180° um die Positionierachse gedreht wird und anschließend in dem zweiten Schlichtdurchgang die Kopffläche, ein zweiter Übergangsradius zu der zweiten Flanke und die zweite Flanke geschliffen werden, erhält vorteilhafterweise beim Schleifen jeder Flanke bei jedem Kalibrierschliff das Stabmesser eine andere Anordnung in der Schleifmaschine, so dass ein eindeutiger Rückschluss von den Messwerten auf die Kalibrierwerte möglich ist, und es ergibt sich für das Kalibrieren eine symmetrische Geometrie des Kalibriermessers. Da vom ersten zum zweiten Kalibrierschliff zwischen rechtem und linkem Anschlag gewechselt werden kann, können insgesamt vier Fehler in zwei Schritten beseitigt werden.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung für den ersten Kalibrierschliff das Stabmesser zur Stirnseite der Schleifscheibe angeordnet wird, lässt sich auf einfache Weise ein Fehler in Richtung der Y-Achse ermitteln, wenn in dieser Ausgestaltung das Messer stirnseitig zur Schleifscheibe so angeordnet wird, dass die A-A-Achse möglichst parallel zur Y-Achse ist und dass die Anschlagfläche der Spannvorrichtung genau parallel zur X-Achse ist. Im ersten Schlichtdurchgang werden so in einem Zuge Kopffläche, Übergangsradius und die erste Flanke geschliffen. Wenn für den zweiten Schlichtdurchgang das Messer mit der Spannvorrichtung 180° um die C- C-Achse gedreht wird und der gleiche Schleifvorgang wiederholt wird, so werden jetzt Kopffläche, Übergangsradius und die zweite Flanke geschliffen. Die Schleifscheibe wird dabei geradlinig entlang den Kanten so geführt, dass die Kopffläche senkrecht, beide Flanken entgegengesetzt unter einem vorgegebenen Winkel (vorzugsweise 20°) zur C-C-Achse sind und die Messerspitzen die zu prüfenden Abstände (mA und mB) zur Anschlagfläche erhalten.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung für den zweiten Kalibrierschliff das Stabmesser um 90° geschwenkt und zur Zylinderseite der Schleifscheibe angeordnet wird, indem die Vorrichtung 90° um die A-A-Achse geschwenkt wird, so dass die C-C-Achse jetzt parallel zur Z-Achse ist, lässt sich ein Fehler in Richtung der Z-Achse ermitteln, indem ansonsten genau gleich verfahren wird wie bei dem ersten Kalibrierschliff.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung zum Ermitteln des Rundungsradius einer Schleifscheibe der Schleifmaschine die Positionierachse des Stabmessers um den Flankenwinkel geneigt wird und das Stabmesser in einem dritten Kalibrierschliff jeweils an den Flanken und der Kopffläche vollständig geschliffen wird, ergibt die gemessene Abweichung einen dritten Kreispunkt, aus dem über ein Programm eine Abweichung des Rundungsradius Rg berechnet werden kann.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung zum Kalibrieren der Schleifmaschine durch einen weiteren Schritt eine der beiden Flanken des Stabmessers nur mit einer Schruppfläche der Schleifscheibe, deren Position zu ermitteln ist, geschliffen wird, lässt sich der Abstand zur Schruppfläche Ps durch den weiteren Schritt ermitteln, indem die zweite Flanke nur geschruppt wird, ohne Facettenwinkel. Die erste Flanke dient dabei zur Kontrolle. Die Auswertung erfolgt wieder über ein Programm.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung für das Messen der Geometrie des Kalibriermessers ein absolut messendes Messgerät eingesetzt wird, kann die Messung taktil oder optisch erfolgen, um nach jedem Schliff die Abweichungen der Flanken oder Spitzenabstände (fmA und fmB) zu messen. Die Auswertung kann wieder über ein Programm im Rechner der Schleifmaschine erfolgen.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung für das Messen der Geometrie des Kalibriermessers eine vergleichend messende Messvorrichtung eingesetzt wird, die die gemessene Geometrie des Kalibriermessers mit den Abmessungen einer Kalibrierlehre vergleicht, lässt sich das Verfahren beschleunigen, weil die Vergleichsmessung meist schneller und genauer als eine absolute Messung ist, aller- dings eine Kalibrierlehre benötigt, die zuvor über eine Absolutmessung genau vermessen wurde.
Wenn in weiterer Ausgestaltung des Verfahrens nach der Erfindung in den Schritten, in denen das Stabmesser in einem vollständigen Kalibrierschliff geschliffen wird, das Schleifen unter den gleichen Bedingungen erfolgt, unter denen Stabmesser auf der Schleifmaschine geschärft werden, lässt sich das Kalibriermesser mit dem gleichen Verfahren wie ein Produktionsmesser schleifen, so dass auch prözessbedingte Einflüsse, insbesondere mit den Schleifkräften verbundene Verlagerungen, berücksichtigt werden. Durch die Kalibrierung über drei Achsen (Y, Z, C) werden an dem Messer nicht nur Lage und Symmetrie der Flanken, sondern auch der Schleifabtrag angepasst. Hierdurch wird das Messer unempfindlich gegen Richtungsvariationen der C-C-Achse. Damit werden auch Formfehler im Spitzenradius (durch Versatz der Kopfkanten) und Unterschiede im Facettenabtrag vermieden
Ausführungsbeispiele der Erfindung werden im Folgenden unter Bezugnahme auf die übrigen Zeichnungen näher beschrieben. Es zeigen
Fig. 1 eine perspektivische Ansicht einer bekannten Schleifmaschine zum
Schärfen von Stabmessern, die sich durch das Verfahren nach der Erfindung kalibrieren lässt,
Fig. 2 eine perspektivische Teilansicht eines Stabmessers, das sich mittels der
Schleifmaschine nach Fig. 1 schärfen lässt,
Fig. 3 eine Teilquerschnittansicht des kopfseitigen Endes des Stabmessers nach Fig. 2 zur Veranschaulichung von Facetten- und Freiwinkeln im Bereich einer Schneidkante,
Fig. 4 eine Schnittansicht einer Schleifscheibe der Schleifmaschine nach
Fig. 1 ,
Fig. 5 eine Vorderansicht einer Spannvorrichtung, die mit einem eingespannten Stabmesser dargestellt ist,
Fig. 6 in Draufsicht die Spannvorrichtung nach Fig. 5, Fig. 7 die Auswirkung eines Positionsfehlers der Schleifscheibe auf ein
Produktionsmesser,
Fig. 8 die Auswirkung des Positionsfehlers in Richtung des Messerschaftes,
Fig. 9 die Auswirkung der Abweichung einer Anschlagfläche bei dem Schleifen der Hauptfreifläche A und der Nebenfreifläche B eines Stabmessers (linkes Messer),
Fig. 10 einen ersten Kalibrierschliff, stirnseitig, zur Kompensation einer gemessenen Abweichung fm = fpZ und
Fig. 11 einen zweiten Kalibrierschliff, zylinderseitig, zur Kompensation einer gemessenen Abweichung fm = fpY, nachdem die Abweichung fpZ gemäß Fig. 10 kompensiert worden ist.
Beim Schleifen im generierenden Verfahren, wie es in der beigefügten Fig. 7 veranschaulicht ist, wirken sich Positionsabweichungen der Schleifscheibe (fpY, fpZ) und eine Anschlagabweichung in der Spannvorrichtung (fa = faL oder faR) sowohl auf den Flankenabtrag (fb) als auch auf den Abtrag über Kopf (fh) aus (und die beiden Kopfkanten können versetzt sein). Bei der Vergleichsmessung ist das Meistermesser in der Messvorrichtung von der Solllage aus gegen den Anschlag (um fh) verschoben, so dass sich die gemessene Dickenabweichung (fm) als Überlagerung aller Fehler ergibt. Dieser Messwert wird bislang zur Korrektur der Messer verwendet.
Prinzip des bekannten Kalibrierverfahrens:
Die Grundidee dieses Kalibrierverfahrens ist es, den Gesamtfehler in Einzelkomponenten zu zerlegen und separat zu kompensieren. Das wird nun unter Bezugnahme auf die beigefügten Fig. 7 bis 9 näher beschrieben.
Betrachtet man von den Positionsabweichungen (Vektor fp, Fig. 7) der Schleifscheibe 12 nur die Komponente in Richtung der C-C-Achse (fpC, Fig. 7, analog fpY, Fig. 8), so bewirkt sie, dass Kopf und Flanke um den gleichen Betrag (fh = fpY) versetzt geschliffen werden. In Schaftrichtung des Messers gesehen ändert sich somit nur die Abschliffhöhe, wohingegen die Geometrie des fertig geschliffenen Messers unverändert bleibt. Dieser Effekt wird dazu benutzt, die Einzelfehler folgendermaßen zu separieren: Bei Ausrichtung zur Y-Achse ist die gemessene Abweichung (fm) gleich der Z- Komponente (fpZ), bei Ausrichtung zur Z-Achse gleich der Y-Komponente (fpY) der Positionsabweichung. Unter der Voraussetzung, dass beide Flanken des Messers mit der gleichen Richtung der C-C-Achse geschliffen wurden, haben die Kopfkanten den gleichen Versatz und die Spitzenabstände der beiden Flanken A und B die gleiche Abweichung (fmA = fmB). Überlagert wird noch die Abweichung der Anschlagfläche (fa = faL oder faR). Sie bewirkt auf einer Flanke eine positive, auf der anderen Flanke eine negative Abweichung (Fig. 9), aber keinen Versatz der Kopfkanten. Über Differenz und Mittelwert können dann Anschlag- und Positionsabweichung (wie weiter unten beschrieben) separiert werden.
Für die zweite Positionskomponente muss das Messer nochmals geschliffen werden. Hierbei kann auch auf die zweite Anschlagfläche gewechselt werden. Obwohl das Messer zwei Mal geschliffen und gemessen werden muss, ergibt sich eine sehr einfache und wirkungsvolle Kalibriermethode.
Auswertung:
Zur Kalibrierung der Scheibenposition werden Abweichungen (f = Istwert - Nennwert) ermittelt, mit denen die für die Berechnung der Schleifbahn zugrunde gelegten Nennwerte an die Istwerte angepasst werden (nicht umgekehrt!).
rechter Anschlag (Differenz) faR = (fsB - fsA)/2 für rechte Messer linker Anschlag (Differenz) faL = (fsB - fsA)/2 für linke Messer Z Position (Mittelwert) fpZ = (fsB + fsA)/2 für Y Ausrichtung (Stirnseite)
Y Position (Mittelwert) fpY = (fsB + fsA)/2 für Z Ausrichtung (Zylinderseite)
Verfahren nach der Erfindung
Bei dem Verfahren nach der Erfindung zum Kalibrieren einer Schleifscheibe werden die Stabmesser 10 mindestens zweimal vollständig geschliffen. Jeder Kalibrierschliff beinhaltet zwei Schlichtdurchgänge, was im Folgenden unter Bezugnahme auf die Fig. 10 und 11 näher beschrieben wird. Erster Kalibrierschliff (Y-Ausrichtung, Fig. 10):
Für den ersten Schlichtdurchgang wird das Stabmesser 10 stirnseitig zur Schleifscheibe 12 so angeordnet, dass die A-A-Achse möglichst parallel zur Y-Achse ist und dass die Anschlagfläche 23 der Spannvorrichtung 21 genau parallel zur X-Achse ist. In dem ersten Schlichtdurchgang werden in einem Zuge die Kopffläche K, ein Übergangsradius und die erste Flanke geschliffen.
Für den zweiten Schlichtdurchgang wird das Stabmesser mittels der Spannvorrichtung 21 um 180° um die C-C-Achse gedreht, und es wird der gleiche Schleifvorgang wiederholt, so dass jetzt erneut die Kopffläche K, ein weiterer Übergangsradius und die zweite Flanke geschliffen werden.
Die Schleifscheibe 12 wird dabei entlang der Kanten so geführt, dass die Kopffläche K senkrecht ist, dass beide Flanken 5, 6 entgegengesetzt unter einem vorgegebenen Winkel, vorzugsweise 20° zur C-C-Achse stehen und dass die Messerspitzen die zu prüfenden Abstände mA und mB zur Anschlagfläche 23 oder 24 erhalten.
Bei dem Einsatz einer Dual-Schleifscheibe muss bei dem erfindungsgemäßen Verfahren aus konstruktiven Gründen die C-C-Achse um einen kleinen Winkel geneigt werden. Zusammen mit der Abtragsabweichung der Facette entsteht im ersten Kalibrierschritt eine Rückkopplung zwischen der Y- und der Z-Komponente, der zu einem Restfehler (zwischen 5 % und 20 % der zweiten Komponente) führen kann. Bei größeren Abweichungen sollte deshalb ein Kontrollschliff mit eventueller Nachkalibrierung durchgeführt werden. Ein Versatz der Kopfkanten wird vermieden, indem beide Flanken mit gleicher Achsanordnung geschliffen werden.
Im Dualverfahren erhalten die Kanten vorzugsweise die gleiche Facette wie die Produktionsmesser. Dass die Kopffläche bei jedem vollständigen Schliff zwei Mal geschliffen wird, ist geometrisch ohne Bedeutung, aber technologisch notwendig. Beim ersten Schlichtdurchgang muss ein großes Aufmass über Kopf abgeschliffen werden, der zu einem Formfehler der Kopfkante führen kann. Bei dem zweiten Schlichtdurchgang wird dieser Fehler aber beseitigt.
Zweiter Kalibrierschliff (Z-Ausrichtung, Fig. 11):
Dabei wird genau wie bei dem ersten Schliff verfahren, jedoch wird das Messer auf der Zylinderseite der Schleifscheibe 12 angeordnet, indem die Spannvorrichtung um 90° um die A-A-Achse geschwenkt wird, so dass die C-C-Achse jetzt parallel zur Z-Achse ist. Vom ersten zum zweiten Kalibrierschliff kann zwischen rechtem und linkem Anschlag gewechselt werden.
Die Auswertung erfolgt auf die eingangs bereits geschilderte Art und Weise, indem zur Kalibrierung der Scheibenposition Abweichungen (f = Istwert - Nennwert) ermittelt werden, mit denen die für die Berechnung der Schleifbahn zu Grunde gelegten Nennwerte an die Istwerte angepasst werden, wie im Stand der Technik, wobei Differenzen und Mittelwerte ebenfalls auf die eingangs dargelegte Art und Weise berechnet werden.
Weitere Kalibriermöglichkeiten:
Nachdem die Scheibenposition genau kalibriert worden ist, können auch die wichtigsten Abmessungen der Schleifscheibe geprüft und bei Bedarf angepasst werden:
Rundungsradius Rg:
Das Stabmesser 10 wird ein drittes Mal geschliffen, wobei die C-C-Achse um den Flankenwinkel geneigt wird, so dass die Flanke jetzt senkrecht steht. Die gemessene Abweichung ergibt einen 3. Kreispunkt, aus dem über ein Programm die Radiusabweichung berechnet werden kann.
Abstand zur Schruppfläche Ps:
In einem weiteren Schleifdurchgang wird die zweite Flanke nur geschruppt, ohne Facettenwinkel. Die erste Flanke dient zur Kontrolle. Die Auswertung erfolgt wieder über ein Programm.

Claims

Patentansprüche
1. Verfahren zum Kalibrieren einer Schleifmaschine zum Schärfen von Stabmessern durch Schleifen von wenigstens zwei Flanken und einer Kopffläche der Stabmesser, beinhaltend die Schritte
Herstellen eines Kalibriermessers durch Schärfen eines Stabmessers entsprechend einer vorgegebenen Geometrie,
Messen der Geometrie des Kalibriermessers, und
Kalibrieren der Maschine mit Hilfe wenigstens des Messergebnisses,
dadurch gekennzeichnet, dass zu dem Herstellen eines Kalibriermessers das Stabmesser wenigstens zwei Mal jeweils an den Flanken und der Kopffläche vollständig geschliffen wird und dass das Messen der Geometrie des Kalibriermessers auf einer Messvorrichtung außerhalb der Schleifmaschine durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass jeder Kalibrierschliff zwei Schlichtdurchgänge beinhaltet.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei den beiden Kalibrierschliffen das Stabmesser in zwei Achsrichtungen (Y, Z) ausgerichtet wird, die einen Winkel von 70° - 90° und vorzugsweise von etwa 90° miteinander bilden, um die Position einer Arbeitsfläche einer Schleifscheibe der Schleifmaschine bezüglich dieser beiden Achsrichtungen und die Ausrichtung des Stabmessers zu einer Positionierachse (C-C) zu ermitteln.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem ersten Schlichtdurchgang in einem Zuge die Kopffläche, ein erster Übergangsradius zu der ersten Flanke und die erste Flanke geschliffen werden, dass dann das Stabmesser um 180° um die Positionierachse (C-C) gedreht wird und dass anschließend in dem zweiten Schlichtdurchgang die Kopffläche, ein zweiter Übergangsradius zu der zweiten Flanke und die zweite Flanke geschliffen werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass für den ersten Kalibrierschliff das Stabmesser zur Stirnseite der Schleifscheibe angeordnet wird (Fig. 10).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass für den zweiten Kalibrierschliff das Stabmesser um 90° geschwenkt und zur Zylinderseite der Schleifscheibe angeordnet wird (Fig. 11 ).
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass zum Ermitteln des Rundungsradius (Rg) einer Schleifscheibe der Schleifmaschine die Positionierachse (C-C) des Stabmessers um den Flankenwinkel geneigt wird und das Stabmesser in einem dritten Kalibrierschliff jeweils an den Flanken und der Kopffläche vollständig geschliffen wird.
8. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass zum Kalibrieren der Schleifmaschine durch einen weiteren Schritt eine der beiden Flanken des Stabmessers nur mit einer Schruppfläche der Schleifscheibe, deren Position zu ermitteln ist, geschliffen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass für das Messen der Geometrie des Kalibriermessers ein absolut messendes Messgerät eingesetzt wird.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass für das Messen der Geometrie des Kalibriermessers eine vergleichend messende Messvorrichtung eingesetzt wird, die die gemessene Geometrie des Kalibriermessers mit den Abmessungen einer Kalibrierlehre vergleicht.
11. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in den Schritten, in denen das Stabmesser (10) jeweils vollständig geschliffen wird, das Schleifen unter den gleichen Bedingungen erfolgt, unter denen Stabmesser auf der Schleifmaschine geschärft werden.
EP04706628A 2003-02-04 2004-01-30 Verfahren zum kalibrieren einer schleifmaschine Expired - Lifetime EP1590126B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10304430 2003-02-04
DE10304430A DE10304430B3 (de) 2003-02-04 2003-02-04 Verfahren zum Kalibrieren einer Schleifmaschine
PCT/EP2004/000887 WO2004069471A2 (de) 2003-02-04 2004-01-30 Verfahren zum kalibrieren einer schleifmaschine

Publications (2)

Publication Number Publication Date
EP1590126A2 true EP1590126A2 (de) 2005-11-02
EP1590126B1 EP1590126B1 (de) 2006-10-18

Family

ID=32841592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04706628A Expired - Lifetime EP1590126B1 (de) 2003-02-04 2004-01-30 Verfahren zum kalibrieren einer schleifmaschine

Country Status (9)

Country Link
US (1) US7172490B2 (de)
EP (1) EP1590126B1 (de)
JP (1) JP4857105B2 (de)
CN (1) CN1747811B (de)
AT (1) ATE342788T1 (de)
DE (2) DE10304430B3 (de)
ES (1) ES2273213T3 (de)
MX (1) MXPA05008268A (de)
WO (1) WO2004069471A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103441B2 (en) 2004-10-05 2006-09-05 Walter Maschinenbau Gmbh Calibration procedures and such using an erosion and grinding machine
ES2425435T3 (es) * 2004-12-16 2013-10-15 Walter Maschinenbau Gmbh Procedimiento de calibrado y máquinas de electroerosión y rectificadoras que lo utilizan
JP5500579B2 (ja) * 2009-09-30 2014-05-21 株式会社ニデック 眼鏡レンズ加工装置の較正用センサユニット
KR20140017268A (ko) * 2012-07-31 2014-02-11 차인선 엔드밀 공구 제조방법
TWI681835B (zh) 2018-04-09 2020-01-11 瑞士商瑞士路勞曼迪有限公司 用於製造包含螺旋槽的工件之方法及研磨機及用於控制研磨機之程式
CN109202547B (zh) * 2018-10-10 2020-11-03 哈尔滨工业大学 一种用于大长径比内螺纹平行轴磨削的砂轮磨削方法
CN112757119A (zh) * 2020-10-28 2021-05-07 厦门达科塔机械有限公司 一种全自动叶片打磨机
EP4349527A1 (de) * 2022-10-06 2024-04-10 Rollomatic S.A. Verfahren zum schleifen von kleinen rotierenden schneidwerkzeugen mit einer schleifmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881889A (en) * 1973-12-27 1975-05-06 Gleason Works Method for resharpening cutting blades and cutter
DE2946648C2 (de) * 1979-11-19 1983-12-08 Klingelnberg Söhne, 5630 Remscheid Verfahren zum Profilieren und Scharfschleifen von Stabmessern
JPS6033006A (ja) * 1983-08-02 1985-02-20 Toyoda Mach Works Ltd 円筒型砥石車のツル−イング装置
JP2706420B2 (ja) * 1993-12-27 1998-01-28 村田機械株式会社 Nc工作機械の工具刃先位置補正方法及びその装置
FR2784919B1 (fr) * 1998-10-22 2001-02-09 Essilor Int Procede pour l'etalonnage d'une meuleuse pour lentille ophtalmique, et calibre d'etalonnage propre a sa mise en oeuvre
US6601434B2 (en) * 1999-12-02 2003-08-05 Thermwood Corporation System and method of calibrating a multi-toolhead machine
DE10103121A1 (de) * 2000-01-27 2001-08-02 Oerlikon Geartec Ag Zuerich Verfahren zum Schleifen von wenigstens einer Fläche an einem in der Zerspantechnik eingesetzten Schneidmesser
DE10103755C1 (de) 2001-01-27 2002-05-16 Oerlikon Geartec Ag Zuerich Schleifscheibe zum Schleifen von stabförmigen Messern für die Herstellung von bogenverzahnten Kegel- und Hypoidrädern und zugehöriges Verfahren zum Schleifen
DE10208165C1 (de) * 2002-02-26 2003-10-02 Advanced Micro Devices Inc Verfahren, Steuerung und Vorrichtung zum Steuern des chemisch-mechanischen Polierens von Substraten
US7103441B2 (en) * 2004-10-05 2006-09-05 Walter Maschinenbau Gmbh Calibration procedures and such using an erosion and grinding machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004069471A3 *

Also Published As

Publication number Publication date
ATE342788T1 (de) 2006-11-15
DE10304430B3 (de) 2004-09-23
EP1590126B1 (de) 2006-10-18
US20060240744A1 (en) 2006-10-26
JP2006517150A (ja) 2006-07-20
US7172490B2 (en) 2007-02-06
WO2004069471A2 (de) 2004-08-19
CN1747811A (zh) 2006-03-15
DE502004001799D1 (de) 2006-11-30
MXPA05008268A (es) 2006-03-21
JP4857105B2 (ja) 2012-01-18
ES2273213T3 (es) 2007-05-01
CN1747811B (zh) 2010-12-01
WO2004069471A3 (de) 2004-10-21

Similar Documents

Publication Publication Date Title
DE19619401C1 (de) Verfahren, Werkzeug und Vorrichtung zum Profilieren von Schleifschnecken für das kontinuierliche Wälzschleifen
DE69009018T3 (de) Fräswerkzeuge.
EP1987919A2 (de) Verfahren und Schleifmaschine zum Profilieren eines Schleifwerkzeugs
EP2923790B1 (de) Verfahren zum schleifenden Bearbeiten von Kegelrädern im Einzelteilverfahren
WO1993019881A1 (de) Verfahren und einrichtung zum schleifen rillenförmiger aussenprofile eines werkstückes
DE1577451C3 (de) Verfahren zum Nachschleifen eines Werkzeugstahles
EP0085176A1 (de) Messerkopf für Verzahnungsmaschinen
EP1590126B1 (de) Verfahren zum kalibrieren einer schleifmaschine
DE4112122A1 (de) Verfahren zum zahnflankenschleifen oder -fraesen innen- bzw. aussenverzahnter werkstuecke mit einem profilierten scheibenfoermigen werkzeug sowie vorrichtung zur durchfuehrung eines solchen verfahrens
DE102021132246A1 (de) Zahnradbearbeitungsverfahren und Zahnradbearbeitungsvorrichtung
DE69222871T2 (de) Verfahren zum ausrichten und zur winkeleinstellung von fräserschneiden mittels schärfen
EP2665575B1 (de) Verfahren zum fräsen eines schneckenrades
EP0037909B1 (de) Schrägschneidrad mit Treppenscharfschliff
DE2855857C2 (de) Verfahren zum Bearbeiten der Zahnflanken von schrägverzahnten Stirnrädern und Vorrichtung zur Durchführung des Verfahrens
DE102019005405A1 (de) Verfahren zum Hartfeinbearbeiten zweier Verzahnungen an einem Werkstück
EP0033373A1 (de) Fräskopf
DE7808304U1 (de) Fraeser zum fraesen einer schraubenlinienfoermigen nut vorbestimmten profils in einem schraubenverdichter
EP4028215A1 (de) Verfahren zur herstellung eines rotors eines schraubenverdichters oder eines werkstücks mit schneckenförmigem profil
DE1070901B (de)
DE1527157A1 (de) Verfahren und Einrichtung zur Herstellung von Waelzfraesern und Duplexschnecken
EP0489708B1 (de) Schleifapparat
DE1122807B (de) Maschine zum Fraesen von Verzahnungen von Kegel- und Hyperboloidzahnraedern
EP4208308B1 (de) Verfahren zum schleifen einer verzahnung oder eines profils eines werkstücks
DE3120962A1 (de) "verfahren zum schaerfen von messern fuer messerkoepfe zur bearbeitung von holz und kunststoffen, nach dem verfahren geschaerftes messer sowie messerkopf mit derartigen messern"
DE10324432A1 (de) Profilgeschärftes Stabmesser zur Herstellung von Kegel- und Hypoidrädern und Verfahren zum Profilschärfen eines solchen Stabmessers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050705

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004001799

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070320

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2273213

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004001799

Country of ref document: DE

Representative=s name: SCHUMACHER & WILLSAU PATENTANWALTSGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: KLINGELNBERG AG, CH

Free format text: FORMER OWNER: KLINGELNBERG AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220119

Year of fee payment: 19

Ref country code: DE

Payment date: 20220119

Year of fee payment: 19

Ref country code: CH

Payment date: 20220119

Year of fee payment: 19

Ref country code: AT

Payment date: 20220120

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220119

Year of fee payment: 19

Ref country code: IT

Payment date: 20220120

Year of fee payment: 19

Ref country code: FR

Payment date: 20220119

Year of fee payment: 19

Ref country code: ES

Payment date: 20220325

Year of fee payment: 19

Ref country code: BE

Payment date: 20220119

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004001799

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 342788

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131